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Abstract 

We find, in close analogy to abelian dominance in maximal abelig,n gauge, the 

phenomenon of center dominance in maximal center gauge for SU(2) lattice gauge 

theory. Maximal center gauge is a gauge-fixing condition that preserves a residual Z2 

gauge symmetry; "center projection" is the projection of SU(2) link variables onto 

z2 center elements, and "center dominance" is the fact that the center-projected link 

elements carry most of the information about the string tension of the full theory. 

We present numerical evidence that the thin Z2 vortices of the projected configura

tions are associated with "thick" Z2 vortices in the unprojected configurations. The 

evidence also suggests that the thick Z2 vortices may play a significant role in the 

confinement process. 
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1 Introduction 

Perhaps the most popular theory of quark confinement is the dual-superconductor 

picture as formulated in abelian-projection gauges [1]. In this theory the unbroken 

U(l )~-l symmetry of the full SU(N) gauge group plays a special role in identifying 

both the relevant magnetic monopole configurations, and also the abelian charge 

which is subject to the confining force. The phenomenon of abelian dominance [2] 

in maximal abelian gauge [3] is often cited as strong evidence in favor of the dual

superconductor picture (c.f. ref. [4] for a recent review). 

Of course, many alternative explanations of quark confinement have been ad

vanced over the years. The theory which will concern us in this article is the vortex 

condensation (or "spaghetti vacuum") picture, in which the vacuum is understood to 

be a condensate of vortices of some finite thickness, carrying flux in the center of the 

gauge group. The spaghetti picture was originally advanced by Nielsen and Olesen [5], 

and this idea was further elaborated by the Copenhagen group in the late seventies. 

A closely related idea, due to 't Hooft [6] and Mack [7], emphasized the importance 

of the ZN center of the SU(N) gauge group. In that picture there is a certain cor

respondence between magnetic flux of the relevant vortices and the elements of the 

the ZN subgroup, and it is random fluctuations in the number of such vortices linked 

to a Wilson loop which explains the area-law falloff.l Ref. [10] presents an argument 

for this ZN center restriction in the framework of the "Copenhagen vacuum." 

The vortex condensation theory, like dual-superc<?nductivity, focuses on on a cer

tain subgroup of the full SU(N) gauge group, but it is the ZN center, rather than 

U(l)N-I, which is considered to be of special importance. This raises a natural ques

tion: Does there exist, in close analogy to abelian dominance, some version of "center 

dominance?" If so, should this "evidence be interpreted essentially as a critique of 

abelian dominance, or should it be viewed as genuine support for the vortex theory? 

Supposing that the vortex condensation theory is taken seriously, how can one iden

tify Z2 vortices in unprojected field configurations, and can one determine if such 

vortices are of any physical importance? This article is intended as a preliminary 

investigation of these questions. 

1 See also ref. [8]. Recent work along these same lines is found in ref. [9]. 
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2 Center Dominance 

We begin with the phenomenon of- "center dominance" in maximal center gauge. 

One starts by fixing to the maximal abelian gauge [3], which, for SU(2) gauge theory, 

maximizes the quantity 
4 

L L Tr[a3UJ.L(x )a3U!(x )] (1) 
X J.L=l 

This gauge has the effect of making link variables as diagonal as possible, leaving a 

remnant U(1) gauge symmetry. "Abelian projection" means the replacement of the 

full link variables U by the abelian links A, according to the rule 

u = aol + ia 0 

;; --+ (2) 

It can be shown that the A link variables transform like U ( 1) gauge fields under 

the remnant U(1) symmetry. Abelian dominance, found by Suzuki and collaborators 

[2], is essentially the fact that the confining string tension can be extracted from 

the abelian-projected A-link variables alone. Abelian dominance has been widely 

interpreted as supporting the dual-superconductor theory advanced in ref. [1]. 

