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MULTI-TIME COSMOLOGY 

. Geoffrey Chew 

Theoretical Physics Group, Lawrence Berkeley Laboratory 
One Cyclotron Road 

Berkeley, California 94720, U.S.A. 

ABSTRACT 
A multi-time cosmological model characterizes by a single parameter(age) the large-scale as­
pects of a homogeneous universe. Einstein's objective universe within a (single) 3+ 1 spacetime 
manifold is replaced by "aspects of universe perceivable from a standpoint." Using 8-vectors, the 
model distinguishes a noncompact "cosmological" spacetime housing standpoints from a com­
pact "physical" spacetime housing accelerating matter perceivable from a standpoint. Within 
regions small on Hubble scale and large on quantum-particle scale, general relativity prevails 
and provides an objective description of matter. Certain although not all features of Milne's 
"kinematic cosmology" are manifested. The phenomenological age problem encountered by the 
Einstein-de Sitter model is alleviated. 

I. Introduction 

General relativity was developed by Einstein(l) as a local theory of gravity with 
attention neither to quantum mechanics nor to finiteness of universe age (i.e., "big 
bang"). Verification of general relativity has been absent not only at quantum­
particle scale and below but at Hubble scale and above. The standard (Friedman­
Robertson-Walker) cosmological model(2), based on general relativity, has turned 
out "unesthetic" in the nonuniqueness of its description of homogeneous universe, 
while the single-parameter Einstein-de Sitter version(3) currently appears to give an 
observationally-unsatisfactory relation between Hubble time and universe age. (4

) Re­
flecting on the Copenhagen interpretation of quantum mechanics, which through 
explicit recognition of measurement has undermined classical objective reality, the 
author has been led to speculate that Einstein's objective universe within a (sin­
gle) 3 + 1 spacetime manifold should be replaced by "aspects of universe perceivable 
from a standpoint." Objective reality in Einstein's sense may be meaningful only at 
intermediate scales - large compared to quantum particles but small compared to 
the Rubble-discovered scale. In such spirit this paper presents a multi-time classi­
cal standpoint-based model of large scales where homogeneous universe is character­
ized by a single parameter. The phenomenological age problem encountered by the 
Einstein-de Sitter model is alleviated. 

Although "doubling" of energy-momentum is familiar in the analytic S-matrix 
representation of particles through the complex Poincare group (quantum particles be­
ing associated with S-matrix poles), (s) complexification of energy-momentum has to 
date not led to enlargement of a 3 + 1 spacetime. Nevertheless, two different classical 
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meanings for time are commonplace: (1) "Physical time" based on periodic (repro­
ducible and reversible) motion, associated with stability (permanence) of "objects" 
such as quantum particles. This is the time of Galilean physics, facilitating the notion 
of reproducible measurement (and, quantum-mechanically, related inversely to energy· 
difference). It is also the time of S-tnatrix theory and quantum field theory, where 
it attaches to localized matter. (2) "Cosmological" and also (locally) "geological­
biological" time, based on irreversible aging of systems ("old" vs. "young"). Al­
though system complexity may be presumed in principle to relate physical time with 
geological or biological age, indefinite expansion of universe undercuts reproducible 
measurement on Hubble scale. A cosmological model that explicitly recognizes two 
qualitatively-different types of time may prove interesting. Local reproducible physics 
might be consistently embedded within an expanding universe. 

Physical measurement and Poincare symmetry being intertwined, universe ex­
pansion suggests basing an observation-centered cosmological model on the 10-parameter 
Poincare group (3+ 1 spacetime displacements plus Lorentz transformations) enlarged 
by dilation to 11-parameters. Complexification to achieve time doubling and repre­
sentation of gravity then leads to a 22-parameter group, with 8 "inhomogeneous" 
dimension-carrying generators of complex Poincare displacements and 14 "homoge­
neous" dimensionless generators of complex Lorentz transformations plus complex 
dilations. Elements of the homogeneous group act on "8-vectors". In our model, 
loosely speaking, an 8-space of dimension length accommodates a 3 + 1 "global" non­
compact spacetime in which "standpoints" locate, while to each standpoint attaches a 
3 + 1 "physical" (local) compact spacetime housing accelerating matter representable 
from that standpoint. (A standpoint is physically distinguished from other stand­
points of the same age by "surrounding matter".) Although the model allows the 
local spacetimes belonging to any collection of "neighboring" standpoints - whose 
separations are small on Hubble scale- to be approximately mapped onto each other 
via general-relativistic transformations, widely-separated standpoints carry (matter­
housing) spacetimes that cannot generally be brought into correspondence. "Slow 
matter" in the neighborhood of one standpoint may nevertheless be located within 
the spacetime of a distant standpoint. Also locatable in the spacetimes of two widely­
separated standpoints is "fast matter" that transmits a signal between the two stand­
point neighborhood. The model displays approximate objectivity. 

