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Abstract. 
We consider the moduli space of fiat G-bundles over the two-dimensional torus, 
where G is a real, compact, simple Lie group which is not simply connected. We 
show that the connected components that describe topologically non-trivial bundles 
are isomorphic as symplectic spaces to moduli spaces of topologically trivial bundles 
with a different structure group. Some physical applications of this isomorphism 
which allows to trade topological non-triviality for a change of the gauge group are 
sketched. 

1 Introduction 

In this letter we present an isomorphism between two different moduli spaces of gauge equivalent 
classes of fiat connections on principal bundles over the two-dimensional torus :E. Moduli spaces 
of fiat connections over complex curves have been the subject of intensive investigations, since 
they play a key role both in Chern-Simons theory in three dimensions and in two-dimen­
sional conformal field theory. In Chern-Simons theory with structure group G the moduli 
space Ma parametrizes the space of inequivalent classical solutions. Holomorphic quantization 
allows to associate a finite-dimensional complex vector space to Ma, the space of conformal 
blocks [1, 10]. Appropriate sesquilinear combinations of elements of these spaces describe the 
correlation functions of the WZW model based on G. The latter constitute an important 
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subclass of two-dimensional conformal field theories; they also serve as the building blocks of 
many other conformal field theories, e.g. via the coset construction. 

In the present note, we consider the case when the structure group G is a compact, con­
nected, finite-dimensional Lie group, which is not simply connected. The corresponding moduli 
spaces arise naturally, e.g. in the description of WZW models or Chern-Simons theories based 
on these groups. Another important application of these spaces is the resolution of field iden­
tification fixed points in conformal field theories [6). In the algebraic approach, the solution of 
this problem has given rise to a surprisingly rich structure, both in the case of coset conformal 
field theories [6) and integer spin simple current modular invariants [7). It has been argued [8) 
that in order to describe the resolution of field identification fixed points in these models in a 
Lagrangean framework, non-simply connected structure groups G have to -be considered. The 
result of this letter is therefore a first step towards a geometric understanding of the results 
of [6, 7). 

If the structure group G is non-simply connected, the moduli space Ma consists of different 
connected components, which typically have different dimensions. Writing G as the quotient 
of G, the universal covering group of G, by a subgroup Z of the center of G, 

Q';:!.QjZ, (1.1) 

the connected components of Ma are labeled by the finite abelian group Z: 

Ma=UMa· (1.2) 
wEZ 

If w E Z is not the identity, M 0 is said to describe a topologically non-trivial sector of the 
theory. 

The main result of this note isthat the moduli space M 0 describing a topologically non­
trivial sector is isomorphic to the moduli space for some other Lie group Gw, which describes 
the topologically trivial sector: 

M w rv Ml 
G = G"' · (1.3) 

The Lie group Gw is again simple, finite-dimensional and compact. This isomorphism allows 
us to trade topological non-triviality for some other structure group. and to reduce calculations 
to calculations in the topologically trivial sector only. The moduli spaces Ma can be obtained 
as a symplectic quotient of the infinite-dimensional symplectic space of all gauge potentials; as 
a consequence, a smooth dense open subset of them is a symplectic manifold with a symplectic 
form n. The symplectic structure n plays an important role, in particular for holomorphic 
quantization; we will see that the isomorphism (1.3) respects n. . 

Before we describe how the Lie group Gw is obtained from wand G, it is helpful to discuss 
the implications of this. result for the quantized Chern-Simons theory. To apply the method 
of holomorphic quantization to the spaces Mb of topologically trivial connections one picks a 
complex structure on the torus 1:, parametrized by some complex number T in the complex 
upper half plane. This turns 1: into a complex surface :B-r, and also induces a complex structure 
on Ma. Next, one chooses a holomorphic line bundle .C over Mb such that its curvature is 
given by 21rin, where n is the symplectic form on Mb--- After fixing a positive integral value, 
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the level k (which plays the role of a coupling constant for the field theory), the quantization 
B~,k of Mb is obtained as the finite-dimensional vector space of holomorphic sections of the 
k-th tensor power of£: 

