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Abstract 

We study unitary irreducible representations of Uq(S0(2, 1)) and Uq(S0(2, 3)) for q 
a root of unity, which are finite - dimensional. Among others, unitary representations 
corresponding to all classical one - particle representations with integral weights are 
found for q = eitr/M and M large enough. In the "massless" case with spin 2: 1 in 4 
dimensions, they are unitarizable only after factoring out a subspace of "pure gauges", 
as classically. A truncated associative tensor product describing unitary many- particle 
representations is defined for q = eitr/M. 
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1 Introduction 

In recent years, the development of Noncommutative Geometry has sparked much interest 
in formulating physics and in particular quantum field theory on quantized, i.e. noncommu
tative spacetime. The idea is that if there are no more "points" in spacetime, such a theory 
should be well- behaved in the UV. 

Quantum groups [5, 9, 4], although discovered in a different context, can be understood 
as generalized "symmetries" of certain quantum spaces. Thinking of elementary particles as 
irreducible unitary representations of the Poincare group, it is natural to try to formulate 
a quantum field theory based on some quantum Poincare group, i.e. on some quantized 
spacetime. 

There have been many attempts (e.g. [21, 15]) in this direction. One of the difficul
ties with many versions of a quantum Poincare group comes from the fact that the clas
sical Poincare group is not semisimple. This forbids using the well - developed theory of 
(semi)simple quantum groups, which is e.g. reviewed in [1, 18, 8]. In this paper, we consider 
instead the quantum Anti - de Sitter group SOq(2, 3), resp. SOq(2, 1) in 2 dimensions, 
thus taking advantage of much well- known mathematical machinery. In the classical case, 
these groups (as opposed to e.g. the de Sitter - group SO( 4, 1)) are known to have positive 
- energy representations for any spin [7], and e.g. allow supersymmetric extensions [25]. 
Furthermore, one could argue that the usual choice of fl~t spacetime is a singular choice, 
perhaps subject to some mathematical artefacts. 

With this motivation, we study unitary representations of SOq(2, 3) = Uq(S0(2, 3)). 
Classically, all unitary representations are infinite- dimensional since the group is noncom
pact. It is well known that at roots of unity, the irreducible representations (irreps) of 
quantum groups are finite - dimensional. In this paper, we determine if they are unita
rizable, and show in particular that for q = ei1rjM, all the irreps with positive energy and 
integral weights are unitarizable, as long as spin and rest energy are within some ( q - depen
dent, large) limits. There is an intrinsic high - energy cutoff, and only finitely many such 
"physical" representations exist for given q. At low energies and for q close enough to 1, 
the structure is the same as in the classical case. Furthermore unitary representations exist 
only at roots of unity (if q is a phase). For generic roots of unity, their weights are non -
integral. Analogous results are found for SOq(2, 1 ). In general, there is a cell- like structure 
of unitary representations in weight space. 

In the "massless" case, the naive representations with spin ;::: 1 are reducible and contain 
a null - subspace corresponding to "pure gauge" states. It is shown that they can be 
consistently factored out to obtain unitary representations with only the physical degrees of 
freedom (" helicities"), as in the classical case [7]. 
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We also show that the class of "physical" (unitarizable) representations is closed un
der a new kind of associative truncated tensor product for q = ei1rjM, i.e. there exists a 
straightforward way to obtain many- particle representations. 

Besides being very encouraging from the point of view of quantum field theory, this 
shows again the markedly different properties of quantum groups at roots of unity from the 
case of generic q and q = 1. The results are clearly not restricted to the groups considered 
here and should be of interest on purely mathematical grounds as well. We develop some 
methods to investigate the structure of representations of quantum groups at roots of unity 
and determine the structure of a large class of representations of SOq(2, 3). Throughout this 
paper, SOq(2, 3) will be equipped with a non -standard Hopf- algebra star structure. 

The idea to find a quantum Poincare group from SOq(2, 3) is not new: Already in [15], 
the so- called K- Poincare group was based on SOq(3, 2) by a contraction. This contraction 
however essentially takes q -+ 1 (in· a nontrivial way) and destroys the properties of the 
representations which we emphasize, in particular the finite - dimensionality. 

Although it is not considered here, there exists a (space of functions on) quantum Anti
de Sitter space on which SOq(2, 1) resp. SOq(2, 3) operates, with an intrinsic mass parameter 
m 2 = i( q-q-1 ) / R 2 where R is the "radius" of Anti- de Sitter space (and the usual Minkowski 
signature for q = 1). 

This paper is organized as fopows: In section 2, we investigate the unitary representations 
of SOq(2, 1), and define a truncated tensor product. In section 3, the most important facts 
about quantized universal enveloping algebras of higher rank are reviewed. In section 4, we 
consider SOq(2, 3), determine the structure of the relevant irreducible representations (which 
are finite- dimensional) and investigate which ones are unitarizable with respect to SOq(5) 
or SOq(2, 3). The truncated tensor product is generalized to the latter case. Finally we 
conclude and look at possible further developments. 