But while the dual-superconductor idea focuses on the remnant U(1) subgroup of 

the gauge symmetry, it is the Z2 center of the SU(2) gauge group that seems most 

relevant in the vortex condensation picture. This suggests making a further gauge

fixing, which would bring the abelian links as close as possible to the center elements 

±1 of SU(2). Therefore, writing 

A= (3) 

we use the remnant U ( 1) symmetry to maximize 

(4) 

leaving a remnant Z2 symmetry. This we call "Maximal Center Gauge." Then define, 

at each link, 

Z =sign( cos B) = ±1 (5) 

which transforms like a Z2 gauge field under the remnant symmetry. "Center Projec

tion" U -+ Z, analogous to "abelian projection" U -+ A, is defined as the replacement 
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of the full link variables U by the center element Z I, in the computation of observables 

such as Wilson loops and Polyakov lines. 

Figure 1 is a plot of Creutz ratios vs. coupling /3, extracted from Wilson loops 

formed from the center-projected Z2 link variables. Lattice sizes were 104 for f3 ::; 2.3, 

124 at f3 = 2.4, and 164 at f3 = 2.5.2 What is rather striking about Fig. 1 is the fact 

that, from 2 lattice spacings onwards, the Creutz ratios at fixed f3 2: 2.1 all fall on 

top of one another, and all lie on the same scaling line 

u 6 I 6 ua2 = -(-1r2 /3)102 121 exp[--7r2 /3] 
A2 11 11 

(6) 

'with the value ~/A = 67. Even the logarithm of the one-plaquette loop, x(1, 1 ), 

appears to parallel this line. This behavior is in sharp contrast to Creutz ratios 

extracted from the full link variables, where only the envelope of Creutz ratios fits 

the scaling line. 

The equality of Creutz ratios, starting at 2 lattice spacings, means that the center 

projection sweeps away the short-distance, 1/r-type potential, and .the remaining 

linear potential is revealed already at short distances. This fact is quite apparent in 

Fig. 2, which displays the data for x(R, R) at f3 = 2.4 for the full theory (crosses), 

the center projection (diamonds), and also for the U(1)/Z2-projection (squares). The 

latter projection consists of the replacement U-+ A/Z for the link variables. We note 

that the center-projected data is virtually fiat, from R = 2 to R = 5, which means 

that the potential is linear in this region, and appears to be the asymptote of the full 

theory. It should also be noted that abelian link variables with the center factored 

out, i.e. U-+ A/Z, appear to carry no string tension at all. 

Of course, one can also carry out finite temperature studies in the center projec

tion. Thus far, we have only computed Polyakov lines vs. f3 on a 63 x 2 lattice, and 

obtained the results shown in Fig. 3. The deconfinement transition, signaled by a 

sudden jump in the value of the Polyakov line, appears to occur at the value of f3 
appropriate for T = 2 lattice spacings in the time direction. 

It should be noted parenthetically that our definition of maximal center gauge is 

not the only possible definition. A similar but not identical gauge, leaving a remnant 

z2 symmetry, would be the gauge which maximizes 

(7) 
X J.L 

2Finite size effects, as indicated by the values of center-projected Polyakov lines, appear to be 
signifitantly larger for center-projected configurations as compared to the full link variables, and 
this is why we use a 164 lattice at f3 = 2.5. 
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Figure 1: Creutz ratios from center-projected lattice configurations. 
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Figure 3: Polyakov lines vs. j3 in center projection, for a 63 x 2 lattice. 

with center projection defined by 

Z = sign(TrU) (8) 

This version is more difficult to implement numerically, and has not yet been studied. 

In any case, center dominance in maximal center gauge, as displayed in the figures 

above, does not necessarily imply that confinement is due to vortex condensation. In 

fact our initial view, expounded in ref. [11], was that since center dominance would 

appear to support a theory, namely vortex condensation, which is "obviously wrong" 

(for reasons discussed in section 4), its success only proves that neither center dom

inance nor abelian dominance are reliable indicators of the confinement mechanism. 

The truncation of degrees of freedom inherent in both the abelian and the center pro

jections may easily do violence to the topology of the confining gauge fields. So the 

fact that the confining configurations of U(l) gauge fields are monopoles, while con

fining configurations in Z2 gauge theory are condensed vortices, does not necessarily 

imply that either type of configuration is especially relevant to the full, unprojected 

SU(2) theory. 