(1.4) 

If the underlying Riemann surface is a torus ~n there is a distinguished basis for B~'k: denote 
the Lie algebra of G by g, and consider the untwisted affine Lie algebra g = g(l) based on g. 
For fixed level k, there are finitely many unitarizable irreducible highest weight representations 
1-lA of g. The character 

(1.5) 

of any irreducible representation is a function depending on T and a variable h that takes 
values in the Cartan subalgebra g0 of g. (After a choice of basis in g0, h can be described by 
its components, the so-called Cartan angles.) The characters of all irreducible representations 
at level k form a basis of the space B~,k [1, 3]. 

Let us now turn to the case of our interest, when G is not simply connected. The center 
of the universal covering group G can be identified with a subgroup of the symmetries of the 
Dynkin diagram of the affine Lie algebra g. Any symmetry w of order N of the Dynkin diagram 
of g induces an automorphism w of the affine Lie algebra which acts like w(E1) := E~i on the 
step operators corresponding to .the simple roots and w(Hi) := Hwi for the generators of the 
Cartan subalgebra. (The action on a full basis of the centrally extended loop algebra can be 
found in section 6 of [5].) The automorphism w preserves the triangular decomposition of g 
and in particular the Cartan subalgebra; hence the dual map w* restricts to an isomorphism of 
the weight space g~ of g. . 

The automorphism w gives rise [5] to 'twisted intertwiner maps', i.e. linear maps between 
irreducible highest weight representations of g 

(1.6) 

which obey 
TwX= w(x) Tw for all x E g (1.7) 

and which map the highest weight vector of 1-f..A to the highest weight vector of 1-lw*(A)· Those 
weights for which w*(A) =A, so-called fixed points of w*, are of particular interest: in this case 
Tw is an endomorphism, and one can insert Twin the trace (1.5) to obtain a new set of functions 
on the Cartan subalgebra, the so-called twining characters 

(1.8) 

The twining characters are dominated by the ordinary characters, and hence they converge 
wherever the ordinary characters converge. We will be interested in those symmetries of g 
which are associated to elements of the center of G; these describe [9] the action of a so-called 
simple current in the corresponding WZW theory. The twining characters are close relatives of 
the index in a supersymmetric theory, where ( -1 t, F the fermion number, plays the role of 
Tw. Indeed, in any rational superconformal field theory the supercurrent is a simple current. 
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It was shown in [5] (see also [4]) that the twining character is identical, in a sense to be made 
precise later, to the character of some other Lie algebra, the orbit Lie algebra g. (The orbit Lie 
algebra depends on both g and w; for the ease of notation, we do not mark the dependence on w 

explicitly.) The Dynkin diagram of this Lie algebra is obtained by folding the Dynkin diagram 
of g according to the symmetry w. More explicitly, the Cartan matrix of g is defined as follows: 
Denote the Cartan matrix of g by A= (aiikiei, where the index set is I= {0, 1, ... , rankg}. 
The symmetry w of the Dynkin diagram organizes I into orbits of different length Ni; we choose 
a set f of representatives in I from each w-orbit. The Cartan matrix of the orbit Lie algebra is 
then labelled by the subset J of the set of orbits f: , 

N;-1 

1 := { i E f I I: ai,wli > 0}. (1.9) 
1=0 

For any orbit we denote by Si the number 

Si := {aid E~01 ai,wli, if i E 1 and aii =f. 0, 
1 , otherwise , 

(1.10) 

which is either 1 or 2. The elements of the Cartan matrix A== (aii)i,jel of the orbit Lie algebra 
g are then given by 

Nj-l 

aij := Sj I: ai,wlj· (1.11) 
1=0 

Note that J can be the empty set, in which case the orbit Lie algebra is the trivial Lie algebra. 
One can show that the orbit Lie algebra of an affine Lie algebra is again an affine Lie algebra, 
unless it is trivial. 1 

