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Abstract 

The classical field equations of general relativity can be expressed as a single 

geodesic equation, describing the free fall of a point particle in superspace. Based on 

this formulation, a "worldline" quantization of gravity, analogous to the Feynman­

Schwinger treatment of particle propagation, is proposed, and a hidden mass-shell 

parameter is identified. We consider the effective action for the supermetric, which 

would be induced at one loop. In certain minisuperspace models, we find that this . 

effective action is stationary for vanishing cosmological constant. 

1 E-mail: carlini@th.phys.titech.ac.jp 
2 E-mail: greensite@theorm.lbl.gov ; greensit@stars.sfsu.edu 

1 



1 Introduction 

In one of the classic papers of quantum electrodynamics, Feynman [1] suggested that 

relativistic electron propagation could be understood in terms of a sum over electron 

worldlines running both forwards and backwards in time. The evolution parameter 

was a path parameter, associated with the proper time of the electron worldlines, 

rather than the "clock time" of the laboratory. Related ideas were discussed by 

Stueckelberg, Fock, N ambu, and Schwinger [2]. In this article we would like to extend 

Feynman's worldline quantization of electron paths in spacetime to the quantization 

of a closed Universe propagating in superspace. 

The elements of the proper-time approach for relativistic particles are, of course, 

very well-known. Consider for simplicity a spinless particle of mass m, propagating 

freely on a background spacetime with metric g11:v· The classical motion of the particle 

(i.e. the geodesic equation) is derived from variation of the worldline action 

Sp = -m j ds 

(1) 

Removing the square-root by introduction of a Lagrange multiplier (lapse) N, we can 

write Sp in the form 

s; = m j dr [ 2~9~v d:: ~~- ~Nl (2) 

Applying the usual Legendre transform, one obtains the first-order form 

s; j dr [P~ d::- NHJ 
H (3) 

l 

Now go to the gauge N = 1. In this gauge, r = s is the proper-time parameter 

of the classical equations of motion. Adopting s as the evolution parameter for the 

quantized theory, the amplitude for a relativistic spinless particle to propagate from 

point x'~ to point x~ in an interval s can he expressed as a path-integral 

G(x,x';s) 

L' p (4) 
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Up to an operator-ordering, the corresponding Hamiltonian operator Hs describing 

state evolution in the evolution parameter s 

(5) 

is obtained from the classical Hamiltonian (with N = 1) via the usual replacement of 

c-n~mber momenta by the corresponding operators, i.e. 

The Feynman propagator is proportional to the inverse of Hs, and the one-loop 

contribution to the gravitational effective action 
' -

(7) 

is the trace logarithm of Hs· The proper-time formalism itself has various uses, e.g. in 

calculating the Feynman propagator exactly in certain, especially simple, background 

electromagnetic fields, as well as in the evaluation of certain loop diagrams. We 

note that eigenvalues of the proper time Hamiltonian Hs, such as those used in the 

evaluation of the effective action, can take on any value. Classically, however, the 

mass-shell condition H = 0 is to be respected (this follows from variation of (3) 

by N), and for free particles this condition is imposed, in Dirac quantization, as a 

constraint on physical states Hs'¢ = 0. For spinless particles, this operator constraint 

is just the Klein-Gordon equation in curved spacetime. In an interacting theory the 

mass-shell condition is relaxed somewhat; it is required only of asymptotic states. 

The 4-momentum of a virtual particle is allowed to violate the mass-shell condition. 

2 The Worldline Action of a Closed Universe 

We would now like to generalize the proper-time .approach to the case of gravity in 

combination with any number' of interacting bosonic fields; this calls for rewriting the 

gravitational action in the form 

S9 = -M j ds (8) 

where s is an invariant length parameter in the space of all fields modulo spatial dif­

feomorphisms, i.e. superspace, and M is an arbitrary dimensionless parameter. The 

only reasonable candidate for s is the usual action of general relativity, so the problem 
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is to reformulate that action as a proper time in superspace. Such a formulation was 

developed recently in ref. [3]; closely related ideas were put forward long ago in ref. 