An 8-vector "magnitude" will be defined that is invariant under all homogeneous­
group elements except real dilation. A special Finsler<6> (non-Riemannian) geometry 
then results from requiring the magnitude of an infinitesimal 8-vector "matter dis­
placement" to be invariant in such sense. The invariance provides a degree of "ob­
jective reality" although not in the full sense of Einstein because the Finsler metric 
tensor generally exhibits velocity dependence. 

The 8-space corresponds to the coset formed by factoring out the 6-parameter 
complex rotation group from the 14-parameter homogeneous group. The surviving 
8 dimensions will be represented by 3 Lorentz boosts, 3 analogous but compact 0(4) 
rotations plus a (real) dilation and an "imaginary dilation" isomorphic to a U ( 1) 
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transformation. The latter will relate to the local-time displacement of physics, while 
the (real) dilation relates to growth of standpoint age. Lorentz boosts will be found to 
control spatial location of one standpoint as perceived from another in a (noncompact) 
sense similar to that of Milne's "kinematic cosmology."(7) 

Striking as a model feature is association of the compact coset U(l) x 0(4)/0(3)' 
with local 3 + 1 spacetime-location of matter with respect to standpoint. Such asso­
ciation makes sense in a special coordinate system belonging to a standpoint. This 
coordinate system may be arbitrarily rotated but admits neither Lorentz boosts nor 
displacements. Only when described in these special coordinates does early-universe 
matter display "homogeneity" (e.g., isotropic cosmic-background radiation). Attach­
mt:mt of special coordinates to standpoint relates to noncommutation of Lorentz and 
0(4) subgroups of our homogeneous group. 

Although certain features of Milne's model, such as equality between universe age 
and Hubble time, are exhibited by ours, predictions from our model do not entirely 
agree with those of Milne, whose spacetime was flat. Our matter-housing spacetime is 
"curved", implying a mean energy density that, rather than being negligibly small as 
in the Milne model, exceeds the standard model's "critical density"; correspondingly 
our luminosity distance increases less rapidly with redshift than predicted by Milne. 

For weak gravity at sub-Rubble scale our Finsler geometry becomes Riemannian 
and there is concordance with general relativity. Description of strong gravity at 
sub-Rubble scale ("black hole") requires model development beyond that described 
in the present paper. 

Physical interpretability of multi-time cosmology rests on the Finsler geome­
try of a standpoint spacetime becoming Riemannian not only in standpoint spatial 
neighborhood but in the phase-space neighborhood of all "physical" geodesics pass­
ing through standpoint neighborhood. By "physical" is meant a geodesic along which 
matter (subject only to gravity) may flow. "Signals" move along physical geodesics. 

"Phase-space neighborhood" refers to a 7-dimensional Finsler phase space -
4 spacetime coordinates plus 3 velocities. A general Finsler metric, depending both 
on coordinates and on velocities, eludes physical interpretation. Objective physics 
rests on Riemannian geometry where dependence of metric only on coordinates leads 
to local conservation of energy and momentum. The standpoint spacetime becomes 
Riemannian not only in spatial neighborhood of standpoint but, in a phase-space 
sense, within the neighborhood of any geodesics that can carry a signal to the selected 
standpoint. 

II. 8-Vectors 

An 8-element set of real numbers, transforming into a linear combination of itself 
under the 14-parameter homogeneous group, will be called an 8-vector. There are 
two 8 x 8 real-matrix representations of the homogeneous group acting respectively 
on two types of 8-vector that behave oppositely in infinitesimal transformations other 
than complex rotations. The two types are conveniently distinguished by response to 
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dilation - a distinction associable with "dimensionality". As physically invoked in 
our model, upper-index 8-vectors 

p,p'=0,1,2,3 

have the dimensionality of length and time (c = 1), while lower-index 8-vectors 

iJ = ( BIJ.l B"') 

(1) 

(2) 

have the dimensionality of energy- and momentum. The present paper will be con­
cerned mostly with the former type. As the foregoing notation suggests, any 8-vector 
may be organized into a pair of Lorentz 4-vectors. Two mixed-type inner products are 
(separately) invariant under the full14-parameter group, including complex dilations. 
Our shorthand for these mixed invariants is 

A. iJ =A" Bl'- A~'' B~, 

A* B =A~' B~ + A~''Bw 

Two analogous quadratic forms built from a single 8-vector, 

A· A = 1J!'v(A~' A" -A~'' A"'), 

A *A = 21]/'vA" A"', 

(3) 

(4) 

(5) 

(6) 

with 7]~'" the Minkowski metric tensor, are invariant under complex Lorentz transfor­
mations but not under either real or imaginary dilations. The quartic 

(7) 

is nevertheless invariant under all homogeneous transformations except (real) dila­
tions. Such a quartic form will be the basis for our model's Finsler geometry. The 
positive fourth root of (7) may be called the "magnitude" of A. 

