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FOR THE TOUGH2 FAMILY OF CODES 

George J. Moridis and Karsten Pruess 
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ABSTRACT 

T2SOLV is an enhanced package of matrix solvers for 
the TOUGH2 family of codes. T2SOL V includes all 
the Preconditioned Conjugate Gradient (PCG) solvers 
used in T2CG 1, the current solver package, as well as 
LUBAND, a new direct solver, and DLUSTB, a PCG 
solver based on the BiCGSTAB method. 
Additionally, T2SOLV includes the D4 grid number­
ing scheme and two sets of preprocessors. Results 
from test problems indicate that LUBAND is faster, 
more reliable and requires less storage than MA28, 
the BiCGSTAB solver is superior to the other PCG 
methods in T2SOL V, and that the preprocessors im~ 
prove the performance of the PCG solvers and allow 
the solution of previously intractable problems. 

INTRODUCTION 

Most of the computational work in the numerical 
simulations of fluid and heat flow in permeable media 
arises from the solution of large systems of linear 
equations Ax = b, where A is a banded matrix of or­
der N, x is the vector of the unknowns, and b the 
right-hand side. These are solved using either direct 
or iterative methods. The most reliable solvers are 
based on direct methods. The robustness of direct 
solvers comes at the expense of large storage require­
ments and execution times. Iterative techniques ex­
hibit problem-specific performance and lack the gen­
erality, predictability and reliability of direct solvers. 
These disadvantages are outweighed by their low 
memory requirements and their speed especially in the 
solution of very large matrices. 

In the TOUGH2 general-purpose reservoir simulator 
[Pruess, 1991] the matrix A is a Jacobian with a 
consistent structure. A has a known block structure 
with well defined sparsity patterns. Typically, A is 
non-symmetric, not positive definite, not diagonally 
dominant and ill-conditioned. Due to the fact that A 
is a Jacobian, the elements of A in a single row may 
vary by many orders of magnitude. TOUGH2 creates 
very challenging matrices with all the attributes that 
cause most iterative techniques to fail. In addition, 

the general-purpose nature of TOUGH2 means that 
different matrix characteristics may arise for different 
types of problems. This explains the past heavy 
reliance of TOUGH2 on the direct solver MA28 
[Duff, 1977]. 

In the current TOUGH2 version, T2CG 1, a package 
of preconditioned conjugate gradient solvers, comp!e­
ments the MA28 direct solver and significantly In­

creases the size of tractable problems. T2CG 1 in­
cludes three Preconditioned Conjugate Gradient (PCG) 
solvers: (a) DSLUBC, a routine based on the Bi­
Conjugate Gradient (BiCG) method, (b) ~SLUCS, a 
Conjugate Gradient Squared (CGS) routine, and (c) 
DSLUGM, a Generalized Minimum Residual 
(GMRES) routine. Tests of T2CG 1 [Moridis and 
Pruess, 1995] on a variety of computing platforms 
and for problems with up to 30,000 equations have 
shown that the PCG routines in T2CG 1 are 
significantly (and invariably) faster than MA28 and 
require far less memory. 

T2CG1 is a reliable and fast solver package for most 
TOUGH2 simulations. In limited cases, however, 
the PCG solvers in T2CG 1 are challenged by classes 
of certain very demanding numerical simulation 
problems, as well as by limitations in the underlying 
algorithms of the PCG (such as occasional oscillatory 
behavior as steady-state is approached). Moreover, 
MA28 has not well defined memory requirements and 
is limited to impractically small problems. 

In this paper we discuss T2SOLV, an enhanced pack­
acre of solvers for the TOUGH2 family of codes. It b 

was developed as a replacement for T2CG 1, the cur-
rent solver package. T2SOL V includes all the PCG 
solvers used in T2CG I as well as a new routine, 
DLUSTB, based on the Bi-Conjugate Gradient 
Stabilized (BiCGSTAB) method. T2SOL V also 
replaces the MA28 by LUBAND, a general banded­
matrix direct solver. Additionally, it includes an 
option for using the D4 ordering scheme and two sets 
of matrix p~eprocessors to enhance the PCG 
performance. 