[4]. The identification of action with proper time goes as follows: 

Let {qa(x),Pa(x)} represent a set of gravitational and other bosonic fields, and 

their conjugate mom~nta, with the fields scaled by an appropriate power of K 2 = 

161rGN so as to be dimensionless.3 In a condensed notation, the standard ADM 

action has the form 

j d4 x (paOoqa- N1ix - Ni1i~] 
K

2GabPaPb + vgU(q) 

oia[q, o]pa (9) 

where cab and U are, respectively, the metric and potential in superspace, and the op­

erator Qia is linear in the 3-d spacetime covariant derivative. Go to the "shift gauge" 

Ni = 0. The supermomentum constraints 1ii = 0 are not lost by this choice, since 

they are still required for consistency of the Hamiltonian constraint with the equations 

of motion. Solving Hamilton's equation for the momenta in terms of velocities, then 

solving the Hamiltonian constraint for the lapse function N in terms of velocities, 

and inserting both expressions into S ADM, one obtains the Baierlein-Sharp-Wheeler 

(BSW) form of the gravitational action [5] 

(10) 

in shift gauge Ni = 0. The BSW action is to serve as a proper-time parameter. It 

is also useful to introduce an arbitrary mass-scale u in order to define an evolution 

parameter t with dimensions of time, so that 

SBsw =- j ds = -u j dt 

Choose x 0 = t. Comparing (11) with (10), we have 

(11) 

. (12) 

Let N denote the lapse function (derived by solving the Hamiltonian constraint) 

associated with the time parameter t 

(13) 

3 0nly the metric formulation will be considered here; hence the restriction to bosonic fields. 

4 



Then we have 

(14) 

Now t denotes a "many-fingered" time variable, with the different possibilities 

distinguished by a choice of N. Equation (12) imposes only one global restriction on 

the choice of N. From eq. (13) we have 

which implies, from the definition (12), the condition 

Jd3x NyigU = ~u . 2 

(15) 

(16) 

For a given N satisfying this condition, there corresponds a time variable proportional 

to S BSW. The condition is solved trivially by 

- luN 
N= 2 

fd3xNV§U 

where N is unrestricted. Inserting this form for N back into (14), we find 

1 = -:2 j d3 x [j d3 x' N v.gu] )"'2 GabOtqaotl 

or 

(17) 

(18) 

(19) 

Now introduce a mixed discrete/ continuous "coordinate index" (a, x) in super­

space: 

(ax)= a(x) = ·{ N(x) a= 0 
q - q qa(x) a= a i= 0 (20) 

Apart from notation we are extending the definition of superspace slightly to include 

the non-dynamical field N(x ), related via eq. (17) to the lapse parameter. Define a 

degenerate metric for this extended superspace 

9(ax)(by) 

Q(Ox}(Oy) 

[j d3 x' N v.gu] N(~)"-2 Gab(x)83(x- y) 

9(ax)(Oy) = Q(Ox)(by) = 0 

With these definitions, and an obvious summation convention, eq. (19) becomes 
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The gravitational action then has the desired form 

S9 = -M j ds 

dq(ax) dq(f3y) 

-Y(ax)(f3y)~~ (23) 

Variation of the action S9 w.r.t q(ax) leads, in the usual way, to a geodesic equation 

g q + _ ~(ax)(f3y) + ~(ax)(-yz) _ ~({3y)(-yz) _q ___ q __ = 0 d2 (f3y) 1 (8~ 8~ 8~ ) d ({3y) d (-yz) 

(ax)(f3y) ds2 2 8qhz) 8q(f3y) 8q(ax) ds ds 
(24) 

Identifying ds = udt, it is straightforward to verify that the a =f: 0 components of 

(24) are the equations of motion 

(25) 

while the a = 0 component is the Hamiltonian constraint 

_
1 

GabOtqaotl + ygU = 0 
4N2K-2 

(26) 

These equations are identical to those obtained from the ADM action (9), with 

the gauge choice Ni = 0 and N = N. We have therefore interpreted the classical 

field equations of general relativity as describing the free fall of a point particle in 

supers pace. 4 

Some further comments are in order. First, the choice of lapse N = N imposes 

only one global condition (16) on the choice of lapse function. This does not result in 

any restriction on the choice of foliation, but only on the time-label t associated with 

each hypersurface of a given foliation. A second point is that the degeneracy of the 

supermetric Y(ax)(f3y) in eq. (21) implies an infinite set of solutions for the geodesic 

between any two points in superspace. It is not hard to show that these solutions 

are related by (ordinary D=4) time-reparametrizations, and have the same "proper 

time" interval in superspace (proportional to S9 ) between those two points. Finally, 

let us note that the parameter M in S9 , which is analogous to the mass parameter 

m in the relativistic particle action Sp, drops out of the classical configuration-space 

equations of motion. 

