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Abstract 

We construct and analyze dual N = 4 supersymmetric gauge theories in 

three dimensions with unitary and symplectic gauge groups. The gauge groups 

and the field content of the theories are encoded in quiver diagrams. The 

duality exchanges the Coulomb and Higgs branches and the Fayet-Iliopoulos 

and mass parameters. We analyze the classical and the quantum moduli 

spaces of the theories and construct an explicit mirror map between the mass 

parameters and the the Fayet-Iliopoulos parameters of the dual. The results 

generalize the relation between ALE spaces and moduli spaces of SU(n) and 

S0(2n) instantons. We interpret some of these results from the string theory 

viewpoint, for SU(n) by analyzing T-duality and extremal transitions in type 

II string compactifications, for S0(2n) by using D-branes as probes. Finally, 

we make a proposal for the moduli space of vacua of these theories in the 

absence of matter. 



1 Introduction 

N = 4 supersymmetric gauge theories in three dimensions have been studied recently 

from string theory as well as field theory viewpoints [1-4]. In these theories both the 

Coulomb and the Higgs branches are hyperkahler manifolds. In [3] a duality between 

N = 4 supersymmetric gauge theories in three dimensions has been proposed under 

which the Higgs and Coulomb'branches and the Fayet-Iliopoulos (FI) and mass terms are 

exchanged. The dual gauge theories have an ALE space as Higgs branch, and were based 

on Kronheimer's construction [5] of ALE spaces as an hyperkahler quotient. 

In this paper we generalize the duality (mirror) proposal to other N = 4 supersym

metric gauge theories in three dimensions. A gauge theory and its conjectured dual will 

be called A-model and B-model respectively. The gauge groups and field content of the 

theories are encoded in quiver diagrams that correspond to Kronheimer-Nakajima's hy

perkahler quotient construction of quiver varieties [6, 7], which will then automatically be 

the Higgs branch of the associated gauge theory. Specifically, we propose and study the 

duality between the following families of N = 4 supersymmetric gauge theories: 

(1) The A-model has U(k) gauge group, n hypermultiplets in the fundamental represen

tation of the gauge group and one hypermultiplet in the adjoint representation. Its dual 

B-model has U(k)n gauge group and matter content specified by a quiver diagram cor

responding to the Hilbert scheme of k points on an ALE space of An-l type 1
. By the 

Hilbert scheme of k points on a complex surface X we mean a smooth resolution of the 

k-symmetric product of X, Symk X. Concretely, there will be one hypermultiplet in the 

fundamental representation of one of the U(k)'s, and n hypermultiplets charged under a 

pair of U(k)'s. 

(2) The A-model has Sp( k) gauge group, n hypermultiplets in the fundamental represen

tation of ~pe gauge group and one hypermultiplet in the antisymmetric representation. Its 

dual B-model has U(k) 4U(2k)n-3 gauge group and matter content specified by a quiver 

diagram corresponding to the Hilbert scheme of k points on ALE space of Dn type. 

(3) The A and B models have U(k)n and U(k)m gauge groups respectively, and matter 

content specified by quiver diagrams corresponding to the hyperkahler quotient construc

tion of certain moduli spaces of instantons on vector bundles over an ALE space of An-I 

type. This is a generalization of ( 1). 

The paper is organized as follows: Section 2 is a brief introduction to N = 4 su-

1 The Hilbert schemes of k points on complex surfaces have recently appeared as the moduli spaces of 

D-branes [8, 9] 
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persymmetric gauge theories in three dimensions. In section 3 we define the dual gauge 

theories associated with quiver diagrams. We present the proposed dualities, the Higgs 

and Coulomb branches of the theories and the mirror map between the mass and FI 

parameters. In section 4 we study the first proposed family of dualities for U(k) gauge 

theories. We start by providing the first evidence to this duality proposal by counting 

the dimensions of the Higgs and Coulomb branches as well as the number of mass and FI 

terms. We then study how the quantum corrections to the metric on the Coulomb branch 

fit into the mirror picture. We compute the one-loop corrections to the hyperkahler metric 

on the Coulomb branch of the A-model and compare to the exact metric on the Higgs 

branch of the B-model. The comparison yields strong support for the mirror map be

tween the mass terms of the A-model and the FI terms of the B-model. In section 5 we 

analyze the structure of the Coulomb, Higgs and mixed branches for various mass ~nd FI 

parameters. We observe a complete agreement of their dimensions which provide further 

evidence for the duality. In particular, we complete the proof of the mirror map by fixing 

the ambiguities left after the one-loop computation. We show how the proposed duality 

completely determines the quantum moduli space of vacua. In section 6 we examine type 

II string compactifications that in the field theory limit yield the A-model. The gauge 

symmetry and matter fields arise by wrapping D-branes around vanishing cycles and we 

use T-duality and extremal transitions to explain the gauge theory duality from a stringy 

viewpoint. In section 7 we study the second proposed family of dualities for Sp(k) gauge 

theories. We provide the counting evidence for this duality proposal, study the quantum 

corrections, derive the mirror map and use D-brane probes and the Type I - M-theory 

duality to further support the gauge theory picture. In section 8 we study the third pro

posed family of dualities for U(k)n gauge theories. We provide the counting evidence for 

this duality proposal, study the Higgs, Coulomb and mixed branches of the dual theories, 

and give the mirror map. In section 9 we discuss the case of U(k), SU(k) and Sp(k) 
gauge theories without matter, present a proposal for their moduli spaces, and conclude 

with open problems. 

2 N = 4 supersymmetric gauge theories in three dimensions 

We begin with a brief review of N = 4 supersymmetric gauge theories in three dimen

siOns. 

N = 4 supersymmetric gauge theories in three dimensions can be constructed by 

dimensional reduction of N = 1 supersymmetric gauge theories in six dimensions. The 

R-symmetry group is SU(2)L x SU(2)R with SU(2)L being the double cover of rotations 
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in the three reduced coordinates and SU(2)R is the R symmetry group in six dimensions. 

The masses and FI parameters transform under SU(2)L x SU(2)R as (3, 1) and (1, 3) 

respectively. The mass terms deform the metric on the Coulomb branch and lift some 

of the Higgs branch, while the FI terms deform the metric on the Higgs branch and lift 

some of the Coulomb branch. The Higgs branch is constructed as a hyperkahler quotient 

with an SU(2)R action, and unlike the Coulomb branch is not modified by quantum 

corrections. 

The N = 4 vector multiplet in three dimensions contains three scalars </>o:, a = 1, 2, 3 

which transform as (3, 1) under the R-symmetry group. Their potential energy is 

V = ~ I:Tr[</>o:,</>.8] 2
, 

e o:<.B 
(2.1) 

where e is the gauge coupling. The potential energy vanishes if the </>o: commute and 

thus they take values in a common Cartan sub-algebra of the gauge group. For a generic 

vev in this Cartan subalgebra, the gauge group of rank r is broken to U(l Y. Thus, in 

addition to the 3r scalars we have r massless photons which are dual to r scalars in three 

dimensions. The Coulomb branch is parametrized by the vevs of the 3r scalars and the r 

scalars dual to the photons and thus is of dimension 4r. Due to the N = 4 supersymmetry 

it is a hyperkahler manifold with an SU(2)L action. Its metric is corrected by loop and 

monopole corrections. The monopoles are instantons in three dimensions and they provide 

exponential corrections to the metric on the Coulomb branch. 

The duality between N = 4 supersymmetric gauge theories m three dimensions 

exchanges the Higgs and Coulomb branches, the Fayet-Iliopoulos (FI) parameters and 

masses and the R-symmetry groups SU(2)L and SU(2)R· The fact that the Higgs branch 

is not modified by quantum corrections while the Coulomb branch is, implies that like 

in mirror symmetry in string theory quantum corrections in one model are seen at the 

classical level of the dual and vice versa. Note that in general the duality between the 

A-models and B-models becomes exact only when the bare coupling constant e2 is sent 

to infinity. 

3 Mirror symmetric gauge theories and quivers 

In this section we define the gauge theories associated with quiver diagrams. We 

present the proposed dualities, the Higgs and Coulomb branches of the theories and the 

mirror map between the mass and FI parameters. An object that will appear frequently in 

the discussion is the Hilbert scheme of k points on a complex surface X, H ilb[k] X. As we 
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Figure 1: Quiver diagram for the B-model of U(k) gauge theory 

noted previously, this is a resolution of the the quotient singularities1 of the k-symmetric 

product of X, Symk X. In the A model the Coulomb branch will be described by a Hilbert 

scheme and the parameter for the resol~tion of the quotient singularities will be found 

to be the adjoint hypermultiplet mass iiiadj for U ( k) gauge theories and the mass of the 

antisymmetric hypermultiplet iiias for the Sp( k) gauge theories. The parameters for the 

resolution of the singularities of the complex surface X will be shown to correspond to 

the masses of the fundamental hypermultiplets iii fund in both cases. In the B-model the 

Higgs branch will be described by a Hilbert scheme and the parameters for the resolution 

of all the singularities will be explicitly constructed from the FI parameters. 

3.1 U(k) Gauge Groups 

The A-model has a U(k) gauge group, n hypermultiplets in the fundamental repre

sentation and one hypermultiplet in the adjoint representation. This is precisely the field 

content needed for the hyperkahler quotient construction of the moduli space of SU(n) 

k-instantons Mk(SU(n)) [10],2 which is indeed the Higgs branch of the A-model. 

The B-model is associated with the quiver diagram in figure 1. 

We attach an index ki at each node i. There are n nodes in the diagram with ki = k 

and one node with ki = 1. The gauge group and the field content of the theory are 

encoded in the diagram in the following way: We associate to each node i with ki = k 

1 We use the terminology quotient singularity to denote the singularities that arise in a symmetric 

product due to the action of the symmetric group. 
2By Mk(SU(n)) we denote an enlarged moduli space which includes the small instantons. For more 

technical details see section 5. 
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a gauge group U( k )i, to each link i o---oj with ki = kj = k a hypermultiplet in the 

representation (k, k*) of U( k )i x U( k )j, and to the link attached to the node with index 

1 a hypermultiplet in the fundamental representation of the U(k) gauge group associated 

with the other node of the link. This is the field content needed for the hyperkahler 

quotient construction of the Hilbert scheme of k points on ALE space of type An-1 , which 

we will denote by XAn- 1 [6, 7], and which is the Higgs branch of the B-model. The duality 

between the moduli spaces can be roughly summarized by the following table: 

Model Mv MH 

A HilbfklXAn- 1 Mk(SU(n)) 

B Mk(SU(n)) HilbfkJXAn_
1 

Table 1: The Coulomb and Higgs branches of A and B models 

The precise structure is more detailed and depends on the mass and FI parameters. 

Consider the A-model: Without mass terms, the vector multiplet moduli space is the k

symmetric product Symk XAn- 1 of the ALE space. It has singularities inherited from the 

simple singularity of An-1 type of XAn- 1 , and also singularities coming from modding out 

by the action of the symmetric group. The masses for the fundamental hypermultiplets 

resolve the simple singularity of XAn- 1 • We denote the resolved ALE space as XAn- 1 • The 

mass of the adjoint hypermultiplets resolves the quotient singularities of the symmetric 

product. In the following table, we show how the vector multiplet moduli space depends 

on the mass parameters3 . 

Masses Mv 

iii fv.nd = 0, iiiadj = 0 Symk XAn- 1 

iii fv.nd =I 0, iiiadj = 0 
k-

Sym XAn- 1 

iii fv.nd = 0, iiiadj =I 0 H i[b[k] XAn-
1 

iiifv.nd =I 0, iiiadj =I 0 Hilb[kJXAn-
1 

3In fact, there are two independent mass parameters mu(l) and msu'(k) for the adjoint hypermultiplet, 

associated to its trace and traceless part respectively. The metric on the A-model moduli space does not 

depend on mu(I). Its only effect is to lift a trivial direction in the Higgs branch, corresponding to the 

center of mass of the instantons. Consequently, we do not count mu(I) as an independent parameter, and 

there is no corresponding Fl parameter in the B-model. Our duality applies to the cases where iiisu(k) 

and mu(l) are either both vanishing or both non-vanishing. 
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Table 2: Mass parameters versus the vector multiplet moduli space (A-model) 

The other effect of the mass terms is to lift some of the flat directions of the hypermultiplet 

moduli space. In section 5 we will analyze how this lifting is compatible with the resolution 

of the singularity. 

In the B-model, the resolution of the singularity of the hypermultiplet moduli space 

and the lifting of some of the flat directions for the vector multiplets are caused by turning 

on FI terms. The way in which the moduli spaces are resolved or lifted matches exactly 

with the A-model when the vector multiplets and hypermultiplets are exchanged, provided 

that the FI parameters are related to the mass parameters of the A-model. 

The mirror map between the mass parameters of the A-model and the FI parameters 

of the B-model takes the form 

1 n-1 

iiii = 2:0, madj = I: 0 , (3.1) 
l=O l=O 

where iiii are the masses of the fundamental hypermultiplets, iiiadj is the mass of the 

adjoint hypermultiplets and 0 are the FI parameters. Note that a linear combination of 

masses can be eliminated for every U(1) factor in the gauge group by shifting the origin 

of the Coulomb branch. In (3.1) we used this freedom to choose iiin_1 = iiiadj· 

The first evidence that we will provide for the duality between the A and B models will 

be the matching of the dimensions of the Higgs and Coulomb branches and the number of 

FI and mass terms. We will then analyze the one-loop corrections and derive the mirror 

map (3.1 ). A detailed analysis of the moduli spaces will provide further evidence for the 

duality, which will in particular completely determine the mirror map, fixing all remaining 

ambiguities. Finally we will show how the duality structure arises from a stringy D-brane 

picture. 

3.2 Sp( k) Gauge Groups 

We define the A-model to have Sp(k) as its gauge group. The matter content consists 

of n hypermultiplets in the fundamental representation of Sp( k) and one hypermultiplet 

in the antisymmetric representation of Sp(k). The Higgs branch of the A-model is the 

moduli space of S0(2n) k-instantons Mk(S0(2n))[ll]. 