We emphasize that the orbit Lie algebra g is not constructed as a subalgebra of g; in 
particular, the orbit Lie algebra is in general not isomorphic to the subalgebra of g that is fixed 
under w. There is however a natural map Pw from the subspace g~o) of the Cartan subalgebra 
that is fixed under w to the Cart an subalgebra g0 of the orbit Lie algebra [5]. It is a bijection 
and the invariant bilinear forms on g6°) and g0 are related by 

(1.12) 

for all h, h' E g~0). (Recall that N is the order of w.) The dual relation for weights reads 

(1.13) 

where we have assumed that the invariant bilinear form on weight space is normalized such 
that the highest root of the horizontal subalgebra has length squared 2. With this notation the 
statement that the twining characters are given by the characters of the orbit Lie algebras can 
be made precise [4, 5]: 

(1.14) 

1 All results on orbit Lie algebras and twining characters are valid in a much more general context: they 
hold for arbitrary generalized Kac-Moody algebras [4]. 
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Our results show that this theorem and the isomorphism (1.3) are closely related by the pro­
cedure of holomorphic quantization. 

The key property of the orbit Lie algebra g is as follows: the dual map w* acts as a linear 
map on the weight space of g, on which also the Weyl group W of g acts. It can be shown [4] that 
the subgroup W of W that consists of all elements of W that commute with w* is isomorphic 
to the Weyl group W of the orbit Lie algebra g. This fact enters crucially in the proof of (1.14); 
it will also be used in the present letter. Indeed, the simply connected Lie group Gw appearing 
in (1.3) is just the simply connected compact Lie group whose Lie algebra is the horizontal 
subalgebra· of g. 

The rest of this letter is organized as follows: in Section 2 we derive an explicit description 
of the moduli space MG, which is used to set up a map realizing the isomorphism (1.3). In 
Section 3 we check that this map preserves the symplectic structure and derive a condition on 
the level which is necessary for the existence of a quantization. In the last section we comment 
on applications of our result and present the conclusions. 

2 The isomorphism 

In this section we will derive an explicit description of MG. To this end we use the description 
of moduli spaces of fiat connections in terms of monodromies around non-trivial cycles: the 
group G acts on the space of all group homomorphisms from th~ fundamental group 1r1 (:E) to 
G by conjugation. This action is just the action of gauge symmetries on the monodromies; the 
moduli space is then isomorphic to the quotient Hom(1r1 (:E), G)jG. 

The fundamental group of the torus is Z2 = Z x Z, and for simply connected G we have to 
classify all solutions of the equation 

(2.1) 

for 9a,9b · E G, up to a simultaneous conjugation of 9a and 9b· In the case of non-simply 
connected G we prefer to work with elements of the universal covering group G rather than 
with elements of G ~ GjZ. Thus we have to find all solutions (ga,gb), with ga,9b E G, of the 
equation 

(2.2) 

where w E Z labels the topological sector. Again we have to identify solutions that are related 
by a simultaneous conjugation with some element of G. 

In the topologically trivial sector equation (2.2) tells us that 9a and 9b commute. For any 
two commuting elements of the real compact Lie group G there is a maximal torus containing 
both elements. The maximal torus is isomorphic to the Cartan subalgebra divided by the coroot 
lattice L v; the intersection of the orbits of conjugation with a maximal torus T are just the 
orbits of the Weyl group WT. As a consequence, the moduli space in the topologically trivial 
sector is 

(2.3) 

where WT acts diagonally. 
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The analogous analysis in the case of topologically non-trivial sectors is more involved; 
for the ease of the reader we present the result immediately. Consider the untwisted affine 
Lie algebra g = g(I) with horizontal subalgebra g. To any ele'ment w of the center of G is 
associated a diagram automorphism of g corresponding to a simple current. (These correspond 
to the symmetries of the Dynkin diagram of g which are not already symmetries of the Dynkin 
diagram of g.) Upon identifying the Lie algebra hT ofT (which is a Cartan subalgebra for the 
Lie algebra g of G) and the horizontal projection of the Cartan subalgebra of g(I), w gives rise 
to an affine map on hT. This map can be expressed in terms of an element w0 of the Weyl 
group WT of g and a shift by an element pv of the coweight lattice 