THE LUBAND SOLVER 

LUBAND is a direct solver which replaces the MA28 
solver currently used in the TOUGH2 family of 
codes. It is derived from routines in the LAPACK 
[1993] package, which have been enhanced and exten­
sively modified to conform to the TOUGH2 architec­
ture and memory management approach. It is based 
on a LU decomposition with partial pivoting and row 
interchange, and allows the solution of systems with 
a large number of zeroes on the main diagonal. 
Unlike MA28 (which is a general solver), LUBAND 
is a banded matrix solver, and as such it capitalizes on 
the significantly lower and well defined memory 
requirements of this class of solvers. 

LUBAND can be applied without any problem in the 
current TOUGH2 version and is fully backward com­
patible with all older input data files. The 
MESHMAKER routine was also enhanced to mini­
mize the bandwidth of matrix A. Defining work W 
as the number of multiplications and divisions neces­
sary to convert the full matrix to an upper triangular 
form and to perform back substitution, Price and 
Coats [1974] showed that for direct solvers W = NM2 

and the minimum storage S = NB, where N is the or­
der of the matrix and M its half-bandwidth, the full 
bandwidth being B = 2M+l. 

For a given problem size N, work and storage are 
minimized when M is minimized. If J, J, K are the 
number of subdivisions in the x-, y- and z-directions 
respectively, the shortest half-bandwidth is M=JK 
when l>l>K. This is called standard ordering [Aziz 
and Settari, 1979], and the resulting matrices are 
banded. As W increases with the square of M, it is 
obvious that the penalty for non-optimization of the 
ordering of equations may be substantial. 

THE DLUSTB SOLVER 

DLUSTB was developed based on the BiCGSTAB(m) 
algorithm [Sleijpen and Fokkema, 1993], a recent ex­
tension of the more traditional BiCGSTAB algorithm 
of van der Vorst [1992] which is still an option in 
T2SOL V. It was developed to address the problem of 
irregular convergence behavior of the PCG solvers in 
situations where the iterations are started close to the 
solution (e.g. when approaching steady state). This 
is a weakness which afflicts most PCG solvers, and 
may lead to severe residual cancellation and errors. 
BiCGSTAB(m) alleviates the irregular (oscillatory) 
convergence common to the BiCG [Fletcher, 1976] 
and CGS [Sonneveld, 1989] methods, thus improving 
the speed of convergence. It also alleviates potential 
stagnation or even breakdown problems which may 
be encountered in traditional BiCGSTAB. According 
to Sleijpen and Fokkema [1993], BiCGSTAB(m) 
combines the speed of BiCG with the monotonic 
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residual reduction in the Generalized Minimum 
Residual (GMRES) method, while being faster than 
both. Theoretical analysis indicates that the 
BiCGSTAB(m) algorithm is especially well-suited to 
the solution of very large (i.e. N>50,000) problems 
[van der Vorst, 1992]. 

DLUSTB uses the Boeing-Harwell matrix storage 
scheme of TOUGH2, and has the same architecture as 
the other routines in T2SOL V. As in all other PCG 
solvers in T2SOLV, it uses a modified LU decompo­
sition for preconditioning. Its memory requirements 
increase linearly with the order m of the Minimal 
Residual polynomial. For m = 4, it requires twice 
the memory of BiCG or CGS. The optimum value 
of m is calculated internally in DLUSTB. 

THE D4 SCHEME 

The Alternating Diagonal Scheme (D4) for gridblock 
ordering was added as an option to T2SOL V. D4 is a 
matrix-banding technique, which derives its benefits 
from the numbering of the grid points. More details 
can be found in Price and Coats [1974]. 

D4 ordering partitions the matrix into four distinct 
entities. This structure allows forward elimination 
through the equations in the lower half of A, which 
zeroes all original entries in the lower left quadrant of 
A and transforms it into a null matrix, while creating 
non-zero entries in the submatrix ALu in the lower 
right quadrant of A. the submatrix ALu is of order 
N/2, and allows the calculation of the lower half of x, 
from which the upper half is obtained by simple sub­
stitution. The resulting reduced matrix ALu can be 
solved using either direct (D4-direct) or iterative (D4-
iterative) methods. 

D4 numbering reduces the order of the matrix by 50% 
while not increasing the bandwidth. Depending on 
the grid geometry, D4 makes possible execution 
speed improvement by a factor ranging between 2 and 
5.85 [Price and Coats, 1974] over standard ordering. 
Moreover, it reduces storage requirements by a factor 
of 2. Compared to iterative solvers, D4-direct is 
competitive in 2-D problems and slower in 3-D 
problems, while yielding a robust solution. D4 with 
LUBAND makes possible the robust direct solution 
of large multi-dimensional problems. However, D4 
can only be used with regular grids. 