An arbitrary spacetime-type 8-vector may be constructed through a 4-parameter 
U(1) x 0(4) "rotation" of the "fiducial" 8 vector (x",O), where x~' transforms as 
a 4-vector under real Lorentz transformation. The 4 angular parameters will be 
designated -1r :5 E>~' :5 1r, p = 0, 1, 2, 3. The U(1) transformation is by the angle E>o; 
the 3 0(4) angles e behave as a 3-vector under rotations, as do the 3 parameters 'i. 
Defining 

--+ -E> =I e I, - E> 
u = e' (8) 

and 
(9) 
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the general spacetime-type 8-vector may be written 

( 

X
0 cos eo cos e - -; . 1I sin eo sin e ) 

A
A( -)- -(?tr +-;long cos e) cos eo+ X 0 1I sin eo sine 

x,E> - ..... ..... ' 
-X 0 sin eo COS e - X • U COS eo sine 

(? tr + -;long cos e) sin eo + X
0 U cos eo sine 

(10) 

where X is shorthand for ( X 0
' ?) and E> is shorthand for (eo' 0 ): The special pa­

rameterization (10) exhibits absence of change in X
0 and I ? I when a U(l) x 0(4) 

transformation is made on A and dovetails with a standpoint spacetime isomorphic to 
the coset U(l) x0(4)/0(3). Acceleration of matter perceived from a prescribed stand­
point will relate to displacements of e, while the parameters x will locate another 
standpoint with respect to the selected standpoint. This other standpoint coincides 
in perceived location with the matter being described from the selected standpoint. 

III. Displacement of Matter 

Accepting Einstein's association of gravity with geometry (equivalence of gravita­
tional and inertial mass), we propose to identify "gravitational action" with "displace­
ment distance" for arbitrary matter in the spacetime belonging to a selected stand­
point. Inspired by Lorentz invariance of the Minkowski metric, we seek a gravitational 
action (or "distance") that is invariant under all homogeneous transformations except 
dilation. "Near" the standpoint our metric must reduce in homogeneous-universe 
approximation to that of Minkowski. More generally, "weak" inhomogeneities in 
standpoint neighborhood should be representable by a Riemannian metric that ac­
cords with general relativity. By "standpoint neighborhood" we mean a standpoint 
-containing region that is small on Hubble scale. 

Let us associate to a "particle of matter" m, described from standpoint i, the 
spacetime-type 8-vector :Xi= A(xi, E>i), where each of the 8 parameters (xi, E>i) 
is a prescribed differentiable function over a compact 4-manifold that is spanned by 
the coset U(l) x 0(4)/0(3) and parameterized by 4 angles </>. By xi and E>i we 
mean x;(</>m), E>; (</>m). 

The 4 parameters xi locate, in the i coordinate system, that other standpoint 
which coincides in location with our particle. In other words, without the super­
script m, X; represents the matter-based perception from i standpoint of a spacetime 
that houses other standpoints. To the extent that all matter representable from one 
standpoint need not be representable from another, the spacetime of standpoint i 
fails to house all standpoints. There will nevertheless be i-spacetime housing of any 
standpoint in i neighborhood. 

More difficult to describe is physical significance of the angles E>i; they relate 
to particle displacement -- to velocity and acceleration. It is the change of E>i as 
particle location changes that has physical significance. (Shift of E>i at fixed xi 
might be described as a physically-empty "gauge" transformation.) Change in E>i 
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correlates with "particle-location through the functions Xi( </Jm) and ei ( </Jm). This 
correlation will be seen below to control the metric of i-standpoint spacetime. 

When only gravitational forces are to be considered, the functions xi( </J) and 
E>i ( </J) are the same for all particles, although these functions generally depend on 
i-providing physical distinction between different standpoints. We shall see that the 
functions Xi( </J) depend only on standpoint age (meaning of "standpoint age" will be 
made precise below), while the functions ei( <P) depend also on standpoint spatial 
location. Henceforth in the present paper because we ignore nongravitational forces, 
the particle superscript m will be omitted. In homogeneous-universe approximation, 
furthermore, the functions ei( </J) will not even depend on i. (All standpoints of the 
same age are equivalent in a homogeneous universe.) 

