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ABSTRACT 

We supplement the discussion of Moore and Reshetikhin and others by finding 
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nonchiral primary fields of WZW theory. These new nonabelian vertex oper­

ators are the natural generalization of the faihiliar abelian vertex operators: 

They involve only the representation matrices of Lie g, the currents of affine 

(g x g) and certain chiral and antichiral zero m.odes, and they reduce to the 

abelian vertex operators in the limit of abelian algebras. Using the new con­
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1 Introduction 

Affine Lie algebra [1 ,2] is the basis of a very large set of conformal field theories called 
the affine-Virasoro constructions [3,4] which include the affine-Sugawara constructions 
[2,5,6,7], the coset constructions [2,5,8] and the irrational conformal field theories [3,9,10]. 
Among these, the simplest theories are the affine-Sugawara constructions and their corre­
sponding WZW actions [11,12], which have often served as a testing ground for new ideas 
in conformal field theory. See Ref.[10] for a more detailed history of affine Lie algebra 
and the affine-Virasoro constructions. 

Vertex operator constructions (see for example [13-22]) are explicit realizations (using 
the familiar abelian vertex operators [23]) of the fermions, currents and primary fields of 
affine Lie algebras and conformal field theories. The first vertex operator constructions 
[13-15] were the vertex operator constructions of world-sheet fermions and level one 

of untwisted SU ( n), which was also the first construction of current-algebraic internal 
symmetry from compactified dimensions on the string. The generalization [17,18] of this 
construction to level one of simply laced g plays a central role in the formulation of the 
heterotic string [24]. More generally, the vertex operator constructions may be divided 
into the explicitly unitary constructions [13-18] and the constructions of (bosonized) 
Wakimoto type [19-22], which must be projected onto unitary subspaces. 

In this paper, we will supplement the discussion of Moore and Reshetikin [25] and 
others [26-41] by finding a new explicit semiclassical (high-level) realization of the chi­
ral, antichiral and nonchiral primary fields of WZW theory. The realization is obtained 
by semiclassical solution of known [26,25] operator differential equations for the chiral 
primary fields (so that no unitary projection is needed), and the results are recognized 
as the semiclassical form of new nonabelian vertex operators which are the natural gen­
eralization of the familiar abelian vertex operator: In particular,~ the new nonabelian 
vertex operators involve only the representation matrices of Lie g, the currents of affine 
(g x g) and certain chiral and antichiral zero modes, and they reduce to the abelian vertex 
operators in the limit of abelian algebras. 

A central feature of the construction is the identification of the chiral and antichiral 
zero modes which, thru the semiclassical order we have studied, are seen to carry the 
full action of the quantum group. We are also able to identify the classical limit of the 
nonchiral. product of the zero modes as the classical group element. 

As applications of our construction, we compute the semiclassical OPE's of all the 
primary fields and compare the averages of the primary fields to the known [42] forms of 
the semiclassical affine-Sugawara conformal blocks and WZW correlators. The relation 
of the construction to semiclassical crossing and braiding is also discussed. 
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2 Affine Lie Algebra and WZW Theory 

In this section we review some basic facts about affine Lie algebra [1,2] and the affine­
Sugawara constructions [2,5,6,7] which provide the algebraic description of WZW theory 
[12]. 

We begin with the algebra of affine (g x g), which consists of two commuting copies 
of affine g, 

[Ja(m ), Jb(n)] = ifabc lc(m + n) + kmTJab8m+n,O 

[Ja(m), Jb(n)] = ifabcJc(m + n) + kmTJab8m+n,O 

[Ja(m), Jb(n)] = 0 , m, n E 7L , a, b, c = 1. .. dimg 

(2.1a) 

(2.1b) 

(2.1c) 

where fab c a:p.d TJab are the structure constants and Killing metric of g and k is the level 
of the affine algebra. For simplicity we generally assume here that g is compact, though 
most of the statements below apply as well to the noncompact extensions of g. The affine 
vacuum state IO) satisfies 

la(m 2 O)IO) = la(m 2 O)IO) = o (2.2) 

In terms of these current modes, the local chiral and antichiral currents are defined as 

la(z) = 2:::: la(m)z-m-1 Ja(z) = 2:::: Ia(m).z-m- 1 (2.3) 
mEE mEE 

where z is the complex Euclidian world-sheet coordinate and z is the complex conjugate 
of z. 

We will also need the primary fields g(T, z, z) of affine (g x g), which transform under 
the current modes as 

[Ja(m), g(T, z, z)c/] = g(T, z, z)o: 'Y zm(TaJ./ 

[Ja(m),g(T,z,z)a~'] = -zm(Ta)o:-rg(T,z,z)/ 

[Ta, 7b] = ifabc'Tc , a, (3 = 1. .. dim T 

(2.4a) 

(2.4b) 

(2.4c) 

where Tis a matrix irrep of g. The primary fields g(T, z, z) and the currents J, J may be 
understood [43] respectively as the (reduced) affine Lie group element and the (reduced) 
left- and right-invariant affine Lie derivatives on the manifold of the affine Lie group. 
Acting on the affine vacuum, the primary fields create the primary states 'lj;(T) of affine 
(g X g), 

'1/Ja~'(T) = g(T, 0, O)a~'IO) 

la(m 2 0)'1/Ja~'(T) = 8m,o'I/Jo: 'Y(T)(Ta)/ 

fa(m 2 0)'1/Ja~'(T) = -8m,o(Ta)o: 'Y'Ij;/(T) 

(2.5a) 

(2.5b) 

(2.5c) 

which transform in irrep T ® T of (g x g). A coordinate-space representation of these 
states is -given in Ref. [ 43]. 
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The stress tensor of WZW theory is composed of the chiral and antichiral affine­
Sugawara constructions 

T9(z) = L;b :Ja(z)Jb(z): = L L9(m)z-m- 2 (2.6a) 
mE~ 

T9 (z) = L;b :Ia(z)Jb(z) : = L L9(m):z-m- 2 (2.6b) 
mE~ 

71 ab 
Lab 'I 

g - 2k + Qg (2.6c) 

_ 2k dimg 
Cg = Cg = 

2k + Qg 
(2.6d) 

whose modes L9 (m) and L9 (m) satisfy two commuting Virasoro algebras with central 
charges c9 and c9 • Here, Q9 is the quadratic Casimir of the adjoint and L~b is called 
the inverse inertia tensor of the affine-Sugawara construction. The currents J, J. and 
the affine-primary fields g(T, z, z) are also Virasoro primary fields under (T9 , T9 ) with 
conformal weights (1, 0), (0, 1) and (LV(T), LV(T)) respectively. ·The affine-Sugawara 
conformal weight LV(T) is given by 

~9(T) = Q(T) 
2k +Qg 

(2.7) 

with Q(T) the quadratic Casimir ofT. In what follows, the affine- and Virasoro-primary 
fields g(T, z, z) are generally called the WZW primary fields. 

In the WZW action, the classical analogue of the WZW primary field g(T, z, z) ap­
pears as the unitary Lie group element in irrep T of g. We shall see below however that 
the WZW primary field g(T, z, z) is a unitary operator only in the extreme semiclassical 
limit, due to normal ordering in the quantum theory. 

Differential.equations 

Because they are also primary under (T9,T9), the WZW primary fields g(T,z,z) 
satisfy the operator relations 

8g(T,z,z) = [L9 (-1),g(T,z,z)] (2.8a) 

L9( -1) = 2L;b L la( -m- 1)Jb(m) , L9( -1) = 2L;b L la( -m -1)Jb(m) (2.8b) 
m>O m>O 

and, using (2.8b) in (2.8a), one finds the partial differential equations (PDE's) for the 
WZW primary fields [7] 

8g(T,z,z)cx(3 = 2L;b: g(T,z,z)cx"~la(z): (7b)/ 

fJg(T, z, z)cx(3 = -2L;b(7b)cx 'Y : g(T, z, z)/ la(z) : 

3 
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In verifying (2.9), one finds that the normal-ordering prescription is 

1 
: g(T, z, z)Ja(z) : = J;(z)g(T, z, z) + g(T, z, z)(J;;(z) + la(O)-) 

z 

- - - - 1 
: g(T, z, z)Ja(z): = J;(z)g(T, z, z) + g(T, z, z)(J;;(z) + la(O)-::) 

z 

m>O m>O 

(2.10a) 

(2.10b) 

(2.10c) 

where the positive and negative modes of the currents are collected in the definitions 

(2.10c) and la(O), la(O) are the zero modes. It is easily checked that the PDE's (2.9a) 
and (2.9b) are consistent (that is, (2.9) defines a flat connection) because J commutes 
with J. It will also be convenient to define the integrated quantities 

(2.11) 

for use below. 