THE Z-PREPROCESSORS 

Some of the most numerically challenging matrices 
arising in TOUGH2 simulations involve a large 
number of zero entries on the main diagonal of the 
Jacobian. Such matrices are quite common in non­
isothermal two-component systems (such as model­
ing of two-water geothermal systems using the EOS 1 



module) and result in at least 0.5N of non-zero entries 
on the main diagonal of the matrix. 

Such matrices pose no problem for the LUBAND di­
rect solver. The iterative solvers, however, are di­
rectly affected by the diagonal dominance of the ma­
trix and the relative number of the zero entries on the 
main diagonals. Up to O.lN zero elements have little 
discernible effect on the PCG solvers in T2SOL V. 
Matrices with as many as 0.3N (and occasionally up 
to 0.5N) zero elements are tractable without any spe­
cial treatment, but usually require a large number of 
iterations for convergence, i.e. exceeding 0.5N. 

The four Z-preprocessors implemented in T2SOL V 
enhance the performance of the PCG solvers in matri­
ces with a large number of main-diagonal zeroes. 
These preprocessors are invoked only when (a) PCG 
solvers are used to solve (b) matrices with main diag­
onals populated with a large number of zeroes and (c) 
the number of the primary variables NEQ> 1. 

The first option, Z1, replaces the zeroes with a small 
number (typically I0-25), and can substantially de­
crease the number of iterations for convergence in ma­
trices with as many as 0.5N zero main-diagonal ele­
ments. The performance of the PCG solvers in Z1-
processed matrices deteriorates rapidly when the main­
diagonal zero elements exceed 0.5N. 

The second pre-processing option, Z2, is more com­
putationally intensive and involves linear combina­
tions of the flow equations in each gridblock. Z2 in­
cludes a search algorithm which identifies the appro­
priate equation to be added to the equation correspond­
ing to the zero main-diagonal element. By adding the 
two equations, the corresponding elements in the 
Jacobian are replaced with the non-zero sum of the 
original elements. The Z2 option requires limited 
computational effort and significantly improves the 
performance of the PCG solvers. 

While very effective, Z2-preprocessing can still suffer 
from poor conditioning because of persisting lack of 
diagonal dominance and large differences in the mag­
nitude of the added elements. The problem can some­
times be alleviated by the Z3 option, which precedes 
the linear combination with normalization with re­
spect to the largest element in the corresponding row. 
Addition of the normalized elements leads to an im­
proved PCG performance because the relative magni­
tude of the elements and the corresponding roundoff 
error can be reduced. The Z3 option is more compu­
tationally intensive than Z2. The Z2 and Z3 prepro­
cessors can easily handle up to 0.75N zero diagonal 
elements. 

The Z4 option is somewhat more computationally in­
tensive than Z3. It creates unit main-diagonal subma­
trices through multiplication by the inverse matrix 
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AM- 1, computed by the method of determinants. 
The PCG performance improvement delivered by Z4 
can be affected by roundoff errors; under favorable 
conditions, it matches those of Z2 and Z3. 

THE 0-PREPROCESSORS 

The 0-preprocessors are applied to matrices with no 
zero entries on the main diagonal and aim to improve 
the PCG solver performance by improving the matrix 
conditioning. Four such preprocessors are available 
in T2SOL V. The first three options, 01 through 03, 
are in essence steps in the replacement of the AM 
submatrix by the unit matrix through a central pivot­
ing process, and involve increasing levels of compu­
tational effort. 

The 01 option eliminates the lower half of the main­
diagonal submatrix, and thus removes NEQ-1 subdi­
agonals from the global matrix. This reduces the 
computational effort by reducing the number of non­
zero matrix entries and can improve the PCG perfor­
mance. Execution times are burdened by the addi­
tional work for the elimination of the lower half of 
the matrix, but usually this is overcome by the sav­
ings in the PCG computations. 

In the 02 option, in addition to 01 the upper half of 
the main-diagonal submatrix is eliminated, resulting 
in a diagonal submatrix and eliminating an additional 
NEQ-1 superdiagonals from the global matrix. 
Compared to the original, the 02-preprocessed matrix 
is significantly sparser and better-conditioned and the 
performance of the PCG solvers can be enhanced. 
The increased computational effort for the 02 prepro­
cessing is usually compensated by the reduction in 
the PCG iterations. 

