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Abstract 

This talk is a brief review of gaugino condensation in superstring effective field 
theories and some related issues (such as renormalization of the gauge coupling 
in the effective supergravity theories and modular anomaly cancellation). As a 
specific example, we discuss a model containing perturbative (1-loop) corrections 
to the Kahler potential and approximate S-duality symmetry. 
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Introduction 

Amongst the candidates for fundamental unified theories, heterotic superstring the
ory with gauge group E8 x E8 seems to be the most promising one. This is because the 
spectrum of the theory easily accomodates the Standard Model spectrum and gauge 
structure. In addition, the underlying gauge group contains an extra factor of Es which 
provides an 'hidden sector', which couples to the observable sector only through gravity, 
and, as will be discussed below, plays a crucial role in the mechanism of supersymme
try breaking. Furthermore, the effective theories that describe the heterotic string in 
4 dimensions below the Planck scale are (nonrenormalizable) locally supersymmetric 
effective field theories. Indeed, requiring supersymmetry at energies well above Mw in 
order to stabilize the gauge hierarchy, in some sense forces one to consider locally super
symmetric theories: A unified field theory must include gravity. Within the framework 
of General Relativity, a supersymmetric theory has to be locally supersymmetric. This 
follows from the fact that the supersymmetry transformation on the metric, or on the 
vielbein must include general coordinate transformations. Supergravity theories are 
nonrenormalizable, but can be consistently viewed as low-energy effective field theories 
(LEEFT) for the massless modes of superstring. 

A basic feature of superstring constructions in four dimensions is the presence of 
massless moduli in the effective field theory. These fields whose vevs parameterize 
the continuously degenerate string vacua, are gauge-singlet chiral fields; furthermore, 
they are exact fiat directions of the low energy effective field theory (LEEFT) scalar 
potential. Generically, the moduli appear in the couplings of the LEEFT. For example, 
the tree level gauge couplings at the string scale depend on the dilaton, S, and the 
Yukawa couplings as well as the kinetic terms depend on the T-moduli (and S through 
the Kahler potential) . There is mixing of the moduli beyond tree level, due to both 
string threshold corrections [1] and field-theoretical loop effects, as we shall dicuss. 

Since the supersymmetric vacua of heterotic strings consist of continuously degen
erate families (to all orders of perturbation theory), parameterized by the moduli vevs, 
the latter remain perturbatively undetermined. This degeneracy can only be lifted by a 
nonperturbative mechanism which would induce a nontrivial superpotential for moduli, 
and at the same time break supersymmetry. We shall assume that this nonperturbative 
mechanism takes place in the LEEFT and is not intrinsically stringy. This certainly ap
pears to be the most "tractible" possibility. A popular candidate for such a mechanism 
has been gaugino condensation which is the focus of this talk. 

As a specific model, we later consider gaugino condensation in a superstring-inspired 
effective field theory, with approximateS-duality invariance [2, 3] and exact T-modular 
invariance (generalization of the work in ref. [3]) and incorporate an intermediate scale 
M1 (Mcond ~ M1 ~ Mstring), [4] in order to see how the intermediate-scale threshold 
corrections ~ill affect gaugino condensation and supersymmetry breaking. This part of 
the talk is based on the work in ref. [4]. Incorporating the intermediate-scale threshold 
corrections into gaugino condensation is non-trivial in the sense that the field-theoretical 
threshold corrections at M1 are dilaton-dependent. Hence, these modifications can 
have non-trivial implications for supersymmetry breaking by gaugino condensation. 
Furthermore, a pr?,ori, nothing prohibits intermediate scales in the hidden sector. 

The outline of this talk is as follows. In the next section, we review gaugino conden
sation, and of duality symmetries (modular and S-duality). We shall discuss our model 
in section 3.1, and give the renormalized Kahler potential including 1-loop threshold 
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corrections at an interm~diate mass, and constrained by duality symmetries. The issues 
related to the scalar potential, dilaton run-away, and supersymmetry breaking , a.s well 
as the role of the intermediate mass are discussed in section 3.2. Concluding remarks 
are given in section 4. Due to the significance of renormalization of the field-dependent 
gauge coupling in such models and its connection with modular anomaly cancellation 
in the effectfve theory, we give a review of these ideas in the Appendix. 