Ultimately, one is interested in the n-point WZW correlators of the WZW primary 
fields 

A9 (T,z,z) = (Ojg(T\zt,z1) · · · g(Tn,zn,zn)IO) 

which satisfy the (g x g)-global Ward identities 

n n 

L~iA9(T,z,z) = A9 (T,z,z) L~i = 0 
i=1 i=1 

(2.12) 

(2.13) 

The WZW correlators (2.12) also satisfy SL(2, IR) x SL(2, IR) Ward identities and the 
chiral and antichiral Knizhnik-Zamolodchikov (KZ) equations [7] 

i j 

8iA9 (T,z,z) = 2L;bL ~-~ A9 (T,z,z) 
j::fii Zij 

which follow from the PDE's (2.9) 

Semiclassical expansion 

(2.14a) 

(2.14b) 

In this paper, we will be interested primarily in the semiclassical or high-level ex­
pansion [44,45,10,43,42] of the low-spin sector of the theory, which is defined by the 
level-orders: 

la(O) = O(k0
) 

la(O) = O(k0
) 

la(m-:/= 0) = O(k112
) 

la(m-:/= 0) = O(k112
) 
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(2.15d) 

In this case, the corresponding semiclassical affine-Sugawara conformal blocks and WZW 
correlators have been worked out in Ref.[42). In particular, the solution for the high-level 
n-point WZW correlators (2.12) is 

A9 (T,z,z) = (ll+2L;bt~i7bj1nzij) I; (ll+2L;bt~i7bj1nzij) +O(k-2
) (2.16) 

t<J t<J 

where I; is the n-point Haar integral 

(2.17) 

over unitary Lie group elements Q(T) in matrix irrep T of g. The Haar integral is 
invariant under g x g and satisfies (I; )2 = 1;, so that I; is the projector onto the 
g-in variant subspace of 7 1 0 · · · 0 yn. 

Factorization of the WZW primary fields 

Our goal in this paper is to solve the algebra (2.4) and the PDE (2.9) to obtain 
the explicit semiclassical form (the WZW vertex operators) of the WZW primary fields 
g(T, z, z ). To this end, we look for solutions in the factorized form 

(2.18) 

where A, B = 1 ... dim T are the quantum group indices discussed by Moore and Resheti­
khin [25) and others [26-41). In what follows, 9+ and 9- will be referred to as the chiral 
and antichiral primary fields and/or the chiral and antichiral vertex operators of the 
theory. 

To find such factorized solutions, we assume that 9+ and 9- are affine-primary fields 
under J and J respectively, 

[Ja(m),g+(T,z)) = 9+(T,z)zmTa 

[Ja(m),g.:_(T,z)] = -zmTag-(T,z) 

which solves {2.4a,b) so long as 

[Ja(m),g_(T,z)]g+(T,z) = g_(T,z)[Ja(m),g+(T,z)) = 0 

(2.19a) 

(2.19b) 

(2.20) 

Then the PDE's (2.9a,b) are solved by the ordinary differential equations (ODE's) for 
the chiral and antichiral primary fields [26,25] 

\ ' 

(2.21a) 
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(2.21b) 

where normal ordering is defined by (2.10) with 9 -+ 9±· 

The explicit semiclassical forms of 9± (the chiral and antichiral vertex operators) 
obtained below by solving the ODE's (2.21) will reproduce the semiclassical WZW cor­
relators (2.12) in the factorized form 

A9 (T,z,z)a.B = A_;(T,z)aAA:(T,z)A.B 

A:(T, z)A.B = +(019+(7\ ZI)A/1 
... 9+(Tn, Zn)A/n !O)+ 

A_;(T,z)aA = -(OI9-(T\zi)a1 A1 
... 9_(Tn,.zn)a,AniO)_ 

n n 

LI:iA_;(T,z) = A:(T,z) LI:i = 0 
i=l i=l 

(2.22a) 

(2.22b) 

(2.22c) 

(2.22d) 

where At and A; are the chiral and antichiral correlators. Here we have also assumed 
factorization of the vacuum state 

!O) = I0)-10)+ (2.23) 

into the affine vacua JO)+ and JO)_ of J and J. We will generally suppress the subscripts 
on the vacua, which will be clear in context. 

The problem 

The ODE's (2.21) for the primary fields 9± can be solved by iteration of equivalent 
integral equations, e.g. 

9+(T, z) = 9+(T, zo) + rz dz' 2L;b : 9+(T, z')la(z') : 7b 
}zo 

(2.24) 

where zo is a regular reference point. As noted by Moore and Reshetikhin [25], the itera­
tive solution of (2.24) is not directly useful because the leading term 9+(T, z)::::::: 9+(T, z0 ) 

of this expansion would give singular chiral correlators (9+ ( T 1 , z0 ) · • • 9+ ( Tn, z0 )) = oo. 
In fact, the iterative solution is somewhat misleading because differentiation of (2.24) 
by zo shows that 9+(T, z) is independent of z0 when the initial condition 9+(T, z0 ) itself 
satisfies the original equation 

(2.25) 

Using this fact, we shall see below that the iterative solutions can be rearranged into 

well-defined z0 and z0-independent semiclassical expansions of the primary fields 9±· 
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3 Abelian Vertex Operators 

Because it is the simplest, we consider first the case of decompactified abelian 9 = U ( 1 )N, 
for which the chiral system takes the form 

9+(T, z) = 9+(T, zo) + lz dz' 2L;b : 9+(T, z')Ja(z') : 7b 
zo 

[Ja(m), Jb(n)] = km7Jab8m+n,O 

[Ja(m),9+(T,z)] = 9+(T,z)zmTa 

[Ta, 7b] = 0 , a, b = 1. .. N 

Lab = TJab ,6. (T) = TJabTa Jb 
9 2k 9 2k 

(3.1a) 

(3.1 b) 

(3.1c) 

(3.1d) 

(3.1e) 

Here, the representation matrices Ta (the momenta), and hence 9+, are 1 x 1 (i.e. num­
bers), and we shall see that the solution 9+(T, z) of the system (3.1) can be rearranged 
into the familiar z0-independent abelian vertex operator of the open bosonic string. Es- · 
sentially the same vertex operators (with diagonal matrix Ta 's) are obtained for compact­

ified abelian algebras such as the Cartan subalgebra of a Lie algebra or other momentum 

lattices. 

The.solution of the integral equation (3.1a) is obtained on inspection as 

9+(T,z) =exp (1: dz'2L;bTaJ;(z')) 9+(T,zo) 

x exp (1: dz'2L;bTaJb(O)/z')exp (1: dz'2L;bTaJt(z')) 
(3.2) 

where z0 is the reference point and J±(z) are defined in (2.10c). Performing tbe integra­

tions in (3.2), the result may be rearranged in the z0-independent form 

9+(T, z) = V_(T, z)G+(T)Vo(T, z)V+(T, z) 

V±(T, z) = exp(2iL;bTaQt(z)) 

Vo(T, z) =: exp(2L;bTaJb(O) ln z) = z2L~bTaJb(o) 

(3.3a) 

(3.3b) 

(3.3c) 

where Q± is defined in (2.11). In this form, we have collected all z0-dependent factors 
from the integrations into the constant quantity ' 

(3.4a) 

(3.4b) 

which is in fact independent of zo because Ozo9+(T, zo) = 2L;b : 9+(7, zo)Ja(zo) : Jb. In 
what follows, we refer to the quantity G+(T) as the chiral zero mode of the chiral vertex 

operator. 
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The z0-independent solution (3.3a) has the form of the usual abelian vertex operator, 
but we do not yet know the algebra of the zero mode G+(T) with the currents. 

In fact, this algebra is determined by the system. To see this, invert (3.3a) to write 
the zero mode in terms of the primary field 

(3.5) 

Then, the algebra of the currents with the zero mode 

(3.6) 

is obtained straightforwardly from (3.5), (3.1c) and the current algebra (3.1b). 

The algebra (3.6) is solved by 

(3.7) 

so t-hat the solution (3.3a) may be written as 

where qa = 2L;b qb. With the conventional identification of the metric Gab and its inverse 
cab 

' 
(3.9a) 

Gab= kTJab 
ab 

Gab = !}__ = 2L ab 
k g 

(3.9b) 

the result (3.8) is recognized as the familiar abelian vertex operator with momentum 'Fa. 

As an introduction to the non-abelian case below, we list some well-known properties 
of the abelian vertex operators. 