The 03 option involves normalization of the 02 
matrix, resulting in a unity main diagonal. 03 does 
not further increase matrix sparsity, but may improve 
the matrix conditioning. Finally, the 04 option is 
identical to the Z4 option discussed previously. 

TEST PROBLEMS 

The solvers were tested in four test problems. 
Performance results are presented in Figures 1 
through 3 and Tables 1 through 4. 

Test Problem 1 

Test problem 1 involves a study of non-isothermal 
flow in a "two-water" system. Such systems are 
known to be the most challenging for the solvers in 
TOUGH2, as they routinely create matrices with 
0.67N zeros on the main diagonal. The PCG rou­
tines in T2CG 1 have in the past been unable to solve 
even the smallest of this class of problems. The 
problem discussed here involves injection of "water 
2" at a temperature of 30 oc into a geothermal reser-



voir of "water I" at 280 oc. The EOS I module is 
used. The 3-D domain consists of 9x8x5 = 360 grid­
blocks in (x,y,z), with NK = 2 and NEQ = 3, result­
ing in a total of N = 1080 equations. 

The fundamental weakness of MA28, i.e. its large 
(especially for 3-D problems) and not well defined 
memory requirement, was obvious in the problem. 
Despite memory allocation which sufficed for the 
LUBAND solution of 3-D problems 15 times larger 
on the same computer , MA28 could not complete 
the LU decomposition due to insufficient memory. 

Table 1 and Figure I show that DLUSTB with and 
without the Z-preprocessors has the best performance. 
It is the fastest and requires the least number of PCG 
iterations to convergence. DLUSTB seems to be the 
only solver that can proceed without Z-preprocessing. 
Note that the use of the Z-preprocessors makes possi­
ble the solution of a previously-intractable problem 
by all the PCG solvers in T2SaLV. The Z2 prepro­
cessor seems to offer the best overall performance. 

Test Problem 2 

Test problem 2 involves a laboratory convection cell 
experiment. A porous medium consisting of glass 
beads fills the annular region between the two vertical 
concentric cylinders. Application of heat generates a 
thermal buoyancy force, giving rise to the develop­
ment of convection cells. This problem has been dis­
cussed _in detail by Moridis and Pruess [1992]. The 
EaS 1 module is used. The domain consists of 
16x26 = 416 gridblocks in (r,z), with NK = 1 and 
NEQ = 2, resulting in a total of N = 832 equations. 

Table 2 and Figures 2 and 3 show the performance of 
the various solvers in Problem 2, which does not 
pose any significant challenges to the T2SaL V rou­
tines. DLUSTB is the fastest routine and requires the 
least number of iterations to convergence. 

In this 2D problem LUBAND appears as a competi­
tive alternative. The effect of the 0-preprocessors 
vary. With 01, it is pronounced in terms of PCG 
iterations and execution times in DSLUBC and 
DLUSTB, but seems to be limited in DSLUCS and 
DSLUGM. The evolution of residuals of DSLUCS 
and DSLUGM in the first Newtonian iteration of the 
first timestep is identical with and without 01 
preprocessing (Figures 2 and 3), while the DSLUCS 
execution time with a1 increases. Conversely, the 
use of the a2 and a3 preprocessors seems to offer the 
greatest improvement in the performance of DSLUCS 
andDSLUGM. 

Test Problem 3 

Test problem 3 examines fluid and mass flow in a 
large three-dimensional model of a geothermal reser­
voir. The basic computational grid is composed of 
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15x15x20 = 4500 grid blocks in (x,y,z). Cold water 
is injected through 4 wells, while hot water is with­
drawn from 5 wells. EOS1 is used with NK = 1, 
NEQ = 2, resulting in a total of N = 9000 equations. 