Generalities 

Gaugino Condensation 

A possible mechanism for breaking supersymmetry within the framework of (N = 1, 
D = 4) LEEFT of superstring is gaugino condensation in the hidden sector. In this sce
nario, the nonperturbative effects arise from the strong coupling of the asymptotically 
free gauge interactions at energies well below Mpz. Corresponding to this strong cou
pling is the condensation of gaugino bilinear (~>.)h.s.· Let us briefly remind the reader 
·the overview of the development of gaugino condensation. It was recognized many years 
ago that gaugino condensation in globally supersymmetric Yang-Mills theories without 
matter does not break supersymmetry [6). In fact, that dynamical supersymmetry 
breaking cannot be achieved in pure SYM theories was shown by topological argu
ments of Witten [7). In the locally supersymmetric case the picture is rather different, 
namely, gaugino condensation can break supersymmetry [8), and the gauge coupling is 
itself generally field-dependent. When the gauge coupling becomes strong, it gives rise 
to gaugino condensation at the scale1 

M M . (ReT)-lf2e-ReSJ2bo _ M . (ReT)-1/2e-1/bo9;t cond "" str•ng - str•ng , 

which breaks local supersymmetry spontaneously (M;ond "" (~>.)h.s. ), and Sis the dila
ton/ axion chiral field. Supersymmetry breaking in the obesrvable sector is induced by 
gravitational interactions which act as 'messenger' between the two otherwise decoupled 
sectors. 

However, there are generally two problems associated with the above scenario. First, 
the destabilization of S - the only stable minimum of the potential in the S-direction 
being at S ---+ oo; i.e., in the direction where exact supersymmetry is recovered and 
the coupling vanishes! This is contrary to the expectation that the vacuum is in the 
strongly coupled, confining regime. This problem, the so-called dilaton runaway prob
lem, is present in most formulations of gaugino condensation, in particular the so-called 
'truncated superpotential' approach [10) , where the condensate field is as~umed to be 
much heavier than the dilaton_and therefore is integrated out below Mcond· In fact, the 
dilaton runaway problem is perhaps a more generic problem in string phenomenology 
where the underlying string theory is assumed to be weakly coupled. We shall return 
to the dilaton runaway later. 

The second difficulty is the large cosmological constant that arises from the vac
uum energy associated with gaugino condensation. An early attempt to remedy these 
difficulties was proposed by Dine et al. [10), in the context of no-scale supergravity 
whereby a constant term, c, is introduced in the superpotential which independently 

1These arguments are modified by, for instance, the requirement of modular invariance (9]. 
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breaks supersymmetry and cancels the cosmological constant. The origin of cis traced 
to the vev of the 3 form in 100 supergravity, and is quantized in units of order Mpl· 

Therefore, this approach has the unsatisfactory feature of breaking supersymmetry at 
the scale-of the fundamental theory. 

Duality Symmetries (Modular lnvariance and S-Duality) 

Modular symmetry, with the group SL(2, Z) subgroup of SL(2, 'R) duality trans-
formations, written in its simplest form: 

T 
aT- i/3 

--+ ' i-yT+8 
(1) 

where a8 - /3( = 1 and a, f3, 1, 8 are integers, 2 is an exact in variance of the underlying 
string theory. However, this symmetry is anomalous in the LEEFT. Cancellation, or 
partial cancellation, of this anomaly in the effective theory can be achieved by the Green
Schwarz ( GS) mechanism, which is especially clear in the linear-multiplet formulation 
of the LEEFT [11, 12, 13]. In the corresponding chiral formulation, the adding of GS 
counter-terms amounts to modifying the dilaton Kahler potential: 

ln(S + S)--+ ln(S + S- bG), 

where b = -~b0 , and bo is the E8 one-loop /3-function coefficient. G = :Ei ln(Ti + 
'fi- :EI4>12 ), and 4> is any untwisted sector (non-modulus) chiral field in the theory. 
For simplicity, here we only consider models where modular anomalies are completely 
cancelled by GS mechanism, for example, the (2,2) symmetric abelian orbifolds with 
noN= 2 fixed planes, like Z3 or Z7 [11, 12, 13]. The role of the gauge couplin·g and 
its renomalization in superstring effective theories, and the connection with modular 
anomaly cancellation are reviewed in Appendix. 