2 Unitary representations of SOq(2, 1) 

We first consider the simplest case of SOq(2, 1) = Uq(S0(2, 1)), which is a real form of 
U = Uq(Sl(2, C)), the Hopf- algebra defined by [5, 9] 

[H,X±] ±2X±, [X+,x-]=[H] (1) 

~(H) - H®1 + 1®H, 
~(X±) _ X±® qH/2 + q-H/2 ®X±, 

S(X+) - -qX+, S(X-) = -q-1X-, S(H) = -H 

c(X±) c(H) = 0 
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where [n] = [n]q = q;~{..,.1n. To talk about a real form of SLg(2, C), one has to impose a 
reality condition, i.e. a star - structure, and there may be several possibilities. Since we 
want the algebra to be implemented by a unitary representation on a Hilbert space, the 
star - operation should be an involution, an antilinear antihomomorphism of the algebra. 
Furthermore, we will see that to get finite - dimensional unitary representations, q must be 
a root of unity, so lql = 1. Only at r~ots of unity the representation theory of quantum 
groups differs essentially from the classical case, and new features such as finite dimensional 
unitary representations of noncompact groups can appear. This suggests the following star 
-structure corresponding to SOg(2, 1): 

H = H, x+ = -x- (2) 

whis is simply 
(3) 

where() is the usual Cartan- Weyl involution, for x E U. Since q is a phase, q = q-1 , and 

~(x) = ~(x) (4) 

provided 
(5) 

Then S(x) = S(x), and xis a non- standard Hopf algebra star- structure. In particular 
(5) is different from the usual definition. It is however perfectly consistent as discussed in 
[19], and will be of no concern here; we plan to return to this issue in a future paper. 

The irreps of U at roots of unity are well - known (see e.g. [10], whose notations we 
largely follow), and we list some facts. Let 

(6) 

for positive relatively prime integers m, n and define M = m if m is odd, and M = m/2 if 
m is even. Then it is consistent and appropriate in our context to set 

(7) 

(if one uses qH instead of H, then (X±)M is central). All finite - dimensional irreps are 
highest weight representations with dimension d ~ M. There are two types of irreps: 

• Va,z = {e1n; j = (d-, 1) + ~z, m = j,j- 2, ... , -(d- 1) + ~z} with dimension d, 
for any 1 ~ d ~ M and z E 7Z, where He1n = me1n 
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• I; with dimension M and highest weight (M -1) + ~ z, for z E C\ {~ + ~r, 1 ::; r::; 
M-1}. 

Note that in the second type, z E ~ is allowed, in which case we will write VM,z = I; for 
convenience. We will concentrate on the Vd,z - representations from now on. Furthermore, 
the fusion rules at roots of unity state that Vcz,z 0 Vcz',z' decomposes into EBd" Vcz",z+z' EBP r;+z' 
where If are the well - known reducible, but indecomposable representations of dimension 
2M, see figure 1 and [10]. If q is not a root of unity, then the universal R E U 0U given by 

(8) 

defines the quasitria~gular structure of U. It satisfies e.g. 

o-( .6.( u)) = R.6.( u )n-1, u E U (9) 

where o-( a 0 b) = b 0 a. We will only consider representations with dimension ::; M; then R 
restricted to such representations is well defined for roots of unity as well, since the sum in 
(8) only goes up to (M- 1). Furthermore 

(10) 

To see this, (3) is useful. 
Let us consider a Hermitian inner product ( u, v) for u, v E "'d,z· A hermitian inner 

product satisfies (u,.Xv) = .X(u,v) = (Xu,v) for A E C, (u,v) = (v,u) and 

( u, x · v) = (x · u, v ), (11) 

i.e. xis the adjoint of x. If ( , ) is also positive- definite, we have a unitary representation. 

Proposition 2.1 The representations'Vcz,z are unitarizable w.r.t SOq(2, 1) if and only if 

( -1Y+1 sin(27rnk/m) sin(21rn(d- k)jm) > 0 (12) 

for all k = 1, ... , (d- 1). 
For d- 1 < ~, this holds precisely if z is odd. For d- 1 ~ ~, it holds for isolated values 

of d only, i.e. if it holds ford, then it (generally) does not hold ford± 1, d ± 2, .... 
The representations Vd,z are unitarizable w. r.t SUq(2) if z is even and d- 1 < ;;. . 
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Proof Let e!n be a basis of Vd,z with highest weight j. After a straightforward calculation, 
invariance implies 

(13) 

fork= 1, ... , (d -1), where [n]! = [1][2] ... [n]. Therefore we can have a positive definite inner 
product (e!n, e~) = 8m,n if and only if ak = ( -l)k[k]![j][j -l] ... [j- k+ 1] is a positive number 
for all k = 1, ... , (d- 1), in which case e~_2k = (ak)- 112(X-)k. e~. 

Nowak= -[k][j- k + l]ak-b and 

-[k][j- k + 1] - -[k][d- k + ~ z] = -[k][d- k]ei1rz (14) 

(-IY+1 sin(27rnk/m)sin(27rn(d-k)/m) . ( 
1 

/ )2' (15) 
sm 21rn m 

since z is an integer. Then the Proposition follows. The compact case is known [10]. 0 

In particular, all of them are finite - dimensional, and clearly if q is not a root of unity, 
none of the representations are unitarizable. 

We will be particularly interested in the case of (half)integer representations of type Vd,z 
and n = 1, m even, for reasons to be discussed below. Then d- 1 < ~ = M always holds, 
and the Vd,z are unitarizable if and only if z is odd. These representations are centered 
around M z, with dimension :::; M. 