A. Affine-primary states. On the affine vacuum, the vertex operators create the affine­
primary states 

IT)= 9+(7,0)10) = G+(T)IO) = eiqaTaiO) 

la(m 2:: O)IT) = 8m,oiT)Ta 

which are nothing but the chiral zero modes G+(T) on the vacuum. 

(3.10a) 

(3.10b) 

B. Intrinsic monodromy. When z is taken around a closed loop, one finds the intrinsic 
monodromy relation 

(3.11) 

Using the algebra (3.1c) and the g-global invariance (momentum conservation) in (2.13), 
the operator relation (3.11) implies the correlator monodromies 

(3.12) 
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and it is not difficult to see that these phases are trivial for the open bosonic string. 

· C. Operator products and expansions. The operator product of two chiral vertex oper­

ators can be written as 

(71 ) (72 ) (7 1 ) (7 2 ) 2L~bTi 7? 9.+ , Z1 9+ ' Z2 = ; 9+ , Z1 9+ , Z2 ; Z12 (3.13a) 

: 9+(7\zd9+(72,z2): = G+(T1)G+(72)Vo(T\zi)Vo(72,z2) 
(3.13b) 

x V_(T1
, z1)V_ (72, z2)V+(T1, z1)V+(T2, z2) 

where z12 = z1 - z2 and the normal-ordered product in (3.13b) puts the zero modes G + 
to the left. The closed algebra of the zero modes 

(3.14) 

then implies the OPE of two vertex operators 

oo r+s+2 
+ L ( z12 

2
)' 4L;b L~d : 9+(73

, z2)8;[a;Jb(z2)Jc(z2)] : 7d1~1 

r,s=O r + S + . , 

(3.15) 

+ higher affine secondaries} 

where we have used the expression (3.1e) for the affine-Sugawara conformal weights. In 
(3.15), the normal-ordered product : 9+J .: is the chiral analogue of (2.10a), while 

(3.16) 

is defined iteratively from (2.10a). The term "higher affine secondaries" stands for the 

fields : 9+JP :, p 2:: 3 and derivatives thereof. 

The OPE (3.15) follows directly from (3.13), without using the ODE (2.21a). Using 

the ODE however, one may rearrange (3.15) in terms of the affine-primary fields (and 
their Virasoro descendants) plus those affine-secondary fields which are Virasoro primary 

(and their Virasoro descendants). The first few terms of this expansion are 

(3.17) 

and the omitted terms are of the form : 9+JP :, p 2::: 2 and derivatives thereof. 
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D. Braid relation. To discuss braiding, we will use the Euclidean continuation formula 

(z _ W) = ( W _ z)ei1rsign(arg(zjw)) (3.18) 

where lzl > lwl on the left and lwl > lzl on the right. The phase in (3.18) is obtained 
by requiring agreement with the corresponding computations for vertex operators on the 

Minkowski world sheet (where z and w are on the unit circle). 

The braid relation of two chiral vertex operators is then 

(3.19a) 

.where B is the 1 x 1 braid matrix of the abelian theory. 

E. Chiral correlators. The chiral correlators exhibit the Koba- Nielsen factor 

At(T, z) = (OIG+(Tl) ... G+(Tn)IO) f:r z:jL~bTjT~ =II z~9(Ti+Ti)-tl9(Ti)-tl9(Ti) o(t Ti) 
i<j i<j i=l 

(3.20) 

where 8 is Dirac delta function. 

F. Antichiral sector. The antichiral vertex operators are obtained in the same way, 

(3.21a) 
= .z-2ll9(T) exp( -2iL;bTa.Q"b(z)).z-2L~bTalb(o) exp( -2iL;bTa.Qt(z))G_(T) 

(3.21b) 
G_(T) = e-ilf"Ta [tt,Jb(m)] = iobom,o (3.21c) 

where (3.21 b) is written with the antichiral zero mode G _ (T) on the right. The intrinsic 
monodromy relations of the antichiral sector are 

(3.22a) 

= ~41riL~bTj "£75,i Tt/ (019- (Tl, z1) · · · 9- (Ti, zi) · · · 9- (T\ zn)IO) 
(3.22b) 

and we note that the phases in (3.22b) are opposite to those of the chiral sector in (3.12). 
The OPE of two antichiral vertex operators and the antichiral correlators A_;(T, z) may 
be obtained from (3.15) and (3.20) with+----*-, z----* z and T----* -T. 

G. Nonchiral results. Combining the chiral and antichiral vertex operators, we have the 
nonchiral vertex operators 

g(T,z,z) = g_(T,z)g+(T,z) (3.23a) 

= .z-2tl9(T) exp( -2iL;bTa.Q"b(z)).z-2L~bTalb(o) exp( -2iL;bTaQt(z))G(T) 

x exp(2iL;bTa.Q"b (z) )z2L~bTaJb(o) exp(2iL;bTa. Qt (z)) 
(3.23b) 
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(3.23c) 

where we have made the conventional assumption (which solves (2.20)) that qa (qa) 
commutes with all the operators of the antichiral ( chiral) sector. This assumption is 
examined in further detail for the nonabelian case in Section 7. 

The nonchiral vertex operators (3.23) give the OPE's and nonchiral correlators 

g(T1
, z1, z1 )g(T2

, z2, z2) 

= lzd2(fl9(71+T2)-fl9(71)-fl9('J'2)] { g(T3, z2, z2) 

oo -r+l 
""' Z12 2Lab (T3 - )?.lr j (- ) T_l - L....J ( 1) I 9 : g ' Z2' Z2 U2 b Z2 : a 
r=O r + . 

(3.24a) 

+higher affine secondaries} 

n 

Ag(T,z,z) = A;(T,z)A;(T,z) =IT iziil2[fl9(Ti+TJ)-fl9(Ti)-fl9(TJ)]82(LTi) (3.24b) 
i~ ~1 

Both of these results show trivial monodromy when any z is taken around another, and, 
moreover, the Virasoro-Shapiro factor in (3.24b) shows that the intrinsic monodromies 
(3.12) and (3.22b) have cancelled as they should. 
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4 Semiclassical Nonabelian Vertex Opera!ors 

for the Affi.ne-Sugawara Constructions 

Chiral sector 

The defining relations for the general chiral fields 9+(T, z) are 

9+(T,z) = 9+(T,z0 ) + {z dz' 2L;b: 9+(T,z')Ja(z'): Tb (4.1a) 
lzo 

[Ja(m),Jb(n)] = ifabcJc(m + n) + kmrtab8m+n,O (4.1b) 

[Ja(m),9+(T, z)] = 9+(T, z)zmTa , [Ta, Tb] = ifabcTc (4.1c) 

la(m =J:. 0) = O(k112
) , la(O) = O(k0

) - (4.1d) 

9+(T,z)=O(k0
) , Ta=O(k0

) (4.1e) 

L;b=O(k-1
) , ~9(T)=O(k-1 ) (4.1f) 

where z0 is a regular reference point and L;b is given in (2.6c). Using the results of 
the previous section as a guide, and paying close attention to the level-orders ( 4.1d-f), 
the iterative solution of ( 4.1a) can be rearranged into a z0-independent semiclassical or 

high-level expansion of 9+. 

We give here the solution of (4.1a) up to O(k-312
): 

9+(T,z) = G+(T) + 2iL;b[Q;;(z)G+(T) + G+(T)Q~(z)- G+(T)iJa(O) lnz]Tb (4.2) 

+4Lab Led { L [Jb( -m) Jc( -n) G+(T) zm+n + G+(T) Jc(n) Jb(m) z-(m+n)] 
9 9 m,n>O n m + n n m + n 

~ L [Jb(-m)G+(T)Jc(n) zm-n + Jc(-n)G+(T)Jb(m)z-(m-n)] 
m,n>O n m - n n m - n 
1n;o!n 

Jc( -n) 1 Jc(n) 1 } + L[ G+(T)Jb(n)(lnz- -)- Jb( -n)G+(T)--(lnz + -)] 7dTa 
n>O n 2n . n 2n 

This is the explicit semiclassical form of the new nonabelian chiral vertex operators. Here, 
G+(T) is the constant chiral zero mode, which carries the index structure G+(T)Ao: (in 

parallel with 9+ ), and which satisfies 

G+(T) = O(k0
) 

fJG+(T) = 0 + O(k-312
) 

( 4.3a) 

( 4.3b) 

Using the level-orders (4.1d-f) and (4.3a), one sees that the terms proportional to Q± in 
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(4.2) are O(k-112
), while the rest of the explicit terms are O(k- 1

). u;ing (4.3b), it is 
straightforward to check by differentiation that the chiral vertex operator ( 4.2) satisfies 

(4.4) 

as it should. 