However, before stating with assurance that the Z2 vortices of the center-projected 

configurations have nothing to do with confinement, there are certain checks that must 

be carried out. It is here that we have encountered a surprise. 
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3 The Detection of Z2 Vortices 

Consider a field configuration U J.L ( x), and any planar loop C. As explained above, it 

is a simple matter to transform to maximal center gauge, and then to examine each 

of the plaquettes spanning the minimal area enclosed by loop C, in the correspond

ing center projected configuration ZJ.L(x). The number of plaquettes computed with 

center-projected links, whose value is -1, corresponds to the number of Z2 vortex 

lines of the center-projected configuration which pierce the minimal loop area. We 

will refer to these Z2 vortex lines of the center-projected configurations as "projection

vortices," or just "P-vortices," to distinguish them from the (hypothetical) Z2 vortices 

that ·might be present in the unprojected configurations. As a Monte Carlo simula

tion proceeds, the number of P-vortices piercing any given loop area will fluctuate. 

The first question to ask is whether the presence or absence of P-vortices in the pro

jected configurations is correlated in any way with the confining properties of the 

corresponding unprojected configurations. 

To answer this question, we compute Creutz ratios xo( R, R) of Wilson loops 

W0 (C), that are evaluated in a subensemble of Monte Carlo-generated configurations 

in which no P-vortex pierces the minimal area of loop C. We stress that the full, 

unprojected link variables are used in computing the loop, and the center-projection 

is employed only to select the data set. In practice, having generated a lattice config

uration and fixed to maximal center gauge, one examines each rectangular loop of a 

given size; those with no P-vortices piercing the loop are evaluated, and those with a 

non-zero number are skipped. Of course, by a trivial generalization, we may compute 

Wilson loops Wn( C), evaluated in ensembles of configurations with any given number 

n of P-vortices piercing the loop. 

Figure 4 displays Creutz ratios xo( R, R) extracted from W0 ( C) loops, as compared 

to the standard Creutz ratios with no such restriction, at f3 = 2.3. From this figure it 

is clear that, while the zero-vortex restriction makes little difference to the smallest 

loops, it makes a very big difference to the Creutz ratios of the larger loops. It 

appears, in fact, that the aymptotic string tension of the zero-vortex loops vanishes 

altogether. 3 

If we presume (as most people do) that confinement is an effect associated with 

some particular type of field configuration - let us call them the "Confiners" - then 

it would seem from Fig. 4 that the presence or absence of P-vortices in the center-

3 Error bars are much smaller for the no-vortex data as compared to the full data; this is why we 
can report meaningful result~ at larger R for the no-vortex data than for the full data. 
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Figure 4: Creutz ratios xo(R, R) extracted from loops with no P-vortices, as compared 
to the usual Creutz ratios x(R, R), at f3 = 2.3. 

projected configurations is strongly correlated with the presence or absence of Con- . 

finers in the unprojected configurations. The next question is whether we can exclude 

the possibility that these Confiners are actually Z2 vortices. 

To address this question, assume for the moment that to each P-vortex piercing a 

given loop, there corresponds a Z2 vortex in the full, unprojected field configuration 

piercing that loop. This assumption has the consequence that, in the limit of large 

loops, 
Wn(C) 
Wo(C) 

(9) 

The argument for eq. (9) goes as follows: In SU(2) (as opposed to Z2 ) lattice 

gauge theory, the field strength of. a vortex may be spread out in a cross-section, 

or "core," of some finite diameter D greater than one lattice spacing. Outside the 

core, the vector potential of each vortex can be represented by a discontinuous gauge 

transformation. If a surface. bounded by loop C is pierced by n vortex lines, and if 

the cores of the vortices do not intersect C, then the relevant gauge transformation, 

at the point of discontinuity, has the property 

g(x(O)) = ( -ltg(x(l)) (10) 
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where xtt(T), T E [0, 1] parametrizes the closed loop C. We can then decompose the 

vector potential A~n)( x) in the neighborhood of loop C in terms of a discontinuous 

gauge transformation g(x), which represents the vortex background near C, and a 

fluctuation 8A~n) ( x) such that 

A~n)(x) = g- 1 8A~n)(x)g + ig- 1ottg (11) 

The corresponding Wilson loop, evaluated on the subensemble of configurations in 

which n vortex lines pierce loop C, would be 

Wn( C) < Tr exp[i f dxiL A~n)] > 

= (-It< Trexp[i j dxttoA~n)] > (12) 