Recently, another type of duality symmetry has been receiving much attention in 
string theories. In this case the group of duality transformations is SL(2, Z), but acting 
on the field S instead of Ti, and is referred to as S-duality. Like its T-analogue, this 
.group has a generator which is the transformation S --+ 1/ S, and since S is related 
to the gauge coupling, this duality transformation is also referred to as 'strong-weak' 
duality. Font et al. [14] have conjectured that S-duality, like T-duality is an exact 
symmetry of string theory. More recently, it has been mounting evidence that S-duality 
is a symmetry of certain string theories [15]. However, these theories all haveN = 4 or 
N = 2 supersymmetries. At the level of string theory, there are two different types ·of S
duality, namely ( i) those that map different theories into one another, and ( ii) those that 
map strongly and weakly coupled regimes of the same theory into each another. Indeed, 
presenily there is no evidence of an S-dual N = 1 theory, and it is therefore difficult to 
justify the use of S-duality as a true symmetry in the corresponding LEEFT. However, 
it has been shown that in the effective theory, the full SL(2, 'R) duality transformation 
is a symmetry of the equations of motion of the gravity, gauge, and dilaton sector in 
the limit of weak gauge coupling [2, 3]. As in [3], we shall take S-duality as a guiding 
principle in constructing the Kahler potential for the gaugino condensate, which is, so 
far, the least understood element in the description of the effective theory for gaugino 
condensation. That is, we assume that S-duality invariance is recovered in limit of 
vanishing gauge coupling, S + S --+ oo. 

2There is, generally, one copy of the group per modulus field Ti. 
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A Specfic Model 

This model basically generalizes the momel of gaugino condensation with S-duality 
of ref. (3] to the case in which an intermediate scale is present. For details of the 
calculation and a more complete discussion, the reader is referred to ref (4]. 

The scheme of generating the intermediate scale considered here does not involve the 
spontaneous breaking of the hidden-sector gauge group. Here, we couple the hidden
sector gauge non-singlet fields q>1 to a gauge singlet A. When A dynamically gets a vev, 
q>, become massive and the intermediate scale is thus generated. Since A is a singlet, the 
hidden-sector gauge group does not break. Such a scheme has interesting implications 
for gauge coupling unification (5]. For consistency, the pattern Mcond ~ M1 ~ Mstring 

is always assumed. Therefore, we shall integrate out the hidden-matter fields below M1 

and ~he effective lagrangian at Mcond will consist of the moduli and the gauge composites 
only. 

The superpotential for the hidden sector matter fields in our toy model is: 

1 .. 1 3 
WHM = -),y Acl>icl>j +->.'A . 

2 . 3 
(2) 

When constructing our model, two symmetry principles have been used to constrain the 
Lagrangian: First, the LEEFT must beT-modular invariant to all orders, according to 
all-loop string calculations. Second, S-duality is a symmetry in the weak-coupling limit 
(S + S) -t oo. We will include the renormalization and intermediate-scale threshold 
corrections only in the dilatonic part of the Kahler potential. We simply write down 
the Kahler potential and for the full discussion we again refer the reader to ref. (4]. 

I<= -In m- 3ln(1- m 113Q) + G (3) 

is the renormalized coupling including the 1-loop threshold corrections at the canoni
cally normalized, modular invariant intermediate mass M1 which can be computed to 
be: 

Mj = eK (J<'P<P)2j>.Ai2 = I>•Ai2eG/3 (1 + b ) -2 

9( s + s - bG) s + s - bG 
(5) 

In these relations, G is the Green-Schwarz term, 

(6) 

' and Q = IHI 2eGI3 (where H is the condensate superfield) is the modular invariant 
condensation scale. Various group theoretical factors are as foolws: 

1 
- 3b = 2b0 = -

2
C(Es); 

87r 
(7) 

3 Here, Mpl = 1; and notice that the UV cut-off is taken to be Mstring = (S + S- bG)- 112 meaning 
that the condensation scale is really in these units, Q/(S + S- bG). 