Having recognized that the worldline action (23) leads to the same classical motion 

as the ADM action, we can proceed as in the relativistic particle case to derive the 

4 Eq. (23) can also be motivated from Jacobi's principle in mechanics, c.f. ref. [3]. 
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proper-time Hamiltonian. Again introducing a Lagrange multiplier n to remove the 

square-root 

[ 
1 dq(ax) dq(by) 1 l s; = M j dT 2nY(ax)(by)~~- 2n (27) 

the first-order form is 

where the supermetric 

and the expression 

S" g 

H 

[ 
dq(ax) l J dT P(ax)~- nH 

2~ [Q(ax}(by)P(ax)P(by) + M 2
] 

2~ [JE + M2] 

· g(ax)(by)P(ax)P(by) 

J <f3x .Af K 2GabPaPb 

f d3 x' .N V§U 

(28) 

(29) 

(30) 

were introduced in ref. [6]. Variation of (28) with respect to qa(x, T), Pa(x, T) and 

.N(x,T), n(T) give us, respectively, the set of Hamiltonian equations and constraints 

8JE 2 

<5.N(x) = 0 , 1E = -M (31) 

Setting n .:_ 1, so that T = s = ut, these equations are equivalent to the usual 

Hamiltonian equations of motion and Hamiltonian constraint 

(32) 

in the N = N, Ni = 0 gauge. These equations of motion and (Hamiltonian) con­

straint imply the remaining supermomentum constraint as a consistency condition. 

The constant M is implicitly set to M = 1 in the usual Hamiltonian formulation 

of general relativity, but we note at this point that there is no overwhelming reason to 

7 



make this choice. The constant M appears as a constant multiplicative factor in the 

worldline action (23), as does the mass min the worldline action (1). Both of these 

constants drop out of the corresponding geodesic equations. Just as there is no way 

of determining the mass of a particle from its trajectory in free fall, there is also no 

way of determining the value of M from a given solution of the configuration-space 

field equations. In the context of the first-order formulation, the condition .tE = -M2 

is in every sense analogous to the particle mass-shell condition gJJ.vPJJ.Pv = -m2
• It is 

therefore reasonable to identify M as a kind of (dimensionless) mass-shell parameter, 

and to dignify the constraint .tE = -M2 with the title "mass-shell of the Universe". 

3 Quantization 

We now consider canonical quantization, in the "proper-time" gauge n - 1. The 

corresponding Schrodinger equation is 

in aw - 1-l w 
OS s 

1 2 
2M(.£+ M )'It 

which has the general s-dependent solution 

'I![q, s] - L ac,B<I>c,B[q]ei(£-M2)s/(2M1i) 
£,8 

lE<I>c,B[q] -E<I>c.B[q] 

(33) 

(34) 

where the label f3 distinguishes among a linearly independent set of eigenstates of 

.tE with eigenvalue -£. The classical constraint 81Ej8N = 0 becomes an operator 

constraint ~~\It = 0. Inserting the eigenstate expansion (34), we find that each 

eigenstate <I>c satisfies a Wheeler-DeWitt equation 

[-~ K 2
"G"' Oq~:q," + y'gU]<l>E[q] = 0 (35) 

associated with the parameter £ (quotation marks indicate the ordering ambiguity). 

Finally, if we also impose the mass-shell constraint 

(36) 

then the only physical states are those with £ = M 2 , and the (classically indetermi­

nate) constant M can be absorbed, via 

n 
neff= M 

8 
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into a rescaling of Planck's constant. 

There are two ways in which the off mass-shell states, with £ =J M 2
, may be phys­

ically relevant. First, the mass-shell constraint (36) may not really be a constraint, 

at the quantum level. The mass-shell condition is derived by trading the square-root 

form of the action for an expression involving a Lagrange multiplier. What if one 

avoids this step, and quantizes the square-root action S BSW directly? This approach 

has been advocated in ref. [6, 7], and it leads to a formulation in which the dynamical 

equation (33) is supplemented ~y the constraints (81Ej8N)'I! = 0, but without the 

mass-shell constraint 1E = -M 2 • It should be noted, once again, that there is no 

Way to determine M classically, or to verify the mass-shell condition lE = -M 2
, 

since the configuration-space equations are independent of M 2
• Determination of 

M 2 would require a violation of the Einstein field equations; it is analogous to trying 

to determine the mass of a particle from its trajectory in free fall. Moreover, the 

freedom to choose arbitrary foliations of 4-space is already reflected in the constraint 

(81Ej8N)w = 0. In the formulation of [6, 7], the physical Hilbert space is spanned 

by the solutions of a family of Wheeler-DeWitt equations (35), one equation for each 

eigenvalue -£ of JE. 

The second way in which off mass-shell states could become relevant is suggested 

by the phenomenon of black hole evaporation. Although it is known that black holes 

must lose mass via Hawking radiation, it is not known what the final state of the 

radiative process will be. It is possible that the black hole disappears entirely, and 

this might be considered a case of topology change involving the production of a 

"baby universe", analogous to similar processes in string theory. It is also possible 

that the evaporation is not complete, and the black hole leaves a remnant. Let us 

suppose that the first alternative, namely, complete evaporation accompanied by baby 

universe production, is the correct one. In that case the Universe is not really in free 

fall; there will be interactions associated with topology changing processes (emission 

and absorbtion of baby universes). 