The result ( 4.2) can be inverted to write the zero mode G+ in terms of the primary 

field 9+, 

b d { Jb( -m) zm+n Jb(m) z-(m+n) 
+4L; L~ L [ lc(-n)9+(T,z) + 9+(T,z)Jc(n)--. ] 

>0 m m + n . m m + n m,n 

Jb(-m) zm-n Jb(m)z-(m-n) 
+ L [ 9+(T,z)Jc(n) + lc(-n)9+(T,z)-- ] 

m,n>O ffi ffi - n ffi ffi - n 
m;o!n 

lc(n) 1 lc( -n) 1 } 
+I:[Jb(-n)9+(T,z)--(lnz--)- 9+(T,z)Jb(n)(lnz+-. )] Ta.Ta 

n>O n 2n n 2n 

+O(k-3/2) 

and it is straightforward to check by differentiation with ( 4.4) that G + (T) in ( 4.5) satisfies 
( 4.3b ). Moreover, by setting z = z0 in ( 4.2) and ( 4.5) one can see the intermediate 
relations between the zero mode G+(T) and the primary field 9+(T, z0 ) at the reference 
point z0 (These relations are the nonabelian analogues of (3.4a) and (3.5)). The zero 
mode is of course independent of z0 

(4.6) 

just as it is independent of z, because the differential equation ( 4.4) holds as well at the 
reference point. 

Following the previous section, the next step is to use the inversion ( 4.5) and the 
algebra (4.1c) of the currents with the primary field 9+ to obtain the algebra of the 
currents with the zero mode G +. After ·some algebra, the result is 

~ -

[Ja(m # 0), G+(T)] = -k-: G+(T)Jb(m): !abeL+ O(k-1
) (4.7b) 

2m 

which reduces to the algebra (3.6) in, the abelian case. It is likely that the relation (4.7a) 
is exact to all orders. 

The algebra ( 4. 7) shows that 

(4.8) 
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so, without loss of accuracy, we may move any factor G+ in (4.2) thru any non-zero 
moded current. In particular, the chiral vertex operator may be written with the chiral 
zero mode on the left 

where we have defined the quantities 

Ja( -n) 1 Jd(n) 1 } + 2:) Jc(n)(lnz- -)- Jc(-n)-(lnz + -
2 

)] 
n>O n 2n n n 

It will also be convenient to have the inversion of (4.9) · 

which agrees with eq. ( 4.5) thru the indicated order. 

Restoring the Lie algebra and quantum group indices a and A, 

a, A= 1 ... dimT 

( 4.10a) 

(4.10b) 

( 4.12a) 

( 4.12b) 

we see that, thru this order of the semiclassical expansion, the quantum group acts only 
on the chiral zero mode G +. 

We also remark that the algebra ( 4. 7) is consistent with unitaritya of the chiral zero 
mode 

(4.13) 

which implies that the extreme semiclassical chiral vertex operator 

is also unitary 

( 4.15) 

aU nitarity is easiest to check on the unit circle (where z* = z- 1) using a Cartesian frame with 

7]ab = 8ab, JJ(m) = la( -m) and Ta Hermitean. 
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· thru the indicated order. It is known from the abelian case that vertex operators cannot 
be unitary operators beyond this order, due to normal ordering, which enters in 9+ (and 
G+) at order k-1

• 

Antichiral sector 

Following similar steps, we have solved the antichiral ODE 

( 4.16) 

for the antichiral vertex operator 9-(T, z) thru the same order. The main results are as 
follows: 

1. Antichiral vertex operator and zero mode. The antichiral vertex operator is 

9-(T,z) = G_(T)- 2iL;b1b[Q;(z)G_(T) + G_(T)Qd(z)- G_(T)ila(O) In z] (4.17) 

+4Lab LcdTa7d {- L [Jb( -m) Jc( -n) G_(T) .zm+n + G_(T) Jc(n) Jb(m) .z-(m+n)] 
. 

9 9 m,n>O n m + n n m + n 

L [Jb( -m)G_(T) Jc(n) .zm-n + Jc( -n) G_(T)Jb(m) .z-(m-n)] 
m,n>O n m - n n m - n 
m;<n 

" Jc( -n) - 1 - Jc(n) 1 )]} + L,.,[ G_(T)Jb(n)(In z- -)- Jb( -n)G-(T)--(ln z +-
n>O '-n . 2n n. 2n 

where G _, with index structure G _ (T)a A, is the antichiral zero mode: 

G_(T) = O(k0
) 

fJG_(T) = 0 + O(k-3l 2
) 

(4.18a) 

(4.18b) 

Inversion of ( 4.17) gives the antichiral zero mode G _ in terms of the antichiral primary 

field 9-

G_(T) = 9_(T, z)+2iL;b1b[Q;(z)9-(T, z)+9-(T, z)Qt(z)-9-(T, z)ila(O) In z] ( 4.19) 

ab cd { Jb(-m)- _ .zm+n _ - Jb(m).z-(m+n) 
+4L9 L9 Ta7d L [ lc(-n)9-(T,z) + 9-(T,z)Jc(n)-- ] 

>0 m m+n m m+n m,n 

Jb( -m) - - .zm-n - - Jb( m) .z-(m-n) 
+ L: [ 9-(T,z)Jc(n) +lc(-n)9-(T,z)-- ] 

m,n>O m m - n m m - n 

" - Jc(n) ;__ 1 · Jc(-n) ( ) - ( )( 1 )]} +L,.,[Jb(-n)9-(T,z)--(lnz--
2 

)- 9-T,zJbn lnz+-
2 n>O n n n n 
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and it is not difficult to check that the results ( 4.17) and ( 4.19) satisfy the differential 

equations (4.16) and (4.18b). 

2. Algebra of the zero modes. Using (4.19) and the algebra (2.19b) of the antichiral 
currents with the primary field g_, we obtain the algebra of the antichiral currents with 
the antichiral zero mode G _, 

[la(O), G_(T)] = -Ta.G-(T) + O(k-312
) 

[la(m f. O),G-(T)] = -
2
;m!abc'Fc: G~(T)Jb(m): +O(k-1

) 

so that [Ja(m =f. 0), G_(T)] = O(k-112
) as in the chiral sector. 

(4.20a) 

( 4.20b) 

3. Rearrangements. Using the algebra (4.20), a number of alternate forms may be 
obtained for the antichiral vertex operator, 

g_(T, z) = G_(T)- iTaG-(T)Xa(z) + Ta7bG-(T)Nab(.z) + O(k-312
) 

= (ll- iTa.Xa(z)- 2~9 (T) ln z + Ta7bf1ab(z)]G_(T) + O(k-312
) 

= .z-2fl9(T)[ll- iTa.Xa(z) + Ta7bNab(.z)]G_(T) + O(k-3/2) 

Xa(z) = Xa(z)l£-+.z_,J-+1 , fiab(z) = Nab(z)lz-+z,J-+J . 

(4.21a) 

(4.21b) 

(4.21c) 

( 4.21d) 

where· X and N are defined in ( 4.10a,b ). It will also be useful to have the inverse of 
( 4.21c), 

G_(T) = .z2Ll
9

(
7 )[] + iTa.Xa(z)- Ta7b(Nab(.z) + xa(z)Xb(.z))]g_(T, z) + O(k-312

) ( 4.22) 

which agrees with ( 4.19) thru the indicated order. 

In (4.21b,c) we have chosen to write the antichiral zero mode G_(T) on the right. 
The index structure of G_ is ( G_ )e>A, so these forms show that the quantum group acts 
only on G _ thru this order of the semiclassical expansion. 

4. Semiclassical unitarity. As in the chiral sector, the algebra ( 4.20) is consistent with 
semiclassical unitarity of the antichiral zero mode 

G~(T)G-(T) = G_(T)G~(T) = ll + O(k-1
) ( 4.23) 

and this implies that the extreme semiclassical antichiral vertex operator 

is also unitary 

(4.25) 

thru the indicated order. 
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Some simple chiral and antichiral applications 

We conclude this section with some simple applications of these results. 

A. Affine primary fields. By construction, the chiral and antichiral vertex operators 
(4.9) and (4.21c) are (dimT quantum group "copies" of) affine-primary fields under 
their respective affine algebras, 

[Ja(m), 9+(T, z)A a] = 9+(T, z)Af3 zm(Ta)f3a } { O(k-312
) when m = 0 

[Ja(m),g_(T,z)aA] = -zm(Ta)af3g_(T,z)f3A + O(k-1
) when m =/= 0 

. ( 4.26) 

These relations can also be checked directly using the current algebra and the algebra 
(4.7), (4.20) of the currents with the zero modes G±. On the affine vacuum, the vertex 
operators create (copies of) affine-primary states 

9+(T, O)A aiO) = G+(T)A aiO) + O(k-312
) 

9-(T, O)a AjO) = G_(T)aAIO) + O(k-312
) 

(4.27a) 

(4.27b) 

which, as in the abelian case, are proportional to the chiral and antichiral zero modes. 