4 



where Ca and CM are the quadratic Casimirs: 

Ca = T(adj); CM = L nrT(r); T(r) = Trr(T2
), (8) 

r 

with r labelling the representations of the gauge group, and nr being the number of 
fields in the r representation. 

To summarize, our Kahler potential given in eq. (3) includes the one loop renormal
ization of the dilaton with the intermediate threshold corrections, as well GS counter 
terms that ensure modular anomaly cancellation. It is also constrained by approximate 
S-duality symmetry as discussed in references [3, 4]. 

The dynamical fields at the condensation scale in our model are S, H, and T. The 
scalar potential is given by: · 

(9) 

and the Kahler metric written in terms of m = 2/g;ff(Mcond) (eq. (5)), Q = IHI2eGI3 , 

and their derivatives with respect to the scalar fields is given by: 

where 

and 

K;3 = m-2{m;m3x + m(e- 1)miJ + (e + e)(m;q3 + myq;) 

+ 3m2 [eq;3 + (e + e)q;q3] + m2G;3}, (10) 

X e=--, 1-x 
x = 1 - 2e/3 + e /3, 

m; = 8;m, q = In Q, q; = 8; In Q, etc. 

Notice that GiJ = 0 unless i = j = t, mhJ = 0, and qs = 0. The nonperturbative part 
of the superpotential is of the form 

WNP = ae-st•y• (In :r, y = He5 f"'<, (11) 

with n < 3 (the Veneziano-Yankielowicz superpotential is the sp~cial case of n = 
3 and k = 1). The reason the exponents n and k are introduced is because it is 
the Kahler potential (3) that already includes the gaugino condensate wave function 
renormalization, and so the superpotential should not. 

We summarize the results of the numerical computation and analytic expansions 
of this model as follows. The scalar potential, V, is positive semi-definite and has a 
nontrivial minimum at finite values of the dilaton and the condensate field, at which 
the following relations are satisfied: 

(12) 

This is in addition to the usual 'runaway' solution at S -+ oo and H = 0. Notice that 
the second relation tells us that the coupling 9eJJ(Mcond) blows up (at a finite value of 
S + S). However the nontrivial minimum occurs at the boundary of the kinematically 
forbidden region of the ( S, H) plane. In other words, the potential run.s in this direction 
as well! But this the correct direction, as the value that it runs to corresponds to 
strong coupling at the condensation scale, with a nonzero value of the condensate. The 
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Figure 1: The running behaviour of the dilaton. The minimum on left is at the boundary 
of the kinematically forbidden region. ' 

similar running behaviours (see Fig. 1) in both strong and weak coupling directions is 
attributed to S-duality. Notice however that the relations (V) = (W) = 0 imply that 
supersymmetry remains unbroken. 

As for the effect of the intermediate mass, the two independent conditions m = 
(W) = 0 imply that [4] the parameter J..L of the nonperturbative superpotential in eq. 
(11) is 'locked1' to M 1; and that the parameters of the superpotential which generates 
M1 allows for a phenomenologically sensible hierarchy between the condensation and 
the string scales. 

Conclusion 

We have discussed hidden sector gaugino condensation as a possible mechanism for 
supersymmetry breaking. In the model which was presented in the last section, which 
included some perturbbative corrections to the Kahler potential, as well as a nonpertur
bative constraint (S-dulaity), we saw that suprsymmetry remains unbroken. Perhaps 
the most peculiar feature of our model is the running behaviour of the dilaton, which 
is schematically shown in Fig. 1. Because the 'minimum' on the left hand side is at the 
boundary of the kinematically forbidden region, we hesitate to call this stabilization of 
the dilaton. The perturbative breakdown of supersymmetry and stabilization of mod
uli of string theory may require the full 1-loop corrections to the effective supergravity 
theory yvhich have been recently calculated [16]. On the nonperturbative side, perhaps 
other stringy nonperturbative effects are more crucial as pointed ot in ref. [17]. A 
realization of this proposal in the context of linear multiplet formulation of gaugino 
condensate appears in ref [18]. Of course, the exact form of these nonperturbative 
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corrections are 'not yet understood. But one can perhaps expect that the recent devel
opments in string dualities can shed some light on the latter, arid on the stabilization 
of string moduli and supersymmetry breaking. 
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Appendix - The Role of the Gauge Coupling 

In this appendix, we recall a few facts about the perturbative corrections of the gauge 
coupling function in the superstring effective field theories, as well as the connection 
with modular invariance of the effective theory. 