Of course, any vector potential in the neighborhood of loop C can be rewritten in the 

form (11 ), so given some criterion for identifying the number of Z2 vortex lines piercing 

loop C (such as counting P-vortices), the question is whether this criterion, and the 

corresponding decomposition (12), is physically meaningful. A reasonable test is to 

see if the probability distribution of fluctuations 8A n( x) is independent of the number 

of vortex lines piercing the loop. This test is based on the fact that, in any local region 

of a large loop C, the effect of the vortices is simply a gauge transformation. Thus, 

providing the fluctuations 8 An( x) have only short range correlations, their distribution 

in the neighbourhood of loop C should be unaffected by the presence or absence of 

vortex lines in the middle of the loop. Therefore, if we have correctly isolated the 

vortex contribution, 

(13) 

for sufficiently large loops. This immediately leads to eq. (9); all that is needed is 

test this equation. 

Figure 5 shows the ratio W1(C)jW0 (C) vs loop area, for rectangular (R x Rand 

(R + 1) x R) loops at f3 = 2.3. The simulations were performed on a 144 lattice 

with 1000 thermalizing sweeps, followed by 8000 sweeps, with data taken every lOth 

sweep. In order to give the loop W1 (C) the greatest chance to lie outside the vortex 

core (assuming it exists), _W1 (C) was evaluated in the subensemble of configurations 

in which the single P-vortex is located in the center of the loop. The data seems 

perfectly consistent with eq. (9), i.e. W1 (C)/W0 (C)-+ -1 as the loop area increases. 

Figure 6 shows the corresponding ratio W2 (C)jW0 (C) vs loop area. In this case 

we have evaluated W2 ( C) in the subensemble of configurations in which the two P

vortices lie inside a 2 x 2 square in the middle of the loop. As in the 1-vortex case, 
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Figure 5: Ratio of the 1-Vortex to the 0-Vortex Wilson loops, W1 (C)/W0 (C), vs. 
loop area at f3 = 2.3. 

the idea is to keep the loop C as far as a possible from the vortex cores, although the 

cores themselves rriay overlap. Once again, the data seems to agree nicely with eq. 

(9) for n = 2, i.e. W2(C)jW0(C) --7 +1. 
Of course, the configurations that contain exactly zero (or exactly one, or two) 

P-vortices piercing a given loop become an ever smaller fraction of the total number of 

configurations, as the loop area increases. However, for increasingly large loops, one 

would expect that the fraction of configurations with an even number of P-vortices 

piercing the loop, and the fraction with an odd number piercing the loop, approach 

one another. This is indeed the case, as can be seen from Figure 7. 

Let us define Wevn( C) to be the Wilson loops evaluated in configurations with 

an even (including zero) number of P-vortices piercing the loop, and Wodd( C) the 

corresponding quantity for odd numbers.4 According to eq. (9), Wevn( C) and Wodd(C) 
should be of opposite sign, for large loop area. Moreover, according to the vortex 

condensation picture, the area law for the full loop W( C) is due to fluctuations in 

the ±1 factor, coming from fiuctations in even/odd numbers of vortices piercing the 

4 In evaluating Wevn and Wodd, we make no special restriction on the location of the P-vortices 
within the loop. 
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Creutz ratios x(R, R) at this coupling (/3 = 2.3) are also shown. 

loop. If this is the case, then neither Wevn (C) alone, nor Wodd (C) alone, would have 

an area law, but only the weighted sum 

W( C) = Pevn( C)Wevn( C)+ Podd( C)Wodd( C) (14) 

where Pevn and Podd are the fractions of configurations, shown in Fig. 7, with even/odd. 

numbers of P-vortices piercing the loop. For large loops, Pevn ~ Podd ~ 0.5. 

Figure 8 shows the Creutz ratios extracted from Wevn(C), compared to the stan

dard Creutz ratios at f3 = 2.3. The figure is qualitatively quite similar to Fig. 4, 

but here it should be emphasized that the data set used to evaluate Wevn( C) is not a 

small minority of configurations (as it is for W0 ( C) for large loops), but constitutes 

at least half the configurations. The asympotic string tension, extracted from these 

configurations, appears to vanish. 