B. Affine-Sugawara primary fields. We have also checked explicitly that 

- [ ll9 (T) 1 l -3/2 T9 (z)g+(T, w) = ( )2 + --8w 9+(T, w) + O(k ) z-w z-w 

- _ _ [ ll9 (T) 1 l _ -3/2) T9 (z)g_(T, w) = (- -p + -::::--::8w g_(T, w) + O(k . 
z-w z-w 

(4.28a) 

( 4.28b) 

so that, as they should be, the chiral and antichiral vertex operators are Virasoro primary 
fields under the affine-Sugawara constructions T9 and T9 respectively. 

C. Intrinsic monodromies. When z is taken around a closed loop, one finds the intrinsic 
monodromy relations, 

+O(k-3/2) 

g_(T, ze- 21ri) = exp (47ri[6.9 (T) + L;bTa]b(O) + 2iL;c L;b !abeT,; :2: Jc( -n)Jd(n)J) 
n>O n 

(4.29b) 

Using (2.2), ( 4. 7), ( 4.20) and the (g x g)-global Ward identities, the operator relations 
(4.29) imply the much simpler monodromies for the correlators 

(4.30a) 
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( 4.30b) 
= e41riL~bT,i'2:7$iT~ (Ojg_(Tl,zl) ... g_(Ti,.zi) ... g_(Tn,.zn)IO) + O(k-3/2) 

because the normal-ordered terms in ( 4.29) do not contribute to the correlators at the 
indicated order. 

5 Operator Products and Expansions 
/ 

In this section, we combine our results above with those of Ref. [25] to obtain the chiral­
chiral and antichiral-antichiral semiclassical operator products and OPE's of the semi­
classical vertex operators (4.9) and (4.21c). The corresponding chiral-antichiral products 
and expansions are discussed in Sectior{ 7 .. 

Chiral sector 

The product of two chiral vertex operators (4.9) can be written as 

9+(T1, z1)9+(T2, z2) =: 9+(T1, z1)g+(T2, z2): (ll + 2L;b7;.17b2ln z12) + O(k-312) (5.1) 

=: 9+(T1,z1)9+(T2,z2): z:~~bT,t-r;? + O(k-312) 

where the normal-ordered product of two vertex operators is defined in parallel to (3.13b ), 

: 9+(T1, zi)g+(T2, z2) : = G+(~1 )G+(T2)[ll + iXa(z1)T;.1 + iXa(z2)T;.2 

+Nab(zl)Tb17;.1 +Nab(z2)7b2~2 + N;b(Z1JZ2 )~1Tb2] + O(k-3/2) 
(5.2a) 

N;b(z1,z2) = -: Xa(zi)Xb(z2): 

=-4L;cL;b[Q;(zi)(Q;I(z2) + Q!(z2)) + (Q;I(z2) + Q!(z2))Q~(zi)] + O(k-312) 
(5.2b) 

with zero modes on the left. 

For high-level closure of the affine-primary fields, the product of two zero modes must 
close into zero modes, 

a+(T1 )A/"1 a+(T2)A/'2 = 2::: F;:~~~z (T1T 2Tk)c+(Tk)Ak C>k + O(k-312) (5.3) 
7k,Ak,ak ) . 

which is the non-abelian analogue of (3.14). Following Ref.[25], we will assume that the 
fusion coefficient F in (5.3) has the factorized form 

(5.4) 

Here C is the usual Clebsch-Gordon coefficient for T 1 ® T 2 into Tk, which satisfies the 
g-global Ward identity 

(5.5) 
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while Q is the corresponding (level-dependent) quantum Clebsch-Gordan coefficient. 

Using (5.3) and (5.5), we may expand the operator product (5.2a) for z1 near z2 • 

After some algebra, one finds the OPE of two chiral vertex operators 

(5.6) 

where the normal-ordered product : 9+J : is given in (2.10a), and 

: 9+(T,z)Ja(z)Jb(z): = J;(z)[Jb-(z)9+(T,z) + 9+(T,z)J:(z)] 
(5.7) 

+ [J;(z)9+(T, z) + 9+(T, z)J:(z)]J:(z) 

The definition (5. 7) can be replaced with (3.16) to the order we are working, since the 
extra current zero-mode contributions in (3.16) would contribute to (5.6) at O(k-312 ). 

The right side of the OPE (5.6) shows the affine-primary fields 9+ and an infinite 
number of affine-secondary fields of the- form : 9+J :, : 9+J J: and derivatives thereof. 
One also notes that the chiral OPE has the schematic form [42] 

affine-primary · affine-primary =0( k0
) · affine primaries 

(5.8) 
+ O(k-1

) ·affine secondaries 

so that the affine-primary fields close into themselves in the extreme classical limit. 

Using also the high-level ODE (4.4), one may rearrange (5.6) in the form analogous 
to eq.(3.17) 

oo r+1 1 } 
+ ?; (rz~ l )! o; {2L;b : 9+ (T\ z2)Ak Olk Jb(z2) :} 2[C7:1 )~1 011 8fi: - (I:2 )~2 012 8fi:] 

+O(k-1
) 
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which groups the Virasoro primary fields with their Virasoro descendants. For simplicity, 
we have omitted the 0( k-1 ) terms which are proportional to : 9+J J : and derivatives 
thereof. 

Antichiral sector 

Following the same development for the product of two antichiral vertex operators, 
we find: 

(T1 _ ) (T2 _ ) _2L~bTa1 T(/ (T1 - ) (T2 - ) +O(k-3/2) 9- 'Z1 9- 'Z2 = z12 : 9- 'Z1 9- 'Z2 : (5.10a) 

' 

-i~1 G_(T1 )G_(T2)Xa(z1 )- i~2G_(T1 )G_(T2 )Xa(z2 ) 

+ ~17b1 G _ (T1 )G _ (T2)_Nab ( z1) + ~27b2G _ (T1 )G _ (T2)_Nab ( z2) 

+ ~17b2G_(T1 )G_(T2)fl;b(zh z2) + O(k-3/2) 

X [ll- i~1 _Ka(z1)- i~2 _Ka(z2) 

+ ~17b1 _Nab(z1) + 7;.27b2 _Nab(z2) 

+ ~17b2 fl;b(zh z2)]G_(T1 )G- (T2) + O(k-3/2) 

N-ab(- -)-Nab( )J 
2 Z1 1 Z2 = 2 Z1; Z2 z 1 -+z1 ,z2-+Z2 ,J ..... J 

[(~1 )011 {31801/2 + 801/1 (~2)01/2]CJf31{32 Olk (T1T2Tk) = COI101/k (T1T2Tk)(~k)f3k Olk 

c0113_(TT7(1)) = vdi~Trt13(T) 
- 1 

QAtf(TT7(1)) = AA_a(T) .jTr A(T) · 

COI10120ik(T1T2Tk) = ~01:{31(T1)~012f32(T2)Cf31f32{3k(T1T2Tk)*~{3kOik(Tk) 
QA1A2 Ak(T1T2Tk) = AA1B1 (T1 )AA2B2(T2)QB1B2 Bk(T1T2Tk)* ABkAk(Tk) 

"" Q-A1A2 (T1T2Tk)Q Az (T1T2Tl) = 8 8Az + O(k-3/2) ~ Ak A1A2 Tk,Tl Ak · 
A1A2 

(5.10b) 

(5.10c) 

(5.10d) 

(5.10f) 

(5.10g) 

(5.10h) 

(5.10i) 

(5.10j) 

(5.10k) 

(5~101) 

Here 7(1) is the trivial representation, ~01f3(T) is the carrier space metric of irrep T and 
AA.B(T) is the corresponding invariant form on the quantum group. C and Q are the 
duals of the classical and quantum Clebsch-Gordan coefficients C and Q. 
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After some algebra, we then obtain the OPE of two antichiral vertex operators, 

(71 - ) At (72 - ) A2 9- 'Z1 e>t 9- 'Z2 e>2 

and the antichiral analogue of (5.9) 

(71 - ) At (72 - ) A2 9- 'ZJ e>t 9- 'Z2 a2 

xFAtA2ak(7 17 27 k) + O(k-1) 
!3t!32Ak 

is also obtained with the high-level ODE (4.16). 