As mentioned earlier, in our approach, the one-loop renormalization of the gauge 
coupling is completely included in the Kahler potential ]{, i.e., the renormalization 
effects are completely absorbed into]{ by replacing the tree-level gauge couplingS+ S 
in]{ by the one-loop renormalized gauge coupling. Therefore, it is worthwhile to discuss 
the renormalization of gauge couplings in supestring LEEFTs. 

Let us first recall the Lagrangian for supergravity plus super-YM. In the Kahler 
covariant formalism [20] the classical superfield Lagrangian is given by: 

where E = SdetEM A, R is the curvature scalar of the superspace, arid Z stands for 
the chiral fields in the theory. The first term in eq. (A.1) corresponds to the kinetic 
energy for the gravity sector as well as the chiral fields. The chiral fields enter through 
the dependence of the spinorial derivatives of Eon the Kahler potential, K(Z, Z). The 
second term describes the super-YM coupling to the theory, with the (holomorphic) 
gauge coupling function !ab(Z) and the YM 'field-strength' superfield 

where V is the vector multiplet containing the YM gauge potential. We shall take 
!ab = f8ab = S8ab corresponding to the bare coupling of the effective superstring theories 
where S is the dilaton/ axion chiral superfield. The component form of the second term 
contains: 
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and thus Ref is the YM gauge coupling, while lmf gives the axionic coupling. 
Finally in the last .. term of eq. (A.1), W(Z) is the superpotential which is a holomor

phic function of the chiral matter fields (independent of S and other internal moduli, 
until supersymmetry is broken nonperturbatively). · 

In discussing the gauge couplings in effective theories, it is important to to distin
guish between the Wilsonian couplings, and the physical, or effective couplings. In 
particular in the effective supersymmetric theories that we are considering, there are 
powerful statements that can be made about the two types of gauge coupling. The (holo
morphic) Wilsonian gauge couplings in supersymmetric YM theories, which appear in 
the Wilson effective action, do not renormalize beyond one loop. These are funcions 
that appear in the Wilson effective action, $w(J1), the local functional of quantum op
erators. In Sw(Jl), only momenta between the scale f1 and the UV cut-off contibute 
to loops. The physically measurable 'effective' (or running) couplings appear in the 
c-number valued generating functional of 1PI graphs, f; this is in general a nonlocal 
functional of background fields that contain the IR momenta p < f1 running through 
loops, as well. Right at the UV cut off, the Wilsonian couplings, i.e., the coefficients 
appearing in front of the operator terms in Sw are the bare couplings of the theory. 
The relation between the two effective actions may formally be written as (21] 

eir[<l>ct.~l = {eiSw[<I>,~LJ), 

where the expectation value on the right hand side is taken in the the presence of 
background fields. In the supersymmetric YM theories, it is known that, unlike the 
Wilsonian gauge coupling, the effective coupling renormalizes perturbatively at all or
ders, and that, indeed, higher order corrections introduce nonholomorphicities [21]. 
The generalizations of these results to supergravity effective theories of superstrings 
have been carried out more recently [1, 13, 19, 22]. 