The B-model is associated with the quiver diagram in figure 2. 

As described in the previous section we associate to each node a gauge group cor

responding to its index. Diagram 2 has four nodes with index k and n - 3 nodes with 
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Figure 2: Quiver diagram for the B-model of Sp(k) gauge theory 

index 2k, thus the gauge group of the B-model is U(k) 4 U(2k)n-3 . Again, the the matter 

content is ffiijaij(ki, k/) where aij is one if there is a link between the nodes i and j and 

zero otherwise. In addition, there is one fundamental hypermultiplet charged with respect 

to the U ( k) associated to the node that is connected to the exceptional one. The Higgs 

branch of the B-model is the Hilbert scheme of k points on an ALE space of Dn type [6]. 

The duality is roughly summarized in the following table: 

Model Mv M?t 

A HilbfklXnn Mk(S0(2n)) 

B Mk(S0(2n)) Hilb[k]Xnn 

Table 3: The Coulomb and Higgs branches of A and B models 

As for the U ( k) case, the detailed structure depends on the mass and FI parameters. 

An illustr(ltive table for the effect of the mass parameters1 on the Coulomb branch is 

1 Here, mas denotes the mass parameter for the hypermultiplet in the anti-symmetric representation. 

As in the U(k) case, there are really two mass parameters for the anti-symmetric representation, one of 

which corresponds to the trivial representation, and the same statements made in the footnote for U(k) 
apply here too. 
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Masses Mv 

mfund = 0, mas= 0 SymkXDn 

m fund =/:- 0, mas = 0 SymkXDn 

m fund = 0, mas =1- 0 Hifb[k]Xnn 

m fund =/:- 0, mas =/:- 0 Hifb[k]Xnn 

Table 4: Mass parameters versus the vector multiplet moduli space (A-model) 

The structure of the moduli space of the B-model can be read of by exchanging the 

Higgs and Coulomb branches of the A-model. The masses of the the hypermultiplets in 

the fundamental representation mi and the antisymmetric hypermultiplet mass mas of 

the A-model are mapped under the duality to the FI parameters of the B-model 

t 

2 I: 0 + (:_1 + (: i < n, 
1=1 

n-2 

~ + (; + 2 I: 0 + (:_1 + (: .. (3.2) 
1=2 

Here, ~ is associated to the node connected to the exceptional one, (; to the other leftmost 

node with index k, 0 for 1 < l < n - 1 to the nodes with index 2k ordered from left to 

right, and (:_1 and (: to the rightmost nodes with index k. 

We will study this duality in section 7. We will provide the counting evidence, analyze 

the quantum corrections, derive the mirror map and support the duality by a D-brane 

picture based on the Type I- M-theory duality, and by the use of D-branes as probes. 

3.3 U(k)n Gauge Groups 

The gauge field and matter content of the A and B models are encoded in the quiver 

diagram in figure 3. 

The A-model gauge group is U(k)n, one U(k) for each node of the extended Dynkin 

diagram. Notice that there is no gauge symmetry associated to the outside nodes with 

labels Vi. There are two kinds of matter. As before, for each pair of gauge groups 

whose nodes are connected by an edge there will be matter transforming as (k, k*) under 

U(k) x U(k). In addition, there will be Vi matter fields transforming in the fundamental 

representation of the ith U(k) gauge group. We will denote the A-model as (U(k)n; {vi}). 
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vo 

Figure 3: Quiver diagram for the A-model of U(k)n gauge theory 

The Higgs branch of the A-model is the moduli space of instantons on a vector bundle V 

over an ALE space of type An_1 . More precisely, it describes the moduli space Mk(V) of 

instantons of instanton number k on V = (f/R?v;, with gauge group U(V), where Ri are 

particular line bundles over the ALE space associated to the different representations of 

Zn [6]. The B-model gauge theory is (U(k)m; { wi} ), where 

n-1 

m = LVi, 
i=O 

n-1 

n = LWi. 
i=O 

(3.3) 

The numbers Vi and Wi are related as follows: Consider a Young diagram whose rows 

have lengths I:f=o Vi, p = 0, ... , n- 1. The lengths of the columns of this diagram can 

be parametrized as LI=o wi, q = 0, ... m- 1, and the integers Wi are the ones appearing 

in the dual gauge theory. For example, (U(k) 5 ,{2,3,0,1,0}) is proposed as the dual 

of (U(k)6-,{2,2,0,0,1,0}). The U(k) gauge theory we considered so far in this paper 

corresponds to a Young diagram which is a rectangle of size n x 1. 

The duality is summarized in the following table : 

Model Mv MH 

A Mk(ffiR?Wi) Mk( ffiR?Vi) 

B Mk( ffi'!??Vi) Mk(ffiR?Wi) 

Table 5: The Coulomb and Higgs branches of A and B models 
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An important feature of this construction is that the dual of the dual theory is the 

original theory again, as one would expect, making duality a true involution in this set of 

theories. In section 8, we will provide counting evidence for the duality and analyse the 

structure of the moduli spaces, and give arguments for the following mirror map: Denote 

by m~B)' 2:1::-~ WI ~ i < 2:1=0 WI the masses of the hypermultiplets in the B-model charged 

only under the ph U(k). In addition, there are m masses of hypermultiplets charged 

under two U(k)'s. Using the freedom to shift the origin on the Coulomb branch, we can 

choose all these masses equal to same value which we denote by m~~). This leaves only 

the freedom to add a constant simultaneously to all m~B), which we use to fix m~~)l = 0. 

Then the relation between the FI parameters (JA) of the A-model and the masses of the 

B-model reads 

i I: (fA) 
1=0 
n-1 I: (fA) 
1=0 

l 

..... (B) + ("'""" ) ..... (B) mi L....; v1 m 21 
1=0 

n-1 

( "'""" ) ..... (B) L....; v1 m 21 . (3.4) 
1=0 

4 Duality for U(k) Gauge Theories 1: Quantum Corrections and 

Mirror Map 

In this section we begin by providing the first preliminary counting evidence for the 

duality. We then turn to the computation of the one-loop corrections to the metric 

on the Coulomb branch of the U(k) A model. We further compute the metric on the 

Higgs branch of the B model in the case where the sum of the Fa yet-Iliopoulos terms 

vanishes. This corresponds in the A model to the case where the mass of the adjoint 

hypermultiplet vanishes. By comparing the two computations we derive the form of the 

mirror m(l,p between the fundamental hypermultiplets mass parameters of A model and 

the FI parameters of B model for madj = 0. Finally we construct the mirror map with a 

non-vanishing adjoint mass. 

4.1 Counting Evidenc.e 

As a first evidence for the duality between the A and B models we count in quaternionic 

units the dimensions of the Higgs and Coulomb branches and the number of independent 

FI and mass terms. 

A-model: The dimension of the Coulomb branch is the rank of the gauge group U(k) 
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which is dv = k. The Higgs branch is given by a hyperkahler quotient construction and 

accordingly, its dimension equals the dimension of the space of hypermultiplets minus the 

dimension of the gauge group. Therefore, dH = (nk + P)- P = nk. The number of FI 

terms is the number of U(1) factors in the gauge group, nc = 1. In order to count the 

number of mass parameters note that a linear combination of masses can be eliminated 

for every U(1) factor in the gauge group by shifting the origin of the Coulomb branch. 

Thus, in this case the number of mass parameters is nm = ( n + 1) - 1 = n. 

B-model: The dimension of the Coulomb branch is the rank of U( k )n, thus dv = nk. The 

dimension of the Higgs branch is the dimension of the space of hypermultiplets ( nk2 + k) 

minus the dimension of the gauge group (nP), thus dH = k. The number of FI terms 

is the number of U(1) factors in U(k)n and therefore nc = n. The number of mass 

parameters is nm = ( n + 1) - n = 1. The counting is summarized in the following table: 

Model dv dH nc nm 

A k nk 1 n 

B nk k n 1 

Table 6: The dimension of the Coulomb and Higgs branches and the number of mass 

and FI parameters of A and B models 

The counting shows that we indeed have a symmetry under A-model f-7 B-model, 

dv f-7 dH and nc f-7 nm which is a necessary condition for the duality to hold. 

4.2 A m~del - One-loop Corrections 

Consider the A model with gauge group U(k), one hypermultiplet in the adjoint rep

resentation and n hypermultiplets in the fundamental representation. Let us parametrize 

the scalars that minimize the potential energy (2.1) by 

¢> = diag[r17 •.. , fk] , ( 4.1) 

where ;J = ( ¢}, <P, <P). 

The one-loop corrected metric of the Coulomb branch of A model takes the form 

(4.2) 
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where 

9aa 

9ab = a=j:b, (4.3) 

where a, b = l...k. The O'a are variables dual to the photons that remain massless on the 

Coulomb branch. They are periodic with period 21r, and constant shifts of the O'i are 

triholomorphic isometries of the hyperkahler metric ( 4.3). These isometries are unbroken 

in perturbation theory, and every hyperkahler metric of real dimension 4k with k com

muting triholomorphic isometries can be written in the form ( 4.2), where 9 and w satisfy 

[14-16] 

vb9ac 

8 
tpqr~9bc· 

ur~ 
(4.4) 

This explains the form of the metric in ( 4.2), and can be used to express Wab in terms 

of 9ab· Thus, in order to derive this form of the one-loop corrected metric we only need 

to look at the terms in the one-loop effective action coming from one-loop diagrams with 

two gauge fields on the external legs and the vector multiplet or hypermultiplet running 

in the loop. We then make use of the following limits: 

(1) Reduction in color: Taking the limit !ikl-+ oo is a reduction in the number of colors 

and we should recover the formula for the metric for the gauge group U( k-1 ). This implies 

that the coefficients of the different terms are independent of the number of colors. Thus 

it is sufficient to consider the gauge group U(2). The gauge group U(1) is evidently not 

sufficient since the theory is free in the absence of matter. 

(2) Reduction in flavor: Taking the limit lmn-11 -+ oo is a reduction in the number of 

hypermultiplets in the fundamental representation of the gauge group, and we should 

recover the formula for the metric for n - 1 flavors. This implies that the coefficients of 

the different terms are independent of the number of flavors. 

(3) The first equation in ( 4.4) implies that the contributions of the vector multiplet and 

the adjoint hypermultiplet to the diagonal and off diagonal elements of the metric are of 

opposite sign and the same absolute value. It also implies that the hypermultiplets in 

the fundamental can contribute only to the diagonal terms of the metric. In order to see 

these it is sufficient to consider the U(2) gauge group and use the equation for the metric 

81921 = 82911 implied by ( 4.4). 

( 4) Reduction of the gauge group to U ( 1) and considering the case of n hypermultiplets 
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in the fundamental representation while taking the limit liiiadj I --7 oo, should recover for 

massive hypermultiplets the Taub-NUT metric for a resolved An-I singularity [2] 

(4.5) 

where 

(4.6) 

and 

(4.7) 

This fixes the coefficient of the fundamental hypermultiplet contribution to the metric. 

(5) Reduction of the gauge group to SU(2) and considering the case of n = 2 hypermulti

plets in the fundamental representation while taking the limit liiiadj I --7 oo, should recover 

for massless hypermultiplets the classical metric since there are no quantum corrections 

in this case [2]. Using (4), this fixes the coefficient of the vector multiplet contribution to 

the metric. In order to see this explicitly consider the case of gauge group U(2) with two 

massless hypermultiplets in the fundamental representation. For the metric 9ab, a, b = 1, 2 

we take 

1 a 2 
9aa -z+l ........ 1+-1 .... 1 e ra- rb ra 

-a 
a =f. b. (4.8) 9ab = 

where a is the constant coefficient to be determined and the coefficient of the fundamental 

hypermultiplets has been determined in ( 4). Define 

(4.9) 

where f± · ?~2 • 9++ and 9-- correspond to the U(1) and SU(2) parts of the metric 

respectively. Restricting to the SU(2) part, r1 = -r2 , and requiring that 9-- does not get 

quantum corrections for two massless fundamentals we get the required result a= -2. 

( 6) The coefficient of the adjoint hypermultiplet contribution is fixed by reading from 

the Lagrangian its relation to that of the fundamental hypermultiplets. Note that in 

the absence of hypermultiplets in the fundamental representation there are no one-loop 

corrections to the metric if there is no adjoint mass. This is consistent with the fact that 

in this case we have an N = 8 supersymmetry as a reduction of the N = 4 supersymmetry 

in four dimensions. In this case the complex structure of the hyperkahler manifold is, as 

expected [2], the same as that of the Jacobian corresponding to the N = 4 curve [12]. 
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Consider the case with zero adjoint mass and n massive fundamentals, in the limit 

e2 -+ oo. In this case the one-loop metric describes the k-symmetric product of resolved 

ALE spaces of An-1 type XAn- 1 (the symmetric product arises because we still have to 

divide by the action of the Weyl group Sk of U(k)) 

M one-loop(A d 1 - 0 ... ....t. 0) S kX 
V - mo e ' ffiadj = ' m fund I = ym An-1 ' (4.10) 

where the masses of the hypermultiplets resolve the ALE singularities. We will argue in 

the next section that this result is in fact exact, namely 

(4.11) 

When the adjoint mass is nonzero, maai #- 0, the one-loop metric is not positive definite 

in the region lia- FbI -+ 0. We expect monopole corrections to contribute in this case, and 

that the metric will become positive definite upon including these corrections. A similar 

phenomenon happens in pure SU(2) gauge theory with zero or one hypermultiplet in 

the fundamental representation [2], and also when considering monopole moduli spaces 

[17]. More specifically, in the region lia - rbi « lmaail for some a, b, while ke~ping other 

pairs>> lmaajl, the system can be well approximated by the SU(2) gauge theory with one 

adjoint hypermultiplet with bare mass madj· By a slight generalization of the results in [2] 
we see that there are no higher-loop corrections in this region, and we expect monopole 

corrections to restore the positivity of the metric. There is a close analogy between the 

quotient singularity ra f-+ rb in our case and the Z2 singularity r-+ -r in the SU(2) case, 

which is resolved by monopole corrections. Since we expect monopole corrections when 

madj # 0, this suggests that the adjoint mass is a parameter for the resolution of the 

quotient singularities of the symmetric product. In the following sections we will provide 

further support to this picture. 