(2.4) 

Here we have chosen a group element aw0 in G to implement the action of the Weyl group 
element w0 ; the element aw0 is only determined up to an element of the maximal torus T, and 
we will have to fix some convenient choice for aw0 • The map w leaves the (horizontal projection 
of the) fundamental affine Weyl chamber invariant. We will show that any solution of equation 
(2.2) is conjugate to a solution of the form 

9a = exp(ih )awo and 9b = exp(i(ho + h')) (2.5) 

where h0 , hand h' are elements of the Cartan subalgebra hT that obey w0 (h) = h, w0 (h') = h' 
and w(ho) = h0 , respectively. Using the map Pw the elements h and h' can be identified with 
elements of the Cartan subalgebra of the orbit Lie algebra g. We are interested in group 
elements and therefore any two solutions for which h and h' differ by elements of the coroot 
lattice should be identified. We will see that the elements j3v of the coroot lattice of g respecting 
the conditions w0 (j3v) = j3v are in one-to-one correspondence to elements of the coroot lattice of 
g. Next, we also have to take into account the effect of simultaneous conjugation with elements 
of G that preserve the co?ditions on hand h'. We will see that this is described by the diagonal 
action of the subgroup W of the Weyl group W of g that commutes with w. This subgroup, 
however, is isomorphic to the Weyl group of the horizontal subalgebra of the orbit Lie algebra, 
and comparing with (2.3) we obtain the isomorphism (1.3). 

In order to prove that any solution of (2.2) is indeed conjugate to (2.5), we fix a maximal 
torus T of G that contains 9b (for any element of a compact real Lie group such a torus exists); 
we can then write 

9b = exp(ih") (2.6) 

with h" E hT. The element w of the center can be written as w = exp( -ipv), where pv E hT 
is an element of the co-weight lattice y;wv of G relative to T. Moreover, by adding elements 
of the co-root lattice and after choosing the convention for dividing the roots into positive 
and negative roots appropriately, we can assume that h" is an element of the (closure of the) 
fundamental affine Weyl chamber. Without loss of generality we can write 9a as 

9a = rawo' (2.7) 
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where r is some element in G. At the present stage, we will fix some arbitrary choice for aw
0

; 

later on, we will determine a canonical choice for aw0 • 

Equation (2.2) then becomes 

9b exp( -ipv) = raw0 exp(ih")a~~r-
1 = rexp(iwo(h"))r-1 = r exp(w(ih")) exp( -ipv)r-1

. (2.8) 

The element w = exp( -ipv) is in the center of G, equation (2.8) is therefore equivalent to 

exp(w(ih")) = r-1 exp(ih")r. (2.9) 

We now observe that w preserves the Cartan subalgebra of g, hence the left hand side is in the 
maximal torus again. Since the orbits of conjugation on the maximal torus are the orbits of 
the Weyl group Wr, we find that the right hand side is equal to exp(iw( h")) with w a suitable 
element of the Weyl group Wr of g. However, w preserves the fundamental affine Weyl chamber, 
and the only Weyl group element that does the same is the identity. From this we learn that 
w leaves h" fixed, w(h") = h", and as a consequence, (2.9) shows that r and 9b = exp(ih") 
commute. Now any two commuting elements of the real compact Lie group G are contained in 
some maximal torus T, and since all maximal tori of G are conjugate, we can find g E G such 
that 

T = g-1Tg. (2.10) 

Denoting by h:r the Cartan subalgebra of g that is the Lie algebra ofT, we have 

9b = g exp(iry")g-1 and r = g exp(iry )g-1 (2.11) 

with 7], 7]
11 E ht. This allows us to rewrite 9a as 

( 
i7] -1 ) -1 9a = rawo = g e g awo9 g . (2.12) 