A satisfactory description of topology-changing processes awaits development of a 

"third-quantized" theory of gravity [8]; unfortunately, at present, we do not even have 

a satisfactory understanding of second-quantized gravity. Still, it I?ay be possible to 

obtain some insight into "multi-versa}" effects via the worldline formulation. For 

example, by direct analogy to eq. (7), the 1-loop contribution of virtual universe 

loops to the effective action would be 

SeJJ[Yab] = i:Trln[JE + M 2
] (38) 
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where the trace runs over a basis of states ~£ satisfying the one-parameter family of 

Wheeler-DeWitt equations (35). Of course, the supermetric Yab, unlike the ordinary 

spacetime metric 9J.Lv, is not arbitrary; it is constrained to have the form (21 ). There­

fore Seff may be regarded as a functional of the potential term U(q). But the form 

of U ( q) is also tightly constrained: it is the sum of all possible potent~al terms that 

could appear in an ADM Hamiltonian. With this restriction, Set f is just a function 

of the coupling constants of each possible interaction term, i.e. 

(39) 

and the couplings are now viewed as dynamical variables. Variation of Seff with 

respect to the couplings could, in principle, determine their phenomenological values, 

very much in the spirit of Coleman's "Big Fix" [9]. 
Let us illustrate this possibility with a minisuperspace toy model, in which the 

supermetric Yab depends on one parameter only, namely, the cosmological constant A. 

The starting point is the minisuperspace action representing a closed, homogenous and 

isotropic Friedman-Robertson-Walker (FRW) universe filled with a three-component, 

minimally coupled scalar field J · ( <Pb <P2, <jJ3), i.e. 

where the 4-d invariant length is 

and with &2=2G N /37r. 

With the choice of coordinates q0 = a, q• 

sponding worldline action 

reads 

(40) 

( 41) 

<Pi, the supermetric for the corre-

( 42) 

i=1,2,3 ( 43) 

Now, on general grounds of diffeomorphism invariance in minisuperspace, the effective 

action for a generic FRW universe will hav~ a weak-curvature (adiabatic) expansion 

of the form 

(44) 
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where As and "'S are the (dimensionless) "supercosmological constant" and "super 

Newton's constant", respectively, and R is the scalar "supercurvature" of 9ab· In 

general, since As, "'s are divergent at one loop, even in simple minisuperspace models, 

it must be assumed that either these constants are renormalized (and there exists a 

bare action S0 [9ab]), or else that there is a fundamental cutoff of some kind in the 

theory. 

Let us now temporarily compactify the ranges of integration in ( 44) so that the 

scale factor runs from a = 0 to a· = a and the scalar fields run from cPi = -cPiM to 

cPi = cPiM, and keep only the leading term in the adiabatic expansion (44). Then the 

effective action (44) reads 

As r da 1¢>1M\ dcjy11¢>2M dcjy21¢>3M dcjy3 a 7 ( .Aa2 - 1 )2 
k -~M -~M -~M 

(j d3
cjy) Asa8 

( .A;~
4 

- .A:
2 

+ ~) 
It is easy to check that Sef f is stationary at 

dSejJ = O ==} 

d.A 

(45) 

(46) 

with the result that .A ---+ o+ as a ---+ oo. It is also straightf~rward to show that this 

stationary point is actually a minimum for Seff provided that As> 0. 

4 Inclusion of Mass Terms and Supercurvature 

Any minisuperspace model is a toy, and only illustrates effects which might (or might 

not) be present in the full theory. Still, even within the category of toy models, it 

is interesting to study whether the vanish~ng of the cosmological constant survives 

some modest complications of the minisuperspace action, and/or improvements in the 

approximations for (44), e.g., the inclusion of contributions from the supercurvature 

terms in the adiabatic expansion of the effective action. 

We consider the action for a FRW universe filled with Ns scalar fields ( c/Y1 , .. , cPN.)~;J 
with potential V(c/Y), i.e. 

. (47) 

Again choosing coordinates q0 = a, qi = cjyi, then, from eq. ( 42), the diagonal, 

Ns + !-dimensional worldline supermetric 9ab is just 

i = 1, ... N 5 (48) 
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and the effective action is given by eq. ( 44). The question is whether the stationary 

point of the effective action ( 44), with supermetric ( 48), is still at .A = o+. We will now 

consider some cases for various numbers of scalar fields, with and without mass-term 

potentials. 