Figure 9 shows the values of Wevn(C), Wodd(C), W(C) vs. loop area, for the 

larger loops. As expected from eq. (9), Wevn and Wodd have opposite signs. The full 

Wilson loop W( C) has a positive sign, but is substantially smaller, at loop area 2:: 
20, than either of its two components. If this behavior persists at still greater areas, 

then the area law falloff of a Wilson loop W( C) is due to a very delicate cancellation 
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Figure 9: Wilson loops Wevn(C), Wodd(C) and W(C) at larger loop areas, taken from 
configurations with even numbers of P-vortices, odd numbers of P-vortices, a_pd any 
number of P-vortices, respectively piercing the loop. Again f' = 2.3. 

between much larger positive and negative components, associated with even and odd 

numbers of P-vortices respectively. Neither Wevn( C) nor Wodd( C), by itself, would 

appear to have an area law. 

4 Against Vortices 

The data presented in the previous section suggests that ZN vortices play a crucial 

role in the confinement process, and that condensation of such vortices (as proposed 

in refs. [5, 6, 7]) may be the long-sought confinement mechanism. On the other 

hand, there are some serious objections which can be raised against this mechanism. 

We have raised these objections repeatedly, in connection with the abelian-projection 

theory [12, 13, 11], and they apply with even more force to the vortex-condensation 

theory. 

The difficulties are all associated with Wilson loops in higher group representa

tions. First of all, there is a problem concerning the large-N limit [14]. A Wilson loop 

for quarks in the adjoint representation of an SU(N) gauge group is unaffected by 
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the discontinuous gauge transformations associated with ZN vortices; it foll<;>ws that 

fluctuations in the number of such vortices cannot produce an area law for adjoint 

loops. On the other hand, it is a consequence of factorization in the large-N limit 

that, at N = oo, the string tension of the adjoint loop (j Adj is simply related to the 

string tension of the (j fund of the fundamental loops 

(j Adj = 2(j fund (15) 

In addition, the existence of an adjoint string tension does not appear to be just a 

peculiarity of the large-N limit. It has been found in numerous Monte Carlo investiga

tions, for both the SU(2) and SU(3) gauge groups in both three and four dimensions, 

that there is an intermediate distance regime, from the onset of confinement to the 

onset of color screening, where 

(16) 

where Cr is the quadratic Casimir of representation r [15, 16, 17]. Again, it is hard 

to see how vortex condensation would account for this "Casimir scaling" of string 

tensions in the intermediate distance regime. 

From these considerations, it is clear that the "Confiners," whatever they may 

be, must produce rather different effects in different distance regimes. In SU(2) 
gauge theory, in the intermediate distance regime, the Confiners should supply string 

tensions compatible with 
(jj 4 "(. 1) - ~ -J J + (j} 3 

2 

(17) 

while, from the onset of color-screening and beyond, they should produce asymptotic 

values 
(j. = { (j t j = half-integer 

J 0 j ....:. integer 
(18) 

Both the vortex-condensation and abelian-projection theories are compatible with the 

latter condition on asymptotic string tensions, but do not explain Casimir scaling at 

intermediate distances. 

It is entirely possible that ZN vortices (or, for that matter, magnetic monopole 

configurations) have something to do with the confinement mechanism at distance

scales beyond the onset of color-screening. But it is also possible that the data of the 

previous section could be misleading in some way, and it is worth considering how 

that could happen. Let us rewrite eq. (14}in the form 

W(C) = LlP(C)Wevn(C) + Podd(C)LlW(C) (19) 
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where 

!J.P( C) 

!J. W( C) 

Pevn(C)- Podd(C) 

Wevn(C) + Wodd(C) 

In the center projection, Wevn = 1 and Wodd = -1 so that 

Wcp( C) = !J.P( C) 

(20) 

(21) 

If Z2 vortices are the confiners, then, as in the center projection, the area law is due 

to random fluctuations in the number of vortices piercing the loop. It would then be 

the term proportional to !J.P( C) in eq. (19) which accounts for the asymptotic string 

tension in the full theory. Asymptotically, Pevn ~ Podd ~ t, so that 

1 
W(C)-+ !J.P(C)Wevn + 2/J.W(C) (22) 

To really establish that Z2 vortices are the origin of the asymptotic string tension, 

we need (among other things) to establish that 

!J.P( C) rv exp[ -u cpA(.C)] (23) 

with 

(24) 

where Ucp is the string tension of the fundamental representation in center projection. 