Notice that aw0 := g-1aw0 9 represents the element of the Weyl group Wt for the new maximal 
torus T that corresponds to the same abstract Weyl group element as the one in Wr described 
by awo· 

Since we are interested in solutions of (2.2) only up to conjugation, we can drop the tildes 
and find that any solution of (2.2) is conjugate to 

9a = exp(ih )aw0 and 9b = exp(ih"), (2.13) 

where exp(ih) and exp(ih") are elements of the same maximal torus T of G, and h' is in the 
fundamental Weyl chamber. By conjugation with g, w gives also rise to an analogous affine 
map on the Lie algebra of the new maximal torus; h" is invariant under the analogue of w on 
the new maximal torus. 

The space A of w-invariant elements of the Cartan subalgebra is an affine space relative to 
the vector space F := ker(l- w0 ). The map Pw gives an isomorphism between the affine space 
A and the horizontal projection of the weight space of the orbit Lie algebra; moreover, it also 
provides us with a distinguished base point in A: h0 := P~ 1 (0); we write 

9b = exp(ho + h'), where h' E F = ker(l- wo). (2.14) 
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We now have now to give a more detailed description of the element h E g0 in (2.13): we 
remark that simultaneous conjugation of 9a and 9b with an element exp(ih) of the maximal 
torus does not change 9b· The action on 9a can be computed as follows: 

9a = exp(ih )aw0 r-+ . exp(ih) exp(ih )aw0 exp( -ih) 

exp(i(h + h- wo(h)))awo. 
(2.15) 

Hence we always change h by a conjugation to h r-+ h + h- w0 (h) and obtain an equivalent 
solution, i.e. we are free to add elements of the subspace range(1- w 0 ). Using the fact that w0 

is an orthogonal transformation, this subspace can be expressed as 

range(1- w) = (ker(1- w~))J. = (ker(1- w01 ))J. = (ker(1- w0 ))J.. (2.16) 

Hence we can assume, after conjugating 9a and 9b simultaneously with a suitable element of 
the form exp(ih), that both hand h' are in the kernel :F. 

We have shown that the solutions of (2.4) are all conjugated to a solution of the form 

9a = exp(ih)aw0 and 9b = exp(i(ho + h')) = exp(iho) exp(ih') (2.17) 

where h and h' are in F, and h0 + h' is in the (horizontal projection of the) fundamental affine 
Weyl chamber. Conversely, it is easy to check that any such pair of elements gives indeed a 
solution of (2.2). 

At this point it seems as if there were an asymmetry between 9a and 9b· However, the 
situation is indeed symmetric: both h and h' are in :F, and hence aw0 commutes with exp(ih) 
and exp(ih'). This shows that we can find a second maximal torus T, which contains aw0 , 

,exp(ih) and exp(ih'), but not exp(ih0 ). (Note that h and h' are fixed under w0 and therefore 
so-called singular elements of the Cartan subalgebra; hence their exponentials can be indeed 
contained in two different maximal tori.) 

The trivial rewriting of (2.2) 

( )-1( )-1 -1 9b9a 9b 9a = W , (2.18) 

allows us to change the roles of 9a and 9b in the above considerations, provided we replace w0 

by w01 and w by w-1
• In particular, we can write 9a = exp(ih)aw0 as the exponential of some 

element ry of the Cartan subalgebra g0 belonging to T, 9a = exp(iry ), where ry is invariant under 
the map w acting on g0 . Again, there is a natural base point for this affine space: ry0 := :P:1 (0), 
where :P:1 is the analogue of P~1 forT. Now. recall that the element aw0 implementing the Weyl 
group transformations is only specified up to an element of the maximal torus T. The group 
element exp(iry0 ) differs from aw0 only by an element of the form exp(ih) with h E :F, which is 
an element in the intersection ofT and f'. Hence we are free to replace aw0 by exp(iry0 ) for our 
considerations. 