PDE's for operator products 

(5.12) 

Using the algebra (2.19a,b) and the ODE's (2.21a,b) for 9±, a set of exact PDE's for 
the product of two vertex operators are easily derived [26]: 

(5.13a) 

(5.13b) 

(5.13c) 

(5.13d) 

(5.13e) 

(5.13f) 

The normal ordering here is the same as in (2.10) with 9 --+ P, and we have checked 
explicitly that the OPE's (5.6) and (5.11) satisfy these PDE's thru the appropriate order. 
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Braid relations 

We close this section with a short discussion of braid relations which provides a check 
of our formulation against standard relations in the literature. 

The braid matrix (or universal R matrix) 8 9 , which acts on the quantum group indices 
of the chiral vertex operator is defined by the braid relation 

9+ (T1, z1)A1 a 1 9+(T2, z2)A2 a 2 - B9 (T1T 2)A1A2 B2B1!J+(T2, z2)B2 a 2 9+ (T1, z1)B1 a 1 (5.14a) 

B9 (T 2T 1) = B;1(T1T 2) . (5.14b) 

Using (5.14) and (3.18) in the OPE (5.6), we find that the braid matrix also ?escribes 
the 1 +-+ 2 exchange of the fusion coefficient F of the zero modes in (5.3), 

·pa1a2A3 (T1T2T3) 
A1 A2a3 

= Bg(T1T2)AiA2 B2B1 FB~B~~:(T2T1T3)e-i11'[~9(T3 )-~9(71 )-~9(P)]sign(arg(zl/z2 )) + O(k-3/2). 

(5.15) 
Using next the factorized form ofF in (5.4) and the exchange relation of the Clebsch­
Gordan coefficient C, 

ca2al a3 (T2T1T3) = v(T1T2T3)Cala2 a3 (T1T2T3) 

v(T1T 2T 3) = v(T2T 1T 3) = ±1 

(5.16a) 

(5.16b) 

we see that the braid matrix also describes the 1 +-+ 2 exchange of the quantum Clebsch­
Gordan coefficients Q 

QA1A2 A3(T1T2T3) =Bg(T1T2)A1A2 B2B1QB2Bl A3(T2T1T3) 

X v(T1T2T3)e-i11'[~9(T3 )-~9(T1 )-~9(72 )]sign(arg(zl/z2 )) + 0( k-3/2) 

(5.17) 
To discuss this relation further, we introduce the invariant level x = 2k/¢; of the affine 
algebra, where ¢9 is the highest root of 9. When arg( z2 / z1 ) > 0 and the quantum group 
parameter q is identified as usual as 

211'i ,,(k-3/2) q=ex +v (5.18) 

we find that the relation (5.17) agrees with the high-level form of the corresponding 
quantum SU(2) relation 

Cj = j(j + 1) , q = exp ( 27ri ) 
x+2 

(5.19) 
which appears as eq.(13) in Ref.[30]. To see this agreement, use the SU(2) identifications 

Bg(T1T2) --t Rili2 

Q(T1T2T3) --t Kjli2 

~ (T) --t j(j + 1) 
9 x+2 

v(T1T2T3) --t ( _ 1)i1+i2-i 

and the inverse relation (5.14b) to move 8 9 to the left of (5.17). 
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6 Chiral Correlators 

Using the semiclassical vertex operators ( 4.9) and the algebra ( 4. 7), one straightforwardly 
computes the semiclassical chiral correlators (2.22b ), 

A;(T, z) = (OIG+(T1
) · · · G+(Tn)IO) [1 + 2L;b t ~iT,/ In Zijl + O(k-312) (6.1) 

t<J 

up to the constant zero-mode averages (G+ · · · G+)· This simple result is obtained be­
cause the normal-ordered terms in ( 4.9) once again fail to contribute to the correlators, 
and the result (6.1) indeed satisfies the chiral KZ equations (2.14a). Using the algebra 
(4.7a), one finds that the zero-mode averages, and hence the chiral correlators (6.1), 
satisfy the g-global Ward identities 

n 

(OIG+(T1
) · · · G+(Tn)IO) ~~i = 0 + O(k-312) (6.2a) 

i=l 

n 

A;(T,z) ~~i = 0 + O(k-312
) (6.2b) 

i=l 

so that these quantities are g-invariant thru this order of the semiclassical expansion. 
As discussed in Ref.[25], the chiral correlators, and hence the zero-mode averages, are 
similarly invariant under the quantum group. 

To be more explicit about the zero-mode averages, we may use the fusion relation 
(5.3) to obtain the forms, 

(OIG+(T)AaiO) = 6(T, 7(1)) 

(OIG+(T1)A1 a1G+(T2)A2 a2 IO) = 6(72, T1 )F1;~~:(T1.T1 7(I)) + O(k-312) 

(OIG+(T1 )A1 a1 G+(T2)A2 a2 G+(T2)A3 a3 IO) 

= F1;~~~: (T1T2T3)F1;~~:(T3T31(1)) + O(k-312) 

(OIG+(T1 )A1 a1 G+(T2)A2 a2G+(T3)A3 a3G+(T4)A4 a4 IO) 

(6.3a) 

(6.3b) 

(6.3c) 

"" pa1a2Ak (T1T2Tk)Fa3a4~k (T3T4Tk)Fak~k·(TkTkTt ) + O(k-3/2) 
L...J A1A2ak A3A4ak AkA~o. (1) 

(6.3d) 

where 6 is Kronecker delta and 7(1) is the trivial representation. Using (5.4), the zero­
mode averages can also be expressed in terms of (level-independent) class! cal and (level­
dependen,t) quantum group invariants v and d 

m 
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where we have also introduced the dual invariants v and J to write the completeness 
and orthonormality relations (6.4b,c) of the invariants. The quantity n; is the quantum 
analogue of the classical invariant projector 1;. 

In further detail, we find for the four-point average 

(OIG+ (71 )Al al G+ (T2)A2 a2G+(T3)A3 Ci3G+(T4)A4 Ci410) = L d(s, g ):4v(s, g)~ + 0( k-3/2) 
m 

(6.5a) 

v(s,g)~ = vd· 1 Tm ~ ca1a2Cim(T1T2Tm)CCi3Ci4&m(T3T4Tm)rtm&m(Tm) (6.5b) 
1m am,Cim 

d(s g)m = 1 "'"" Q Am(T1T2Tm)Q Am(T3T4'fm)A _ (Tm) ' A - . j LJ A1A2 A3A4 AmAm 
y Tr A(Tm) Am,Am 

( 6.5c) 

where C and Q are the classical and quantum Clebsch-Gordan coefficients, and TJa!3(T) 
and AAB(T) are defined in (5.10h) and (5.10i). The form (6.5b) of v(s,g)m was first 
given in Ref.[42], where these quantities are called the s-channel invariants of the four­
point correlator. Similarly, the quantities d( s, g )m may be interpreted as the s-channel 
quantum invariants of the 4-point correlator. 

The classical and quantum invariants ii and d also appear in the conformal-block 
expansion of the chiral correlators. Using the KZ gauge 

Z}2Z34 
y=-­

Z14Z32 
(6.6a) 

"'g _"'g-o 112- 113- ' ~~3 = ~g(Tl) + ~9(72) + ~g(T3)- ~g(T4) 

(6.6b) 

1~4 = -~g(T1)+~9(T2)-~9(T3)+~9(T4), 1~4 = -~9(T1)-~9(T2)+~9(T3)+~9(T4) 

(6.6c) 

and the g-global Ward identity in (2.13), we find from (6.1) and (6.5) that 

~+(y)ACi = Ld(s,g):4F~s)(Y)m1ii(s,g)r + O(k-312) (6.7a) 
m,l 

where .rJs) are the semiclassical s-channel affine-Sugawara blocks obtained in Ref.[42]. 
The reproduction of the affine-Sugawara blocks in (6.7) is a central check on the new 
nonabelian chiral vertex operators ( 4.2). We emphasize however that, in the conventional 
block analysis [7 ,42] of the solutions of the KZ equations, the quantum invariants d:4 in 

( 6. 7 a) are discarded as irrelevant constants. 

The corresponding results for the antichiral correlators (2.22c) are, 

A_;(T, z) = [1 + 2L;b t ~i'ibi In zii l (OIG- (71
) · · · G_(Tn)IO) + O(k-312

) 

t<J 

(6.8a) 
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(6.8b) 
m 

y~(-) A 

A-(- - - - ) A g Y a 
g Zt,Zz,Z3,Z4 a = g 

Il4 - 'Yij 
, i<j zij 

( 6.8c) 

~-(Y)aA = Lv(s,g)r;:F~s)(fl)m 1 d(s,g)f + O(k-312
) (6.8d) 

m,l 

( 6.8e) 

where v and J are the dual invariants to v and d. 