Meaning here for the term "particle" is classical, merely implying spatial local­
ization of (positive) energy within some small region. "Small" means by comparison 
to distance from standpoint, so that ,particle "trajectory" in standpoint spacetime is 
meaningful. Otherwise we put no upper limit on "particle diameter" and no require­
ment as to "structure". Neglect of non-gravitational ("short-range") forces implies 
particle size sufficiently large that all short-range forces are "internal" to individual 
particles. With respect to light, "particle size" is large compared to wavelength. 

It is convenient to choose the origin of the compact </J space so that matter with 
</J = 0 locates at standpoint. With no loss of generality the functions ei( </J) and 
Xi( </J) may be chosen so that 8i(O) = 0 and ;;i(O) = 0, while xf(O) = Ri. The real· 
positive parameter R will completely control the functions Xi( </J) and will emerge as -central to our model. "Neighborhood" of standpoint will mean I ¢0 I<< 1, I ¢ I<< 1 
and, correspondingly, I xi- Ri I<< Ri, I :;i I<< Ri. 

Subject to later verification, we presume the functions ei( </J) to be such that,
1 

so long as black holes do not occur in standpoint proximity, "neighborhood of stand-_. . 

point" will mean I ei I<< 1, I E>i I<< 1. Particle displacement in standpoint neigh­
borhood is then seen from (10) to associate with the 8-vector 

dxi = (-~~fl, 
~dei 

(11) 

whose magnitude according to (7) is the positive fourth root of 

2 -2 -
[dx~

2

- dii - R7(d0~
2

- d0i )] 2 + 4R7[dx~d0~- dii · d0i]2 

= [1J~tv(dxfdxi- R7dE>fdE>i)] 2 + 4RT[17~tvdxfd0if (12) 

Because each of the 8 variables xf and 0f is a specified differentiable function of 
a set of 4 parameters </J, we may define functions 

801!-
gf v = Ri axr (13) 

6 



over the compact 4-manifold. It is then possible to rewrite (12) as 

(12') 

the raising and lowering of indices here being controlled by the Minkowski tensor 1]11-v· 

A standpoint-neighborhood metric proportional to the positive fourth root of 
{12') is not Riemannian; we are dealing here with a special case of Finsler geometry. (G). 

Nevertheless, to the extent that . 

hi-' - 1-' 1-' 
i Ll = 9i Ll - 1] Ll (14) 

is small compared to 7]~-' · v = b~-'v' the first term of (12') is negligible and our metric 
becomes approximately Riemannian in standpoint neighborhood - with a metric 
tensor proportional to 9iJ.£v· In homogeneous-universe approximation our choice below 
of the functions Xi and E>i gives hf v = 0 at standpoint, and more generally (absent 
black holes) our model will conform to general relativity in standpoint neighborhood 
by virtue of hf v smallness. 

To achieve coincidence with the Minkowski metric near standpoint in homogeneous­
universe approximation we generally define "increment of distance" in the spacetime 
of standpoint i as the positive fourth root of 

(15) 

It is necessary now to specify the functions x;( </>) and E>;( </>) that determine .~·t over 
the spacetime of standpoint i. 

IV. Choice of the FunCtions xf ( </>) 

Requirement that Xi locates standpoints other than i in the i coordinate system, 
and that "objective reality" be provided by approximate mappings onto spacetimes 
belonging to those other standpoints, places a severe restriction on the mapping be-
' -tween </> and Xi· Only one satisfactory mapping has been found. Defining <P =I <P I 

and v = ; / </J, the following single-parameter mapping will be shown to gravitation­
ally confine matter within standpoint spacetime while accommodating an objective 
representation of matter. 

ti = .R;(l +sin </J
0 cos </J), 

(16) 

with ti = x£ and Ri 2: 0. Equivalent to (16) with ri =I Xi I are the relations 

t; ± r; = Ri(1 +sin <P±), (17) 

where 
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(18) 

Notice that, as forecast abov~, ti(O) = Ri and ~i(O) = 0. Notice also that ti :2: 0 
and ri ~ ti and that, at standpoint, 

1 8xf r: ~.~-
Ri 8</>11 = u~' II = 1J II· (19) 

This latter relation will in homogeneous-universe approximation yield Minkowski met­
, ric near standpoint. 

