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Abstract 

Sigma models are exhibited which have tree amplitudes for Goldstone 

boson scattering that satisfy elastic unitarity e~actly. The models have 

imaginary coupling constants and the scalar propagators have poles on the 

imaginary axis in the complex p2 plane. They are equivalent to K-matrix 

models, which are ad hoc unitarizations of low energy theorems for Gold

stone boson scattering that have been used recently to describe strong 

WW scattering. The sigma model formulation of the K-matrix models 

may be used to estimate directly the effect of strong ww scattering on 

low energy radiative corrections. 
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Introduction 

In perturbation theory unitarity relates terms of different orders and can

not be satisfied in tree approximation. This paper exhibits nonstandard sigma 

models interpreted as effective tree-level theories in which the Goldstone boson 

scattering amplitudes in tree approximation do satisfy elastic unitarity exactly. 

The models have imaginary coupling constants and the sigma propagators have 

poles on the imaginary axis in the complex p2 plane. However, the models are 

not crossing symmetric, a given sigma model only represents a specific scattering 

process, and the discussion is restricted to s-wave scattering. Even with these 

restrictions the models are useful in the context in which they were obtained, 

to represent strong WW scattering in a dynamically broken electroweak gauge 

theory in a manner consistent with chiral symmetry and unitarity. In addition 

to reproducing models of high energy WW scattering, the effective sigma model 

formulation may be used to estimate the contribution of strong WW scattering 

to low energy radiative corrections, which will be considered elsewhere. 

The tree-unitary sigma models are equivalent to K-matrix unitarization of 

the low energy theorems for Goldstone boson scattering. The K-matrix is an 

ad hoc unitarization, prescription that has been used to construct models of . . 
strong WW scattering[!] at high energy colliders. K-matrix models are suitable 

for the purpose because their partial wave amplitudes are generically "strong" 

(i.e., tend to saturate unitarity) while respecting chiral symmetry low energy 

. theorems and unitarity. 

The equivalence of K-matrix models to tree-unitary Higgs/sigma models 

emerges naturally from a gauge invariant formulation of strong WW scattering[2, 

3] in which models of s-wave scattering are represented by means of effective 

"Higgs boson" (or sigma) propagators.3 The method is defined by a Feyn

man diagram algorithm, introduced in [3], which determines the 4-body scatter

ing amplitudes involving gauge and/or Goldstone bosons (WWWW, wWWW, 

wwWW, and wwwlV) from a model of the Landau gauge Goldstone boson scat

tering amplitude ( wwww ). Tree amplitudes computed from the diagrammatic 

algorithm represent the initial models exactly. Strong scattering mode~s, which 

3 Because of the equivalence theorem[4] we can refer interchangeably to strong scattering 

of longitudinal W's or Goldstone bosons. We also refer interchangeably to Higgs or sigma 

bosons and to Higgs or sigma models. 
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are typically formulated in Landau gauge, can then be transcribed to unitary 

gauge or to any generalized renormalizable Re gauge[5]. The initial motivation 

was to use the U-gauge transcription to compute strong WW scattering signals 

at high energy colliders without using the effective W approximation[6] (EWA), 

in order to obtain information not available from the EWA, such as jet distribu

tions needed for jet tags and vetos. The gauge invariant formulation was checked 

by direct computation[2] and by explicitly verifying BRS invariance[3]. 

We consider I = 0 and I = 2 Goldstone boson scattering channels, which 

both haves-wave threshold behavior. To any models-wave amplitude the gauge 

invariant formulation associates a corresponding effective scalar propagator and 

interaction. In general, for an arbitrarily complicated scattering amplitude, 

the corresponding scalar propagator is arbitrarily complicated and the coupling 

"constant" is not constant but is a function of the scattering energy. But for 

K-matrix models the transcription is especially simple: the scalar propagators 

have simple poles, like elementary Higgs scalars, and the coupling constants 

are indeed constant. However, the pole positions are on the negative (positive) 

imaginary axis for I = 0 (I = 2) scattering and the coupling constants are 

1magmary. 