4.3 B Model - Higgs Branch 

In general, the Higgs branch of an N = 4 supersymmetric gauge theory in three 

dimensions is given by a hyperkahler quotient. Recall that a hyperkahler quotients are 

manifolds one constructs from a given hyperkahler manifold M with an action of group 

G that preserves the hyperkahler structure[14]. Associated to such a group action are 

three moment maps Jli : M -+ g*, one for each kahler form, where g* is the dual of 

the Lie algebra g of G. The hyperkahler quotient is defined as the Riemannian quotient 

Jl-1 
( {) / G, where {is a three vector with values in the center of g*. In three-dimensional 

N = 4 gauge theories, one obtains a set of equations that determine the classical vacua by 
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integrating out the auxiliary fields, and requiring the resulting potential to vanish. If we 

are interested in the Higgs branch we put the vevs of the scalars in the vector multiplet 

equal to zero, in the case of mixed branches we can take them equal to some other fixed 

value. In this case, we obtain a real equation from the D-terms in the lagrangian, and 

a complex equation from the F-terms. These together constitute the three equations 

j1( x) = {, that also appear in the hyperkahler quotient. The manifold M is spanned 

by the vector space of scalars in the hypermultiplets, which is hyperkahler in view of 

the N = 4 supersymmetry. The components of (correspond to the Fayet-Iliopoulos 

parameters in the lagrangian. Finally, one has to divide by the action of the gauge group, 

to identify equivalent vacua, and one ends up with a Higgs branch which is precisely the 

hyperkahler quotient p-1 (()/G. 

In the case at hand, the equations that govern the Higgs branch of the B-model are 

the same ones that appear in the hyperkahler quotient construction of the corresponding 

quiver variety [6] and read 

t t t t t -t-
Bo1Bo1 - B10B10 + Bo(n-'-1)Bo(n.;..1) - B(n;_1)oB(n--1)0 +-QoQo- QoQo 

B12Bt2 - B1JB21 + B10Bto- BJ1Bo1 

B(n-1)oB(n-1}0 - BJ(n-1)BO(n-1) + B(n-1)(n-2)B(n-1)(n-2) 

- B(n-2)(n-l)B(n-2)(n-1) 

Bo1B10 - Bo(n-l)B(n-1)0 + QoQo 

B12B21 - B10Bo1 

-

-

-

2(~1 

2(~1 

( 4.12) 

2(~-11 

e~1 

(~1 

(~-11( 4.13) 

where Bij i.s .a complex matrix of size k x k, Q0 and Q0 are respectively a column and a row 

vector with k entries, and (iR and (F are real and complex parameters which constitute 

the FI parameter associated to the ith diagonal U(1) C U(k). The vector space V spanned 

by the components of Bij and Q0 , Q0 carries the standard metric 

( 4.14) 

The gauge group G = U(k)n acts on V and on the space M' of solutions of (4.12) and 

(4.13), and the Higgs branch is the hyperkahler quotient of V with respect to G. 

We will consider the case I: (iR = I: (ic = 0. In this case the hyperkahler quotient is 

the symmetric product ot'k ALE spaces of An-I type [6]. This implies that the manifold 
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M' is a submanifold of the set of G-orbits that intersect the vector space V' C V, where 

V' is constructed by taking all Bij diagonal and Q0 = Q0 = 0. It is easy to see that M' fG 
is the same as (M' n V')/G', where G' is the subgroup of G that maps V' onto itself. The 

subgroup G' is given by the semidirect product of U(1)k(n- 1) and the symmetric group Sk. 

The latter group acts by permuting the diagonals of all Bij simultaneously. The equations 

( 4.12) and ( 4.13) consist of k copies of the same set of equations, and are also permuted 

by Sk. Thus the Higgs branch is indeed given by the symmetric product of k copies of 

one and the same space. This space is determined by taking the Bij in (4.12) and (4.13) 

to be equal to a complex number bij, and Q0 = Q0 = 0, and to divide by the group 

U(1 )n-1 • The equations ( 4.12), ( 4.13) reduce to the hyperkahler quotient description of 

a single ALE space of type An-b as given in [5], thus confirming that the Higgs branch 

is the symmetric product of k ALE spaces. 

It remains to compute the metric on a single ALE space. For this it is convenient 

) i-- to replace each s'et of complex numbers bi(i+1), b(i+l)i by a three vector Ti and an angular 

variable ai, 0 :::; cPi < 21r [13]. This change of variables is defined as follows: Given two 

complex numbers a, b, we can introduce the quaternion q = a- bj. Any quaternion can be 

written as q = ceiu, where c is a purely imaginary quat,ernion, c = -c. The combination 

qiij does not depend on a and is also purely imaginary, and we can define a vector T by 

[13] 

~(qiij) = rxi + (rY + irz)k . (4.15) 

· The fiat metric ds 2 = dada + dbdb becomes in terms of a and T 

ds 2 = ~df'l + r( da 2 + w · df} 2 (4.16) 
r 

where w has the form of a one-monopole gauge field and satisfies V x w = V(~), see (4.4). 

The advantage of using variables Ti, cPi instead of bij is that they linearize the moment 

map equations (4.12) and (4.13), and that the metrics in these variables are similar to 

the ones we found from the one-loop computation ( 4.2). If we introduce a three-vector 

G = ((iR, Re((ic), Im((ic)), then the moment map equations simply become 

... ... ... ( 
ri- ri-1 = i ( 4.17) 

Thus, we can solve for all Ti in terms of To, 

t 

Ti = To + :L (z. ( 4.18) 
1=1 
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The general solution to ( 4.12), ( 4.13) is thus parametrized by ro and the angular variables 

<J'i. The metric on the manifold of solutions is given by 

1 n-1 
ds 2 = -d~ + ro(d<J'6 + wo · dro) 2 + L r1d<J'f 

ro 1=1 

( 4.19) 

where the ri are expressed in terms of r0 by means of ( 4.18). We next take the Riemannian 

quotient with respect to the group action of U(1)n-1, which acts on the manifold of 

solutions by means of the vector fields Vi = <:>a - ~' i = 0 ... n- 2. The U(1)n- 1 
uO', <JO's+l 

symmetry can be used to put <J'1 = ... <J'n_1 = 0, leaving the four real coordinates ro and 

; 0 • The vector field a!o generates an isometry of (4.19) that commutes with the group 

action, and therefore also an isometry of the quotient. Any four dimensional hyperkahler 

manifold with a U(1) isometry has a metric of the form [14-16] 

(4.20) 

where w is given in terms of 9-2 by the equation V x w = V(9-2(ro)), see (4.2) and 

( 4.4). This means that we know the full metric once we know the inner product of the 

vector field V = a!o with itself. This cannot be simply read off from ( 4.19); as we still 

have to take a quotient with respect to U(1)n- 1. If we denote by(,) the metric (4.19) on 

the solution space and by (, )H the metric on the quotient, then ala Dirac the following 

relation holds 

( 4.21) 

where Mij = (Vi, ltj). The nonzero matrix elements of M are Mii = ri + ri+1, Mii+1 = 
-ri+1 and Mi+1i = -ri+1. The determinant of M satisfies the recursion relation M(n) = 
(rn + rn-1)M(n-1)- r~_ 1 M(n-2) which is solved by M(n- 1) = TI~,:-J ri (2::~,:-J -!;). Using 

this result we obtain that the only non-vanishing matrix element of M-1 appearmg m 

( 4.21) is 

(4.22) 

Putting everything together we obtain 

2( .... ) 2(M-1 )oo 1 9 ro = ro - ro = n-1 1 

Li=O ;; 
(4.23) 

and finally 
· n-1 1 
9- 2 (ro) = L -. (4.24) 

i=O ri 

Using ( 4.18) and comparing with the one-loop result ( 4.3) with madj = 0 we have 
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where mi = I:j=1 0. Up to a constant shift with~ this is precisely the mirror map (3.1). 

The fact that the one-loop metric on the Coulomb branch is positive definite and smooth 

for generic masses strongly suggests there are no monopole corrections to the metric on 

the Coulomb branch, and that the one-loop result is exact. In that case, both the exact 

Coulomb branch of the A model (in the infrared) and the exact Higgs branch of B model 

are given by a symmetric product of ALE spaces of type An-1 , and the relation between 

the masses of the hypermultiplets in the fundamental representation in A model and the 

FI parameters in the B model is given by (3.1) with madi = 0. 

4.4 The Mirro17 Map 

The above derivation of the mirror map was restricted to the case when the adjoint 

mass in the A-model and the sum of the FI terms in the B-model were set to zero. 

Consider now the case where the adjoint mass is different than zero. The mirror map for 

the adjoint mass can be generally written as 

n-1 

F(madj, mfund) = L 0 . (4.26) 
1=0 

If we assume that F is analytic at madi = m fund = 0, then dimensional analysis, the 

requirement for the correct transformation under the global symmetry SU(2)L x SU(2)R, 
and the requirement for a finite limit as m fund -+ 0 force F to be linear. We also know 

that F(O, mfund) = 0, and this implies that F is proportional to madj, in agreement with 

(3.1 ). In principle there is also a possibility that the mass of the adjoint will modify the 

mirror map for the fundamental hypermultiplets. This possibility will be excluded in the 

next section by a detailed study of the correspondence between the mass parameters of 

the A-model and the FI parameters of the B-model, and this will also fix the relative 

· normaliza~ion of F with respect to the fundamental masses. 

The fact that the relation between the mass and -the FI parameters is linear is also 

expected by the following reasoning: The FI parameters 0 of the B-model are given by 

the periods of the three covariantly constant two-forms w of the Higgs branch [18) 

0 = r w, 
Jr. I 

( 4.27) 

where {I:1} is a basis for the second homology group of the Higgs branch. By duality it 

is the Coulomb branch of the A-model. It was argued in [2] 1 that the periods are linear 

1The argument given in [2] was for the SU(2) gauge group but it can be generalized at least to some 

of the higher rank groups such as Sp( k). In fact our derivation of the mirror map shows that it is correct 

for U(k) gauge groups too. 
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in the masses and thus we expect a linear relation between the mass parameters of the 

A-modef and the FI parameters of the B-model and vice versa. 

Finally, we note that there exists another viewpoint on the mirror map for the mass 

parameters of the hypermultiplets in the fundamental representation which will prove to 

be useful for other gauge groups. According to theorem 2.8 in [7], if L 0 = 0, the Higgs 

branch of the B-model develops a singularity if{,.+ ... + 0 = 0, for 1 ~ k ~ l ~ n- 1, 

corresponding to the positive roots of An-I (The general case is given in (5.43).) On the 

other hand, by inspection of the one-loop metric ( 4.2) with madj = 0 we see that we expect 

a singularity whenever mi - mi = 0. In order for these singularities to be in one-to-one 

correspondence with the singularities in the Higgs branch of the B-model, we need (up to 

an overall factor) the relations 

i =.1, ... ,n-l. ( 4.28) 

Equation ( 4.28) is equivalent to the mirror map (3.1) with iiiadj = I: { = o. 

5 Duality for U(k) Gauge Theories II: Structure of The Moduli 

Space of Vacua 

In this section, we analyze the moduli spaces of vacua for various choices of mass and 

Fa yet- Iliopoulos terms. In general, if mass terms are turned on, some of the Higgs branches 

are reduced. Conversely, some of the Coulomb branches are reduced by Fayet-Iliopoulos 

terms which, by turning on Higgs vevs, break part of the gauge symmetry. Here, we 

consider the case where we turn on masses of the A model and Fayet-Iliopoulos terms of 

the B model. We will observe a complete agreement between the di~ensions of various 

Higgs branches of the A model and various Coulomb branches of the B model, provided 

that the masses and Fayet-Iliopoulos terms are related viq, the mirror map (3.1). This 

result provides strong evidence for the proposed duality and excludes possible corrections 

to the mirror map. Use of the proposed duality, in turn, makes it possible to determine 

how various branches touch each other. 

5.1 Classical Moduli Space of Vacua of The A Model 

In this subsection, we classify moduli spaces of hypermultiplet using classical argu

ments. Although there are possible quantum corrections to the way they intersect the 

moduli space of vector multiplet, the metric on them will not be corrected. Also, the 
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structure of mixed branches will get corrected in the direction of vector multiplet but 

their dimensions will not, and we will count them. 

The moduli space of hypermultiplet with its metric is obtained by a hyperkahler 

quotient based on classical data. Let A1 = (A1ab), A2 = (A2ab); 1 ~ a, b ~ k be a 

hypermultiplet in the adjoint representation of U(k) and Q = (Qi), Q = (Q{); 1 ~a, b ~ 
k, 0 ~ i,j ~ n- 1 be n-hypermultiplets in the fundamental representation of U(k). (Q 
and Q transform under U(k) x SU(n) as (k,n*) and (k*,n) respectively.) The classical 

equations determining the vacua are 

t t t -t-[A1,A1 ] + [Az,A2] + QQ - Q Q = 0, 

[All Az] + QQ = 0, 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

In the above expressions, ;j = ( </}, <P, <P) denotes the scalers of the U ( k) vector multi

plet and m = (m\m2 ,m3
) is the mass matrix. By N=4 supersymmetry, they can be 

diagonalized 

(5.5) 

Note that the trace part of m can be absorbed by a shift of ;j. As we discussed before, 

the structure of vacua is substantially influenced by the bare mass madj of the adjoint 

hypermultiplet. When madj = 0, the diagonal elements of A1, A2 are always massless, 

while there is no such flat direction if madi # 0. We will treat the cases madj = 0 and 

madj # 0 separately. 