The Xi domain decreed by (17), 

(20) 

is the intersection of interiors of certain forward and backward light cones - a "dou­
ble cone" with standpoint at center. The vertices of both cones share the standpoint's 
spatial location at ~i = 0, while vertex times are equally displaced from standpoint 
by the interval R;, one vertex in the standpoint's past and one in its future. We 
shall associate the forward cone (vertex in past of standpoint) with "big bang." The 
backward cone with vertex in future will receive an interpretation in black-hole spirit 
- the universe as perceived from the standpoint resembling the interior of a clas­
sical black hole (from which matter cannot escape) with standpoint at center and 
Schwartzschild radius of order R;. The parameter Ri also relates to "age of stand­
point i". We later will give the precise relation between Ri and both Hubble constant 
and standpoint age. 

The double cone in ti, ~i is multiply covered by the coset space. Efforts to 
interpret the classical redundancy in terms of antiparticles and CPT have been en­
couraging but will not be described here. In what follows we confine attention to the 
coset sector corresponding to 

(21) 

which maps one to one onto the double-cone interior. 

V. Homogeneous Universe 

From (13) and (19) follows the standpoint-proximity relation 

IJ. 80f 
9i II = 8¢>11 l 

(22) 

while Section III has shown that in standpoint neighborhood (so long as hf 11 is small) 
our model has Riemannian metric equal to 9iJLII· This metric takes Minkowski form, 
according to (22), for the trivial functions 

(23) 
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Extending these trivial standpoint-independent functions to the entire (compact) 
standpoint spacetime provides our representation of "homogeneous universe." Rep- -
resentation of inhomogeneity will· be through nontrivial i-dependent functions er( </>) 
addressed below in Section VII. 

It is straightforward to calculate the Finsler metric that follows when the func­
tions (16) and (23) are applied to (15). One finds 

1 {[ ( 2 2) . 2 -+2]2 · [ I( 2 2) I 2 -+2]2}1/4 ds; = .J2 g dt;- dr; - gr;dn; + g dt;- dr; - g r;dn; , (24) 

where the coefficients g, g, 91
, g 1 depend symmetrically on the two dimensionless vari­

ables 
. t; ± r; ( , ) ( ) 

X±= Sill <P± = R; -1, -1 ~X±~ +1 ' 25 

and where n; = xi/r; is a 3-vector of unit length on which the coefficients in'>(24) do 
not depend. 

Defining the 6 auxiliary functions oft;, r;, 

u = 1 + x+ + x_, v = (1 + x+)(1- x~) 112 - (1 + x_)(1- x:_)ll2
' 

x+ -x_ 

(26) 

the 4 coefficients in (24) determining our homogeneous-universe Finsler geometry are 
found to be 

(27) 
g = 2uv ,. I 2 2 g =u -v . 

The metric (24) exhibits a type of velocity dependence absent from any Rieman­
nian metric. Except in certain approximations to (24) there is no velocity-independent 
metric tensor. The expanded role for velocity will make it useful to speak of "slow" 
and "fast" matter displacements. A "slow" displacement has (dxi/dt;)2 << 1 in 
standpoint spatial neighborhood while a "fast" displacement has 1- (dxi/dt;) 2 << 1. 
Although definition of "slow" and "fast" displacement rests on coordinate systems 
belonging to standpoints spatially located near the matter, :J;Ileaning of these terms 
will prove to be coordinate independent. We shall find slow matter always objec­
tively describable in multi-time cosmology whereas fast matter presents nonobjective 
aspects. The present paper focuses on slow matter; Reference (9) deals with light 
propagation - an important example of fast geodesic. 

At standpoint i, X± = 0 and here (27) gives g = g = 2, 91 = g1 = 0, so the metric· 
(24) is indeed Minkowskian in the standpoint coordinates t;, x;. More generally, at the 
spatiallocation of standpoint i (x; = 0) where x+ = x_ soh+ = h_ = u, f+ = f- = v, 
we find g = g and Q1 = g 1 so the metric takes Riemannian form. Reference (9) shows 
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the slow-matter deviation of (24) from Riemannian form to be of order (ri/ R;)4
. 

Deviation of order (ri/ R;) 2 from Minkowski-equivalent metric is there shown to be 
representable through general relativity and associable with Riemannian spacetime 
curvature that implies mean energy density near standpoint i of order (GRl)- 1 , where 
G is the gravitational constant. 