4.1 Ns massless scalar fields 

As a first example, we consider the model of a FRW universe filled with Ns massless, 

minimally coupled scalar fields, i.e. the case with potential 

V(</>)=0 ( 49) 

For this scalar potential, inserting the supermetric (48) into eq. (44) we can easily 

write down for the effective action (neglecting the 'supercurvature' contributions) 

1a 1rf>1M 1rPN5 M As da d<f>I ... d<f>N. a2Ns+lj_Aa2 - 1J(Ns+I)/2 
0 -rf>1M -rf>N5 M -

N !As (n~ I .) a2(N.+I) 
s ~-l rf>, { Ns( )11 (0.( ) 

3(3Ns + 1)!! xNs+I 2 Ns- 1 .. + \7 X- 1 

8(1 _ x)]~N·Jx _ 11(N.+3)/2 I: 2k (3Ns- 2k + 1)!! x-k} 
k=O (Ns- k)! 

(50) 

where E>(x) is the Heaviside step function and the quantities x and Ir/>; are given by 

and 

Taking the derivative of the effective action (50) with respect to ,\ we get 

dSeff 
d.A 

(51) 

(52) 

(53) 

Unfortunately, the stationarity condition coming from eq. (53), I.e. by imposing 

dSefffd.A = 0, cannot be easily solved for arbitrary N 5 • However, one can still prove 

the existence of a finite number (at least one) of stationary points of Seff which are 
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all at x > 0 and at a finite distance from the origin x = 0. In fact, studying the 

behaviour of dSef f /d). in the range x 2: 1, we get (for As > 0) 

dSeff (x = 1) 
d). 

dSeff ( ) -;v:- X ---t + 00 

2N•(Ns + 1)!!As (fi~1 ]<Pi) a2(Ns+2) 

3(3Ns + 1)!! 
<0 

As (n~1 I <Pi) a2(N.+2)x(N.-1)/2 o 
rv 6 > (54) 

(with the inequality signs reversed in the case As < 0). On the other hand, it is 

possible to check (i.e., by using Mathematica), that 

dSeff O -;v:- < Vx:::;o (55) 

(again with the inequality sign reversed in the case As < 0). In other words, eqs. 

(54) and (55) imply that dSeJJfd>. will have at least one finite zero at x..:...x1 > 1, and 

at most a finite number of extra zeros at x..:...xn = finite > 0. Therefore, the effective 

action Sef f will be stationary at 

dSeffl = O 
d). Xt 

(56) 

(or, at any other of the points Xn = CnX1, with Cn = constant > 0). Removing the 

cutoff, a ---t oo, this leads again to the re'sult that ). = o+. 

Ns = 0 scalar fields In this case the minisuperspace is one-dimensional, with the 

single metric component 

(57) 

The supercurvature R is, of course, identically zero. One can then immediately write 

the effective action from eq. (44) as 

As loa da al>.a2
- 11 1

/
2 

A -2 

~{1 + [8(x- 1)- 8(1- x)]lx -113
/

2
} 

3x , 

Taking the derivative of (58) with respect to >., one obtains 

dSeff = O 
d). 

===} ). = .:....:[ (_3 _+_2_v'2_2:..._) 1
_f

3_+_('":--3_-_2_v'2_2...:_) 1_13_-_...:.1] 
a2 

(58) 

(59) 

with the result that >. ---+ o+ as the regulator a is removed. It is also straightforward 

to check that this stationary point is a minimum for the effective action if As > 0. 
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Ns = 1 massless scalar field (with supercurvature contribution) Next we 

consider the case of a single massless scalar field. In this case the superrnetric will 

have two independent diagonal entries, 900 and 911 , which can again be read from eq. 

( 48), and we can also improve the evaluation of the effective action by including the 

contribution of the supercurvature term given by 

R=- 4A 
a2(Aa2- 1)3 

(60) 

The effective action, up to first order contributions from the adiabatic expansion in 

n, reads 

L 

Evaluating the derivative of ( 61) with respect to A we get 

dSeff 
dA 

where we have introduced the quantity 

. 12x:s 
a=--

Asa4 

(61) 

(62) 

(63) 

Now, provided that As =/= 0,5 imposing the stationarity condition with dSeJJfdA 

given by eq. (62), apd noting from eq. (63) that the contribution corning from the 

supercurvature term can be neglected in the limit when the regulator for the scale 

factor is removed (a ---+ oo ), it is straightforward to get the result 

dSeff = 0 
dA 

(64) 

In other words, the effective action is stationary at A = o+ as the regulator a ---+ oo 

is removed. Moreover, evaluating the second order derivative of Seff with respeCt to 

A it is easy to see that the stationary point is a minimum for Seff if As > '0. 