Let us compare this with the classical case. For the Anti - de Sitter group 50(2, 1 ), 
H is nothing but the energy. At q = 1, the unitary irreps of 50(2, I) are lowest- weight 
representations with lowest weight j > 0 resp. highest weight representations with highest 
weight j < 0. For any given such lowest resp. highest weight we can now find a finite -
dimensional unitary representation with the same lowest resp. highest weight, provided M is 
large enough (we only consider (half) integer j here). These are unitary representations which 
for low energies look like the classical one - particle representations, but have an intrinsic 
high - energy cutoff if q =/= l, which goes to infinity as q ---+ 1. The same will be true in the 4 
- dimensional case. 

So far we only considered what could be called one - particle representations. To talk 
about many - particle representations, there should be a tensor product of 2 or more such 
irreps, which gives a unitary representation as well and agrees with the classical case for low 
energies. 

U being a Hopf- algebra, there is a natural notion of a tensor product of two representa
tions, given by the coproduct ..6... However, it is not unitary a priori. As mentionned above, 
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I•. I •• I ···•. I I I. I 

........ J. /. /., ... 0..~ ...... ._. 
'----v---" ~ ~ 

v p-l,z-1 
w v p-l,z+l 

Figure 1: Indecomposable representation I% 

the tensor product of two irreps of type Vd,z is 

d+d'-M 
Vd,z 0 Vd' ,z' = El7d" Vd, ,z+z' Efj I;+z' 

p=r,r+2, ... 

(16) 

where r = 1 if d + d' - M is odd or else r = 2, and I: is a indecomposable representation 
of dimenson 2M whose structure is shown in figure 1. The arrows indicate the rising resp. 
lowering operators. 

In the case of SUq(2), one usually defines a truncated tensor product 0 by omitting all 
I: representations [19]. Then the remaining reps are unitary w.r.t. SUq(2); 0 is· associative 
onlyfrom the representation theory point of view [19]. 

This is not the right thing to do for SOq(2, 1). Let n = 1 and m even, and consider 
e.g. VM- 1,1 0 VM- 1,1. Both factors have lowest energy H = 2, and the tensor product of the 
two corresponding classical representations is the sum of representations with lowest weights 
4,6,8,.... In our case, these weights are in the I: representations, while the Vd",z" have 
H ~ M--+ oo! So we have to keep the I;'s and throw away the Vd",z"'s in (16). The Its are 
not unitarizable, however. To get a unitary tensor product, note that as a vector space, 

If = Vp-1 ,z-1 El7 W El7 Vp-1 ,z+l (17) 

where 
(18) 

as vector space, and (X- x+)-eh = 0 for eh the highest weight vector of Vp_ 1,z_1 and similarly 
(X+ x-) · ez = 0 for· ez the lowest- weight vector of Vp_ 1,z+1 (see figure 1). It is therefore 
consistent to put W = 0 (one cannot factor out W, since it is not a submodule; instead one 
has to take the subspace of the V's ). The remaining two V- representations are unitarizable 
provided n = 1 and m is even, and one can keep both (notice the similarity with band 
structures in solid- state physics), or for simplicity keep the low- energy part only, in view 
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of the physical application we have in mind. We therefore define a truncated tensor product 
as 

Definition 2.2 For n = 1 and even m, 

d+d'-M 
Vd,z® Va',z' = EB vd,z+z'-1 

d=r,r+2, ... 
(19) 

This can be stated as follows: Notice that any representation naturally decomposes as 
a vector space into sums of Vd,z's, cp. (18); the definition of ® simply means that only 
the smallest value of z in this decomposition is kept, which is the submodule of irreps with 
lowest weights ::; ~ ( z + z' - 1). (Incidentally, z is the eigenvalue of D3 in the classical 

su(2) -algebra {D± = (1~r, 2D3 = [D+, n-]}, where (1~r is understood by some limes 

procedure). With this in mind, it is obvious that 0 is associative: both in (V10V2)0V3 
and in V10(V20V3), the result is simply the V's with minimal z, which is the same space, 
because the ordinary tensor product is associative and .6. is coassociative. This is in contrast 
with the "ordinary" truncated tensor product @ [19]. Of course, one could give a similar 
definition for negative - energy representations. 

Va,z0 Vd',z' is unitarizable if all the V 's on the rhs of (19) are unitarizable. This is 
certainly true if n = 1 and m is even. In all other cases, there are no terms on the rhs of (19) 
if the factors on the lhs are unitarizable, since no If - type representations are generated 
(they are too large). This is the reason why we concentrate on this case, and furthermore 
on z = z' = 1 which corresponds to low - energy representations. Then 0 defines a two -
particle Hilbert space with the correct classical limit. So 

Proposition 2.3 0 is associative, and Vd,10 Vd' ,1 is unitarizable. 

How the inner product can be induced from the single - particle Hilbert spaces will be 
explained in a future paper. 

3 The quantum group Uq(S0(2, 3)) 
In order to generalize the above results to the 4 - dimensional case, one has to use the 
general machinery of quantum groups, which is briefly reviewed (cp. e.g. [1]): Let q E C 
and Ai = 2 ({o-;,o-j)) be the Cartan matrix of a classical simple Lie algebra g of rank r, 

0';,0'; 

where (,) is the Killing metric and { ai, i = 1, ... , r} are the simple roots. Then the 
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quantized universal enveloping algebra Uq (g) is the Hopf- algebra generated by the elements 
{Xi±, Hi; i = 1, ... ,r} and relations [5, 9, 4] 

[Hi, Hj] 

[Hi, xf] 
0 

±Ajixf, 

[xt,x;] 
qd;H; _ q-d;H; 

bi,i d -d = bi,i[Hi]q; q.- q . 
1-Aj; 

I: 
k=O 

[ I-/;; L (xn• xt(xn1-A,,-• = o, ; # J 

q.- qd; 
~- ' 

\ 

The comultiplication is given by 

Antipode and counit are 

S(Hi) 
s(xi+) 

c(Hi) 

[n] . = qf-qC and 
q, q;-q; 

Hi &;Jl + 1 ® Hi 
xi± ® l;H;/2 + q-d;H;/2 ®xi±. 

