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Thermodynamic Properties of Aqueous Solutions: 
Non-symmetric sticky electrolytes with overlap between ions 
in the HNC and mean-spherical approximation 

Ying Hu·, Jian-wen Jiang and Hong-lai Liu 

Thermodynamics Research Laboratory, East China University of Science 

and Technology, Shanghai 200237, China 

John M. Prausnitz• 

Department of Chemical Engineering, University of California, Berkeley, and 

Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of 

California, Berkeley, CA 94720, USA 

Based on a sticky-electrolyte model, the Omstein-Zernike integral equation is 

solved for non-symmetric electrolytes with stickiness between ions at various 

distances equal to or less than the collision diameter. The HNC approximation is 

used for the closure inside the hard core, while the mean-spherical approximation 

for electrostatic interactions is used for the closure outside the hard core. 

Expressions for correlation functions and thermodynamic properties in term of the 

sticky parameters are derived. Numerical results are presented for various cases. 

I. INTRODUCTION 

Blum and coworkers1
"
3 have extensively studied application of the mean-spherical 

approximation (MSA) for symmetric and non-symmetric electrolytes. By adopting Baxter's 

factorization procedure, the Fourier-transform of the Omstein-Zernike equation was 

decomposed into two fundamental equations: one for the total correlation function and the 

other for the direct correlation function. After a lengthy and tedious derivation, they were able 

to relate analytically all configurational thermodynamic functions to a scaling parameter that 

was solved by a simple iteration procedure for given conditions. Blum's theory is the basis of 

several engineering-oriented models (e.g. Ball, Planche, Furst and Renon4
). The approximate 
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explicit solution for the scaling parameter presented by Harvey, Copeman and Prausnitz5 

significantly simplifies the calculation. 

To take into account ion-pairs and other cluster formation, a more realistic model called 

sticky-electolyte model (SEM) was developed by several authors6-8
. For symmetric 

electrolytes, Lee, Rasaiah, Cummings and Zhu9
"
14 introduced ion association in the 

Hamiltonian through a delta-function interaction between oppositely charged ions at a distance 

equal to or less than the collision diameter. The analytical expressions for the internal energy 

and the Helmholtz function were obtained through the cavity correlation function. Excess 

internal energies, excess Helmholtz functions, osmotic coefficients and pair correlation 

functions were calculated for some electrolyte solutions. 

For non-symmetric electrolytes, Herrera and Blum15
'
16 and Zhu and Rasaiah17 derived 

equations based on a sticky-electrolyte model. However, the sticky position is restricted to 

adhesion between oppositely charged ions at the hard-core surface. Regrettably, no numerical 

results were shown. Recently, Blum and Bernard1s.19 have reported further efforts for mixtures 

of charged hard spheres using Wertheim's formalism with a new exponential approximation. 

Because ion pairs formed by strong (chemical) forces always exhibit overlap between ions, 

a contact-sphere model provides only an approximation. In this work, we solve the Ornstein

Zernike equation for sticky non-symmetric electrolytes based on a more general model in 

which the sticky position can be equal to or less than the collision diameter Uy={ ui+Oj· )/2, 

where Ut and Oj are the hard-core diameters of ions i and j. The sticky distance L;i for an i-j 

pair may select any value between the limits: 

sup(ui 12,ui 12) <Ly. ~uif (1.1) 

where sup(x,y) means that the maximum of either x or y is chosen. 

In Sec.II, we briefly introduce the two fundamental equations obtained by factorizing the 

Omstein-Zernike equation with results similar to those given by Herrera, Blum, Zhu and 

Rasaiah15
•
16

'
17

. In Sec.ill, we discuss in detail the solution of the fundamental equations for 

SEM. Because the sticky distance Lif may be less than the collision diameter Uy·, the symmetry 

conditions will not yield a simple scaling parameter. For a multicomponent system containing 

K ions, characteristic parameters N; (i=1,2, ... ,K) are obtained by solving a set of non-linear 

equations. An expression for calculating the direct correlation function is also derived; this 

expression allows us to obtain the total correlation function inside the hard core by using either 
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the PY or the HNC closure condition. We then derive expressions for thermodynamic 

properties in Sec. IV: the excess internal energy is expressed analytically through N; 

(i=l,2, ... ,K); the excess Helmholtz function is expressed through the cavity correlation 

function at the sticky position. The cavity correlation function is determined analytically by N; 