This is a relatively large but well-behaved problem, 
the size of which precluded the use of a direct solver. 
The use of D4 allowed a direct solution by LUBAND, 
which is competitive with the PCG solutions. D4 
with DLUSTB had a performance on a par with 
DLUSTB, the fastest PCG solver. In light of the 
overhaed needed to set up the D4 system, this result 
is very encouraging. 
DLUSTB demonstrated its superiority by being the 
fastest and requiring the least number of PCG itera­
tions to convergence. DSLUGM seems to be an in­
appropriate method for this type of problem. As ex­
pected, the benefits of a-preprocessing in this well­
behaved system are not evident in the execution 
times, although the PCG iterations are often reduced. 
It is noteworthy, however, that despite the increased 
computational load, the execution times for the a­
preprocessed solutions are practically identical to 
those without any preprocessing. 

Test Problem 4 

Test problem 4 describes a variation of the Thermal 
Enhanced Vapor Extraction System process, which is 
designed to extract solvents and chemicals contained 
in the Chemical Waste Landfill at Sandia National 
Laboratories. No NAPL is present in this system. 
In this process the ground is electrically heated, and 
boreholes at the center of the heated zone are main­
tained at a vacuum to draw air and vaporized contami­
nants into the borehole and to a subsequent treatment 
facility. The 3-D grid consists of 1300 gridblocks. 
EOS3 is used (NK = 2, NEQ = 3), and N = 3900 
equations are solved. Additional information can be 
found in Moridis and Pruess [1995]. 

Without any preprocessing, the performance of 
DLUSTB in this rather well-behaved problem is 
practically identical to that of DSLUCS. These two 
are the fastest solvers, but DLUSTB requires the least 
number of PCG iterations. D4 with LUBAND 
appears as a competitive alternative. DLUSTB is the 
most responsive to a1 preprocessing, which results 
in the fastest solution with the least number of PCG 
iterations. 

CONCLUSIONS AND SUMMARY 

The following conclusions can be drawn: 

(1) Without any matrix preprocessing, DLUSTB is 
shown to be a fast and efficient solver which outper­
forms the other PCG routines. It is the fastest and 
the most robust in T2SOL V and is shown to be prac­
tically free of stagnation, oscillation, and divergence 
problems. 



(2) The use of the Z-preprocessors makes possible the 
solution of problems which were previously in­
tractable to all the PCG solvers. The combination of 
the Z-preprocessors with the BiCGSTAB routine 
gives the best performance in such problems. 

(3) In problems which are known to confound the 
other PCG solvers, DLUSTB converges smoothly 
but slowly to a solution without invoking the ma­
trix-preprocessing facility. 

(4) The 0-preprocessors are shown to improve the ro­
bustness and decrease the number of iterations to con­
vergence, but their effect depends on the PCG solver 
in T2SOLV. DLUSTB appears to be the solver most 
consistently responsive to the 0-preprocessors. In 
well-behaved problems the effect of the 0-preproces­
sors on the execution speed is not significant. 

(5) LUBAND is shown to be consistently faster and 
more reliable than MA28, and can solve much larger 
problems. 

(6) The gains in execution speed when the D4 scheme 
is used in regular grids are shown to be significant 
(especially compared to the direct solution). D4-direct 
seems to be competitive (in speed) to the PCG 
solvers in medium-sized problems. 

In large problems (especially in 3-D systems) and 
when not limited by significant memory 
requirements, D4-direct will still offer a predictably 
large improvement in execution speed over the direct 
solution, but is expected to be consistently and 
significantly outperformed by the PCG solvers. The 
performance of the D4-iterative approach (in which 
the reduced matrix is solved by the PCG solvers) has 
not yet been fully assessed. 

T2SOL V enables the user of the TOUGH2 family of 
codes to solve some of the most challenging numeri­
cal problems (previously tractable only with direct 
solvers) using the PCG routines. Its suite of PCG 
solvers includes all the T2CG 1 routines, and is en­
hanced by the addition of DLUSTB (based on the 
BiCGSTAB(m) algorithm), which combines speed of 
convergence with monotonic residual reduction and al­
leviates the oscillatory behavior of solutions as 
steady-state is approached (a common problem to 
most PCG solvers). T2SOLV enhances the perfor­
mance and robustness of the PCG solvers by intro­
ducing a set of matrix preprocessors. Additionally, it 
introduces LUBAND, a new direct solver capable of 
solving problems orders of magnitude larger than the 
MA28 routine in T2CG 1. It also doubles the size of 
problems tractable with direct solvers by implement­
ing a D4 Alternative Diagonal Numbering opticm. 
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Table 1. Solver Performance in Problem 1 
(Macintosh PowerPC 9500/132) 