-Hi, 
d;x+ s(x-) - -d;x--q i ' i - -q i ' 

c(Xi±) = 0. 

(we use the conventions of [11], which differ slightly from e.g. [1]). 
For U Uq(S0(5, C)), r = 2 and 

( 2 -2) Aij = -1 2 ' 

(20) 

(21) 

(22) 

(.23) 

(24) 

so d1 = 1, d2 = 1/2, to have the standard physics normalization (a rescaling of ( , ) can 
be absorbed by a redefinition of q). The weight diagrams of the vector and the spinor 
representations are given in figure 2 for illustration. The Weyl - vector is p = ~ I:a>O a = 
~a1 + 2a2. 
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• • • • • 

Figure 2: vector and spinor representations of 50(2, 3) 

The possible reality structures on U have been investigated in [14]. As in section 2, 
in order to obtain finite - dimensional unitary representations, q must be a root of unity. 
Furthermore, on physical grounds we insist upon having positive - energy representations; 
already in the classical case, that rules out e.g. 50(4, 1), cp. the discussion in [7]. It appears 
that then there is only one possibility, namely 

Hi Hi, X{= -X}, Xi= x;, (25) 
a®b b®a, 

~(u) ~(u), 5(u) = 5(u),. (26) 

which corresonds to the Anti - de Sitter group 50q(2, 3) = Uq(50(2, 3)). Again with 
E = dl Hl + d2H2' ( -1 )Ex( -1 )E = 8( X) where e is the usual Cart an - Weyl involution 
corresponding to 50q(5); note again that 8(q) = q-1 . · 

Although we will not use it in the present paper, this algebra has the very important 
property of being quasitriangular, i.e. there exists a universal R E U 0 U. It satisfies 

(27) 

which can be seen e.g. from uniqueness theorems, cp. [12, 1]. In the mathematical literature, 
usually a rational version of the above algebra, i.e. using qd;H; instead of Hi is considered. 
Since we are only interested in specific representations, we prefer to work with Hi. 

Often the following generators are more useful: 

so that 

[hi, e±j] 

[ei, e-j] 

±(ai, aj)e±j, 

<\j[hi]· 

9 
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., 

In the present case, i.e. hl =HI, h2 = tH2, e±l = xt and e±2 = J[Tixf. 
So far we only have the generators corresponding to simple roots. A Cartan - Weyl basis 

corresponding to all roots can be obtained e.g. using the braid group action introduced by 
Lusztig [16], (see also [1, 8]) resp. the quantum Weyl group [11, 22, 13, 1]. If w = Ti1 ••• TiN 

is a reduced expression for the longest element of the Weyl group where Ti is the reflection 
along ai, then {ai1 ,Ti1ai2 , ... ,Ti1 ... TiN_1aiN} is an ordered set of positive roots. We will 
use w = r1r2r1r2 and denote them /31 = a 1,(32 = a 2,(33 = a 1 + a2,(34 = a1 + 2a2. A 
Cart an - Weyl basis of root vectors of U can then be defined as { e±1 , e±3, e±4 , e±2} = 
{ e±1 , T1 e±2, T1T2e±1, T1T2T1 e±2} and similarly for the hi 's, where the Ti represent the braid 
group on U [16]: 

Ti(Hi) 

Ti(Xf) 

and Ti(O(x)) = O(Ti(x)). We find 

H A H Tx+ x- H; 
j- ij i, i i = - i qi ' 

-Aji 
2::: ( -1r-AJiqi'"(Xt)-A1;-r xt(xtr, 
r=O 

q-1e2e1 - e1e2, e_3 = qe_1e_2 - e_2e-b h3 = h1 + h2 

e2e3- e3e2, e_4 = e_3e_2 - e_2e_3, h4 = h1 + 2h2. 

(30) 

(31) 

Similarly one defines the root vectors xtz. This can be used to obtain a Poincare - Birkhoff 
- Witt basis of U = u-uou+ where u± is generated by the Xt and U 0 by the Hi: for 
k. = ( ki, ... ' kN) where N is the number of positive roots, let xt = x~kl ... xt:N. Then the 
X'f- form a P.B.W. basis of u+, and similarly for u- [17] (assuming q4 =/= 1). 

-Up to a trivial automorphism, (31) agrees with the basis used in [15]. The identification 
of the usual generators of the Poincare group has also been given there and will not be 
repeated here, except for pointing out that h3 is the energy and h2 is a component of 
angular momentum. All of the above form S Lii(2, C) subalgebras with appropriate ij (but 
not as coalgebras), because the T/s are algebra homomorphisms. The reality structure is 

(32) 

So { e±2, h2} is a SUii(2) algebra, and the other three { e±a, ha} are noncom pact SOii(2, 1) 
algebras, as discussed in section 2. 

Casimir elements of U are 
(33) 
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for l = 1, .. ,rank(g), with L+ = (1®7r)R and SL- = (1r01)R where 1r is the vector 
representation, and p = ~h1 + 2h2 corresponds to the Weyl element. The Ck are central in 
U, and q2

P generates the square of the antipode: q2P xq-2P = S2
( x) for x E U. 