(i=l,2, ... ,K). Expressions for other thermodynamic properties are also given. Finally, Sec.V 

presents results of numerical calculations, followed by a short discussion. 

ll. FUNDAMENTAL EQUATIONS FROM FACTORIZATION OF THE ORNSTEIN

ZERNIKE INTEGRAL (OZ) EQUATION 

We consider a non-symmetric-electrolyte solution containing K ions with different sizes a; 

and charges Z;e (i=1,2, ... ,K) in a solvent medium. Here e is the unit charge. In the framework 

of the sticky-electrolyte model (SEM), the interaction potential uu(r) comprises three 

contributions: the hard-sphere contribution (hs), the sticky contribution (st) and the 

electrostatic contribution ( el): 

uiJ (r) = u;5(r) + u~t (r) + u;1 (r) 

where r is the center-to-center interion distance. 

~(r) =oo 

=0 

u;1 (r) = -p-1 In[ Lii o( r- Lii) /12:-ii] 

r<a;i' r:;t;Lg. 

r>a;J, r = lg· 

(2.1) 

(2.2) 

(2.3) 

u~1 (r)=Z;Zie2 /4;r&r (2.4) 

Here, p = llkT ; r iJ is the inverse of the sticky coefficient ~if which measures the strength of 

the stickiness, -r-;/ = ~~i . e is the permittivity of the solvent medium. Eq.(2.3) indicates that 
' 

there is a Dirac 8 function interaction at Lu· , that is, a stickiness at this position. 

Electroneutrality demands that 

(2.5) 

where Pk is the number density of ion k. The state of the electrolyte solution is fixed by all p; , 

a; and 'ii. 

For this system, the OZ integral equation is 

hiJ (r)- ciJ (r) = Lk Pk f dr' C;k(lr- ~·l)hkj (r') (2.6) 
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where the total correlation function hy(r) is defined by the pair correlation function gii(r), 

[ hy(r) = gii(r) -11 , cy(r) is the direct correlation function. In terms of a virial expansion, the 

total correlation function for SEM has the form9-12
, 

hy(r) = -1 +Ay4_;8(r- Ly) I 12 (2.7) 

where Aii is a sticky parameter (yet to be determined) that is a function of at, p; and- 'ii. 

However, eq.(2.3) is not closed, i.e., it is insufficient. An independent relation between 

hv(r) and cy(r) is needed to solve the equation. Two closure relations are commonly used 

inside the hard core: the Percus-Y evick (PY) approximation and the Hypemetted Chain 

(HNC) approximation, 

Yij (r) = gij (r)- cij (r) 

Yy(r) = exp[hy(r) -cy(r)] 

(PY) 

(HNC) 

whereYy(r) is the cavity correlation function defined by 

Yy(r) = gy(r)exp[fiuy(r)] 

(2.8) 

(2.9) 

(2.10) 

Outside the hard core, the mean-spherical approximation (MSA) is usually adopted; it is a 

first-order approximation of HNC, i.e. 

c!i(r) = -pu!i(r) = -pu;1(r) (2.11) 

To avoid divergence of the integrals that will appear in the Fourier transform, the long-range 

electrostatic interaction is revised with the use of a parameter J.L , 

u~(r) = lim [ ZiZje2 I ( 47rre )exp(- .ulrl)] 
J.L~O 

Thus, the direct correlation function for all r can be expressed as 

cii(r) = cij (r) + lim [-zizj P e2 I ( 47rr e )exp(- .ulrl)] 
m~O 

(2.12) 

(2.13) 

wherecij(r) is the short-range contribution, that is equal to zero outside the hard core. 

The Fourier transforms of cy(r) and hy(r) are 

EiJ.(k) = ~P;P1 J ciJ.(r)exp(ik · r)dr = 47r~P;Pj J; cu.(r) sin(kr)(r I k)dr 

fiij (k) = ~P;P j J hij(r) exp(ik · r)dr = 47r~P;P j J; hij(r)sin(kr)(r I k)dr 

Eq. (2.6) is then transformed into: 

oij = Lk[oik +H;k(k)Jo.~g -E.~g(k>] 

Taking the Fourier transform of eq.(2.13), we have 

- -o 2 2 Cy·(k) = Cv· (k)- 1im
0

av· I (k + f.J ) 
Jl~ 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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where Cf}(k) isdefinedasineq. (2.14); aij isgivenby: 

a if= ~PiP fzizfpe2 IE= a5~PiPfzizf 

a5 = Pe2 IE . 