5 When As = 0 the analysis of the stationary points of Sef 1 critically depends on the relative 
scaling between >. and the cutoff a, and is not conclusive. 
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Ns = 3 massless scalar fields (with supercurvature contribution) The anal­

ysis of the model of a FRW universe filled with three massless scalar fields essentially 

proceeds along the same lines as in the previous paragraph. In particular, the su­

permetric now has two extra diagonal elements (i.e., g22 = g33 = glb plus goo, all 

readable from eq. (48)), and the supercurvature turns out as 

n = 6[9(.Aa2
)

2
- 14.Aa2 + 4] 

a4( .Aa2 - 1 )3 

so that the effective action, up to first order contributions from n, reads 

dSeff 

d.A (II3 ) lO{ X 1 "'"' I¢; Asa ---
i=l 6 5 

3 [ (x- 2) 2 l} + -a 1 + 2( ) + - 3 In lx - II 
4 3x x -l 3x 

. (65) 

(66) 

(67) 

where a is again defined according to eq. (63). Let us consider the case As =/= 0 

first. In this ansatz, using similar arguments to those of the previous section one can 

easily see that the contribution coming from the supercurvature term (the a term in 

eq. (67)) can be neglected when removing the cutoff a, and therefore the stationarity 

condition for Seff implied by eq. (67) becomes 

dSeff = 0 
d.A 

(68) 

Eq. (68) again predicts the value .A = o+ as a-+ oo. Contrarily to the previous model 

for a single scalar field, in the three massless scalar field case we can also consider 

the ansatz As = 0. In this case, in fact, it is easy to check from eq. (67) that the 

stationarity condition for Sef f has a solution at the point x=x2 = finite > 0 

dSeff I = O 
d). X2 
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In other words, also in this case >. = o+ is a stationary point for the effective action. 

Finally, evaluating the second order derivative of Sef f with respect to >., at the sta­

tionary points (68) or (69), it is easy to check that these are minima for Seff either 

if As > 0 (for any Ks) or if Ks > 0 (when As= 0). 

4.2 Ns = 4r- 1 massive scalar fields 

The next complication of the FRW universe toy model is to consider the case of an 

odd number Ns = 4r -1 (r = 1, 2, .. ) of massive, minimally coupled scalar fields (the 

case of one single massive scalar field is separately treated in the Appendix) with 

potential 
4r-1 

V( <P) = L mJ¢>7 (70) 
i=l 

The supermetric is once again diagonal, with 4r - 1 identical entries gii plus goo 

(which can be easily read off eq. (48)), and there is no ambiguity in the sign of 

its determinant when evaluating Seff· In particular, making use of the binomial 

expansion theorem three times, the effective action can be written (neglecting the 

'supercurvature' contributions) as 

where we have used the 'cosmological constant-variable' defined by eq. (51) and 

introduced the new 'mass-variable' Yi according to 

(72) 

Now, in order to find the stationary points of Seff, we can simplify the whole 

analysis by taking partial derivatives wit~ respect to >. and m7 and evaluating them 

at Yi = 0 (i.e., at zero masses for t-he scalar fields cPi)· Proceeding in this way and 

noting that the only relevant terms surviving at Yi = 0 from the sums in eq. (71) are, 

for the derivative with respect to m7, those with j = k - 1, and, for the derivative 

with respect to >. and the effective action itself, those with j = k, we obtain the 
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formulas 

aseff I 
8(m7) y;=O 

(73) 

The effective action (71) evaluated at Yi = 0 is, of course, the same as that 

considered in section 4.1 for the case of Ns massless scalar fields (with the restriction 

that Ns = 4r -1), and as a consequence also the stationarity conditions derived from 

eqs. (73) are equivalent to the massless model condition coming from eq. (53). Then 

the result is that also for the massive model considered here there is at least one 

(trivial) stationary point at mi = 0 (i = 1,2, . .4r -1) and .A given by eq. (56). 

Moreover, since the general stationarity conditions which one would derive by 

equating the partial derivatives of Sef h eq. (71 ), with respect to .A and mf for 

arbitrary mi are still polynomial equations of finite order in x and Yi, it is easy to 

see that any other eventual stationary point for the effective action would still be at 

lxnl =finite , !Yi,nl =finite. Therefore, we can again conclude that the stationary 

point for the effective action representing a FRW universe filled with Ns = 4r - 1 

massive scalar fields is, after removal of the cutoffs, unique, i.e. at I .AI = 0 and mi = 0 

(i = 1, 2, . .4r- 1).6 

Ns = 3 massive scalar fields In the case Ns = 3, the algebra is especially simple. 

In this case the effective action (71) simplifies to 

(74) 

In particular, the partial derivatives with respect to .A and mf turn out as 

(75) 

6The modulus in the value for A is actually due to our ignorance about the signs of the other 
eventual stationary points Xn and Yi,n. 
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ase1 1 _ Asa10 (Tit= I I<~>;) [ 1 3 6] 
~ \ - . 6 -3 L Yi + X - -
U/\ i=l 5 

(76) 

from which it is straightforward to find that the unique stationary point of Sef f is at 

8Seff=O A 6 

oA ===> - 5a2 

f)Seff = 0 
8( m'f) ===> m~ 

' 
0 i=1,2,3 (77) 

On removing the cutoffs we find, as anticipated in the last section, that the stationary 

point is at A = o+ and' mi _ 0 ( i = 1, 2, 3). We can also check the nature of this 

stationary point by evaluating the eigenvalues of the Hessian of Sef f, finding that the 

stationary point (77) is a minimum for Seff provided As > 0. 