4 Unitary representations of SOq(2, 3) and SOq(5) 

In this section, we consider representations of SOq(2, 3) and show that for suitable roots of 
unity q, the irreducible positive resp. negative energy representations are again unitarizable, 
if the highest resp. lowest weight lies in some "bands" in weight space. Their structure 
for low energies is exactly as in the classical case including the appearance of "pure gauge" 
subspaces for spin :=:: 1 in the "massless" case, which have to be factored out to obtain the 
physical, unitary representations. At high energies, there is an intrinsic cutoff. 

Most facts about representations of quantum groups we will use can be found e.g. in [2], 
see also [16]. It is useful to consider the Verma modules M(..\) for a highest weight..\, which 
is the (unique) U- module having a highest -weight vector v;. such that 

(34) 

where u+ is generated by the x+, and the vectors X;;v;. form a P.B.W. basis of M(..\). On 
a Verma module, on can define a unique hermitian im1er product ( , ) satisfying ( v;., v;.) = 1 
and ( u, x · v) = ( 0( x) · u, v) for x E U as in section 2 [2]; () is the Cart an - Weyl involution 
corresponding to SOq(5). 

The irreducible highest weight representations can be obtained from the corresponding 
Verma module by factoring out all submodules generated by the highest weight states in 
the Verma module. All these submodules are null spaces w.r.t. the above inner product, 
i.e. they are orthogonal to any state in M(..\). Therefore one can consistently factor them 
out, and obtain a hermitian inner product on the quotient space. To see that they are null, 
let w J1. E M ( ..\) be a highest weight vector, so x+ w J1. = 0 for every rising operator x+. 
Now M(..\) is generated by the vectors v X;_v;., k E INN ( cp. section 3). Therefore 
(wJ1.,v) = (wJJ.,X;;v;.) = (O(X;;)wJJ.,v;.) = 0. Again by hermiticity, it follows that all the 
descendants of w; are null too~ 

The following discussion until Theorem 4.5 is technical and may be skipped upon first 
reading. Let Q = 'L2Zai be the root lattice and Q+ = "L2Z+ai where JZ+ = {0,1,2, ... }. 
We will write 

..\ >- f1 if ..\ - 11 E Q+. (35) 
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For TJ E Q, denote [2] 
Par(ry) = {kE ~~; ~kJ3i = ry}. (36) 

Let M(,\) 77 be the weight space with weight ,\- TJ in M(,\). Then its dimension is given by 
IPar(TJ)I. If M(,\) contains a highest weight vector with weight O", then the multiplicity of 
the weight space (M(,\)/M(0"))

17 
is given by IPar(ry)l- IPar(ry + O"- >.)!, and so on. This 

way, the structure of the highest weight irreps can be determined once all the highest weight 
vectors in M(,\) are known. 

Our main tool to find them will be a remarkable formula by De Concini and Kac for 
det(M(,\)77 ), the determinant of the inner product matrix of !vf(,\) 17 • Before stating it, we 
point out its use for determining irreps: 

Lemma 4.1 Let V>. be the highest weight vector in an irreducible highest weight representa
tion V(>.). lf(v>.,V>.) =f. 0, then 

det(V(,\) 17 ) =J 0 

for every weight space with weight ,\ - TJ in V ( ,\). 

(37) 

Proof Assume to the contrary that there is a vector vJt which is orthogonal to all other 
vectors of the same weight (and therefore to all vectors of any weight). Because V ( ,\) is 
assumed to be an irrep, there exists ani with xi+vlt =J 0. But then (Xtv~t, w) = ( vlt, xi-w) = 
0 for any w E V(>.). This implies that Xtv~t =f. 0 is orthogonal to any vectors in V(,\). 
Repeating this argument, we come to the conclusion that the highest weight vector is null, 
which is a contradiction. 0 

Now we state the result of De Concini and Kac [2]: 

( 

q(A+p-m{3/2,{3) _ q-(A+p-m{3/2,{3)) !Par(7J-mf3)1 
det(M(,\)1)) = JI IT [m]d 13 d

13 
-d

13 {3ER+ mEN q - q 
(38) 

in a P.B.W. basis, where R+ denotes the positive roots ( cp. section 3), d{3 = (/3, /3)/2, and 
m = m{3 really. 

To get some insight, notice first of all that due to !Par( TJ - m/3) I in the exponent, the 
product is finite. Now for some positive root /3, let m{3 be the smallest integer such that 

( 

(>.+p-mj3J3/2,i3) -(>.+p-mj3J3/2,J3)) · 
D(,\)m 13 ,{3 = [mf3]d/ qdi3=; d13 = 0 resp. m{3 = oo if there is no such 

integer, and consider the weight space at weight ,\- m{3/3, i.e. 17!3 = m!3f3· Then IPar(TJ!3-
m!3f3) I = 1 and det( M ( ,\ )7713 ) is zero, so there is a highest weight vector Wf3 with weight ,\- 7]{3. 
It generates a submodule which at weight ,\- TJ has dimension IPar(TJ- m!3f3)i. This is the 
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origin ofthe exponent, and will be used to find the highest weight vectors in M(A). However 
these submodules may not be independent, i.e. they may contain common highest - weight 
vectors. To handle this complication, we introduce the following concept: 

Definition 4.2 A highest weight vector in M(A) is called simple if it is the only null vector 
at that particular weight. 