SOLVER pp .:lts Nl lmx lmn IT 

MA28 Fails - insufficient memory 

LUBAND - 8 25 

DSLUBC -
' 

Z1 

Z2 8 ~ 

Z3 8 a3 

DSLUCS -
Z1 

Z2 12 41 

Z3 12 46 

DSLUGM -
Z1 

Z2 8 3J 

Z3 8 a3 

DLUSTB -
Z1 15 94 

Z2 8 25 

Z3 8 25 

PP: Preprocessors 
Llts: Number of timesteps 
NI: Newtonian iterations 

- - -
Fails 
Fails 

100 5 8ll 

100 7 fST1 

Fails 
Fails 

100 4 1002 

100 4 1253 

Fails 
Fails 

51 7 !l31 

'Z1 2 400 

Fails 
100 7 642 
2) 4 2m 

'll 4 a38 

Imx: Maximum number of PCG iterations 
Imn: Minimum number of PCG iterations 
IT: Total PCG iterations 
ET: Execution time (sec) 

ET 

63.9 

29.0 

29.6 

38.6 

46.5 

21.3 

19.3 

932 

16.9 

17.0 
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Fig. 1. PCG solvers with Z2 preprocessing in Test 
Problem 1 (1st Nl of the 1st Llt ). 
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Fig. 2. DSLUBC and DSLUCS performance with 
and without OJ preprocessing in Test 
Problem 2 (1st Nl of the 1st Llt). 
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Fig. 3. DSLUGM and DLUSTB performance with 
and without 01 preprocessing in Test 
Problem 2 (1st Nl of the 1st Llt). 

Table 2. Solver Performance in Problem 2 
(Macintosh PowerPC 9500/132) 

SOLVER pp ~t Nl lmx lmn IT ET 

MA28 - 2) 100 - - - 78.1 

LUBAND - 'lJ 111 - - - 55.8 

DSLUBC - 28 119 45 'lJ 3275 562 

01 2) 1a5 41 Z3 Z798 49.1 

02 28 110 42 Z3 2868 50.9 

03 2) 100 S3 21 'li!ff1 50.4 

DSLUCS - 2) 112 '31 18 2437 49.7 

01 ::9 131 33 18 2851 59.0 

02 28 111 :D 18 2281 48.6 

03 'lJ 100 :D 18 2187 46.9 

DSLUGM - 2) 107 !'B 21 l344 50.3 

01 2) 105 ffi 21 3532 49.4 

02 2) 00 !'B 21 3J21 44.0 

03 2) 00 !'B 21 3118 452 

DLUSTB - 2) 100 '31 1 1829 42.1 

01 2) 00 41 1 1685 38.9 

02 2) 1~ :1} 1 1684 40.6 

03 2) 00 3) 14 1728 39.7 



Table 3. Solver Performance in Problem 3 
(DEC AlphaStation 2001233) 

SOLVER pp Llt Nl lmx lmn IT 

MA28 Insufficient Memory 

LUBANO Insufficient Memory 

04+ - 10 46 - - -
LUBANO 

04+ - 10 46 51 43 17'36 
OLUSTB 

OSLUBC - 10 46 100 53 2623 

01 10 46 75 51 2477 

02 10 46 75 ~ 2475 

OSLUCS - 10 46 93 S) 2)51 

01 10 46 00 S) 2034 

02 10 46 ~ S) :m3 

OSLUGM - 10 46 !m 93 14842 

01 10 46 !m 93 14994 

02 10 46 !m 93 15113 

OLUSTB - 10 46 ffi 41 17'36 

01 10 46 6J ~ 1695 

02 10 46 ffi ~ 1719 

Table 4. Solver Performance in Problem 4 
(DEC AlphaStation 200/233) 

SOLVER pp Llt Nl lmx lmn IT 

MA28 Insufficient Memory 

LUBANO - S) 249 - - -
04+ - S) 249 - - -

LUBANO 
OSLUBC - S) 249 ~ 7 4756 

01 S) 250 28 7 4712 

OSLUCS - S) 249 ~ 4 l381 

01 S) 249 25 4 :fi69 
-

OSLUGM - S) 249 'lT 7 :D36 

01 S) 249 25 7 3984 

OLUSTB - S) 249 15 4 2544 

01 S) 249 15 4 2232 

ET 

700 

426 

579 

565 

$3 

400 
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Ern 

649 
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