5.1.1 Vanishing Adjoint Mass: madj = 0 

As a warm-up example, we start with the case of n = 1. In theories with a single flavor, 

the fundamental hypermultiplet cannot have non-zero vev, Q = Q = 0, which follows 

from the equations (5.1) and (5.2). The equations also imply that A1 and A2 can be 

diagonalized simultaneously with ;j. Let ( C1- )k denote the set of eigenvalues of A 1 and 

Az: 

(5.6) 
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If ;; is generic, the moduli space of hypermultiplet is given by 

Mh = (C~l· (5.7) 

If ;j is invariant under some subgroup, say G, of the Weyl group which acts by permuting 

the diagonal entries, then the moduli space of hypermultiplet is ( C'i.J )k /G. Massless 

photons live in the subgroup of the gauge group which is unbroken by the vevs of scalar 

fields. Since the U(1 )k subgroup is unbroken in the present case, there are k-flat directions 

for the vector multiplets. 

From here on, we will consider the case with n 2:: 2. Equations (5.1) and (5.2) are the 

same as the ADHM equations for the construction of SU(n) instantons on R 4 of instanton 

number k [10]. Thus, if the mass constraints (5.3) and (5.4) were absent, the moduli 

space of hypermultiplet would be the moduli space of k-SU(n) instantons on R 4 . More 

precisely, a solution of (5.1) and (5.2) describes genuine k-instantons only if a condition on 

the rank of the matrices Q, Q, A1 and A2 is satisfied1 . However, we take into account all 

possible vacua including those which do not meet such a condition. A degenerate solution 

describes a configuration containing a number of small instantons, the so-called ideal 

instantons (see section 3.4 of [21]). Thus, the moduli space of hypermultiplet is in fact 

the moduli space Mk(SU(n)) of ideal instantons of instanton number k. This includes 

as subspaces the moduli spaces Mk-.e(SU(n)) x Sym.eR4 where C of the instantons are 

small. Their positions are labeled by R 4 . If we turn on ;; and the masses m (and also 

madj), the mass constraints (5.3) and (5.4) reduce the moduli space of hypermultiplets to 

(a finite cover of) a certain subspace of Mk(SU(n)). 

For generic values of ;;, the gauge group U(k) is broken to U(1)\ and quarks and 

off-diagonal part of adjoint hypermultiplet acquire mass. Therefore the flat direction is 

Q = Q = 0, A 1 = A2 = diagonal, and the moduli space of hypermultiplet is given by 

(C'i.J )k. As the gauge symmetry U(1)k is unbroken on such vacua, we have a mixed branch 

with dH . k and dv = k flat directions of hyper and vector multiplets. 

Vanishing Quark Mass 

We will consider first the case m = 0 where the theory possesses global SU(n) symmetry. 

At the special point ;; = 0, the mass constraint is trivial and the moduli space of 

hypermultiplets is the full moduli space of ideal instantons 

(5.8) 

. 
1The condition is: for any >., J.l E C, both (A 1 + >., A 2 + J.l, tiJ) and (>.- A 1 , A 2 - J.l, Q) have maximal 

rank k (See [10]). 

21 



This has (quaternionic) dimension nk. The global SU(n) symmetry is generically sponta

neously broken but remains unbroken on the locus Symk(Ck) C Mk(SU(n)) of vanishing 

squark vevs Q = Q = 0. The gauge group U(k) is generically completely broken, and 

thus, the moduli space (5.8) is an isolated Higgs branch. 

Let us consider a more general value 

;j = diag(O, ... , 0, iko+b ... , ik). (5.9) 

If the non-zero entries are generic, the gauge symmetry is broken to U(ko) x U(1)k-ko, and 

A1, A2 and Q, Q are constrained to be a U(k0 ) x U(1)k-ko adjoint and U(ko) fundamental 

hypermultiplets with n flavors respectively. Thus, the moduli space of hypermultiplets is 

(5.10) 

which has dimension dH = nk0 + k- k0 . At generic point on this space, the gauge group 

U(ko) x U(1)k-ko is broken to U(1)k-ko. Thus, the moduli space (5.10) extends to a mixed 

branch in the dv = k - k0 flat directions for the vector multiplets. At values of ;j whose 

non-zero entries are invariant under a group G of permutations, the factor ( C1 )k-ko IS 

replaced by the quotient (Ck )k-ko /G. 

To summarize, we list the dimensions dH and dv of the mixed branches: 

dH k n+k-1 ... nk- n + 1 nk 

dv k k-1 ... 1 0 

Table 7: Mixed branches for iiiadj = 0, iii fund= 0 

Non-Vanishing Quark Mass 

We consider the case 

.... d" ( .... .... iii~ . .... iiiJ m= 1ag~, ... ,~, (5.11) 

in which the global symmetry SU(n) is broken to SU(n1 ) x · · · x SU(n5 ). We assume 

here ni 2:: 2 but other cases can also be worked out. 

The most general choice of ;j is 

k1 ks 
.... ___..._._ ~ 

<P = diag(m1, ... , m1, ... , iiis, ... , iiis, rk1 +··+ks+b · · ·, Tk) · (5.12) 
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If rkl+-·+ks+b ... 'rk are generic, the gauge group U(k) is broken to the subgroup U(ki) X 

· · · X U(ks) X U(1 )k-k1 -···-ks. Due to equations (5.3) and (5.4), the hypermultiplets AI, A2 

and Q, Q are constrained respectively to be the hypermultiplet in the adjoint representa

tion of this subgroup and U(ki) fundamental hypermultiplets with flavors ni, i = 1, ... , s. 

The moduli space of hypermultiplets at this point is thus 

(5.13) 

which has dimension dH =I: niki + k- I: ki. Generically on this moduli space, the gauge 

group is broken to U(1)k-k1 -···-k •. Thus, the moduli space (5.13) extends to a mixed 

branch which has dimensions 

(5.14) 
dv = k - ki - · · · - ks 

in the directions of hyper and vector multiplets respectively. 

5.1.2 Non-Vanishing Adjoint Mass: maaj =f. 0 

Consider next the case where madj =1- 0. We start again with the single flavor case n = 1. 

It follows from the ADHM equations (5.1) and (5.2) that Q = Q = 0 and that AI and A2 
are diagonalizable. On the other hand, the mass constraint (5.4) shows that AI and A2 
are nilpotent for any choice of ¢; we conclude that AI = A2 = 0. Thus, hypermultiplets 

do not have a flat direction for any value of ;j and there is only a Coulomb branch of 

dimension k. 

For n ;:::: 2 one can also turn on the quark mass m. However, we will mainly treat the 

case with m = 0 where the theory has global SU(n) symmetry. Later we make a few 

comments on the case m =1- 0. 

Coulomb Branch 

For generic values of ;j, quarks get mass and decouple Q = Q = 0. We can also 

show AI = A2 = 0 by repeating the above argument. Thus, we see that there is no flat 

direction for the hypermultiplets. Since U(1)k is unbroken, we have a Coulomb branch of 

dimension k. 

Higgs and Mixed Branches with AI = A2 = 0 
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At the special point ;J = 0, massive adjoint hypermultiplet decouples A1 = A2 = 0 

but the quarks do not. This is the case of QCD with U(k) gauge group and n flavors2
• 

Using the U(k) x SU(n) rotations, a solution to the vacuum equations QQt- QtQ = 0 

and QQ = 0 can be expressed as 

C' ·. 0 0 

)· -c. q, 
0 

) Q= 
0 

tQ = ·. (5.15) 
qT 0 qT 

for some r, where q1, . .. , qr are real non-negative numbers. Note that the maximum 

number that r can take is k if n 2 2k and [~] if n < 2k. Let Hr be the moduli space 

of hypermultiplets consisting of vacua with rank :::; r squark vevs. The global symmetry 

SU(n) is broken to SU(n-2r) xU(1Y and there are 4nr-4r2-r Nambu-Goldstone bosons. 

Since there are r real parameters, the moduli space Hr has ( quaternionic) dimension 

nr - r 2
. Remark that Hr is obtained by hyperkahler quotient of a nr dimensional vector 

space by the completely broken subgroup U(r), and the dimension is given by the naive 

counting: dim Hr = nr - dim U ( r). This turns out to be a useful method to count the 

dimension in complicated situations which we will encounter in the following. Since the 

gauge group is broken to U(k-r), Hr extends to a mixed branch in the k-r flat directions 

of vector multiplet. An isolated Higgs branch 1ik exists only when the flavor n is not less 

than 2k. 

Higgs and Mixed Branches with A 1 =J 0, A 2 =/= 0 

We can find other type of Higgs or mixed branches at some values of ;J. For example 

let us consider 

(5.16) 

At this point, gauge group is broken to U(f0 ) x U(f1 ) and some of the adjoint and fun

damental hypermultiplets remain massless. The mass constraints (5.3) and (5.4) impose 

the vevs to be of the following form 

(5.17) 

where the k columns (rows) are decomposed into blocks of size £0 and £1 • Under the local 

and global symmetry U(fo) x U(f1 ) x SU(n), a and a transform as (£0 *, £1 , 1), (£0 , f 1 *,I) 

2The moduli space of hypermultiplet of N = 2 SU(N~) QCD in four-dimension was analyzed in [19]. 
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while q and ij transform as (f0 , 1, n*), (fo *, 1, n) respectively. The D-term equations ~ith 
respect to U(fo) and U(fi) gauge symmetry read 

qqt- qtq = ata- &aJ, qij = aa, 

aat- at&= 0, aa = 0. 

(5.18) 

(5.19) 

Equations (5.19) admit solutions as (5.15) and in particular require a and a to be of the 

same rank, say k1 . If we insert such a solution, equations (5.18) also requires q and ij to 

be of the same rank, say k0 . In addition to the obvious bound k1 :::; f 1 and k0 :::; f 0 , the 

ranks must satisfy the relation 

(5.20) 

Let 1-lk0 ,k1 be the moduli space of such vacua with lower rank cases being included. It 

is the hyperkahler quotient of a vector space of dimension nk0 + k0 k1 by the completely 

broken subgroup U(ko) x U(k1 ). Thus, according to the previous remark, its dimension 

is nko + kok1 - k5- ki. Generically on this space, the gauge group is broken to U(fo

ko) x U(f1 - ki). Thus 1-lko,k1 extends to a mixed branch in the k- k0 - k1 flat directions 

of vector multiplet. Note that it exists when k0 + k1 :::; k, n :;:::: 2k0 - k1 and k0 :;:::: 2k1 

(irrespectively of f 0 , f 1 ). It is an isolated Higgs branch if k0 + k1 = k which is possible 

only when n :;:::: k. 

In general, flat directions of hypermultiplet can be found for values of [>whose entries 

are integer multiples of madj· Let us consider the case in which kj entries are jmadj where 

j runs over integers from -p :::; 0 to q 2: 0. There exists a non-trivial moduli space of 

hypermultiplet 1-l{k;} when the kj satisfy the following conditions 

i=-p 

It extends to a mixed branch which has dimensions 

q-1 q 

dH = nko + L kiki+1- L kf, 
i=-p i=-p 

q 

dv = k- L ki. 
i=-p 

(5.21) 

(5.22) 

(5.23) 

Note that the condition (5.22) which is a generalization of (5.20) means that the plot of 

kj against the horizontal j axis is concave in the regions j > 0 and j < 0. This concave 

property will become more important in the next subsection. 

Generic Quark Mass 
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When two or more quark masses are coincident, quarks have a flat direction. Other

wise, a flat direction for the hypermultiplets is possible only when the mass constraints 

(5.3) and (5.4) allow some components of the quarks and adjoint hypermultiplet that are 

charged under common subgroups to be massless. However, this cannot happen at any 

value of J; if the masses are generic in the following sense 

madj =I= 0 and for any 0 :::; j < i :::; n- 1 and -k < .e < k. (5.24) 

Conversely, when this condition is broken, a flat direction for the hypermultiplets does ... 
exist for some value of </J. 

5.2 Classical Moduli Space of Vacua of The B Model 

We look at the moduli space of vacua of the B model in such a way that various 

Coulomb or mixed branches are emanating from the underlying moduli space MH of 

hypermultiplet. As FI terms are turned on, the moduli space MH is deformed and the 

Coulomb branches get reduced. The dimension of the moduli space of vector multiplet 

emanating from a point of MH is given by the rank of the unbroken gauge group. In 

this subsection, we characterize and classify points of MH with respect to the unbroken 

gauge group. 

Recall that the B model has gauge group U(k)n = Tii::-d U(k)i and matter hypermulti

plets Bi(i+l),B(i+l)i in the "bifundamental" representation of U(k)i x U(k)i+I and Qo,Qo 

in the fundamental representation of U(k) 0 . (Bi(i+I) and B(i+I)i transform as (k, k*) 
and (k*,k) under U(k)i x U(k)i+I respectively.) The moduli space MH of hypermulti

plet is determined at the classical level as the set of solutions of the classical equations 

(4.12), (4.13) modulo the U(k)n gauge group action. We note that this is the same as 

the hyper):cahler quotient construction of Hilbert Scheme of points on an ALE space by 

Kronhei~~r and Nakajima [6, 20, 7]. We do not impose mass constraints like (5.3) and 

( 5.4) on hypermultiplets. Instead, we use them to force the flat directions of the vector 

multiplet to lie in the direction of the unbroken gauge group. 