A weight space of weight 11 in M(A) is called simple if all highest weight vectors with 
weight >- J1 in the submodules generated by (and including) Wf3 are simple, for all /3 E R+. 

Notice that if two submodules are not linearly independent, they contain a common highest 
weight vector. 

Thus we have identified null vectors Wf3 and their descendants. We want to know if there 
are others. To keep track of things, deform A slightly to A', so that D(A')mf3,(3 =f. 0 (there are 
no restrictions on A). Then the following holds: 

Proposition 4.3 Assume that M(A) 11 is simple. If it contains other null states besides the 
ones generated -by the Wf3 's, then 

I 
det(M(A')) 17 -~ 

fle(D(N)m!3,f3)1Par(1)-m{3f3)1 --> 0 as A'--> A. (39) 

Proof Define TJi, T/ij etc. such that the (simple) highest weight states are at weight A - T/i 
for Wf3;, A- T/ij if it is descendant of both Wf3; and Wf3)' etc. (there will be iw TJ's with more 
than two indices; in particular, TJi = m(3;/3i)· At weight A' - T/i resp. A'- T/ij etc. choose 
an orthogonal basis { Wi, Ui,z} resp. { Wij, Uij,I} etc. with a unitary transformation matrix to 
the P.B.W. basis. From (38) and simplicity it follows that as A'--> A, the eigenvalues of the 
metric corresponding to the u's approach some nonzero limit, while its absolute value for Wi 
is::; c!Dil = c!D(A')mf3;,f3;!, for Wij it is::; c!DiDil etc., with some (bounded) constant c. 

For a positive root TJ, consider a basis { ek} = { Wij,I, Wi,I, vz} of M(,\') 11 of the form Wij,I = 
XkWij, Wi,I = X;;wi and Vz = X;;v;., with (suppressed) coefficients independent of A', such 
that as )..' --> A, the w ... ,z's become null, while the v1's have finite norm unless they are the 
additional null states we want to find. Notice that the number of Wij,z's is IPar(TJ- T/ii)l, 
while the number of wi,z's is IPar(TJ- TJi)I-IPar(TJ- T/ij )I if there is a Wij, etc. The transition 
matrix T to a P.B.W. basis is bounded, because it is well- defined at A1 = A. Then 

(40) 
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We will show below that 

( 41) 

etc. for some constant c', if >.' is sufficiently close to .A. But then the limit in (39) can be 
nonzero only if there is a term in (40) where all the Wij,z's are paired, all the Wi,z's are paired, 
etc., and there are no vj's which are null. 

It remains to show (41). Now (wi,z,ek) = (Xi;wi,ek) = (wi,Xtek), where again all 
coefficients are suppressed. However, Xt ek = awi + Lz bzui,l with bou;ded coefficients a, bz. 
Therefore i(wi,z, ek)i = ia(wi, wi)l::::;: cjaDil as A'-+ A; similarly for Wij,l, and (41) follows. 0 

From now on, let q = e 21rin(m and M as is section 2. Then there exist remarkable non
trivial one - dimensional representations V>.0 with weights ..\0 = 2: ;:.. kiai for integers ki. 
By tensoring any representation with v.x0 , one obtains another representation with identical 
structure, but all weights shifted by ..\0 . We will see below that by such a shift, represen
tations which are unitarizable w.r.t. SOq(2, 3) are in one - to - one correspondence with 
representations which are unitarizable w.r.t. SOq(5). Furthermore, it is well- known (e.g. 
[2]) that all (Xi-)mv.x are highest - weight vectors, and are factored out in an irrep. It is 
therefore enough to consider highest weights in the following domain: 

Definition 4.4 A weight .A = E 0 /33 + s/32 is called basic if 

m 
0::::;: (.A,/34) =(Eo+ s) < -. 

. 2n 

In particular, .A >- 0. It is compact if in addition it is integral (i.e. (.A, f3i) E 7Ldi), 

An irrep with compact highest weight will be called compact. 

(42) 

( 43) 

The region of basic weights is drawn in figure 3, together with the lattice of V>. 0 's. The 
compact representations are centered around 0 and invariant under the (quantum) Weyl 
group [11], as classically. 

A representation with basic highest weight can be unitarizable w.r.t. SOq(5) only if .A 
is compact: all the SUq(2)'s must be centered around 0, otherwise they cannot be unitary. 
This implies that .A is integral. Since q2 = e 21rinl2m, the relevant parameter for the SUq(2)'s 
in the /32,3 directions is m(2) = 2m and M(2) = m(2)/2 = m according to section 2. Therefore 
the directions of /32,3 are unitarizable in the compact case, and similarly for the directions 
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basic weights 

• 

\ 

• • 

Figure 3: envelope of compact representations, basic weights and the lattice of V>. 0 

/31 ,4 • This alone however is not enough to show that they are unitarizable w.r.t. to the full 
group. 