Having found two distinguished base points, we can now describe any solution of the form 
(2.17) in a natural way in terms of the orbit Lie algebra: use the isomorphisms Pw and :Pw to 
associate to it the pair ( P j h0 + h), :P j ry0 + h')) in the weight space A x A of the orbit Lie 
algebra. 
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We are only interested in group elements rather than Lie algebra elements, and we should 
identify solution of (2.17) for which h and h' differ by elements of the coroot-lattice. However, 
we must preserve the condition that h and h' are fixed under w0 ; so we are only allowed to 
add elements fP of the coroot lattice that are fixed under w0 themselves. Then the translation 
by /3v is an element of the affine Weyl group of g that commutes with w; hence it is in the 
subgroup W and corresponds to an element in the affine Weyl group of the orbit Lie algebra 
which is a translation by a coroot of g. This shows that, after applying Pw and Pw, we simply 
have to project modulo the coroot lattice of the horizontal subalgebra of the orbit Lie algebra 
g: 

(2.19) 

The only freedom we are left with now is simultaneous conjugation of 9a and 9b with a 
group element g E G, such that the relations in (2.17) are preserved: then along with 9b = 
exp(i(h0 + h') we have ggbg- 1 = exp(ih'). The two elements h0 + h' and h' are related by some 
element of the Weyl group W; moreover, both h' and h0 + h' are fixed under w. It was shown 
in the proof of proposition 3.3. in [4] that then the Weyl group element w relating h0 + h' and 

h' can be chosen in W: 
gexp(i(ho + h'))g-1 = exp(iw(ho + h')). (2.20) 

The isomorphism Pw inter~wines the action of W and the one of the affine Weyl group of the 

orbit Lie algebra. Hence W leaves the base point fixed and therefore 

gexp(i(ho + h'))g-1 = exp(i(ho + wh'). (2.21) 

Analogous considerations can be applied to 9a, using this time the other maximal torus T; 
we reach the analogous conclusions. Combining the two results, we find that ~the remaining 
redundancies are taken into account by the diagonal action of the Weyl group W: 

(2.22) 

Comparing this explicit description of the moduli space Me with the standard description 
(2.3) of the moduli space of the orbit theory in the topologically trivial sector, we obtain the 
isomorphism (1.3). 

3 The symplectic structure 

In this section we want to extend the isomorphism (1.3) to include also the symplectic structure 
on a smooth open subset of Me· To this end we construct explicitly a topologically non-trivial 
G-bundle and a connection on it with the appropriate monodromies. We fix from now on a 
complex structure on the torus, which is parametrized by a complex number 7 = 71 + i72 with 
positive imaginary part 72 > 0. 

The corresponding torus :E7 can be obtained as the quotient of the complex plane by the 
following action of Z2 = z X Z: 

R(m, n)(z) := z + m + n7, where m, n E Z. (3.1) 
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The principal G-bundle is obtained by extending this action to an action on the trivial principal 
G-bundle C x Gover G: we fix an element h0 with w(ho) = h0 and set: 

(3.2) 

Here g is an element of the non-simply connected group G, and we have written for simplicity aw0 

for the projection to G of the element aw0 E G of the universal covering group we considered 
in the previous section. This defines indeed an action of Z2

, as can be seen as follows: the 
equation w0 (h0 ) = h0 - pv implies that one has in G 

(3.3) 

The projection of the first element to the non-simply connected group G is trivial, and hence 
we have indeed an action of Z2

• ( c X G) I Z2 is a topologically non-trivial principal G-bundle 
over :E'T. 