(2.18) 

(2.19) 

Substitution of eq.(2.17) into eq.(2.16) yields the corresponding OZ equation in Fourier space: 

Integrating eqs.(2.14) and (2.15) by parts, we find 

,E;(k) = 2~P;P1 J;cos(kr)Sil.(r)dr 

Hil.(k) = 2~p;p1 J; cos(kr)Jil.(r)dr 

where 

sij (r) = 2;rJ; c~ (t)tdt 

Jil.(r)=2;rf~ hil.(t)tdt 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

The right-hand side of eq.(2.20) can be factorized following the method of Baxte~0 via 

the Wiener-Hopf factorization method extended by Blum1
"
3 to coulombic systems with a 

function Qy(k) (called Baxter function) defined as: 

Qif(k) = 8if- ~P;P1 J;;Qif(r)exp(ikr)dr + Aif~P;P 1 J~ exp[r(ik -p)]dr (2.25) 

where Ay is determined later. We define 

uij = (u; +u )12 (2.26) 

Ay =(u; -uf)l2 (2.27) 

The OZ equation, eq.(2.20), is then decomposed into two separate equations, one for cy(r) 

and the other for hy(r): 

-o 2 2 """ - -t5if- Cv·(k) +a if I (k +f.i ) = ~kQik(k)Qfk(-k) (2.28) . 

Lk[t5;k +H;k(k)]Qkj(k) =[QT (-k)1~1 
(2.29) 

The inverse Fourier transforms of eqs. (2.28) and (2.29) are 

Sif (r) =ail. exp( -plrl) I 2p~p;p1 - LkPkA;kAfk exp( -plrl- 2pA~q·) I 2,u 

+[Qif(r)- Aif ]H(r- 2 Ji) +[Q1;(-r)- A1; ]H(-r- itil.) 

-"' Jinf(u.li, r+u9')Q (t)Q ( - )dt L...kPk sup(..t.li, r+..t9'> ik Jk t r 

+ Lk PkAfds:;(..t.li, r+..t9') Qik (t)dt + LkPkAids:~(..t9', -r+..t.li) Qjk (t)dt (2.30) 
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Jy(r) = [{4(r)- Aii /2]H(r- /!y;) + 4 Pkf~ J;kdr-ti)Q~g(t)dt 
- 4-Pkf: J;k<lr-tl)A~gdt (2.31) 

where His the Heaviside function; sup means that the maximum is chosen; inf means that the 

minimum is chosen. Eq.(2.30) is responsible for solving the direct correlation function cy(r) 

through Sy(r), while eq.(2.31) is responsible for solving the total correlation function hy(r) 

through Jy(r). If r >;., ji, eq.(2.31) becomes 

Jii(r) = [Qy(r)- Ay I 2] + Lk PkJ~: J;k(lr- tl)Q~g(t)dt 

- Lk Pkf~i" J;k(lr- tl)A~gdt (2.32) 

From eq.(2.30), when p approches zero, we obtain: 

Compared with eqs.(2.18) and (2.19), we have 

Aii =afZ; 

Lk Pk ak 2 = ao2 = p e2 I & 

(2.33) 

(2.34) 

(2.35) 

From these two equations we can see that, instead of Ay· , another characteristic parameters a; 

(i=1,2, ... ,K) must be determined. Eq.(2.35) provides a normalization constraint for parameters 

a; . Applying electroneutrality for an ion and its ion atmosphere, we also have 

4;rL,k PkZkf;' h;k (t)t 2dt = -z, 
LkPkA~g·£' J;k(t)dt =-Ay·l2 . 

These two equations have been used in the derivation of eq.(2.31 ). 

(2.36) 

(2.37) 

· Eqs.(2.30) and (2.31) are two fundamental equations for SEM similar to those given by 

Herrera, Blum, Zhu and Rasaiah2.15
'
16

'
17

. However, there are minor differences between 

eq.(2.30) of this work and those published previously, probably because of misprints. 