To show unitarizability, we first have to determine the structure of compact represen
tations. For this it is enough to consider only basic integral weights (the structure for the 
remaining weights then follows e.g. by Weyl symmetry). Consider M(A) with highest weight 
vector V>. for basic integral A. To find the w13's, notice that 

m13 m 
(A+ p- 2/3, ;3) E 2n ;;z (44) 

The first case is irrelevant, since Wf3 would not be basic. Using p = ~/31 + 2/32 , it follows that 
m131 is the smallest positive integer such that 

(A_ m 131 - 1 j3 j3 ) m ;;z 
2 1, 1 E 2n . (45) 

Wf31 has weight T1(A)- /31 if A is compact, or T{(A)- /31 if (A, j3I) ~ m/2, n = 1 and m is 
even, where T{ is the reflection along /31 with center m/2/33 . In all other cases Wf31 does not 
have basic weight. Similarly, w132 is determined by 

(46) 
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It has basic weight (namely r 2(.A)- /32) only if s 2: 0. Wf33 is determined by 

( 47) 

Since E0 < m/(2n ), the only case where it has basic weight is if E0 = m/2- 1 and n = 1, 
where m133 = 1. Finally, Wf34 is found from 

(.A_ ffiJ34 - 2/3 (3 ) m :zz. 
2 4, 4 E 2n ( 48) 

Since (.A, (34) < m/2, the only cases where it has basic weight are .A = (m/2- 1- s )(33 + s/32 
if n = 1 and m is even (otherwise .A is not integral), where m134 = 1. 

From this, the only cases where basic weights might not be simple are if n = 1 and either 
.A= (m/2 -1- s)/33 + s/32 for s > 0 and m even, or Eo= m/2 -1. In the first case, there is 
indeed a highest weight vector with weight (m/2- s- 2)/33 -s/32 which is descendant of both 
w 132 and w 134 (this can be seen from the multiplicities). It is howeveJ: simple. The second 
case is only relevant for s = 0, where indeed there is a highest weight vector at .A - /32 - (33 
which is not simple. However one can see directly using the casimir c1 (33) that there are 
no basic highest weight vectors with s 2: 0 except Wf33 (this is all we really need to know), 
which is however descendant of w132 • Indeed, the value of c1 on a highest weight module with 
.A = E 0 (33 + s/32 is essentially [Eo+ ~] 2 + [s + ~]2 , and its value on any other such highest 
weight state besides Wf33 would be larger. 

In all other cases, all basic weights are simple. (38) and Proposition 4.3 now imply that 
there are no other basic highest weight vectors. 

Thus we have found all the relevant highest weight vectors in M(.A) with compact .A and 
can prove the following: 

Theorem 4.5 The structure of the irreps V(.A) with compact highest weight .A is the same as 
classically unless .A = (m/2- 1- s )(33 + s/32 for s 2: 1 and ;::. is integer, where an additional 
highest weight state at weight .A - (34 appears (and is factored out in the irrep). They are 
unitarizable w.r.t. SOq(5) (i.e. w.r.t. the involution()). 

Proof For fixed .A, consider the representation before factoring out the additional highest 
- weight state at .A - (34 in the case .A = ( m/2 - 1 - s )(33 + s/32, so that the weight space 
is the same as classically. For q = 1, the representation is known to be unitarizable, so the 
inner product is positive definite. Consider the eigenvalues of the inner product matrix of ( , ) = ( , )q as q goes from 1 to e21rin/m along the unit circle. The only way an eigenvalue 
could become negative is that it is zero for some q0 . This can only happen if q0 is a root 
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of unity, q0 = e2itrn' fm' with n' I m' ~ n I m. According to the above analysis, this is only 
possible if (A, ,84 ) = m' 12- 1 and ~', is an integer; but (A, ,84 ) < ml(2n ), so n = n' = 1 and 
m' = m. Therefore it happens precisely for A= (ml2- 1- s),83 + s,82 if~ is integer and 
s 2: 1 (if s = 112, then Wf34 is descendant of w132 ), in which case we have to factor out Wf34 , 

and all remaining eigenvalues are positive by continuity and the above analysis. 0 

So far all results were stated for highest - weight modules; of course the analogous 
statements for lowest - weight modules are true as well, which can be seen e.g. using the 
algebra automorphism X/ -+xi-, H-+ -H, q-+ q-1

. 

Now we want to find the "physical" representations which are unitarizable w.r.t. SOg(2, 3). 
These (positive - energy) representations are most naturally considered as lowest - weight 
representations, and can be obtained from the compact case by a shift, as indicated above: 
if V(A) is a compact highest -weight representation, then 

V(A) ·w = V(A)®w (49) 

with w = V>.0 ,Ao = ~,83 has lowest weight fl =-A+ Ao = Eo,83- s,82 (short: fl = (Eo,s)). 
It is a positive - energy representation, i.e. the eigenvalues of h3 are positive. 

For ~ integer, these representations correspond precisely to classical positive - energy 
representations with the same lowest weight [7]; in the "restframe", energy and spin are Eo 
resp. s, and the structure for h3 ~ ml 4 is the same as classically, see figure 4. Otherwise, 
the weights are not integral. ' 

The case fl = ( s + 1, s) for s 2: 1 and ~ integer will be called "massless" for two reasons. 
First, Eo is the smallest possible energy for a unitarizable representation with given s (see 
below). The main reason however is the fact that as in the classical case [7], an additional 
lowest - weight state with Eb = Eo + 1 and s' = s - 1 appears, which generates a spin s - 1 
null - subspace of what should be called "pure gauge" states. This corresponds precisely to 
the classical phenomenon in gauge theories, which ensures that the massless photon, graviton 
etc. have only their appropriate number of degrees of freedom (generally, the concept of mass 
in Anti - de Sitter space is not as clear as in flat space. Also notice that while "at rest" 
there are actually still 2s + 1 states, the representation is nevertheless reduced by one spin 
s - 1 irrep ). In the present case, all these representations are finite- dimensional! 