As we will see, the structure of vacua is greatly affected by the trace part 2::.: G of the 

FI parameters { = (~, G, ... , ~-d . 
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.... 
5.2.1 'I'racefree FI Parameters: Li (i = 0 

In the case where the trace part of the FI parameters vanishes, one can show that Q0 = 

Q0 = 0 and Bii are diagonalizable at the same time 

(5.25) 

The zth diagonal entries b1 = (b~~)) satisfy a system of equations. Namely, that of the k = 1 

model: 

lbi(i-1) 1
2

- lb(i-1)il
2 + lbi(i+1)1

2
- lb(i+1)il

2 = (iR 

bi(i-1)b(i-1)i- bi(i+1)b(i+1)i = (F 
(5.26) 

(5.27) 

where (R = (1
, (c = (2 + i(3 for ( = ((1 , ( 2 , C). The moduli space of hypermultiplet for 

k = 1 model is the quotient by U(1)n- 1 of the set of solutions of these equations. (Note 

that the diagonal U(1) subgroup of U(1)n is always unbroken, and can be forgotten upon 

quotient.) This is the same as the Kronheimer's hyperkahler quotient construction [5] of 

the ALE space X{ of type An_1 • Fork 2:: 1, we have k copies of this space and dividing 

by the residual permutation symmetry sk we obtain 

(5.28) 

At generic points of MH, all b~Y are non-zero and the gauge group U(k)n is broken to 

the diagonal subgroup U(1)k of the maximal torus (U(l)kt. Thus, the vector multiplet 

generically has k-flat directions and there is no pure Higgs branch. As we will see in 

the following, for a non-generic choice of the FI parameters (there are special points in 

MH at which the unbroken gauge group has higher rank. This enhancement of unbroken 

gauge group corresponds to the singularity of the space X{-

Turning Off FI Parameters ( = 0 

We first consider the case with FI terms turned off. Let us look at the moduli space 

MH = X 0 for the k = 1 model. It follows from the equations (5.26) and (5.27) that 

lbi(i+I)I, lb(i+1)il and bi(i+1)b(i+I)i are independent of i. Then, we can define z1 and z2 by 

Z1Z2 = bi(i+1)b(i+1)i 

z~ = bo1b12 · · · b(n-1)0 

z~ = bo(n-1) · · · b21 b10 
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up to Zn ambiguity (z1,z2 )""' (e 2~;zbe- 2~;z2 ). Thus, we see that the k = 1 moduli space 

is just the Zn orbifold C 2 /Zn. Note also that by introducing gauge invariant variables 

x = z1z 2 , y = zf, and z = z~, we obtain the standard relation xn = yz. The An-1 

simple singularity at the origin corresponds to the solution bij = 0 on which the gauge 

group U(1)n is totally unbroken. At other points, one or both of bi(i+I) and b(i+I)i is 

non-vanishing for each i and hence the gauge group is broken to the diagonal U(1). Thus, 

we have a Coulomb branch of dimension n and a mixed branch with a single flat direction 

for each of the hyper- and vectormultiplets. 

For general k, the moduli space of hyper multiplet is the k th symmetric product 

(5.32) 

For each k0 , 0:::; k0 :::; k, let Nko C Symk(C2/Zn) be the submanifold of dimension k- ko 

corresponding to the set of points in (C2 /Zn)k whose k0 entries are the An-I singularity. 

A generic point in Nko corresponds to a vacuum with b(1) ·= · · · = b(ko) = 0 on which the 

gauge symmetry U(k)n is broken to the subgroup U(ko)n x U(1)k-ko of rank nk0 + k- k0 . 

If the non-zero entries b(ko+I), ... , b(k) are invariant under a group of permutations, the 

factor U(1 )k-ko is replaced by a larger group but the rank is still k - k0 . Thus, along 

the submanifold Nko of the moduli space of hypermultiplet, the vector multiplet has 

nk0 + k - k0 flat directions. To summarize, we list the dimensions of mixed branches 

where dH, dv denotes the number of flat directions of hyper and vector multiplets: 

dH k k-1 ... 1 0 

dv k n+k-1 ... nk- n + 1 nk 

Table 8: Mixed branches for ~ = · · · = (:_1 = 0 

Turning On Tracefree FI Parameters 

We consider the case 

{ = ((;,o, ... ,o,(;,o, ... ,o, ... ,t:,o,~ .. ,o) 
'-...-" .____.... 

in which 

0 + · · · + fs = o but &+I + ... + 0 =1- o, o < i < i :::; s. 

(5.33) 

(5.34) 

This corresponds to the choice of mass (5.11) under the mirror map (3.1) where mi = 
0 +···+&. 
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The moduli space MH = X{ for the k = 1 model is an orbifold with singularities of 

types An1 - 1 , An2 _ 1 , .•. , An.-1 at s distinct points. This can be seen by an argument as in 

the ( = 0 case. For instance, the point with An1 _ 1 singularity corresponds to the vacuum 

with bi,i+1 = bi+1 ,i = 0 for i = 0, 1, ... , n1 - 1, which is invariant under the subgroup 

U(1)n1 of the gauge group U(1)n. In general, at the point with An;-1 singularity the 

unbroken gauge group is U ( 1 )n;, while it is the diagonal U ( 1) at other points. Thus, we 

have s-Coulomb branches of dimensions n 1 , ••• , ns and one mixed branch of dimensions - -
dH = dv = 1. 

For general k, let Nk1 , ••. ,k. be the submanifold of MH = Symk(X{) corresponding to 

the points in (X( )k whose ki entries are the An;-1 singularity. On this submanifold, the 

gauge group is broken to U(ki)n1 -
1 x ···X U(ks)n·- 1 x U(1)k. Thus, we have a mixed 

branch of dimensions 

(5.35) 

along the submanifold Nk1 ,.:.,k •. 

5.2.2 FI Parameters With Non-Vanishing Trace: Li 0 =/= 0 

When the trace E 0 of the FI parameters is non-vanishing, things drastically change. By 

summing up the equations ( 4.12) and ( 4.13) and taking the trace, we obtain IIQoW -
IIQoW = 2k E (iR and QoQo = k E (p, and thus Qo or Qo cannot be zero. In addition, 

the Bi,j cannot be simultaneously diagonalizable. Namely, we have lost the structure of 

the symmetric product of the moduli space X{ of the k = 1 model. Instead, our moduli 

space is the hyperkahler quotient construction of the Hilbert scheme of k-points on Xt 

(5.36) 

When (is generic and X{ is smooth, it is known that HilblklX{ is a resolution of the 

diagonal or. quotient singularities of Symk X{ and is in particular smooth. This means 

that the gauge group U(k)n is completely broken at every point of MH and there is no 

flat direction for the vector multiplets. 

For some special values of (such that X( is singular, Hilb[k]X{ inherits the singularity 

of Xr At a singular point, some subgroup of U(k)n remains unbroken and flat directions 

of vector multiplet appear. Here we classify such unbroken subgroups for the special value 

( = (~, 0, ... '0) (5.37) 
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for which the k = 1 moduli space X( is the orbifold C 2 /Zn with an An-1 simple singularity. 

Using an SU(2)L rotation, we may put {a = ( c, 0, 0) with c > 0. 

Convex Graphs and Mixed Branches 

By looking at the first equation of (4.12), we see that (Bo,n-b Bo,b Qo) has rank k 

and hence U(k)0 is always completely broken. However, the groups U(k)i at other sites 

may contain unbroken pieces. Let us consider configurations such that U ( k )i is broken to 

U(fi)i and its centralizer U(k- fi)i is completely broken. Such configurations exist only 

when the fi satisfy a certain condition. Let us consider making a plot of fi against the 

horizontal i axis where i runs from 0 to n = 0. As we noted in subsection 5.1.2, the plot 

of the rank k- fi of the completely broken gauge groups must be concave. In other words, 

the plot of fi is convex. Thus, for each convex integral graph { fi }i=o with fo = ln = 0, 

fi :::; k, we have a submanifold of My with unbroken gauge group fL U(fi)· Its dimension 

is dy = k + I::i;l ( k - fi) ( k - fi+1) - I::i;l (k- fi )2 and it extends to a mixed branch with 

dimension dv = I: fi in the direction of vector multiplet. 

This result can be rephrased in the following way. Suppose that the steepest ascending 

slope of the plot of fi is q + 1, and the steepest descending slope is -p- 1. For -p '- 1 :::; 

i :::; q + 1, let ei be the number of steps with slope i. Since the plot starts with £0 = 0 

and ends with ln = 0, these numbers satisfy I: iei = 0. Let us introduce numbers ki; 

-p:::; i:::; q by 

eq+I = kq 

eq = kq-I - 2kq 

eq-1 = kq-2- 2kq-1 + kq 

. e2 = k1- 2k2 + k3 

e1 = ko - 2k1 + kz 

e_P_1 = k_P 

e_P = k-p+l - 2k_P 

e-p+1 = k-p+2- 2k_p+1 + k_P 

e-2 = k-1 - 2k_z + k_3 

e_1 = ko- 2k_1 + k-2· 

(5.38) 

It appears that k0 has two solutions I::i>O iei and I::i>O ie_i but they coincide due to the 

relation I: iei = 0. In fact, it is the highest value of fi. In terms of {ki}, the dimensions 

dy and dv of the mixed branch can be expressed as 

(5.39) 

In particular I: ki :::; k. Since ei are non-negative integers, ki satisfy the concave property 

i # 0. (5.40) 
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Since the total number of steps is n, we have n 2: Li:;Co ei, i.e. 

(5.41) 

It is easy to see that each sequence {ki}-P$i$q satisfying (5.41), (5.40) and I:: ki ~ k 

determines a convex graph {fi}f::0 having ei steps of slope i where ei is given by (5.38). 

Adjacency Relations 

Let us denote by N{ki} the submanifold of Hilb[k](C 2 /Zn) = lv{H corresponding to a 

convex graph determined by the sequence {ki}. As we move around the moduli space MH, 

unbroken gauge group can suddenly be enhanced but the converse will never occur. This 

property tells us some information on how the submanifolds N{k;} are related with each 

other. Let us consider two graphs {fi} and {fa determined by {ki} and {kn respectively. 

Then, N{ki} intersects with a boundary of N{k;} only if fi 2: fi for any i. It is easy to 

see that the latter condition holds if and only if k~ 2: ki for any i which we represent by 

{ki} 2: {ki}· Thus, we have seen that 

N{;:;} c U N{ ki}. 
{ki}~{k;} 

Generic Values of FI Parameters 

(5.42) 

According to [7] theorem 2.8, Hilb[k]X( is smooth when the FI parameter {satisfies a 

certain condition. In our language it reads as 

'L:&#O and G+···+G:f:R'L:& forany1~j~i~n-1,-k<f<k. (5.43) 
h h 

When this condition is satisfied, gauge group is completely broken everywhere and there 

is only a Higgs branch of dimension k. 

5.3 The Mirror Map Revisited 

In subsection 5.1, we determined and classified the various moduli spaces of hypermul

tiplet emanating from the classical moduli space of vector multiplet. In subsection 5.2, 

we classified submanifolds of the moduli space MH of hypermultiplet with respect to the 

rank of the unbroken gauge group. If we compare the results, we can see an agreement of 

dimensions of mixed branches 

( dH, dv )A-model ( dv, dH )B-model (5.44) 
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provided that masses and FI parameters are related under the mirror map (3.1). For 

example, compare 

• Table 7 for Tnadj = m = 0 and Table 8 for G = 0 

• Dimensions (5.14) for the mass (5.11) and (5.35) for the FI parameter (5.33) 

• Dimensions (5.23) with (5.21), (5.22) for madi =I= 0, m = 0 and 

Dimensions (5.39) with (5.41), (5.40) for {o =I= 0, G>o = 0 

• Condition (5.24) for the mass to be generic and Condition (5.43) for the FI 

parameters to be generic. 

This agreement gives strong evidence of our duality proposal. In particular, the third 

one excludes the possibility of non-trivial dependence of the trace 2: G in -mi like -mi = 
L:f=o (; + Ci L:j,:-~ G. Also, the last one shows that absence of a fiat direction for the 

hypermultiplets corresponds to the smoothness of Hilb(k)X( only when the mirror map is 

normalized as in (3.1). Thus, we have excluded all possible corrections to the mirror map 

(3.1) and completed the proof of it. 

5.4 Quantum Moduli Space of Vacua 

In this subsection, which is mostly a summary of the results we obtained so far, we 

give a description what the quantum moduli space of vacua of the A model looks like if 

our duality conjecture is assumed to be correct. In particular, we locate the moduli spaces 

of hypermultiplet on the quantum moduli space of vector multiplet M v by identifying 

the latter with the moduli space of hypermultiplet MH of the B model. 

The Self-Dual Model 

When there is only a single flavor n = 1, the A model coincides with the B model and 

therefore is expected to be self-dual. The model has two parameters: the bare mass madj 

of the adjoint hypermultiplet and the FI parameter (for the unique U(1) factor of the 

gauge group. 

Tnadj = o,[ = 0 

In this case, quantum moduli space of vector multiplet is M v = Symk( C~) where 

C~ = X0 is the quantum moduli space for the k = 1 model. At the generic point 

of M v represented by a point of ( C~ )k whose entries are distinct with each other, we 

have ( C1 )k as the moduli space of hypermultiplet. When the representative in ( C~ )k is 

invariant under a group G of permutations, the moduli space of hypermultiplet collapses 
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to (C'k )k jG. Thus, the quantum moduli space is given by 

Mtotal = Symk(C~ X C1 ). (5.45) 

When madj =J. 0, there is a monopole correction that smooths out the singularity due 

to Sk quotient, and the quantum moduli space of vector multiplet is the Hilbert scheme 

of k-points on C~: Mv = Hilb[kJ(q~ ). Since madi =J. 0 meets the condition (5.24) to be 

generic, the fiat directions of hypermultiplet are completely lifted. 

madj = 0, ( =J. 0 

Since ( =J. 0 meets the condition (5.43) to be generic, the fiat directions of vector 

multiplet are completely lifted and we have a single smooth Higgs branch which is again 

the Hilbert scheme of points Hilb[kl(C'k). 