ID. SOLUTION OF THE TWO FUNDAMENTAL EQUATIONS FOR SEM 

When state conditions cr;, p; and T if are fixed for a solution containing K ions, we have 

to find 2K2 functions Jy(r) and Sy(r), K2 Baxter functions Qy· (r) and K parameters a;· , as 

shown in the fundamental equations, eqs.(2.30) and (2.31) , as well as by eq.(2.34) which 

relates the Ay· 's to those a;· 's. However, this task can be simplified-. We first focus attention on 
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the solution of the second fundamental equation, eq.(2.31). We then solve the first 

fundamental equation, eq.(2.30). Finally, we use the cavity correlation function to obtain a 

- self-consistent result for the sticky parameter A . The calculational procedure consists of six 

parts. 

1. Polynomial Expansion of the Baxter function 

Considering the continuity of SiJ(r) at r = uiJ, in the MSA the Baxter functions Qy·(r) are 

zero beyond the contact distance: 

Qy(r) = 0 r > uiJ (3.1) 

On the other hand, from eq.(2.7), hy(r) = -1 when r<uy· (except r=Ly· because of the 

stickiness). Therefore, we have from eq.(2.24), 

J~:(r) =0 

The third-order derivative of Qy(r) should also be zero as shown by eq.(2.31): 

Q'ij(r) = 0 

From eqs.(2. 7) and (2.24) we obtain 

J··( r::)- J··( 17'.) -1l' A·.T .. 2 I 6 lJ "-'iJ lJ "-'iJ - l)"-'i) 

By using eq.(2.31), 

Jy·(~)- Jy·(4j) = Qij(~)- Qij(4j) 

r<u·· r:t 1 ·· y' "-'iJ 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Therefore, we can write a second-order polynomial expansion for QiJ(r) with respect to 

' 2 " 1 Q··(r)- (r- u··)Q ·+ (r- u··) Q ··I 2 + Q·· H(-r + 1 ··) I) - I) I) lJ lJ lJ "-'1] (3.6) 

where Q# stands for the contribution to Qy(r) at Ly owing to stickiness, determined by the 

(as yet) unknown sticky parameter A iJ, 

Q# =Q;j(~)-Qy·(4j)=nAiJL;/ 16 (3.7) 

Q; is independent of ion i (indicated in the details of the derivation) and therefore replaced by 

Q~. From the above analysis, the K2 Baxter functions Qy(r) can be determined by (K2 +K) 

expansion coefficients Q~· and Q ~: 
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2. Expressions for polynomial coefficients of the Baxter function 

When we take the first and second derivatives of eq.(2.32) in the range ;. ji < r < uij we 
. ' 

have 

-2TCr hif(r) = Q~(r)- 2TC:Lk Pd;;cr- t)h ik~r- tj)Qk.i(t)dt 

+ 2TCLkPkAJg. f~, (r- t)h ik~r- tj)dt- Lk pkJikAJg. (3.8) 

-2TC[hif(r) +rh~-(r)] = Q;(r) 

- 2TCLkPd:: [h;k(~- tj) +jr- tjh;k (jr- tj)]Qlg"(t)dt (3-9) 

+ 27rLk p k Alg" f~, [h;k (jr- tl) + lr- tlh;k <lr- tl) ]dt 

where superscripts' and" represent first-order and second-order derivatives with respect tor, 

respectively. 

Jif = Jif(O) = 27rf~ hif (t)tdt 
(3.10) 

Substituting r = u i I 2 and remembering that Lif > sup( u; I 2, u f I 2) , we obtain 

" 0 Qf =2TC+7ZllJXt -2;r"f.kPkKkf 

where 

K~ = s::Q9.(r)dt 

Kt = s::Qij(t) rdr 

X n = LkPkU~Zk 

B; = LkPkZkJki . 

Substitution of eq.(3.6) into eqs.(3.11) and (3.12) yields 

• 2 0 a· " 2 A 
Qij = --2 Kij + -:j-Qi + -2 Qij (Ly- A. ji) 

U; U; 

1 3a f-a; [ ~.0 ...-.A ] a
4 

" 1 A. 2 2 
Kij = 6 Kij- !.!ij (Lij-;. ji) - 72 Qj +2QjJ (Lij -). Ji ) 

After tedious algebra, we obtain 

~=~+~A 

p00 d {TC[U ( Jra"JS2) ] flU.. } ~i =-' - -' 1+ +u. +a.(N +-' P.) 
lJ 2 V 3 2V 1 1 1 6V n 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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2 

K~;. = Q~ (L.. - .l .. ) - ;u~ i [<nu> - u .nu>)- u .nu> 1 3] 
lJ 1) 1) )I 2'\7 2 J 1 I 1 