Thus we are led to the following 

Definition 4.6 A lowest - weight irrep V(JL) determined by its lowest weight J.L = E0,83 - s,82 
{resp. fl itself) is called physical if -(fl,- ~,83 ) is compact. 

It is called massless if Eo = s + 1, s 2: 1 and ~ is integer. 
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Theorem 4. 7 The physical irreps are unitarizable w. r.t. SOq(2, 3). For h3 :::; :;;, , they are 
obtained by factoring out from a Verma module the subspace with lowest weight (Eo, -(s + 
1)) only, except in the massless case, where an additional lowest weight state with weight 
(Eo+ 1, s- 1) appears. This is the same as for q = 1, see figure 4-

Proof As mentionned before, we can write every vector in such a representation uniquely 
as a· w, where a belongs to a compact irrep. Consider the inner product 

(a·w,b·w) = (a,b), (50) 

where (a, b) is the hermitian inner product on the compact (shifted) representation. Then 

using h1iw = ~. Similarly, 

(a. w, (el@ qhl/2 + q-hl/2@ e1)b®w) 

qhd2iw(a, e1b) = i(a, e1b) 

(e_1 (a · w), b · w) ((e_1 @ qhd2 + q-hl/2 @ e_I)a @w, b®w) 

- q-h1
/
2iw(e_1a, b)= -i(e-1a, b) 

because (, ) is antilinar in the first argument and linear in the second. Therefore 

(a· w, e1 (b · w)) = -(e_1 (a · w), b · w). 

(51) 

(52) 

(53) 

Similarly (a·w,e2(b·w)) = (e_ 2 (a·w),b·w). This shows that (,)is hermitian w.r.t. x, and 
positive definite because ( , ) is positive definite according to Theorem 4.5. 

0 

Notice that Dirac's singleton representations [3] (which have non- integral weights) with 
(Eo = 1/2, s = 0) resp. (Eo = 1, s = 1/2) appear if m is odd and n = 1. We will see however 
that their tensor product is not unitarizable, and they cannot coexist with massless states. 

As a consistency check, one can see again from section 2 that all the SOg_(2, 1) resp. 
SUq_(2) subgroups are unitarizable in these representations, but this is not enough to show 
unitarizability for the full group. Note that for n = 1, one obtains the classical one- particle 
representations for given s, Eo as m ---+ oo. We have therefore also proved the unitarizability 
at q = 1 for (half)integer spin, which appears to be non- trivial in itself [7]. Furthermore, all 
representations obtained from the above by shifting E 0 or s by a multiple of r,;: are unitarizable 
as well. One obtains in weight space a cell - like structure of representations which are 
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• • 

lowest weight 

Figure 4: physical representation with subspace of pure gauges (only for ~ integer), schemat
ically. For h3 :::; ;;;_, the structure is the same as for q = 1. 

unitarizable w.r.t. SOq(2, 3) resp. SOq(5). It is clear from the above that there are no other 
unitarizable representations. 

Finally we want to consider many - particle representations, i.e. find a tensor product 
such that the tensor product of unitary representations is unitarizable, as in section 2. The 
idea is the same as there, the tensor product of 2 such representations will be a direct sum 
of lowest - weight representations, and we simply take the physical subspaces as determined 
by their lowest weights only. More precisely, 

Definition 4.8 Let V(JL) and V(JL') be two physical irreps as in Definition 4. 6 resp. Theorem 
4. 7. For any physical lowest weight state U).' in V(JL) ® V(JL'), let w(>.') be its lowest weight 
submodule, and V(>.') be the irreducible quotient of W(>.'). Then define 

(54) 

where the sum goes over the physical A.', so the \!(>.') are physical. It is nonzero only if~ is 
integer. 

Again as in section 2, one might also include a second "band" of high - energy states. 
Furthermore, 

Theorem 4.9 ® is associative, and V(JL)®V(JL') is unitarizable w.r.t. SOq(2, 3). 
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Proof First, notice that the )..' in the above definition can be physical only if ;;. is in
teger. Further, none of the )..' are massless, so none of the W(>.') contain physical lowest -
weight states. Also, lowest weights for generic q cannot disappear at roots of unity. There
fore ffiN \!(>.') contains all the physical states of the full tensor product, and the stucture is 
the same as classically for physical weights (since there are no massless representations, the 
classically inequivalent representations cannot recombine into indecomposable ones). Asso
ciativity now follows from associativity of the ordinary tensor product and coassociativity of 
the coproduct. 0 

Therefore q = e2tri/m with m even is the physically interesting case. 

5 Conclusion 

We have shown that in contrast to the classical case, there exist unitary finite - dimensional 
representations of noncompact quantum groups at roots on unity. In particular, the structure 
of such "physical" representations of SOq(2, 3) for low energies is exactly the same as in the 
classical case, and thus they could be used to describe elementary particles for arbitrary 
spin. Representations for many non - identical particles are found. 

Apart from purely mathematical interest, this is very encouraging for applications in 
QFT. In particular the appearance of pure gauge states should be a good guideline to con
struct gauge theories on quantum Anti - de Sitter space. If this is possible, one should 
expect it to be finite in light of these results. However to achieve that goal, more ingredients 
are needed, such as implementing a symmetrization axiom ( cp. [6]), a dynamical principle 
(which would presumably involve integration over such a quantum space, cp. [23]), and 
efficient methods to do calculations in such a context. These are areas of current research. 
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