5 A New Source of Decoherence? 

We have speculated that the dynamics of the Universe is not precisely free fall, pos­

sibly due to topology-changing absorbtion/emission processes. If so, then in the 

interval between such interactions the Universe propagates as a virtual particle in 

superspace. Alternatively, as we have suggested in some previous articles, the mass­

shell constraint may not really be a constraint at the quantum level. In either case, 

the Universe would be propagating somewhat off-shell. It is interesting to imagine 

how this off-shell character might manifest itself, if the effect would be large enough 

to be observable. 

Consider a solution of the evolution equation (33) and constraints 

( 81£/ 8N)lJ! = 0, which is a superposition of two WKB states 

of the form 

lJ!s(q,r) 

lJ!(q,r) = lJ!A(q,T) + lJ!s(q,r) 

j d£Da FA(£, a) exp [* { (£- M 2)T- VfS[Q, aJ}] <f>A(q) 

j d£Da Fs(£,a)exp [* {(£- M 2)T- VfS[Q,aJ}] <Ps(q) 

(78) 

(79) 

where r = s/2M is the rescaled evolution (proper-time) parameter and FA,B are 

distributions concentrated at£= M 2 (with arms uncertainty~£) and at parameter 
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values {a} = { aA,B} respectively. The functional S[Q, a] is a solution, invariant 

under 3-space diffeomorphisms, of the Hamilton-Jacobi equation 

2 ii liS liS _ 
K G 8Qi(x) 8Qi(x) + ygU[Q(x)]- 0 (80) 

with {a} a set of integration constants. In these equations Q represents the set 

of degrees of freedom to be treated semi classically, and y'gU[ Q] is the part of the 

superpotential involving only those deg~ees of freedom. Note that in the case of on­

shell propagation, i.e. £ = M 2 , the 7-dependence drops out of the wavefunction, and 

the expressions in (79) are just WKB solutions of the Wheeler-DeWitt equation. 

Let us imagine that in some region of superspace where the amplitudes W A,B are 

non-negligible, the phase difference 

8S[Q1 = IS[Q, aA]- S[Q, aB]I (81) 

depends mainly on a small subset Q' of the Q degrees of freedom. For example, Q' 
might refer to the location of a particle recorded on a photographic plate, and 8S 
refers to the difference in action, associated with two well separated particle paths in 

an interferometer, leading to the same final location. 

We now ask whether the two components W A and W B will interfere coherently, in 

the sense that the term is used in optics, in a measurement of Q' C Q. If b.£ =/:= 0, then 

we must consider stationarity with respect to variation in £, as well as stationarity 

with respect to variations in the parameters a. The stationary phase condition tells us 

that the components W A and W B are peaked at a given configuration Q at parameter 

times 

(82) 

respectively, with £ evaluated at £ = M 2 . Interference of wavefunctions W A and 

W B is coherent, in the sense of physical optics, if the relative phase between the 

two wavefunctions is constant in the 7-interval [7A, 7B]· In standard terminology the 

"linewidth': of the wavefunction is b.£ j'h, and the "coherence time" is b..7 = 'h/ b.£. If 

the linewidth has a ~tochastic origin, then the phase of the wavefunction at 7 + b..7 is 

not related in a simple way to the phase at parameter time 7. The coherence criterion 

is then 

(83) 

where 

(84) 
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which means 
1 1i 

2Vt8s < tl£ 
(85) 

Defining fief f ( £) = 1i / V£ and the dispersion 

(86) 

the condition for coherent interference becomes 

8S neff --<--
fief f 8fi 

(87) 

The argument above is quite general, and applies to any WKB treatment of the 

evolution equation (33). In fact, if one is prepared to accept that there may be 

a stochastic uncertainty 8h (of whatever origin) in the phenomenological value of 

Planck's constant, then a condition of the form (87) can be easily ~educed from the 

standard Feynman path integral in fixed background spacetime. If there are two or 
( 

more semiclassical paths which contribute to a given transition amplitude at leading 

order in fi, i.e. 

(88) 

and if 1i itself has some dispersion 81i, then the relative phase between path i and 

path j becomes indeterminate if the inequality (87) is violated, where 8S = lSi- Sil 
is the difference in action of the two paths, and neff =h. 