In summary, we list the quantum moduli space of vacua: 

Moduli Space (dv,dH) 

madj = 0, ( = 0 Symk(C~ x C'k) (k,k) 

madj =J. 0' ( = 0 HilhfkJc2 
v (k,O) 

madj = 0, ( =J. 0 HilhfkJcz H (0, k) 

Table 9: Quantum Moduli Space of Vacua of the n = 1 Model 

Multi Fl~vor Case 

madj = 0, m = 0 

When all the mass terms are turned off, the moduli space of vector multiplet is given 

by Mv = Symk(C2 /Zn) which decomposes into k + 1 submanifolds Nk0 , 0 :::; k0 :::; k. 
Recall that Nko corresponds to the set of points in ( C~ /Zn)k whose k0 entries are the An-1 

singularity. The moduli space of hypermultiplet emanating from a generic point of Nko 
is (C'k)k-ko x Mko(SU(n)). At the point whose representative in (C 2 /Zn)k is invariant 

under a group G X sko of permutations, the moduli space of hypermultiplet collapses to 

(C1)k-ko /G x Mk
0
(SU(n)). Thus, we have located the moduli spaces of hypermultiplet 

on the submanifold Nko. The resulting mixed branch, including its boundary, is given by 
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(5.46) 

It has dimensions dv = k- k0 and dH = nk0 + k- k0. The quantum moduli space is now 

represented as a union of these branches: 

Mtotal = U Mko · 
09o::;k 

( 5.4 7) 

Note that Mk = Mk(SU(n)) is a unique Higgs branch of dimension nk. The "basic 

branch" 

(5.48) 

is a mixed branch of dimension 2k which has no non-trivial SU(n) ~ction. On any other 

branch Mk0 , the global SU(n) symmetry is generically spontaneously broken due to 

squark vevs. It touches the basic branch M 0 along the submanifold of dimension 2k - k0 

of SU(n)-fixed points. The theories in that submanifold have unbroken SU(n) symmetry. 

The branches Mko with k0 :2: 1 also touch each other; a boundary of Mko is embedded 

in Mko+£ according to the embedding of Sym£(C't-) x Mk0 (SU(n)) in Mko+t(SU(n)). 

iiiadj = 0, iii =J 0 

We consider the case with the bare mass iii being given by ( 5.11) in which the theory 

has global symmetry SU(n1 ) x · · · x SU(ns)· The moduli space of vector multiplet is 

Mv = Symk(X((m)) where ((m) is mirror image of iii. 

The quantum moduli space is represented as: 

Mtotal u (5.49) 
k;<!:O 

k1 +···+ks :$k 

where 

(5.50) 

is a mixed branch of dimensions dv = k- I: ki and dH = I: niki + k- I: ki. The basic 

branch 

(5.51) 

has no non-trivial SU(nt) x · · · x SU(ns) action. Any other branch Mk1 , ••• ,k. has non-trivial 

action of this group and touches the basic branch Mo, ... ,o along the submanifolds of fixed 

points. Theories in~ the fixed point submanifold have unbroken SU(n1 ) x · · · x SU(ns) 
global symmetry. 
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iiiadj "/= 0, iii = 0 

Finally, let us consider the case iiiadj "/= 0 and iii = 0 in which the theory pos

sesses global SU(n) symmetry. This choice of mass is mapped to the Fl parameter 

[ = (iiiadj, 0, ... , 0). The moduli space of vector multiplet is Mv = Hilb[kl(C2 /Zn), the 

Hilbert scheme of k-points on C 2 /Zn· 

The quantum moduli space is represented as follows: 

Mtotai = U M{ki}· 
{k;} 

(5.52) 

Here {ki} runs over sequences of integers satisfying the conditions (5.21) and (5.22), and 

M{k;} is roughly a direct product }1/{k;} x 1-l{k;} with its boundary being included. The 

space 

(5.53) 

is the unique Coulomb branch of dimension k, on which the global SU(n) symmetry acts 

trivially. Any other branch M{k;} has a non-trivial action of SU(n) and touches the 

Coulomb branch along the submanifold JJ'{;:;}. If {ki}:::; {kH, 1-l{k;} is embedded in 1-l{ki} 

and it is possible that a boundary of }1/{k;} intersects with }1/{ki}· When this happens to be 

the case, a boundary of M{k;} is embedded in M{ki} as a submanifold. To know whether 

this really happens or not, we need more information on the adjacency relations of the 

}1/{k;} 's in Hilb[k]( C 2 /Zn)· 

6 Duality for U(k) Gauge Theories III: T-Duality and Extremal 

Transition Picture 

In this_ section, we discuss how to understand the mirror symmetry between the A and 

B-models. from the string theory view point. It has been suggested in [3], [22] that the 

mirror symmetry in three dimensions should be a consequence of the T -duality between 

JIA and JIB strings. The type JIA string compactified on a Calabi-Yau 3-fold M times 

S1 is, by the T-duality, equivalent to the type JIB string on the same geometry except for 

the change of the radius of S1 . Under the T-duality, the vector and the hypermultiplet 

moduli spaces of the two theories are interchanged. This is exactly the situation of the 

mirror symmetry in three dimensions. Here we will examine how this suggestion can be 

implemented explicitly in our case. 

There is a particular Calabi-Yau 3-fold M on which the type JIA string gives-the field 

content of the A-model [23-26]. In order to turn off gravity, we take the Planck mass to 
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infinity after the compactification. At the same time, we would like to have finite masses 

for relevant charged particles coming from D-branes wrapping cycles in M. Thus we have 

to consider a singular limit of M, where we scale the relevant Kahler moduli of M to 

zero simultaneously. In fact a local description of the singularity of M is sufficient in 

order to understand the field theory limit of the compactified liA string [27]. To realize 

the A-model in three dimensions, we send the radius RA of S1 to zero also while keeping 

RA mstring finite. 

This compactification of the liA string is related, by the T-duality, to the type liB 

string on M x S 1 with the radius of S 1 being RB = (RAm;tringt 1
. Since RB scales as 

1/mstring, the T-dual of the A-model should also give a three-dimensional field theory 

with rigid N = 4 supersymmetry. In fact, in the case of k = 1 with n being arbitrary, 

we will show that the type liB string on M reproduces the field content of the B-model. 

This means that, in this case, the mirror symmetry of the A and B-models can indeed be 

interpreted as a consequence of the T -duality of the type liA and liB string theories. We 

also present some evidences for the k > 1 case. 

6.1 A-Model 

The A-model of the gauge theory arises from the type IIA string on a Calabi-Yau 

3-fold M constructed as a family of K3 fibered over a complex one-dimensional torus C 

[23, ·24]. In order to reproduce the field content in the A-model, namely: 

• vector multiplet with U(k) gauge group, 

• one hypermultiplet (A, A) in the adjoint representation, 

• n hypermultiplets (Qi, Qi) (i = 1, ... , n) in the fundamental representation, 

we consid~r a case when K3 has singularities of type Ak at n isolated points w = w1 , ... , Wn 

on C which are resolved to type Ak_1 over a generic point [25, 26]. The geometry of the 

Calabi-Yau manifold M near the singularities can be modeled by the equation, 

(6.1) 

where Pn( w) is a polynomial of degree n with n zeroes at wb ... , Wn, and (x, y, z) parametrize 

the K3 fiber. We can see that the fiber develops an Ak singularity at n points on C where 

Pn(w) = 0. The Ak-1 singularity on a generic fiber can be resolved as 

k 

IT (z + Jla) · (z + Pn(w)) + x 2 + y 2 = 0. (6.2) 
a=1 
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However, for each a = 1, ... , k, the fiber still has A1 singularity at n points on C solving 

Pn( W) = /-la· 

Let us demonstrate that this geometry indeed generates the field content of the A

model. Due to the Ak singularity, there are ~k(k+1) 2-cycles Sab (a, b = 1, ... , k+1; a< b) 

on each fiber. The cycle Sab with a, b::::; k vanishes when we choose the complex moduli 

J-la = /-lb· On the other hand, Sa(k+I) always vanishes at n points on C satisfying Pn( w) = 
1-la· Among these cycles, k of them are homologically independent. We can choose S12 , 

S 23, ... , Sk(k+I) as primitive cycles and correspondingly there are k Kahler moduli of M. 
For later convenience, we denote the one associated to Sa(a+I) by (ta- ta+I) with tk+1 = 0 

(alternatively one may choose sl(k+Ib ... , sk(k+I) as primitive cycles and ta as the Kahler 

moduli associated to them). Each of the Kahler moduli can be identified as a vev of 

charge neutral scalar component of the vector multiplet. Since the base of M is a torus C, 

there is also a generator T}a of H 2
•
1 (M) associated to each Sa(k+I)· To see this explicitly, 

one may take the (1, 1) form on the fiber corresponding to Sa(k+I) and tensor it with the 

holomorphic 1-form on the base C. A 3-cycle dual to T}a is S 1 of the base C times Sa(k+I) 

of the fiber1
. In fact these T}a E H2

•
1 

( M) correspond to the complex modulus /-la in the 

resolved space (6.2). The complex modulus 1-la together with a vev of the RR 3-form 

B(3
) on S 1 x Sa(k+I) make charge neutral scalar components of the adjoint hypermultiplet 

(A, A). The charged components of the vector and the adjoint hypermultiplets correspond 

to wrapping D2-branes on the 2-cycles Sab (a, b = 1, ... , k). Among them, the cycles Sa(a+I) 

correspond to simple roots of U(k) while others correspond to non-simple roots. 

As we mentioned in the above, for generic values of J-la, Sab with a, b ::::; k are non

vanishing, but each Sa(k+I) vanishes at n special points satisfying Pn ( w) = J-la. The cycle 

Sa(k+I) is homologous to the sum of the primitive cycles Sa(a+I) u S(a+I)(a+2) u · · · u Sk(k+I)· 

Thus, by wrapping a D2-brane on Sa(k+Ib we find one hypermultiplet carrying charges 

qa = 1 an~ qb = 0 ( b =/:. a). Here qa means the charge for the U ( 1) vector associated to the 

Kahler moduli ta. Of course, if we choose 1-la = 0 for all a, the vanishing of Sa(k+I) takes 

place at the zeroes of Pn(w). Thus we find that, from each of then exceptional fibers, 

we obtain one hypermultiplet in the fundamental representation of U(k). This completes 

the field content of the A-model. 

Now let us examine the structure of the Coulomb branch of the A-model using this 

string theory construction. In four dimensions, the RR 3-form B(3) associated to the 

2-cycle Sa(k+I) and the RR 5-form B(s) associated to its dual 4-cycle * Sa(k+l) give a vector 

field vJ.L and its dual *vw Upon compactification to three dimensions, their Wilson line 

1 In general, if the base is a genus-g curve, each Sa(k+l) should give g elements of H 2•1 (M) since there 

are g holomorphic 1-forms. 
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expectation values on S1 make a complex scalar fiel<l, which we denote by Ua. It is then 

paired with the scalar component of the vector multiplet corresponding to the Kahler 

moduli ta, and the vector multiplet moduli space also become a hyperkahler space. Since 

the RR charges are quantized, the RR fields Ua are periodically identified. Thus the vector 

multiplet moduli space can be viewed as a family of tori of the RR field Ua fibered over 

the Kahler moduli space of ta. 

Let us examine the conifold singularity in the moduli space which is generated when the 

quantum corrected size of one of Sa(k+l) 's vanishes, paying attention to the 2-dimensional 

subspace of (ta, ua) taking all other moduli to be of generic value2. In fact there are n 

homologous 2-cycles (one at each of the n special points) whose quantum volumes vanish 

simultaneously in this limit. This is a situation in which the extremal transition is pos

sible [28]. Traveling around the singular point, the RR fields experience the monodromy 

transformation Ua -7 Ua + n [29]. This means that the moduli space near the conifold 

point has an orbifold singularity C 2 /Zn in the subspace of (ta, ua)· 

When the two complex moduli coincide, f.1a = J1b, there appears an additional symme

try which exchanges (ta, ua) and (tb, ub)· Thus, in particular when all the complex moduli 

coincide, the vector multiplet moduli space becomes Symk(C 2 /Zn)· This is exactly the 

structure of the Coulomb branch of the A-model which we found previously from the 

mirror symmetry and the one-loop test. 

After the extremal transition, the n homologous 2-cycles are replaced by n 3-cycles 

with 1 homology relation. Thus the origin of the 2-dimensional subspace (ta, ua) of the 

vector multiplet moduli space is connected to 2( n - 1 )-dimensional subspace of the hy

permultiplet moduli space, ( n - 1) of which correspond to the complex moduli of M. We 

can repeat this procedure k times to completely Higgs the vector multiplet. This gives us 

k + k( n - 1) = kn hypermultiplets (the first k are the complex moduli f.1a which are there 

before the. extremal transition). This correctly reproduces the Coulomb-Higgs transition 

discussed in the previous sections. 

6.2 B-Model 

Here we will consider the same Calabi-Yau manifold M, but put the liB string on it. 

As we mentioned before, if the field content of the B-model is reproduced in this way, the 

mirror symmetry may be considered as a consequence of the T -duality of the IIA and liB 
2We are considering the quantum corrected size (the one which takes into account worldsheet instanton 

effects) since it is the one that is proportional to the BPS mass of a D-brane wrapped around a cycle 

homologous to Sa(k+l)· 
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string theories. 

To begin with, let us consider a case of k = 1 with n being arbitrary. In this case, we 

have a family of K3 fibered over C, with n special points on which K3 develops the A1 

singularity. Elsewhere K3 is regular in this case. We would like to show that the type liB 

string theory on this geometry gives the field content of the B-model: 

• n vector multiplets Vi (i = 1, ... , n) of U(1) gauge group, 

• n hypermultiplets (Bi(i+I), B(i+I)i) with charges qi = ±1, qi+I = =F1 and q#i,i+I = 0, 

• a hypermultiplet ( Q0 , Q0 ) with charges q1 = 1, q2 = · · · = qn = 0 

The geometry as it is has one complex modulus f.l and the one Kahler modulus t corre

sponding to the vanishing S2 on the fiber. As we have seen in the previous subsection, 

the type liA string on this geometry gives the Coulomb branch of the A-model. Since 

the T-duality exchanges the vector and the hypermultiplet moduli spaces, the type liB 

string theory on the same geometry should be in the Higgs branch. To identify the field 

content of the B-model, however, it seems easier to work in the Coulomb branch. This 

means that we have to perform an extremal transition of the geometry. 