Interpreted naively, the poles correspond to Breit-Wigner resonances with 

decay widths twice as big as their masses: The imaginary coupling constant 

implies a non-Hermitian Hamiltonian and therefore suggests a nonunitary S

matrix, an apparent paradox since the models are unitary by construction. In 

· fact chiral symmetry assures the cancellation of the potentially non unitary terms 

in the tree amplitudes just as it assures the threshold behavior required by the 

low energy theorems. 

The two physical channels with pure s-wave threshold behavior are WtW£ -+ 

ZLZL and wtwt -+ l¥twt' where the subscript L denotes longitudinal 

polarization.3 The latter is pure I = 2 while the former is a superposition of 

I = 0 and I = 2. The Higgs boson representation of the K-matrix model for 

wtwt--+ wtwt follows immediately from the. transcription defined in refer

ence [3], in which the amplitude is represented by a single effective (charge 2) 

scalar propagator. A valid representation of the K-matrix model for WtW£ -+ 

ZLZL scattering can also be obtained ,psing a single effective propagator, but 

the propagator does not have a single simple pole, the coupling "constant" is 
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not constant, and the theory does not have a Higgs/sigma ~odel structure. A 

simple representation is obtained in this case by introducing two propagators, 

corresponding to the two isospin components of the s-channel amplitude, and 

the resulting effective theory is a two doublet Higgs boson modeL 

The next section explains the K-matrix prescription and presents the K

matrix amplitudes for wtwt-+ wtwt and wtwz-+ ZLZL scattering. The 

third section describes the effective Higgs boson representation of the K-matrix 

model for wtwt -+ wtwt' while the fourth section considers representations 

of the WtW£ -+ ZLZL scattering model with one or two effective scalar prop

agators.. The BRS in variance of the effective two doublet model is illustrated 

. by explicitly verifying one of the nontrivial BRS identities. The final section 

contains a brief discussion of the results and implications. 

The K-matrix prescription 

We consider elastic partial wave unitarity for massless particles since we 

are interested in Goldstone boson scattering or, correspondingly, in WLWL 
scattering at high energy, E » mw, where mw can be neglected. Strictly 

speaking there is no domain of pure elastic scattering for massless particles, 

but inelastic scattering is strongly suppressed near threshold, and in practice 

WLWL -+ WLWLWLWL is negligible relative to WLWL -+ WLWL at the en

ergies of interest to us[7], between 0.5 and 2 TeV. The unitarity constraint on 

the partial wave amplitude aiJ(s) for isospin I and angular momentum J (with 

s = E 2
) is then 

A useful equivalent formulation of equation 1 ~s 

1 
lm- = -1. 

au 

(1) 

(2) 

The K-matrix prescription is defined by choosing an arbitrary real function 

Ru( s) as the real part of the inverse of au, 

Re (-
1 

) = Ru 
aiJ 

(3) 

~nd then specifying the complete amplitude at by 

1 R . 
~ = IJ -'t 
aiJ 

(4) 
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which obviously assures equation 2. 

For Goldstone boson scattering, we ensure consistency with the low energy 

theorems[8] that follow from chiral symmetry by appropriately choosing the real / 

function RIJ, 
1 

Ru = LET (5) 
aiJ 

where aYJT is the low energy theorem amplitude. For the the s-wave channels 

the low energy theorem amplitudes are 

LET S 
a ---oo - 167rv2 (6) 

and 
LET S a ----20 - 327rv2. (7) 

At energies for which the J = 0 partial waves dominate, we have finally the 

K-matrix models for the I= 0 and I= 2 channels, 

(8) 

and 

(9) 

Including factors of two for states with identical particles the isospin decompo

sitions of the physically relevant channels are 

MK(w+w- ~ zz) = ~(M~ ~ M:) (10) 

and 

(11) 