2 3.r 
-" u; ~ 2 (nu> -u .nu>) 

12\72 2 J 1 

where 

Sn = LkPkUk 

V=1-~s3 

N; =B;+ 4;.L~2+~LkPkuk3Bk] 

P, = Lk Pkak(Nkak + Zk) 

nn(j) = LkPkQ~(Lkjn -.ljkn) 

Substituting eqs.(3.18) and (3.19) into eqs.(3.11) and (3.12), we have 

For Baxter functions at A. , we have 

. 1 2 .. ). 
Qy (.l1,) = -u,Qy + 2cr, Q J + Qy 

= -a 1a, N, - 1!cr,cr 1 I v + Qu;. - 1!CT1 (fl2 <J> - cr 1fl1 U>) I v 
. 1 2 .. ). 

QJI(AiJ) = -CTJQJi + 20"1 Q; + Q11 

= -a,cr1N 1 - 7!CT1CT1 IV+ Q/ - tro-1 (Q2 
<t> - cr1fl/ 1>) IV 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27). 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

From eqs.(3.27) and (3.30) we see that, by using eqs.(3.8) and (3.9) (the numbers of these 

equations are K2 and K, respectively), all (K2 +K) expansion coefficients Qij· and Q~: are finally 

expressed as functions of2K characteristic parameters N;· and a1 (j =1,2, ... ,K). 
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3. Relations between Nj and ai 

From eq.(2.31) at r=aj/2, combined with eqs.(3.16) and (3.24), we find the relation 

between Nj or Bj and a i : 

a j = - ~ ( N j + JUT j Pn I 2 V + f// J ) 
where 

D = LkPk(NkCFk + Zk)
2 

lf/1 =-Lk PkQk/" [N k (Lkj- A. jk) + zk] + 2"v Pn(.Q2(j)- (}' j.Ql(j)) 

Further, 

""' [ {Jj I {Jj 2 II A. ] 
B1 = ~k PkZk (2-ukJ)Qkj + (2-u~q·) Q1 I 2 + Q~q· 

-a1L:k PkZf I 2+ Lk PkBkK!/q + Lk PkBkA~q·(~k -u1 I 2) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

By ·using eq. (3. 3 5), the only remaining unknown parameters are K characteristic parameters ~. 

where j = 1,2, ... ,K. 

4. Set of K equations to obtain Nj 
We use the symmetry property of the direct correlation function c!i (r) and the 

corresponding function Sy(r). According to eq.(2.30), symmetry gives 

Ay- Qy(A ji) = Aji - Qj;(Ay) (3.39) 

Substitution of eqs.{2.34), (3.33), {3.34) and (3.35) into eq.(3.39) yields 

a1(N;u; + Z;) + tta;(nij)- a 1n 1U)) I v = a;(N1a 1 + z1) + tta1<nii) -u;nli)) I v (3.40) 

where all the variables other than ~· can be expressed as functions of~· and state conditions 

U;, p; and ";J . Therefore the only unknown parameters are~·, (j=1,2, ... ,K). For symmetric 

electrolytes, CF; = CFj = CF; for non-symmetriC electrolytes with ion association OCCUring only at 

the contact surface, Ly =u;1 . For such systems, the second terms on both sides of eq.(3.40) 

vanish. A scaling parameter can then be introduced as shown by Lee, Rasaiah, Cummings and 

Zhu9
"
14 for symmetrical electrolytes; and by Herrera and Blum15

'
16 and Zhu and Rasaiah17 for 

non-symmetric electrolytes. In this work, we must solve a set of K non-linear equations to 

obtain all~· (j=1,2, ... ,K). The number of eqs.{3.40) is K-1. With the additional normalization 

constraint, eq.(2.35), altogether we have K independent equations which permit us to solve for 

K parameters~·, (j=1,2, ... ,K). The solution of the second fundamental equation, eq.(2.31), is 

then finally completed. 

10 



5. Direct correlation functions 

We solve the first fundamental equation, eq.(2.30), to obtain the direct correlation 

function inside the hard core, as required for obtaining the cavity correlation function YiJ{Ly) at 
the sticky position. We then take the derivative of eq.(2.30) in the range J. Ji ~ r < u Ji when 

CF J ~ CF; , or in the range of Ay ~ r < CFy when u J ~ CF;. We obtain 

27rrc/(r) = -Q~(r)+LkPkAJk Qik(r+A.kf) 

- LkPk Qik (uki )Q1k(u ki - r) + LkPk I::i~ Q;k (t)Q1k (t- r)dt 

(3.41) 

where 

s ai+af 
tJJ·· = -r+--.:.... 