Although in Riemannian approximation "invariant curvature" at standpoint is 
of order Ri2

, the Ricci curvature tensor vanishes for all components that carry a time 
index. (9) This feature reflects the Finsler metric (24) becoming "fiat" for purely radial 
displacements. For displacements with dn; = 0, (24) reduces to the Riemannian form 

(28) 

Although there might seem here to be curvature, the factorized dependence on x+ 
and x_ in (28) allows transformation to coordinates in which the radial metric is 
Minkowskian. Introducing coordinates r;, p; that relate to t;, r; by 

(29) 

the radial metric becomes 

1 
ds · = -(dr~ - dp~) 1 12 • vl:2 ' ' . (30) 

Thus, invariant "radial curvature" vanishes. This feature of multi-time cosmology will 
provide a link to Milne cosmology. (7

) L~rentz boosts that preserve (30) will provide a 
partial mapping between spacetimes belonging to different standpoints. 

Implied by (30) is that any radial geodesic is characterized by a constant value 
of 

(31) 

physical radial trajectories being limited to the interval-! :::; {3; :::; +1 where ds7 2: 0. 
Along such trajectories ds; is interpretable as elapse of "proper time." Although the 
radial velocity 

i·; = dri/ dt; (32) 

is not generally constant along a geodesic, from (29) it can be shown that the physical 
constraint on the range of {3; implies -1 :::; r; :::; +1. Lightlike radial geodesics -
with {3; = ±1 -haver; = ±1; in the lightlike case r; is constant. 

An important special slow category of radial geodesics comprises those "station­
ary" geodesics that "start" from the big-bang vertex at r; = t1 = p; = T; = 0 and 
carry a (constant) {3; lying between 0 and 1 ( i·; is here constant only for {3; equal to 
0 or 1 ). Stationary geodesics associate with "Hubble flow." Each {3; is equivalent to 
a "radial rapidity" 

(33) 
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lying between zero and +oo. Although rapidity is not ~onstant in the i standpoint 
coordinate system, (29) reveals that Hubble-flow initial rapidity equals ~i· Stationary 
geodesics completely and non-redundantly span the i-standpoint 's double cone. It is 
correspondingly possible to coordinate this compact manifold, instead of by Xi or by 
( Ti, Pi, ni), instead through an initial rapidity 

(34) 

~ \_, 

and direction ni (~i = ~ini) together with "distance'' -or "proper time" from big 
bang. The invariant "distance from big bang" is 

(35) 

-+ 

Choosing to coordinate i-standpoint spacetime by (s, ~i), it is necessary to recognize 
a bound on the invariants that depends both on ~i and on Ri: 

(36) 

Any other standpoint j perceivable from the i standpoint is conveniently labeled 
-+ 

by (sj,~ij), where we shall see that Sj may appropriately be called the "age" of 
standpoint j. Absence of index i from Sj reflects independence of standpoint age 
on the spacetime in which the standpoint locates. This important feature of multi­
time cosmology is essential to slow-matter objectivity. Note that standpoints of age 
exceeding the upper bound in (36) are not representable in i spacetime. Note also that 
the age of standpoint i -. - which within its own spacetime lies on the zero-rapidity 
Rubble-flow geodesic at ti = Ri or Ti = 4Ri(l- ~),relates toRi by y2 . 

Si = 2(J2 -1)~. (37) 

It is stationary matter, moving along the i-system Rubble-flow geodesic that 

St~rts from big bang at Ti = 0 with rapidity ~ij and is perceived from standpoint i 
to coincide in location with j standpoint when matter proper age is Sj, which allows 
physical identification of Sj with "age of standpoint j". Such matter is at rest in 
the j coordinate system. By this stage of our exposition, readers familiar with Milne 
cosmology will have recognized a connect,ion. Linkage is reinforced by deduction from 
(29) that, at the point along any radial geodesic in i coordinates where ri = 0, the 
radial velocity ri is equal to the (constant) value of f3i labeling this geodesic. Thus, al­
though velocity varies along a geodesic, we may physically interpret the geodesic label 
-+ 

/3i = f3ini as particle velocity at the spatial location of standpoint i, measured in the 
i coordinate system. Invariance of the Minkowski radial metric (30) permits between 
i and j coordinate systems a mapping (detailed in the appendix of Reference (9)) of 
any geodesic passing through both i and j standpoint spatial locations. According 
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..... 
to this mapping, Lorentz transformation of the i-standpoint particle-velocity (3i by 

..... 
the boost Aij leads to a (3 i equal to velocity along the same particle trajectory at a 
point coincident with standpoint j and measured in j coordinates. 

We encounter here in the notion of a particle trajectory representable either in 
i or in j coordinates, the limited degree of "objectivity" accommodated by multi­
time cosmology: Particle trajectories ("signals") connecting spatial neighborhood of 
i standpoint with that of j are representable either in i or in j coordinates. In partic­
ular, the velocity at i in i coordinates relates to the velocity at j in j coordinates by a 
Lorentz boost of magnitude !:iii along the direction connecting the two standpoints. 
The boost depends only on the two standpoints (not on the particle trajectory). 