Braiding and crossing 

The braid matrix 8 9 in [25] 

(6.9) 

describes the exchange of two chiral vertex operators, while the s-u crossing matrix X9 (su) 
in Ref.[42] 

F~s)(y )m1 = X9 (su)mP F~u)(y)Pq X_;1(su)/ + O(k-2
) 

v(s,g)m = X9 (su)m 1v(u,g)1 + O(k-2
) 

X9 (su)m 1 = v(s,g)mv(u,g)1 + O(k-2
) 

(6.10a) 

(6.10b) 

(6.10c) 

relates the s and u channel conformal blocks FJs) and FJu) of the affine-Sugawara con­
struction. It is clear that 8 9 and X 9 represent the same physical operation, namely the 
exchange of external states 2 t-+ 3. The braid matrix acts however in the quantum space 
with Ai, Bi = 1 ... dim Ti, while the crossing matrix acts on the generally smaller space 
of conformal blocks F 9 with m, l = 1 ... dim(invariants). It follows that there must be a 
map, or intertwining relation, between the braid matrix (89 )A B and the crossing matrix 
(X9 )m1 and we shall find that the intertwiner is the set of quantum invariants dA_. 

To see this, we first translate the braid relation (6.9) into the braid relation of the 
chiral correlator A; 

(6.11) 

In terms of the invariant four-point correlator ~+, this relation reads 

(6.12) 
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Then using the block decomposition (6.7a) along with the similar u-channel decomposi­

tion 

~+ (1-y )A1A3A2A4 a1a3a2a4 = L d(s, 9 )~\A3A2A4 F~u)(y )mzv(u, 9 )r1a2a3a4 +O(k-3/2) (6.13) 
m,l 

we obtain the intertwining relation 

Bg(T2T3)A2A3 B3B2d( s, 9 )";1 B3B2A4 

= L d(s, 9 )~1A3A2A4 Xg( SU )zme-i-rr[~9(T )+~9(T2)+~9(73)-~9(74)]sign(arg(z2/z3)) + 0( k-3/2) 
I 

(6.14) 
Here, we have also used the crossing relations (6.10) and completeness of the 9-invariants 
v(s,9). For the special case of certain irreps of SU(n), this relation was obtained exactly 
in Ref.(40]. 

7 Chiral-Antichiral OPE's 

We turn next to the question of the chiral-antichiral OPE's, which are known from the 
action formulation (34,35,37,40,41] to depend on the treatment of the constant quan­
tum space ambiguity in the factorization 9(T, z, z)a/3 = 9-(T, z)aA9+(T, z)A/3· In what 
follows we briefly discuss this ambiguity, as it is reflected in our operator formulation. 

We begin by assuming the exact operator solution 

(Ja(m),9-(T, z)] = [Ja(m),9+(T, z)] = 0 (7.1) 

of the conditions (2.20). The choice (7.1) is the natural solution of (2.20) because we 
now know that 9+ and 9- are unitary (and hence invertible) in the extreme semiclassical 
limit. Moreover, (7.1) immediately implies the natural relations 

'-· 
(7.2) 

which say that the chiral and antichiral vertex operators are inert under the antichiral 
and chiral affine-Sugawara constructions respectively. 

Using (7.1), one can also derive the regular PDE's 

81P+-(z1,z2) = 2L;b: P+-(z11 z2)Ea(z1): 7b1 

B2P+- (z1, z2) = -2L;b : P+- (z11 z2)1a(z2) : 7b2 

p_+(z2, z1)a2A1 A2a1 = 9-(72, z2)a/29+(T1
' z1)A1 a1 

81P-+(z2,z1) = 2L;b: P_+(z2,zi)Ea(z1): 7b1 

B2P-+(z2,z1) = -2L;b: P_+(z2,zi)Ja(z2): 7b2 
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(7.3d) 

(7.3e) 

(7.3f) 



for the chiral-antichiral products, and these differential equations tell us immediately 
that the chiral-antichiral operator products and OPE's are regular, 

9+(71, z1)9-(72
, z2) =regular in (z1 - z2) 

9-(72,z2)9+(7\z1) = regularin (z2- z1) 

(7.4a) 

(7.4b) 

Because of possibly non-trivial braiding however, the regularity of these OPE's does not 
necessarily imply that the chiral and antichiral vertex operators commute. 

In our semiclassical expansion, one can be more explicit about the chiral-antichiral 
operator products. We first need the chiral-antichiral commutators of the currents with 
the zero modes 

[la(O), G_(7)] = [Ja(O), a+(7] = 0 + O(k-312) (7.5a) 

[Ja(m =f. O),G-(7)] = [Ja(m =f. O),a+(7] = 0 + O(k-1) (7.5b) 

which follow from (7.1) and the expressions (4.11), (4.22)'for the zero modes in terms of 
the primary fields. The results ( 4. 7), ( 4.20) and (7.5) collect the complete semiclassical 
algebra of the currents with the chiral and antichiral zero modes. 

The commutators ( 7.5) are the natural solutions (because G + ( 7) and G _ ( 7) are also 
unitary in the extreme semiclassical limit) of the general chiral-antichiral conditions 

[la(O), G_(7)]a+(7) = 0 + O(k-312) , [Ja(m =f. 0), a_(7)]a+(7) = 0 + O(k-1) 
(7.6a) 

G_(7)[Ja(O), a+(7)] = 0 + O(k-312) , a_(7)[Ja(m =f. 0), a+(7)] = 0 + O(k-1) 
(7.6b) 

which are the zero-mode analogues of the general conditions (2.20). The relations (7.6a,b) 
follow directly from (2.20), without the assumption (7.1 ), using only the current algebra 
and the inversions (4.11) and (4.22). 

Continuing with (7.5), and following the steps of Section 5, one obtains the chiral­
antichiral operator products as follows, 

9+(7\ z1 )A1 011 9- (72
' Z2)cx/2 = a+(71 )A/1 a_ (72

){32 A2 M(zbz2){31012 011132 + 0( k-312) 
(7.7a) 

9- (72
, .Z2)012 A29+(7\ z1)A1 011 = a_ (72

){3/2 a+(71 )A/1 M(zb Z2){31DI2 011
{3

2 + 0( k-312) 
(7. 7b) 

(9+(71, z1),9-(72
, z2)] = (G+(71 ), a_(72)]M(zb z2) + O(k-312) (7.7c) 

where the explicit form of M(zb z2) is 

M(z1, z2) = ll + iXa(z1)I:1 - iXa(z2)I:2 + Xa(z1)Xb(.z2)I:1Jb2 

+ Nab(z1)T,}I:1 + JVab(.z2)I:21b2 + O(k-3/2) . 
(7.8) 

The form (7.8) for M(zb z2) can easily be expanded to find the explicit semiclassical 
forms of the regular OPE's (7.4). 
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The result (7. 7) shows that the ambiguity of the chiral-antichiral OPE's, and hence the 
chiral-antichiral commutator, is entirely in the constant zero-mode products G + (T)G _ (T) 
and G_(T)G+(T), which then carry the constant quantum space ambiguity (35,40,41] of 
the factorization. Among the various possibilities however, the most esthetic solution is 
the one in which the chiral and antichiral sectors commute 

[G+(T1 
), G_(T2

)] = 0 + O(k-312
) 

==;. [g+(Tl,z),g_(T2 ,z)] = 0 + O(k-312
) 

(7.9a) 

(7.9b) 

which is the "gauge choice" discussed by Caneschi and Lysiansky in Ref.[41]. In this 
case, we also obtain the algebra 

(7.10) 

of the chiral zero modes with the antichiral vertex operators and vice versa. Unless 
otherwise stated, we limit the discussion below to the gauge choice (7.9). 

8 Semiclassical WZW Vertex Operators 

Our final task is to assemble the semiclassical chiral and antichiral sectors into semiclassi­
cal WZW theory, beginning with the semiclassical WZW vertex operators. Using (2.18), 
(4.9) and (4.21c) we find 

(8.1a) 

= .z- 2~9 (T) [11- iJ:Xa(.z) + Ta7i,f1ab(.z)]c/G(T)p 17 [11 +iXa(z )Ta + Nab(z )1bTa]u,B + O(k-312) 

(8.1b) 
G(T)cf = L G_(T)o AG+(T)A,B (8.1c) 

A 

G(T) = O(k0
) 

BG(T) = fJG(T) = 0 + O(k-312
) 

where G(T) in (8.1c) is the WZW zero mode. 