A signature of finite dispersion 81i in the effective value of Planck's constant could 

be, e.g., an observed decoherence of particle beams in an ultra-sensitive particle in­

terferometer, in a situation where standard time-energy considerations would imply 

that the beams should interfere coherently. In this case, the wavefunction \lf A (\lf B) 
represents the contribution to the full "wavefunction of the Universe" 'lT in weich the 

particle travels through path A (B) of the interferometer, respectively, while 8S/heff 

is a WKB phase difference associated with this difference in path. If the Universe 

propagates slightly off-shell, as has been suggested here, then the interference will 

be incoherent if the inequality (87) is violated. To our knowledge no such decoher­

ence has ever been observed, and, in the absence of any theoretical lower bound on 

81i, a more detailed discussion of particle interferometry in this context would be 

premature. 

Of course, any finite dispersion in Planck's constant would also feed into finite 

uncertainties in every other physical quantity, and some of these quantities have been 
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measured quite accurately. In particular, fi/e 2 can be deduced, by combining g- 2 

measurements with high-order QED calculations, to one part in 1012
. However, an 

ultra-high accuracy measurement of some physical constant, such as 'h/ e2
, does not 

necessarily project the Universe into an eigenstate of £ (or fief f). Planck's constant 

is not determined from a single measurement (although g - 2 can be determined from 

observations of a single electron), and the reported value would be, in our formalism, 

an average value for fieff, at the average value£= M 2
. For example, in the g- 2 

experiments, one adjusts a rf frequency to maximize the number of spin flips of a 

trapped electron [10]. Naturally, the peak in spin-flips versus frequency has a certain 

width. The dispersion 8ft, if indeed there is such a dispersion, would be a contribution 

(perhaps negligible, compared to other sources) to that width, while the center of the 

peak would locate, in the quantity 1i / e2 , only the average value of the effective Planck's 

constant. 

6 Conclusions 

We have seen that the classical dynamics of bosonic fields (including gravity) in a 

closed Universe can be re-:expressed as describing the free fall of a point particle in 

superspace. The Hamiltonian operator describing this "particle" contains a ( clas­

sically unobservable) parameter M analogous to mass, and the usual Hamiltonian 

constraint of general relativity can be viewed, in terms of this parameter, as a mass­

shell condition. 

This "free-fall" description of general relativity is, of course, a formal result. Con­

ceivably it also has physical content, and we have suggested two possibilities: First, 

quantum effects (virtual universe loops) could induce an effective action for the (non­

standard) supermet:ric, and this action is essentially a function of the coupling con­

stants of the bosonic field theory. In various minisuperspace models, we have seen that 

the effective action (or at least, the first terms in its adiabatic expansion) is stationary 

for vanishing cosmological constant. We do not know whether this desirable feature 

survives in the full theory. Secondly, one may speculate that the universe, propagat­

ing like a particle, may propagate slightly off-shell. In principle this could lead to 

some very interesting effects, as suggested in the last section, but unfortunately we 

have no estimate to offer of their magnitude. 
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A Ns == 1 massive scalar field 

In the case of a single massive, minimally coupled scalar field in a FRW geometry, the 

effective action (44) (neglecting contributions coming from the supercurvature terms) 

reads 

(89) 

where, in performing the integrations in a and </>, we have assumed that the cutoff 

regulators satisfy the conditions I..XIa2 > 1 and m 2</>'it > I..XI, and we have defined, 

as usual, the variables x and y according to eqs. (51) and (72). Taking the partial 

derivatives of Seff with respect to .A and m 2 we then get (for x > 0) 

,....., Asl¢>a6
{ [4(x + y) 2x2

- (5x + 3y)] 
24 (x + y)2 

3 . [ yl/2 l} 
( xy )112 arcsm ( x + y )1/2 

As(I¢>)3 a6
{ [4xy(x + y) 2 + 3(x- y)] 

288xy (x + y)2 

3 [ yl/2 l } 
( xy )112 arcsm ( x + y )112 (90) 

Summing and subtracting eqs. (90), it is easy to check that the stationarity conditions 

for the effective action become (for x > 0) 

2 

y 

x+y 
(91) 

The method is to solve the first of conditions (91) for x in terms of y, and then to 

solve for y from the second of (91). Although the functional dependence of x on y 
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Is umque, it is easy to check that, already when x > 0, there is an infinite set of 

stationary points Yn, with Xn(Yn) "' f3Yn ---+ +oo as n ---+ oo. In other words, the 

stationary points of Sef f for x > 0 will be at 

An 
f3Mn 

"' a2 

m2 Mn 
(92) "' n </>2 -2 Ma 

Unfortunately, since Mn ---+ oo as n ---+ oo, one cannot make any reliable prediction 

(unless one assumes some- unnatural- scaling between Mn and the cutoff a) about 

the values of..\ and m in this toy model. 
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