Let us now fix h, h' E g0 such that w0 (h)_= hand w0 (h') = h'. Introduce the element 

u := h' + rh (3.4) 

of the complexification of g0 ; the connection 

1 
A(z) := -( -udz + udz) 

2T2 
(3.5) 

on C x G is then invariant under the induced action of Ra(m, n): To see this, we remark 
that a~~ uaw0 = u and exp(-ih0 ) uexp(ih0 ) = u. Hence the induced action of R(1, n) on the 
connection (3.5) is 

(3.6) 

The connection (3.5) therefore gives rise to a connection on the principal G-bundle we 
constructed; this connection is flat. Let us now verify that this connection reproduces the 
monodromies 9a and 9b· We parametrize the first homology cycle Ca by z(t) = t with 0 :::; t :::; 1 
and see that 

1 lo
1 f) f) 1 

A= dtA(-+-.:)=-(u-u)=ih. 
Ca 0 OZ OZ 2T2 

(3.7) 

Taking into account the additional twist by aw0 in (3.2), the monodromy around Ca is indeed 
9a = exp(ih )aw0 • The second generator Cb of one-cycles can be parametrized as z( t) = rt; we 
find that 

f A= [
1 

A(r: + f :_) = -1
-(fu- ru) = ih'. lcb lo uz uz 2r2 . 

(3.8) 

Taking again into account the additional twist, we see that the monodromy around Cb has the 
correct value 9b = exp(i( h' + h0 )) as well. -

The symplectic structure is defined on the tangent space, which consists of g-valued one­
forms, which we can assume to be of the following form: define 8u := 8h' + r8h as a complex 
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linear combination of two elements 8h and 8h' of the Cartan subalgebra of the compact real 
form. An arbitrary element of the tangent space is then of the form 

1 
8A = -( -8udz + 8udz), 

2r2 

and the symplectic form is given by 

(3.9) 

(3.10) 

where Kg(·,·) is the Killing form on the Lie algebra g. Again, we adhere to the convention that 
Killing forms are normalized such that the highest g-root has length squared two. A standard 
calculation gives 

(3.11) 

which shows that the symplectic form is real and independent of the complex structure, which 
is parametrized by T. 

The comparison of this symplectic form with the one on Maw therefore reduces to a com­
parison of the Killing forms on g and g. The relation (1.12) shows that they just differ by a 
factor of N, where N is the order of win Z. Taking into account the level k E Z>o, we see that 

(3.12) 

This shows that upon expressing the symplectic form in terms of quantities in the orbit Lie 
algebra the level is divided by the orde.r of the automorphism; this is exactly the relation 
between the levels of the Lie algebra and its orbit Lie algebra that was derived in [5]. An 
important consequence is that kf!a is an element of the integral cohomology only if the level 
is a multiple of N. ·Only in this case the moduli space can be quantized: this is the geometric 
counterpart of the fact that fixed points only occur at levels which~are multiples of the order 
of the automorphism. 

4 Applications and Conclusion 

In this letter we have proven an isomorphism which, in physical terms, allows to trade topolog­
ical non-triviality for a different gauge group. This result has several applications: the moduli 
spaces M(; appear naturally in the description of Chern-Simons theories or WZW -models on 
non-simply connected group manifolds. For the latter theories (indeed, for any integer spin 
simple current extension [9] of a conformal field theory) a formula for the modular matrix S 
was derived in [7]. The isomorphism (1.3) will be one ingredient to a rigorous proof of this for­
mula. This formula in turn give a Verlinde formula for the dimension of the space of conformal 
blocks with a non-simply connected structure group, a problem that recently also has received 
attention in algebraic geometry [2]. 

Another application of the isomorphism (1.3) are coset conformal field theories, in the de­
scription as gauged WZW theories: it has been argued [8] that in these theories one actually has 
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to gauge a non-simply connected group. This observation has lead to the conjecture that the 
contributions from the topologically non-trivial sectors account for the resolution of field iden­
tification fixed points. This resolution can be written [6] in terms of quantities of the orbit Lie 
algebras. The isomorphism (1.3) therefore lends evidence to the conjecture relating orbit theo­
ries and topologically non-trivial sectors; it is also a first step towards a better understanding 
of coset conformal field theories in the Lagrangean framework. 

We finally mention that our results only concern principal bundles over a two-dimensional 
torus; it would be interesting to unravel the implications of the structures we found for Riemann 
surfaces of higher genus. 
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