Here are some important properties of the WZW zero mode. 

A. Semiclassical unitarity. The extreme semiclassical unitarity of G(T), 

(8.1d) 

(8.1e) 

(8.2) 

follows from the extreme semiclassical unitarity of G+(T) and G_(T). This property is 

independent of the gauge choice (7.9). 

B. Algebra with the currents. The algebra of the currents with the WZW zero mode 

[Ja(O), G(T)] = G(T)Ta + O(k-312
) (8.3a) 
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[Ja(m =/- 0), G(T)] = _kz : G(T)Jb(m): !abcTe + O(k-1
) 

2m 

[la(O), G(T)] = -TaG(T) + O(k-312
) 

[la(m =/- 0), G(T)] = -
2
;m fabcTe : G(T)Jb(m) : +O(k-:-1

) 

(8.3b) 

(8.3c) 

(8.3d) 

follows easily from ( 4. 7), ( 4.20) and the gauge choice (7.9a). Curiously, these relations 
can also be derived from (4.7), (4.20) and the general conditions (7.6), so they are in 
fact also independent of the gauge choice (7.9). The algebra (8.3) is consistent with the 
semiclassical unitarity of G(T) in (8.2). 

C. Fusion and group multiplication. The fusion rule for two WZW zero modes, 

G(T1 
) 01 /

1 G(T2
) 01 /

2 = L D~~~~~~ (T1T 2Tk)G(Tk)a/k + 0( k-3
/

2
) (8.4a) 

Tk ,ak.{3k 

(8.4b) 

follows from (7.9a), (5.3), (5.4), (5.10e,f) and (5.101), where C and C are the classical 
Clebsch-Gordan coefficients and their duals defined in (5.10j). To this order of the semi­
classical expansion, the fusion rule (8.4) is the same as the multiplication law for classical 
group elements in the Clebsch basis. 

D. Averages. Using (7.9a), (6.4) and (6.8b), we find that the zero-mode averages are 
Haar integrals 

(OJG(T1
) · · · G(Tn)JO)a13 = (OJG-(T1

) · · · G_(Tn)JO)a A(OJG+(T1
) · · · G+(Tn)JO)AJ) 

= L v;;'d~d~vf + O(k-312
) = l:v:'v! + O(k-312

) 

m,l,A m 

(8.5) 
thru the indicated order. This result is also consistent with the algebra (8.3). 

Using (8.lb) and the properties of the WZW zero mode, the following results are 
obtained for the semiclassical WZW vertex operator: 
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Semiclassical unitarity of 9(T, z, z) and Lie group elements 

Extreme semiclassical unitarity of the WZW vertex operator 

9(T,z,z) = exp[-2iL;b(Q~(z) + Qt(z))1b]G(T)exp[2iL;b(Q~(z) + Qt(z))1b] + O(k-1
) 

(8.6a) 
9t(T,z,z)9(T,z,z) = n + O(k-1

} (8.6b) 

follows from the extreme semiclassical unitarity (8.2) of the WZW zero mode, or from_ 

the corresponding property of 9+ and 9-. 

More9ver, we saw in (8.4) and (8.5) that the WZW zero modes satisfy the group 
multiplication and group integration laws in the semiclassical limit. Because the classical 
limit of the WZW vertex operator is the WZW zero mode 

9(T, z, z) = G(T) + O(k- 112
) (8.7) 

the same multiplication and integration laws are then obtained for the classical limits of 
the products and averages of the wzw vertex operators, 

(8.8a) 

(8.8b) 

It is therefore consistent to identify the classical limit of both 9(T, z, z) and G(T) as the 
classical unitary group element Q(T) in irrep T of 9, 

9(T, z, z) = Q(T) + O(k-112
) 

G(T) = Q(T) + O(k-112
) 

(Oi(· · ·)IO) = j d9(· · ·) + O(k-112
) 

(8.9a) 

(8.9b) 

(8.9c) 

To complete the classical results (8~8), the full semiclassical WZW OPE's and averages 
are given below. 

In the same way, the classical limits of the primary states (2.5) of affine (9 x 9) 

(8.10) 

are proportional to the classical group elements. This fact was first observed in Ref. (43]. 
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Semiclassical WZW OPE's 

The full OPE of two semiclassical WZW vertex operators is 

oo zr+1 
~ 12 2Lab . (Tk - ) f3k()-rJ- (- ) . ('7"1) Pl r:{31 

- W ( ) I g • g ' Z2' Z2 Otk 2 b Z2 . . .La Oil u <71 
r=O r + 1 . 

00 zr+s+2 
+ ~ 12 4Lab Led (Tk - ) f3k()-r[a-s.J- c- )1- c-)] (T_1T_1) P18{31 w ( 2)1 g g : 9 'z2, Z2 Otk 2 2 b Z2 c Z2 : a d 011 ,-1 r,s=O r + S + . 

~ 12 12 4LabLcd. (Tk- ) f3k()rJ( )o-sJ-(-)·('7"1) P1("T1) fJ1 
oo zr+1 zs+1 } 

- w ( ) I ( ) I g g • 9 ' Z2' Z2 Otk 2 b Z2 2 c Z2 · .L d 011 .La o-1 
r,s=O r + 1 . S + 1 . 

(8.11) 
where D in (8.4) is quadratic in the Clebsch-Gordan coefficients C. It is observed that 
these OPE's have trivial monodromy, as they should, with leading semiclassical terms 
which are the WZW primary fields themselves. 

Semiclassical WZW correlators 

The semiclassical WZW correlators are 

A9 (T,z,z) = A;(T,z)A:(T,z) = (Oig(T\zhz1)···g(Tn,zn,zn)IO) 
(8.12a) 

= [1 + 2L;b t-I:iTbi In ziil (OIG(T1
) · · · G(Tn)IO) [1 + 2L;b t I:iTbi lnziil + O(k-312) 

•<J •<J 
(8.12b) 

= [1 + 2Lab ~ r_i];:i In z· ·] r [1 + 2Lab ~ T_i];:i In z··] + O(k-312) g w a b •J g g w a b •J 
i<j i<j 

(8.12c) 

[ 1 + 4L;b ti:iTbi In lziill 1; + O(k-312) 
•<J 

(8.12d) 
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wher 1; is the Haar integral in (2.17). The result (8.12), which is the central check on the 
results of this paper, is the known [42] form of the semiclassical WZW correlators. The 
simplicity of the result is due to the fact that, once again, the normal-ordered terms in 
( 8.1 b) fail to contribute to the correlators at this order of the semiclassical expansion. It 
is clear that these correlators have trivial monodromy when one z goes around another, 
and, moreover, the chiral and antichiral intrinsic monodromies ( 4.30) have cancelled, so 
that the intrinsic monodromies of A9 are trivial. 

9 Conclusions 

Supplementing the discussion of Moore and Reshetikhin [25] and others [26-41] we have 
given a new semiclassical nona:belian vertex operator construction of the chiral and an­
tichiral primary fields (the chiral and antichiral ~ertex operators) associated to WZW 
theory, and the nonchiral primary fields of WZW theory itself. 

The new nonabelian vertex operators were obtained as the explicit semiclassical solu­
tion of known [26,25] operator differential equations for the chiral and antichiral primary 
fields, and they are the natural nonabelian generalization of the familiar abelian vertex 
operators [23]: The new vertex operators involve only the representation matrices T of 
Lie g, the currents J, J of affine (g x g) and the chiral and antichiral zero modes G±(T), 
and they reduce to the familiar abelian vertex operators in the limit of abelian algebras. 
So far as we have carried out the semiclassical expansion, it was seen that the zero modes 
carry the full action of the quantum group, and moreover, we were able to identify the 
classical limit of the nonchiral WZW zero mode G(T) = G_(T)G+(T) as the classical 
group element in irrep T of g. 

Combining our results with those of Ref.[25], we computed the semiclassical OPE's 
among the chiral and antichiral vertex operators, and among the nonchiral WZW vertex 
operators themselves. Moreover, it was verified that the new vertex operators reproduce 
the known [42] form of the semiclassical affine-Sugawara conformal blocks and WZW 
correlators, and connections with semiclassical crossing matrices [42] and braid relations 
[30,40] were also discussed. ' 

We finally note that semiclassical blocks and correlators are also known [42] for the 
coset constructions and a class of processes in irrational conformal field theory. Conse­
quently, the present work should be considered as a first step toward finding the semi­
classical nonabelian vertex operators and OPE's of these more general theories. 
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