Since there are n vanishing 2-cycles at the n special points and since they are all 

homologically equivalent, the extremal transition changes them into n 3-cycles S(i) ( i = 

1, ... , n) with 1 homology relation :Li:,1 S(i) = 0. This gives us (n -1) complex moduli, in 

addition to one complex modulus J.L which had been there before the extremal transition. 
Let us denote complex moduli associated to S(i) by (J.L(i)- p(i+I)) with f.l(n+I) = p(I). There 

is a redundancy in this parametrization corresponding to simultaneous shift of p(i)'s, and 

. we fix it by choosing f.l(I) to be equal to the complex modulus f.l· 

Now we can identify the field content of the B-modei. The U(1)n vector multiplet 

comes from then complex moduli and then hypermultiplets (Bi(i+I), B(i+I)i) are obtained 

by wrapping D3-branes on S(i)'s. Since the dimensions of H2,1 is n, there must be one 

more 3-cycle which is not homologous to S(i) 's. In fact it is not difficult to identify one. 

Before the extremal transition, there is a unique homology 3-cycle which is the 2-cycle 

on the fiber times S 1 of C. Since the extremal transition is a local operation near the n 

special points, this 3-cycle should remain after the transition ·as far as we choose S 1 to be 

away from these points. In fact, in our notation, the complex moduli f.l(l) corresponds to 

this 3-cycle. By wrapping a D3-brane on this cycle, we obtain. one hypermultiplet (Q0 , Q0 ) 

with charges q1 = 1, q2 = · · · qn = 0. This completes the field content of the B-model. 

As one can see, then hypermultiplets (Bi(i+I)' B(i+I)i) are massless at the conifoid point 

where all S(i) are vanishing. On the other hand, ( Q0 , Q0 ) is massive even at the conifold 
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point. This is also consistent with what we know about the B-model, i.e. the vev of 

( Q0 , Q0 ) is zero in both Coulomb and Higgs branches. Thus we have found that, in this 

case, the B-model arises from the type liB string on M x 5 1 x R 3 . This shows the mirror 

symmetry of the A and B-models is in fact a consequence of the T-duality of the IIA and 

liB string theories. 

Let us turn to general case when both k and n are arbitrary. We would like to identity 

• n vector multiplets Vi ( i = 1, ... , n) of U ( k) gauge group, 

• n hypermultiplets (Bi(i+I), B(i+I)i) where Bi(i+I) is in (ki, ki+1 ) of U(k)i x U(k)i+I, 

• one hypermultiplet ( Q0 , Q0 ) in the fundamental representation of the first U( k ). 

Before the extremal transition, the number of holomogy 3-cycles is k, and this corre

sponds to the number of unbroken U(1) gauge symmetries in the fully Higgsed branch of 

the B-model. After the extremal transition, the k 2-cycles at each of the n special points 

are replaced by k 3-cycles S~i) (a = 1, ... , k; i = 1, ... , n) with k homology relations. Thus 

the number of homology 3-cycles becomes k + (n- 1)k = nk after the series of transi

tions, and this also agrees with the number of unbroken U(1) symmetries in the Coulomb 

branch of the B-model. By counting charges with respect to these U(1)'s, we can identity 

wrappings of D3-branes on 5£i)'s as diagonal elements of (Bi(i+I}l B(i+I)i), and wrappings 

of D3-brane on the original k 3-cycles as ( Q0 , Q0). 

We have not yet identified the roots of U(k )nand the off-diagonal elements of (Bi(i+I), B(i+I)i)· 

Before the extremal transitions, in additions to the vanishing 2-cycles at the n special 

fibers, there are tk( k - 1) 2-cycles Sab· After the extremal transitions, they should also 

transform into 3-cycles. In fact, they appear to carry appropriate U(1) charges to be iden-

tified with these fields. It would be very interesting to work out the relevant homology 

relations among the 3-cycles after the extremal transition and to fully identify the fields 

in the B-model. 

7 ·Duality for Sp(k) Gauge Theories 

In this section we study the second proposed family of dualities for Sp( k) gauge the

ories. We provide the counting evidence for this duality proposal, study the quantum 

corrections, derive the mirror map and use D-brane probes and the Type I - M-theory 

duality to further support the gauge theory picture. 

40 



7.1 Counting Evidence 

Again, as a first necessary evidence for the duality between the A and B models we 

count in quaternionic units the dimensions of the Higgs and Coulomb branches and the 

number of FI and mass terms. 

A-model: The dimension of the Coulomb branch is the rank of the gauge group which is 

dv = k. The dimension of the Higgs branch is the dimension of the hypermultiplet content 

(2nk + 2k2
- k) minus the dimension of the gauge group (2k2 + k ). Thus, dH = 2k( n -1 ). 

The number of FI terms is zero since there are no U(1) factors in the gauge group, and 

the number of mass parameters equals n + 1. 

B-model: The dimension of the Couloinb branch is the rank of U( k )4U(2k )n-3
, thus 

dv = 2k( n -1 ). The dimension of the Higgs branch is the dimension of the hypermultiplet 

content (k+4(2P)+(n-4)( 4P)) minus the dimension of the gauge group (4k2 +(n-3)4P), 
thus dH = k. The number of FI terms is n + 1, while the number of mass parameters 

nm = (n + 1)- (n + 1) = 0. Altogether, we have the following table: 

Model dv dH nc nm 

A k 2k(n -1) 0 n+1 

B 2k(n- 1) k n+1 0 

Table 10: The dimension of the Coulomb and Higgs branches and the number of mass 

and FI parameters of A and B models 

The counting shows that we have the requi_red symmetry under A-model H B-model, 

dv B dH and nc B nm· 

7.2 A model - One-loop Corrections 

In this section we compute the one-loop corrections to the metric on the Coulomb 

branch of the A model with Sp( k) gauge group, one hypermultiplet in the antisymmetric 

representation and n hypermultiplets in the fundamental representation. 

Let us parametrize the scalars that minimize the potential energy (2.1) of A model by 

(7.1) 

where as before ;j = ( <f>1, <1>2, (p3). 
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The one-loop corrected metric of the Coulomb branch of A model takes the form 

9aa 

9ab 

As for the U(k) gauge group case, in order to compute the one-loop correction one 

need only consider all possible one-loop diagrams with two gauge fields on the external 

legs and a vector multiplet or hypermultiplet running in the loop. Reduction in the 

number of colors k and flavors n imply that the all coefficients of the different diagrams 

are independent of k, n. The hyperkahler properties of the metric ( 4.4) implies that the 

contributions of the vector multiplet and the antisymmetric hypermultiplet to the diagonal 

and off diagonal elements of the metric are of opposite sign and the same absolute value, 

and that the hypermultiplets in the fundamental can contribute only to the diagonal terms 

of the metric. We then make use of the fact that Sp(1) yields the SU(2) case. For SU(2) 
the antisymmetric representation is trivial. Taking the number of fundamentals to be zero 

fixes the coefficient of the vector multiplet contribution, while the case of two massless 

fundamentals fixes the coefficient of the contribution of the fundamental hypermultiplets. 

Finally, the coefficient of the antisymmetric hypermultiplet contribution is fixed by reading 

from the Lagrangian its relation to that of the fundamental hypermultiplets. 

Consider the case where the mass of the antisymmetric hypermultiplet vanishes and 

we have p. > 1 massless fundamentals. In this case the one-loop metric describes the 

k-symmetric product of non-resolved ALE spaces of Dn type Xvn 1 

M One-loop(A d 1 ... - 0 ... - 0) - S kX v - mo e , mas - , m fund - - ym Dn . (7.3) 

The one-loop result is expected to be exact in these cases since the metric corresponds 

to a product of k copies of the moduli space for SU(2) where there are no higher loop or 

monopole corrections for n > 1 [2]. Thus we conclude that 

(7.4) 

1 For n = 0 and n = 1 we get, after including the one loop and the monopole corrections, the k

symmetric product of an Atiyah-Hitchin space and its simply connected double cover respectively. 
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This is exactly the Higgs branch of the B-model when all the FI parameters are set to zero 

[6]. Consider now the inclusion of masses for the fundamental hypermultiplets while still 

setting the mass of the antisymmetric hypermultiplet to zero. This case still corresponds 

a product of k copies of the SU(2) case. However when the fundamental hypermultiplets 

are massive the metric is. no longer positive definite and we expect that there will be 

monopole corrections. The masses of the hypermultiplets resolve the ALE singularities 

and we expect 

(7.5) 

which is in agreement with the Higgs branch of the B-model [6] when the weighted sum 

(trace) of the FI parameters vanishes. As we said above, the one-loop metric (7.2) for 

massless antisymmetric and massive fundamentals the metric in not positive definite, 

which indicates that indeed there are monopole corrections that contribute and make the 

metric positive definite. In this case the metric is similar to ( 4.3) and the mechanism 

of resolving the quotient singularities by adjoint mass there is like the mechanism of 

resolving the Dn singularities by fundamental masses: In both cases there are monopole 

corrections. 

7.3 The Mirror Map 

The mass of the antisymmetric multiplet is expected to correspond to the resolution of 

the quotient singularities of the symmetric product in (7.4) and (7.5). The weighted sum 

of the FI parameters in the B-model (3.2) resolves these singularities [6]. The reason for 

the weights can be traced to the equations defining the hyperkahler quotient construction 

of the Higgs branch of the B-model [6]. The analogue of equations (4.12) and (4.13) 

contain in our case two types of matrix equations: Those of size k x k that correspond to 
/ 

the U(k) :nodes of the quiver diagram in figure 2 and those of size 2k x 2k that correspond 

to the U(2k) nodes. The parameter for the resolution of the symmetric product is [6] 

n-2 

Tr[~lkxk + &tkxk + L (;12kx2k + <::-11kxk + <::tkxk] , (7.6) 
1=2 

which, using similar argument as in the U(k) case, we identify up to an overall constant 

with mas in (3.2). 

In order to derive the mirror map for the masses of the hypermultiplets in the funda

mental representation we use the same reasoning that led to (4.28). In the Higgs branch of 

the B model we expect singularities whenever a linear combination of the FI parameters 

corresponding to a positive root of Dn vanishes. In the Coulomb branch of the A-model 
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we expect, from the one-loop metric (7.2), such singularities to appear when mi = ±m/. 
Requiring that these singularities match yield the following identification 

... 
i = 1, ... ,n mn-1 + mn = 2(n ' (7.7) 

where m1 = ~- Equations (7.7) are consistent with the mirror map (3.2). One can 

extend the singularity analysis to include the mass of the antisymmetric hypermultiplet, 

and recover the complete ;mirror map (3.2) that way. 

As a further consistency check we repeated part of the analysis of section 5, namely 

verifying that the change of the dimension of the hypermultiplet moduli space when 

turning masses in the A-model matches the change of the dimension of the vector multiplet 

moduli space of the B-model when turning on the corresponding FI parameters. 

7.4 D-brane Picture 

We have argued in the previous section that in the A-model the masses of the n 

fundamental hypermultiplets resolve the Dn singularities in the Coulomb branch while the 

mass of the antisymmetric hypermultiplet resolves the quotient singularities associated 

with the symmetric product (7.4). In this section we show that this scenario is expected 

from string theory viewpoint. 

It has been suggested that D-branes can be used to probe the space-time geometry 

and the background gauge fields [31-38]. In particular, enhanced gauge symmetry in the 

space-time theory is reflected in the D-brane world volume theory by enhanced global 

symmetry. 

Consider a type I string theory on R7 x T 3
, and k D5-branes wrapping the T 3 and 

yielding k 2-branes in R7
. When the k branes coincide the world volume theory has an 

5p( k) gau"ge group [39]. The matter fields consist of 16 hypermultiplets in the fundamental 

representation of the gauge group arising from the DN sector and one hypermultiplet in the 

antisymmetric representation from the DD sector. This is precisely the field content of the 

A-model of the previous section. The mass terms for the fundamental hypermultiplets 

arise from the Wilson lines around T 3
. Thus, breaking the 50(32) space-time gauge 

group by the Wilson lines corresponds to breaking the 50(32) global symmetry on the 

1 It is worth to note that we do not expect a singularity when a single mass m; -+ 0: The role of a 

single mass parameter is to deform but not to resolve a singularity. For instance, for the gauge group 

SU(2) with one massless hypermultiplet the Coulomb branch is the double cover of the Atiyah-Hitchin 

manifold which is smooth. When turning a mass term for the hypermultiplet we get a deformation to 

the Dancer manifold [30]. 
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world volume of the brane by masses of the fundamental hypermultiplets. For massless 

hypermultiplets the Higgs branch of the world volume theory is the moduli space of 

50(32) k-instantons which is the Higgs branch of the A-model. 

Consider now the antisymmetric hypermultiplet <Pas· When its mass is zero it can get 

a generic vev of the form 

0 S1 

-SI 0 

(</>as)= (7.8) 

2kx2k 

where Si consists of four real components. This vev breaks the gauge group to Sp(l)k 

and thus separates the k coinciding branes. The Coulomb branch of each brane can be 

determined using the duality between M-theory on R7 x ]{3 and Type I or heterotic string 

on R7 x T 3 [1]. Under this duality the the type I five brane' wrapping the T 3 is mapped 

to the M-theory 2-brane whose world volume is R3 x {pt E K3 }, which implies that its 

Coulomb branch is 1<3 . The precise Coulomb branch in our case is an ALE space of 

D 16 type. In order to derive that in this context one has to keep track of the precise 

duality map. The Coulomb branch for k separated branes is the product of the Coulomb 

branches for each brane modded by the action of the Weyl group which permutes them. 

Consequently, we get the k-symmetric product of the Coulomb branch of a single brane. 

This is consistent with the field theory picture for mas = 0 (7.4) and (7.5). 

In order to have a massive antisymmetric hypermultiplet we need to modify the stringy 

scenario, so that mas will arise as a parameter of the string theory picture. If such a stringy 

picture exists, and if the mass of the antisymmetric hypermultiplet is different from zero, 

it cannot.-get a vev. Thus we see that the k branes cannot be separated and we expect 

that the Coulomb branch will become the Hilbert scheme of k points on an ALE space of 

D16 type. It would be interesting to verify this explicitly in string theory. 