IJ 2 

r2 a· +a. 
tJJ~ = --+ I J r 

IJ 2 2 

2 2 
ai +2aiaJ +a1 

8 (3.42) 

From the direct correlation function inside the hard core, eq.(3.41), we see that, similar to 

the pair correlation function and the total correlation function, there is a Dirac function, that is, 

a discontinuity at the sticky position. However, as shown in the next section, the cavity 

correlation function is not discontinuous because the Dirac function is subtracted in the 

expression. Eq.(3.41) also gives the direct correlation function for the "usual" MSA without 

stickiness. Hirioke 
21 

has given detailed numerical results. 
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6. Cavity correlation function and sticky parameter 

In the final step, we calculate the sticky parameter Ay· . In terms of the cavity correlation 

function at the sticky position, the sticky parameter A!i· in the expression for the total 

correlation function, eq.(2. 7), can be evaluated through the sticky coefficient f ij 

Ay= fij Yy(L;_;) (3.43) 

where fij is defined by ~ y= -r;/. Eq.(3.43) is derived by combining eqs.(2.3), (2.7) and 

(2.10). 

The degree of stickiness, a;, that is, the average number of ion j around ion i, 1s 

calculated by 

a;= pj~:giJ(r)4nr 2dr = ;piA;iL/ (3.44) 

At the sticky position, hy(Ly) has a Dirac function as shown in eq.(2.7). On the other 

hand, cy(L!i) also has a Dirac function. In the PY or HNC approximation, eqs.(2.8) and (2.9), 

we have the difference between hy{LiJ) and cy(Ly); the Dirac functions then cancel. Therefore, 

we can use the PY or HNC approximation to estimate the cavity correlation function at the 

sticky position, Yy(Ly). To do so, we use the direct correlation function cy(LiJ) obtained by 

eq.(3.41) and the total correlation function hy(LiJ) by eq.(2.7). We can then estimate the sticky 

parameter A ij . 

When we solve the second fundamental equation, we tacitly assume that the sticky 

parameter A if is known. We then can solve a set of K equations to obtain ~ 's; in tum, we 

obtain all other desired paramet~rs and functions. Now we obtain A ij again. Therefore, we 

have an iteration process. The objective is self-consistent results for the sticky parameter Ay in 

eq.(3.43). 

VI. THERMODYNAMIC PROPERTIES 

If we select a hard-sphere mixture without stickiness as the reference system, the excess 

internal energy can be found using the potential function and the correlation function by the 

well-known relations: 
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V foodexp[-P U;·(r)] 
Eex = E(SEM)- E(hs) = -2 L;,j P; Pj 0 dp IJ Yy(r)47r r

2
dr 

V"' J01 .dexp[-puij(r)] 2 
= -2 L..;,j P; Pj 0 ° dp Yy(r)47r r dr 

+ V L· .,q.p.f
00 

u--(r)g.-(r)47rr2dr 2 1,1 I 1 Uij I) I) 

= Eex,st + Eex,el . (4.1) 

As shown in eq. ( 4.1 ), the excess internal energy can be separated into two parts, the 

electrostatic contribution and the sticky contribution: 

(4.2) 

Eex,st = V ""\"' P· p . fuu kU .. st (r)g .. (r)4 Jr r2 dr 
2 ~J I 1 Jo Y Y -

= v L;,j P; Pj kU /t Lij QJ ( 4.3) 

where Ut/ =-Tln(Lij I 12-r if) is a measure of the sticky energy, expressed in temperature 

units. 

If we select a hard-sphere mixture with stickiness as the reference system, 

Eex =Eex,el = e2V[".p-Z-N-- "· .p-p.Z-Z -Q~J 
47rE L...JI I I I L...J1,1 I 1 I 1 I] (4_4) 

As indicated by the above equations, the excess internal energy can be calculated 

analytically when we have all ~- 's and the Qff which contain the sticky parameter Ay- . Those 

~- 's can be obtained by solving a set of K nonlinear equations. 