The gauge coupling in all N = 1 effective heterotic string constructions is given at 
tree level by: 

g;2 = karReS = karg-;t;ing· (A.2) 

ReS is the 'universal' gauge coupling at string scale, and kar is the level of the affine 
Lie algebra associated with the factor Gar of the product gauge group. Subsequently, 
we shall set kar = 1, and throughout the analysis Gar refers to the IR strong group 
with gaugino condensation. The exact Wilsonian coupling is given by the holomorphic 
function: fw = S + J(I), and the moduli dependent one-loop (i.e., all-loop) correc
tion J(l)(Ti) has been determined [22] (see below). The effective gauge coupling, with 
LEEFT-loop corrections to all orders is given by (19, 21]: 

(A.3) 

where, bo = ( -3T(adj) + Lr nrT(r))/1611"2 (the YM ,8-function coefficient), and c = 
( -T(adj) + Lr nrT(r))/1611"2

, and Z is the kinetic normalization matrix. To one-loop 
order, one has to evaluate the r.h.s. of the above equation at tree level, at 2-loop 
the r.h.s. is evaluated to one loop, etc. The one-loop result has also been obtaind 
in [13]. Threshold corrections due to integrating out the heavy string modes have 
been calculated in reference [1]. These corrections are only dependent on the moduli 
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Ti, and not on the dilaton. All the perturbative dilaton dependences in the effective 
gauge coupling arise from field-theoretical loop effects. We have seen in section (3) 
that threshold corrections in the effective field theory also introduce dilaton-dependent 
terms in the running coupling. 

Let us now turn to the question of modular invariance. As inputs from string 
theory, for general fields <PI (ignoring for the moment the GS counter terms), we have 
the normalisation matrix for the kinetic term, and the Kahler function. The former is 
given by: 

(A.4) 

where the rational numbers q} are the modular weights of the field <PI. They depend on 
the twist sector of the orbifold which gives rise to the matter fields <PI, and the modulus 
field Ti. The Kahler function at the tree level is given by I< = - In( S + S)- Li ln(Ti + 
f'i) + 0( <P 2). For the modular transformation given in eq. (1) of the text, I< transforms 
by the usual transformation law: 

I<- I< +F+F, (A.5) 

Under a modular transformation, the non-modulus chiral fields, transforms as: 
J 

(A.6) 

Hence, the kinetic matrix Za transforms according to: 

(A.7) 

It follows from eq. ( A.5 - A. 7) that the reparametrization induced on the matter fields 
by modular tranformations is given by: 

c5 = ctJ II ( i,iri + 8i)q}, (A.8) 
• 

where CJJ is moduli independent. 
For a generic supergravity theory with super-YM, under the combined transforma

tions: I<--+ I<+ F + P and <PI ~ C}<PJ with C} holomorphic function of the moduli 
<PI, the Kahler invariance of the (exact) integral of the RGE's, i.e., eq. (A.3) imply 
that: 

1 
fw--+ fw + cF-

2
7!"

2 
~T(r)trlnC(r), (A.9) 

where c is the group theoretical factor given after eq. (A.3) above. For C} and F 
corresponding to modular transformations, eq's (A.5) and (A.8), this gives: 

Refw --+ Re.(w-
16

1
7!"2 2;: 2a/ ln I( hiTi + 8iW, 

• 
(A.10) 

with 
ai = 2:T(<PI)(1- 2qn- T(adj); T(<P1

) ~ :l:tt(T2(r)), (A.ll) 
I r 

and Ta(r) are the generators of the representations of the fields <P1. 

Furthermore, the transformation law (A.lO) corresponds, up to a modular invariant 
function, to the transformation of the logarithm of Dedekind function. In fact it will 
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give the complete modular dependent perturbative correction, J(I) to the Wilsonian 
coupling [1, 12, 13] : 

(A.12) 

modulo a moduli independent part which has been argued to be a constant in most 
orbifold models [22]. These equations are interpreted as a parametrization of the string 
threshold corrections to the gauge couplings [1]. 

Modular in variance is restored by including factors of TJ( iT;) in the superpotential 
(see eq (2)), and in the definition of the fields, so as to cancel the above modular 
dependent correction of the gauge coupling, as well as by introducing GS counter term 
as discussed in the text. However, the inclusion of the TJ factors tends to spoil the 
boundedness from below of the scalar potential. To avoid this, we may restrict ourselves 
to the orbifold models which do not receive string threshold corrections. These models 
have been classified [1, 12, 22]. For such models, the modular anomaly is solely cancelled 
by the GS counter term. 
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