8 Duality for U(kt Gauge Theories 

In this section we study the third proposed family of dualities for U( k t gauge theories. 
i 

We provide the counting evidence for this duality proposal and study the Higgs and mixed 

branches of the dual theories. Finally, we briefly discuss the mirror map. 
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8.1 Counting Evidence 

First, we can count the dimensions of the Coulomb and Higgs branches, as well as 

the number of masses and Fayet-Iliopoulos parameters, as we did previously. The moduli 

space of vacua of the theory (U(k )n; {vi}) contains a Coulomb branch, with unbroken 

gauge group U(1)nk. In contrast to the case n = 1, for n > 1 this is a pure Coulomb 

branch, and not a mixed branch. The moduli space of vacua also contains a pure Higgs 

branch (unless I: Vi= 1), that is described by a hyperkahler quotient. The quaternionic 

_ dimension of this hyperkahler quotient equals (nk2 +I: kvi- nk2 ) = k I: Vi = km. 

The number of mass parameters equals the number of irreducible representations of 

the gauge group (n+ I:.: vi) minus the number of U(1)'s in the gauge group (n), leading to 

a total of I: Vi = m. Finally, the number of FI parameters is equal to the number of U(1) 

factors in the gauge group, which is n. These results can be summarized in the following 

table 

Model dv dH nc nm 

(U(k)n; {vi}) nk mk n m 

(U(k)m;{wi}) mk nk m n 

Table 11: The dimension of the Coulomb and Higgs branches and the number of mass 

and FI parameters of A and B models 

where I: Vi = m and I: Wi = n. 

Again, the counting shows that we have a symmetry under A-model ++ B-model, 

dv ++ dH .and nc ++ nm, in accordance with the duality proposal. 

8.2 Mixed Branches 

As a further check of the conjecture we will now consider some of the mixed Coulomb/Riggs 

branches that both theories posses in their moduli space of vacua, restricting our attention 

to the case where the masses and FI parameters vanish. Such mixed branches appear when 

we restrict the vev's of the scalars that parametrize the Coulomb branch in such a way 

that some of the matter fields become massless, and can acquire a nonzero expectation 

value. Their expectation values parametrize a hyperkahler quotient, the group being that 

piece of the unbroken gauge group under which the massless matter fields are charged. 
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The global geometry of such mixed branches can be quite complicated, as the Coulomb 

branch can receive quantum corrections, but we expect in general that the mixed branches 

have the structure of a fiber bundle whose fiber is described by a hyperkahler quotient. 

In any case we will here only count the dimensions of some of the mixed branches, and 

not consider their global structure. 

When analyzing such mixed branches, it may happen the the hyperkahler quotient 

corresponds to a case where the group does not act properly on the hyperkahler manifold, 

and the quotient is singular. We will be mainly interested in the case where G acts 

nowhere properly, so that part of the gauge group is unbroken and we are dealing with 

a mixed branch. Consider such a case and denote the hyperkahler manifold by M and 

the group by G. Since G does not act properly, at every p E M there is a nontrivial 

subgroup Gp of G that leaves p invariant. The submanifold MaP of points q E M such 

that Gq = Gp is properly acted upon by the centralizer ZaP(G) of Gp in G (which is the 

broken part of the gauge group), and in addition MaP is hyperkahler. Therefore we can 

take the hyperkahler quotient of Map with respect to Zap(G), and the result is one of the 

smooth strata of the hyperkahler quotient M/G of M with respect to G. By varying Gp, 
we obtain in this way all the strata of M/G, and two Gp's related by conjugation give 

rise to the same stratum. 

Let us now analyze the mixed branches of the theory ( U ( k )n; {Vi}). We impose con

straints on the vev's of the scalars that parametrize the Coulomb branch in such a way 

that the vev a appears ni(a) times in the scalars coming from the ith gauge group in 

U(k)n. This puts us on a submanifold of dimension :Li,a 8ni(a);i:O of the Coulomb branch, 

with unbroken gauge group ®i,aU(ni(a)). The number of massless matter fields on this 

submanifold equals :Li Vini(O) + :Li,a ni(a)ni+1 (a). The Higgs branch MH over this sub

manifold of the Coulomb branch is given by a direct product of hyperkahler quotients. 

If we denote each hyperkahler quotient by its corresponding quiver diagram, we have 

explicitly · 

MH = (®iU(ni(O)),{vi}) x il(®iU(ni(a)),{O, ... ,O}) (8.1) 
a;i:O 

Now it will in general happen that the groups in (8.1) do not act properly. Then we are 

in the situation of the previous paragraph, and we have to specify a broken gauge group 
) 

to describe a stratum of the hyperkahler quotient. Although more exotic possibilities 

are possible, a typical broken gauge group could be ®i,aU(ti(a)), and we will restrict our 

attention to this type. The centralizer of this subgroup is ®i,aU(ni(a)- ti(a)), and one 

easily sees that the stratum associated to it is a dense submanifold of the hyperkahler 
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quotient 

M'H = (®iU(ni(O)- ti(O)), {vi}) X IT (®iU(ni(a)- ti(a)), {0, ... , 0}) (8.2) 
a;fO 

Each of the factors (®iU(ni(a) -ti(a)), {0, ... ,0}) has the property that the quaternionic 

dimension of the manifold is smaller than or equal to then dimension of the group, and 

therefore the group cannot act properly, unless the quotient has zero dimension. This 

implies that for a 'f= 0 the only consistent choice is n i (a) = ti (a): and that we can forget -

this part of M 'H, leaving us with 

(8.3) 

By assumption, the group ®iU(ni(O)- ti(O)) acts properly almost.everywhere. But this 

Higgs branch already emerges over a bigger submanifold of the Coulomb branch: if we 

choose ni(O)' = ni(O)- ti(O) and all other ni(a) arbitrary, we will still encounter M'H as 

Higgs branch. 

Ignoring the possibility of different types of broken gauge groups, this leads to the 

following picture. If we choose integers ki in such a way that ®iU( ki) acts properly in 

( ®iU(ki); {vi}), then associated to { ki} is a mixed branch in the moduli space of vacua, 

where we restrict the vevs of ki of the k scalars coming from the ith U(k) to vanish, and 

keep the others arbitrary. The dimensions of these mixed branches are 

n-1 n-1 1 n-1 

(dv, dH) = (l)k- ki), L kivi- 2 I':(ki+I- ki) 2
). 

i=O i=O i=O 

(8.4) 

If our duality conjecture is to be correct, we should be able to find similar mixed 

branches, with dv and dH interchanged, in the dual theory (U(k)m; { wi} ). We do not 

know precisely which sets of integers {ki} appear in (8.4), but the results of section 5.1.2 

and section 5.2.2 suggest that the integers have to obey the "convexity" condition 

(8.5) 

We have not yet completely solved the problem of finding a mixed branch in the B-model 

for each solution of (8.5), but luckily we can show a correspondence in a large class of 

examples which is already remarkable in itself. 

As our example, we take the theory (U(k )n; {vi}), with Vi > 0 for each i, and we 

impose a requirement on the integers ki that is stronger than (8.5), namely that 2ki :::; Vi 

for each i. For each such choice we can indeed find a corresponding mixed branch in 

(U(k )m; { wi} ), as we now describe. The Wi satisfy Wv0 = Wvo+v1 = ... = 1, and all other 
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Wi vanish. Mixed branches in the B-model are given by integers li, i = 0, ... , m- 1. Let 

us choose them as follows 

p = 0, ... , Vi. (8.6) 

Note that the integers li also satisfy the convexity condition (8.5). One can compute that 

(8.7) 

and that 

(8.8) 

These numbers are indeed respectively equal to dH and dv of the dual theory. The mixed 

branches that may be relevant to study this duality from the point of view ofT-duality 

and extremal transitions in string theory, correspond to taking all ki equal to a fixed k0 , 

and li = k- k0 . To summarize the results for the mixed branches: 

Model mixed branch dv dH 

(U(k)n; {vi}) {ki} I:(k- ki) L(kiVi- ~(ki+l - ki) 2
) 

(U(k)m; { Wi}) { li} L:(kiVi- Hki+l- ki) 2
) L:(k- ki) 

Table 12: The dimensions of the Coulomb and Higgs mixed branches 

Let us give one explicit example: The theory (U(k?, {2, 6, 2}) has a mixed branch with 

k1 = 1, kz = 2, k3 ~ 1, with dimension (dv, dH) = (3k - 4, 15). The dual theory is 

(U(k) 10
, {1, 0, 1, 0, 0, 0, 0, 0, 1, 0} ), and according to (8.6) the corresponding mixed branch 

in the dual theory should have {li} = {k- 1, k- 1, k- 1, k- 2, k- 2, k- 2, k- 2, k-

2, k- 1, k~ 1 }. Indeed, the dimensions of this mixed branch are dv = L:(k -li) = 15 and 

dH = Li(liwi- Hli+I -li?) = 3k- 4, in accordance with the duality conjecture. 

The analysis of the mixed branches provides a highly nontrivial check on the consis

tency of the proposed duality. The check might be improved even further if one could 

demonstrate a one-to-one correspondence between ki satisfying (8.5) and li satisfying a 

similar condition. Also, it would be very interesting to incorporate masses and FI param

eters in the discussion, and to try to derive the mirror map as in section 5. Right now, 

the evidence we have for the mirror map (3.4) is based on an analysis of the singularities. 

According to theorem 2.8 in [7], singularities in the Higgs branch of the A-model will ap

pear if I: nz(; = 0, where the nz are nonnegative integers that satisfy Li ni( ni - ni-1) :::; 2 
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and ni ~ Vi· The singularities in the Higgs branch appear whenever there is an unbroken 

gauge group. In the B-model, one can analyze for which masses one expects a singularity 

in the Coulomb branch and the appearance of fiat directions for the hypermultiplets. The 

result is a generalization of (5.24). Requiring that there is a one-to-one correspondence 

between these sets of singularities in the A-model and B-model, one ends up with the 

mirror map given in (3.4). 

9 Discussion 

Quiver diagrams provide a natural framework for the study of the mirror phenomena 

in three dimensional gauge theories. In this paper we studied three families of mirror 

gauge theories based on unitary and symplectic gauge groups. All these theories contain 

matter hypermultiplets in various representations. In the absence of matter there is no 

Higgs branch but nevertheless it is still natural to ask whether our results can shed light 

on the Coulomb branches of the pure gauge theories, and in fact they do. 

Consider first a U(k) gauge theory without hypermultiplets in the fundamental repre

sentation but with one massless adjoint hypermultiplet. Being an N = 8 supersymmetric 

gauge theory, the Coulomb branch does not receive quantum corrections and is therefore 

the hyperkahler manifold Symk(C* x C) 1 . Upon adding a mass to the adjoint the Higgs 

branch is lifted and we expect the quotient singularities to be resolved and the moduli 

space to become the Hilbert scheme of k points on C* x C. However we should be cautious 

since the fact that the non-compact space C* x C is hyperkahler does not guarantee that 

Hilbfkl(C* x C) is hyperkahler too. Keeping this point in mind we decouple the adjoint 

by sending its mass to infinity. The structure of the moduli space metric, for which we 

can gain some understanding from the one-loop calculation (4.3), suggests that the limit 

madj -+ 0<:) scales the metric in such a way that we probe only a small open subset of the 

Hilbert scheme. This may well still be the same algebraic variety as H ilbfkl( C* x C) if it 

has a hyperkahler quotient construction, similar to the one fundamental hypermultiplet 

case, since we expect such a construction to be scale invariant2 . Thus we propose that 

the moduli space is either H ilbfkl( C* x C) or some subset of it. 

The rrioduli space for an SU(k) gauge theory without matter hypermultiplets follows 

from the above since the U(l) and the SU(k) parts of the U(k) gauge theory decouple in 

the absence of matter. This indicates that the moduli space of the SU(k) gauge theory 

1 Recall that R 3 X 5 1 == c· X C. 
2There will be only one parameter in such a hyperkahler quotient construction which is the mass of 

the adjoint hypermultiplet madj and we can scale the algebraic equation and absorb the scale of madj. 

50 



is Hilb[k](C* x C) modded by C* x C, or some subset of it. It is curious to note that 

moduli space of pure SU(2) k-monopoles, which have been proposed in [4] as the moduli 

space of pure SU(k) gauge theory is an open subset of this space [40]. It is clear however, 

that in order to correctly identify the moduli space we need a better understanding of the 

quantum and monopole corrections. 

Consider now an Sp( k) gauge theory without hypermultiplets in the fundamental 

representation and with one massless antisymmetric hypermultiplet. The Coulomb branch 

is the symmetric product of Atiyah-Hitchin spaces, each of which we denote by XAH. Upon 

adding a mass term for the antisymmetric hypermultiplet, the Higgs branch is lifted, and 

we expect to resolve the quotient singularities of the moduli space and get the Hilbert 

scheme of k points on the Atiyah-Hitchin space. Again, it is not guaranteed that this space 

is hyperkahler and we may need a suitable subset of it. Decoupling the antisymmetric 

hypermultiplet will scale the metric in a similar manner as in the U ( k) case. 

The following table summarizes this discussion: 

Gauge Group Mv 

U(k) Hilbfkl(C* X C) 

SU(k) Hilbfkl(C* X C)/(C* X C) 

Sp(k) Hilb[k]XAH 

Table 13: The proposed moduli spaces in the absence of matter 

There are several natural directions for future studies. From a field theory viewpoint 

it is impqrtant to understand the role of the monopole corrections to the metric on the 

Coulomb branch and in particular the mechanism by which it resolves singularities. It 

is also interesting to explore the D-brane wrapping mechanism that corresponds to the 

monopole corrections. From a string theory viewpoint it would be important to further 

explore the stringy origin of the mirror phenomena and the mirror map. In particular 

it would be interesting to uncover the role played by the moduli space of D-branes that 

exists in. the wrapping picture. 

The detailed study of the moduli space of vacua exhibits a rich structure of mixed 

branches and possibly non-trivial RG fixed points which is worth exploring. We expect 

that other dual quiver diagrams exist which encode the field data for other families of 

mirror gauge theories and it would be interesting to find them. 
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Besides being a remarkable rich structure in its own right, we believe our results 

will be useful in obtaining a better understanding of non-perturbative effects in type II 

string compactifications, the physics of small instantons, monopole corrections in three 

dimensions and (possibly non-trivial) IR fixed points. 
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