As in Milne cosmology, sign of boost means a universe perceived from any stand­
point to be expanding. Specifically, the redshift Zij of a source located at standpoint j 
and at rest in j coordinates, as observed through a light signal at (an older) standpoint 
i, relates to the boost Aij by 

1 6. + Zij = e •J, 0 S Zij S +oo. (38) 

Milne cosmology and, more generally, any "standard" cosmology accommodates a 
broader degree of "objectivity" wherein a particle trajectory represented in the coordi­
nates used by some observer is unambiguously representable by any observer through 
coordinate transformation whether or not the trajectory passes close to the spatial 
location of the observer. All coordinate representations may consistently be mapped 
on each other. In multi-time cosmology, on the other hand, comparison of trajectory 
representations depends on the trajectory's intersecting the spatial neighborhoods of 
the standpoints being compared. Reference (9) extends the "exactly-radial" geodesics 
considered here to geodesics whose impact parameter with. respect to standpoint is 
small on Hubble scale. Notice that slow matter is always objectively describable in 
multi-time cosmology because any slow geodesic enters the common spatial neighbor­
hood of all standpoints as matter age approaches zero. It is the representation of fast 
matter at great distance that may fail to be objective. 

Only for exactly-radial displacements can the Finsler standpoint-spacetime met­
ric (24) be transformed to Minkowski form. When all 3 spatial dimensions are 
considered(9

), there is curvature of order Ri2 in Riemannian approximation. Two 
phenomenological features of Milne's flat-space model nevertheless survive: 

1. Defining Hubble time (or length) Hi-l of standpoint i through 

H l
. Zij 

i = Im -, 
Tjj--.0 Tij 

where Tij is distance to j observed by i, one finds Hisi = 1. 

2. The age ratio between observer and source is 

Si 6.·. 
1 - = e •J = + Zij' 

Sj 
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(39) 

( 40) 



when source lies on observer's backward light cone. 

Thus, although luminosity distance, as shown in Reference (9), is affected by 
spacetime curvature (as also, of course, is energy density), multi-time cosmology 
maintains Milne's "kinematic" relation between age and redshift. For a given Hubble 
constant, a multi-time universe is older than an Einstein-de Sitter universe by a factor 
3/2. 

We conclude the present section by calling attention to points of analogy between 
the compact double-cone spacetime with standpoint i at center and the interior of 
a spherically-symmetrical "standard" black hole whose Schwartzschild radius is of 
order R;. 

(a) Because black-hole mass would be of order 14/G, black-hole energy density 
would be of order Jh- ~ "' Gk? · 

I I 

(b) Matter inside double cone is gravitationally confined thereto, as shown via 
(29) by examination of radial geodesics near the boundary at r? = (2Ri - ti) 2 in the 
standpoint's future. ' 

(c) Geodesics originating along the big-bang light-cone in the standpoint's past, ' 
but not near the vertex thereof and thus not "stuck to a standpoint from the begin-
ning", may associate with matter "falling into" the double cone. 

VI. Poincare Symmetry in Standpoint Neighborhood 

This brief and perhaps unnecessary section makes explicit the sense in which 
standpoint cosmology is compatible with "usual" classical physics inside any homog~neous­
universe neighborhood that is small on Hubble scale. Consider two different stand­
points i and j whose "boosts" with respect to a (third) reference standpoint, la-.... .... 
beled "o", are .6-oi and .6-oj, respectively. Let us suppose I R;.- Ro I<< Ro and 

. .... .... 
I R;- Ro I<< Ro and further that I .6-oi I<< 1, I .6-oi I<< 1. The two standpoints 
being compared, that is to say, are close to each other on Hubble scale. "Neighbor­
hoods" of these standpoints,· defined by 

(a region where angles ¢>± are small for all 3 standpoints) then approximately map 
onto each other via Minkowskian geometry even through the full i,j spacetimes do 
not. 

To leading order t~e mapping is 

.... .... 
r i- r; = (.6-oj- .6-oi)So, (42) 

13 



Change of standpoint thus amounts to a familiar Poincare displacement. Adding the 
consideration that, to the foregoing order, metric is Minkowskian for all 3 coordinate 
systems within the neighborhood ( 41), one recognizes usual Poincare covariance of 
a unique noncompact spacetime. For physics within this neighborhood all Poincare 
frames are equivalent. Reference (9) provides extension to general relativity. 