Proper scaling of Ucp with respect to j3 is a necessary but not sufficient condition for 

this equality, and this is one way that the previous data might be misleading. If it 

should turn out that 

(7 cp > (7 fund (25) 

then the first term on the rhs of eq. (22) would become negligible, asymptotically, 

compared to W( C), and the asymptotic string tension would have to be due to 

!J. W( C). 

From Fig. 2, and the scaling apparent in Fig. 1, it would appear that Ufund and 

u cp are not very different. In this connection, it is instructive to compare Fig. 2 with 

an analogous calculation in compact QED3 . In QED3 it is also possible to define a 

"maximal Z2 gauge," via eq. ( 4), and a "Z2 projection" (the term "center projection" 

would be a misnomer here) according to eq. (5). A sample result for lattice QED3 

is shown below in Fig. 10. This simulation was run on a 303 lattice at j3 . 2.2, with 
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Full vs. Z2 Creutz Ratios at (5=2.2 in QED3 
0.10 .-~~~-r--~~-.--...,--.-~~---r-~~~~~~-...---, 

e---s- -13----§. __ -@_ 

- -m. _l - - -q3- - - 1' Z2 Lo ps 

All Loops 

0 2 4 6 8 ' 10 
R 

Figure 10: Test of Z2 dominance in compact QED3 : Z2 Projected vs. Full Creutz 
ratios at f3 = 2.2 on a 303 lattice. 

5000 thermalizations followed by 10000 sweeps, with data taken every lOth sweep. In 

this case, Creutz ratios Xcp(R, R) for the projected data appear to be approximately 

40% larger than the Creutz ratios x( R, R) for the unprojected data, and the two 

quantities don't appear to be converging for larger loops. 

The agreement between projected and unprojected Creutz ratios appears to be 

substantially better in the D = 4 SU(2) theory than in compact QED3 , despite the 

fact that SU(2) is a larger group than U(l ). On the other hand, the data presented 

in section 3 for the non-abelian theory was obtained on workstations, not supercom

puters. A state-of-the art string tension calculation aimed at a better quantitative 

comparison of CJ and CJcp, and perhaps also a study of alternate versions of the maximal 

center gauge (such as ( 7)), is certainly called for. 

5 Conclusions 

None of the evidence gathered so far is conclusive, although it does seem to point in 

a certain direction. We have found that: 

1. Center-projected link variables have the property of "center dominance" in max

imal center gauge. In this gauge it is the sign alone, of the real part of the 
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abelian-projected link, which appears to carry most of the information about 

the asymptotic string tension. 

2. Vortices in the center-projected configurations ("P-vortices") appear to be strongly 

correlated with the presence or absence of con:{ining field configurations in the 

full, unprojected field configurations. When Wilson loops are evaluated in an 

ensemble of configurations which do not contain P-vortices within the loop, the 

asymptotic string tension disappears. 

3. Wilson loops W0 (C), W1(C), W2 (C), evaluated in ensembles of configurations 

containing respectively zero, one, or two P-vortices inside the loop, in the cor

responding center projection, behave as though they contained zero, one or two 

Z2 vortices in the full, unprojected configuration. That is, WtfW0 .._.. -1, and 

W2 /W0 .._.. +1, as the loop area increases. 

If the Yang-Mills vacuum is dominated by Z2 vortices, as this data would seem to 

suggest, it raises many puzzling questions. Foremost among these is how to account 

for the existence and Casimir scaling of the adjoint string tension. Because of the 

existence of the adjoint tension, w~, think it unlikely that fluctuations in the number 

and location of Z2 vortices can give a complete account of the confinement mecha

nism in the intermediate distance regime. Such vortex fluctuations could be decisive 

asymptotically; further work will be needed to find out. 

Perhaps the most urgent need is to repeat all of the calculations reported here for 

the case of an SU(3) gauge group. If there is center dominance (with O" ~ O"cp), and 

if the presence of P-vortices is correlated with the magnitude of the string tension, 

and especially if 

(26) 

for corresponding P-fluxons with one unit e21ri/3 of center flux, then we believe that 

the combined evidence in favor of some version of the ZN vortex condensation theory 

would become rather compelling. 
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