For the Hemholtz function, we use a relation based on the cavity correlation function10
'
22

, 

8(PAIV) 
8 fv·(r,~ij) -Pifj Yy(r,~y·) (4.5) 

From the definition of the Mayer function 

fy (r) = exp[ -Puy(r)] -1 , 

we have 

fv· (r) = Ly8(r- Ly )~y· I 12-1 

=exp(-Z;Zjpe2 /4n-er)-1 

O<r<cr·· I] 

(4.6) 

(4.7) 
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The change of Mayer function resulting from the change of stickiness is: 
(4.8) 

For convenience, we select as a reference an eletrolyte mixture with no stickiness, i.e., the 

normal MSA. The excess Helmholtz function, i.e., the change in the Helmholtz function 

between SEM and MSA, can be calculated by: 

/)A ex IN= p[A(SEM)- A(MSA)] IN 

=- Ltr L;LiAPiL/[Aii[1-lnyii(Lii)]+ f:" yii(Lii,A~)dA~] 
3 kPk 

where N is the total number of ions. 

(4.9) 

If we select a hard-sphere mixture without stickiness as the reference system, the excess 

Helmholtz function of the system is 

Aex = A(SEM)- A(hs) = A(SEM)- A(MSA) + Aex(MSA) 

where 

Aex(MSA) = Eex(MSA)+(F 3 13tr)VkT 

Here r is the scaling parameter in Blum's 
1
-
3 

"normal" MSA, 

2 2" I tr 2 l 2 

4r = a 0 ~k Pkl (Zk- 2V Pnak )I(I+F ak) J 

(4.10) 

(4.11) 

(4.12) 

The excess osmotic pressure can be obtained by differentiating the excess Helmholtz 

function, 

(
aA.ex) pex =- __ 
8V T 

The osmotic coefficient and the activity coefficient are calculated by 

;ex= f3 Pex; So 
In r ~x = f3 Gex I N = f3 A ex I N + ¢ex 

V. RESULTS AND DISCUSSION 

(4.13) 

(4.14) 

(4.15) 

The method discussed above can be used to calculate thermodynamic properties such as 

excess· internal energies, excess Helmholtz functions, osmotic coefficients and activity 

coefficients in the framework of SEM. In this section, we present results for the reduced 

excess internal enemy -Eex I NkT with a hard-spheres mixture as a reference~ the reduced 

excess Helmholtz function -A ex I NkT with the "normal" MSA as a reference~ the sticky 
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parameter A and the degree of stickiness a o for 2-2 eletrolyte solutions. We consider only 

stickiness between oppositely charged ions. 

If we take the PY approximation inside the hard core, the cavity correlatiop function 

Yy(r) is negative. Because of this unrealistic result, we adopt the HNC approximation. 

First, we present calculations for the RPM model ( o-1 = o-2 =a). The results are 

summarized in Figs. I-3. Figure 1 shows the sticky parameter as a function of concentration 

c(molldm3
). The state properties for the system are the same as those used by Rasaish and 

Lee11
. Here D=s I 8() is the dielectric constant of the solvent. Sticky parameter A decreases 

when the concentration increases. However, the degree of stickiness ao and 

-Eex I NkT,-Aex I NkT increase, as expected. Comparison with Rasaish and Lee's work 

indicates that agreement is nearly perfect. In Fig.2, we plot the sticky properties against the 
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0.2 
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-Etx 

NeT 
2 

03 

02 
-A cr. 

NeT 
0.1 

o~--~--~----~--~o o~--~--~----~--~o 

0 0.5 c1m.dm·3 15 2 0 0.5 

Fig.l. A , a· and -Eex. I NkT ,-Aex I NkT as functions of concentration for sticky charged 

hard-sphere 2-2 electrolyte. T = 298K., D = 78.358, O" = 0.42 nm, ~ = l.l x I 0
3

, Lst = a. 