VII. Weak Inhomogeneity 

Standpoint cosmology needs extension, through energy-momentum-type 8 vec­
tors attached to particles, in order to connect derivatives of nontrivial functions 
E>i( <Pm) for partide m with energy-momentum of other particles. It is natural to asso­
ciate with particle l, as observed from standpoint i, an 8-vector of energy-momentum 
type obtained by a 4-parameter U(1) x 0(4) "rotation" of a fiducial8-vector specified 
by a 4-vector p~. This 8-vector would represent not only particle energy-momentum 
but particle location in the compact 4-dimensional coset space parameterized by </>1• 

Dynamics will involve invariants of the (mixed) type (3) and (4) as well as (7). 
Although such a model extension remains for the future, we here note a "weak­

gravity'' formula for h,_.v = g,_.v -7],_.v from general relativity that illustrates the relation 
to be sought in standpoint neighborhood. In a coordinate system where hilv is small, 
the retarded Lienard-Wiechert "gravitational potential" at x generated by a particle 
of energy-momentum p1 is given by the Poincare-covariant formula 

I I 

h i ( ) G pilpl/ 
IJ.LI X = I ( I ) ' p ·X -X 

(43) 

where x 1 locates the intersection of "source-particle" trajectory with the backward 
light cone of the point x. The advanced potential is given by a similar formula. 
In the sense of Wheeler and Feynman(IO) a superposition of advanced and retarded 
potentials is required. That is, the acceleration experienced by a test particle at x 
combines its gravitational interaction with source particles in past and in future. (If a 
source particle intersects both forward and backward light cones of the point x with no 
intervening change of energy-momentum, its contributions to advanced and retarded 
potentials at x are equal; but generally the retarded contributions are independent 
of advanced.) . 

Average energy density of order (GR[)- 1 means that (absent black holes) the 
Formula ( 43) contribution to hilv near standpoint from all particles within a distance 
ri is of order (ri/!4)2

• There is no reason to believe (43) for source distances on 
Hubble scale (ri rv !4); a natural "cut off'' rule follows from the homogeneous-universe 
feature that hilv = 0 at standpoint. From the contribution according to ( 43) of sources 
between ri and ri + dri one subtracts the contribution that a homogeneous particle 
distribution would give. Because homogeneity is observed to be a good approximation 
for ri/ f4 > 10-2 , (s) an effective cutoff will then develop at such distances. Only 
proximity of (local) black holes can disturb smallness of hilv near standpoint. Such 
proximity is exceptional in "dilute" standpoint neighborhoods - characterized by Ri 
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sufficiently large that quantum-particle Compton wavelength is much smaller than 
average distance between particles. The presently-proposed classical model makes 
sense only for dilute standpoint neighborhoods. 

VIII. Conclusion 

A companion paper (9) deals in homogeneous-universe approximation with small 
deviations from radial motion-i.e., with standpoint-impact parameters nonzero\but 
small on Hubble scale. (All motion within standpoint neighborhood is thereby en­
compassed.) From the acceleration implied by the Finsler metric (24), Ref. (9) infers 
mean energy density near standpoint and luminosity distance as a function of red­
shift. An important contribution is found from "vacuum energy density" which, in 
our model, parallels matter energy density at all standpoint ages. 

Because matter energy density varies inversely with square of standpoint age, 
quantum-particle mean free paths near sufficiently young standpoints become small 
(in time as well as in 3-space) on Hubble scale. A thermodynamic approximation is 
thereby suggested (even for standpoint neighborhoods that are "dilute" in the sense of 
Section VII). Would a "hot universe" calculation of primordial nucleosyntheseis make 
sense within our model? Although the model's emphasis on "perception" suggests im­
portance for "transparency" as well as "diluteness" in standpoint neighborhood, one 
might nevertheless ask what differences from standard-model nucleosynthesis would 
arise if our model were to foray unquestioningly into this domain of phenomenology. 
Two differences are easy to identify: (1) In the standard-model hot universe, age is 
!H-1 whereas in our model age is always H-1 . To the extent that H correlates with 
temperature through energy density, a specified lowering of temperature then requires 
alonger time in the standpoint-based model. (2) For the same H, hot-matter energy 
density as deduced in Reference (9) is smaller than in the standard model(10) by a fac­
tor 0. 77 (although total energy density, including vacuum, is larger by a factor 1.54). 
The foregoing two differences have opposing impacts, with difference #1 prevailing 
in the time-temperature relation. Because our model allows more neutrons to decay 
during helium synthesis, achievement of a specified helium abundance presumably 
would require a larger ratio of baryons to photons than in the standard model. 
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