•= Rasaish and Lee11 
; -:this work. 
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Fig.2. A ,a· and -Ecx I NkT,-Aex I NkT as functions of sticky energy for sticky charged 

hard-sphere 2-2 electrolyte when c=l.Omol.dm"3
. T=298K, D = 78.358, 

0" = 0.42 nm, L81 = 0". 
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FIG.3. A ,a· and -Ecx I NkT ,-Aex I NkT as functions of sticky position for sticky charged 

hard-sphere 2-2 electrolyte, c=l.Omol.dni3. T=298K, D = 78.358, cr = 0.42 nm, ust = -IOOOK-

sticky energy if. We see that A, ao and -Eex I NkT, -Aex I NkT all increase as the 

reduced sticky energy rises. Fig.3 shows relations between the sticky properties and the sticky 

position Lst. The sticky position studied in this work is in the range a > Lst > a/2. A, 

a o, - Eex I NkT and - Aex I NkT show the same behavior as those in Fig. I. As for the 

influence of the sticky distance, shown in Fig.3, when the two ions are closely associated 

(smaller Lst), although the sticky parameter A increases, ALst still reduces because A 

increases more slowly. The sticky probability represented by correlation function h, shown in 

eq.(2.7), declines. The degree of stickiness ao also falls because a wider region of infinite 

repulsive energy barrier must be overcome before the ions can associate. The excess internal 

energy and the excess Helmholtz function decrease. 
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12 0.00 
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8 a 0.01 

MeT -A cr. 
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O.<Xi 3 MeT 
4 O.<BS 

0 0.05 2 O.<B 
0.2 0.6 I 1.4 1.8 0.2 0.6 I 1.4 1.8 

cltml.dni clrml.dni 

FIG.4. A, a· and -Eex I NkT ,-Aex I NkT as functions of concentration for sticky charged hard

sphere 2-2 electrolyte. T=298K, D = 78.358, o-1 = 022 nm ,o-2 = 0.42 nm, ust = -2000K, L51 = o-12. 
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Now we tum to non-symmetric electrolytes. The results are summarized in Figs.4-6. The 

sticky properties are plotted as functions of concentration c(moVdm"3
) in Fig.(4). Results are 

6J 

~ as as 
6 ., 

-Er:x 
A a6 a6 NkT -Act XI CL 4 

a4 a4NkT 
a> 

a2 2 
10 a2 

0 0 
0 0 

100 sm 1,/00 4500 3,D) 100 sm 1,nl 4500 3,3X) u•t u•!K 

FIG.S. A, a· and -Ecx I NkT ,-Acx I NkT as functions of sticky energy for sticky charged hard

sphere 2-2 electrolyte when c=l.Omol.dm-3. T=298K, D = 78.358, u 1 = 022 nm, u 2 = 0.42 nm, 

Lst =0"12. 

0.0024 

0.131 
0.0019 

A. CL 

0.0014 
0.129 

0.0009 

0.127 '----'-----'-----'--' O.OCXl4 

.22 .25 .28 .31 

L,/nm 

NkT 

3.592 

3.591 

3.59 

0.0012 
-ACX 

NkT 
0.0008 

0.0004 

3.589 '-------'-----'-----'----' 0 

.22 .25 .28 .31 
L,/nm 

FIG.6. A, a• and -Ecx I NkT ,-Acx I NkT as functions of sticky position for sticky charged hard

sphere 2-2 electrolyte when c=l.Omol.dm"3
. T=298K, D = 78.358, u 1 = 022 nm, u 2 = 0.42 nm, 

ust = -IOOOK. 

similar to those in Fig. I for the RPM model. The dependence of the sticky properties on the 
sticky energy are shown in Fig.5 which is also similar to Fig.2. 

Fig.6 shows the relation between the sticky properties and the sticky position Lst. The 

range is: o-12 >Ls1 >sup(o-1 /2,o-2 /2). As shown in Fig.6, a 0

, -Eex/NkT and 

-Aex I NkT show similar behavior as in Fig.4. However, as for A, it shows a minimum. 

The above results indicate that the method developed here is applicable to symmetric and 

non-symmetric electrolytes with stickiness between ions at various sticky positions. Although 

the derivation is tedious, the final equations are clear and intuitive. The main difference 
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between this work and those for simpler cases reported by Lee, Rasaiah, Cummings and Zhu9-

14, by Herrera and Blum15
'
16

, and by Zhu and Rasaiah17
, lies in the parameter estimation. In 

the earlier publications, a single scaling parameter Fis estimated numerically. However, in this 

work, K parameters N.J, (j=!,2, ... ,K) must be obtained by solving a set of K nonlinear 

equations. Here K is the number of ion species. This additional calculation is the cost we have 

to pay for increasing the complexity of the systems. For a single non-symmetric electrolyte, 

where K=2, the numerical task is not heavy. For mixed electrolytes, the computation time 

increases appreciably. 
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