Effective Higgs boson model for w+w+ ~ w+w+ 

Because it contains only a single isospin component in the s-channel the 

K-matrix model for w+w+ ~ w+w+ scattering is easily expressed as an effec

tive Higgs boson model simply by following the algorithm given in [3]. For an 

arbitrary model, labeled by X and specified by an R-gauge scattering amplitude 

M ~, the corresponding effective s-channel propagator is 

(12) 
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where MLET is the low energy theorem amplitude for the relevant channel. The 

corresponding Higgs sector coupling constant is 

X ) s M~ 
). (s = -2 2 Mx M ' 

V R- LET 
(13) 

The vertices that define the Feynman diagram algorithm are given in ref

erence [3].' For w+w+ -+ w+w+ scattering they differ in some instances from 

the standard model Feynman rules because the algorithm imposes an s-channel 

scalar exchange to represent interactions that ~rise from t- and u-.channel ex

changes in the standard model.4 The deviations from the standard model rules 

ate specified in table 1 of reference [3]. In general pX may have an arbitrarily 

complicated form depending on the form of M~, and the coupling "constant" 

is a function of the scattering energy, ). x = >. x ( s). 

It is easy to obtain the effective scalar propagator corresponding to the K

matrix model for w+w+ -+ w+w+. Substituting equation 11 and the low energy 

theorem 

(14) 

into equation 12 we find the effective propagator has the very simple form, 

(15) 

where 
2 32 . 2 m++ = 1rzv. (16) 

The propagator has a simple pole in the complex s plane, though at a peculiar 

location on the imaginary axis. Correspondingly, from equation 13 the coupling 

constant is in fact constant, 

(17) 

though with a peculiar imaginary phase. Notice that the algorithm is consistent 

with the standard model relation m~+ = 2>.!+ v2
, which is essential for main

taining BRS invariance. The negative phase of the propagator arises because, 

as noted in [2, 3], we require an effective I= 2 s-channel exchange to represent 

forces due to I = 0 t- and u-channel exchanges in the standard model. 

4 For w+w- --+ zz the algorithm can be represented by an effective Lagrangian, but for 

w+w+ scattering the model is defined only by the Feynman diagram algorithm. 
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Effective Higgs boson model for w+w- -7 zz 

A valid BRS invariant representation of the K-matrix model for w+w- -7 zz 

scattering can also be obtained by substituting equation 10 and the low energy 

theorem 

(18) 

into equation 12. In this case the effective s-channel scalar exchange has the 

same topology as the standard model Higgs exchange and with the propagator 

and coupling constant of equations 12 and 13 the Feynman diagram algorithm 

agrees precisely with the standard model Feynman rules. [3] The effective prop

agator is then 

where 

and the coupling constant is 

where 

2 16 . 2 m 0 =- rrzv 

)... K = _-_1_6_rr_i 
+- 1 + ix 

s 
x--

- 16rrv2 • 

(19) 

(20) 

(21) 

(22) 

(23) 

The propagator is the sum of two simple scalar poles but the coupling 

"constant" is not in fact constant. Although by the machinery of reference [3] 
this is a valid, BRS invariant representation of the model, it does not have a 

simple interpretation as a Riggs/sigma model. 

The form of the propagator suggests that we instead consider an ansatz with 

two Higgs scalars. In particular, consider the two doublet model with complex 

doublets <1>0 and <1> 2 , corresponding to the I = 0 and I = 2 components of the 

w+w- -7 zz amplitude. The most general potential with appropriate vacuum 

is[9) 
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L Aa( <I>1 <I> a-'/{~? 
a=0,2 

+>.3[(<I>6<I>o- v6) + (<I>~<I>2- v;)]2 

+>-4[(<I>6<I>o)(<I>~<I>2)- (<I>b<I>2)(<I>~<I>o)] 

+>-s[Re(<I>6<I>2)- vov2 cos~] 2 

+>.s[Im( <I>6<I>2) - vov2 sin(] 2 (24) 

The vacuum expectation values satisfy v2 = v6 + vi with mw = gv /2 and the 

Goldstone bosons are 

wa = cos/3 ¢~ + sin/3 ¢~ (25) 

. where ¢0,2 are the appropriate components of the complex doublets <I> 0 ,2. The 

angle is determined by the ratio of the vev's, tan/3 = v2/v0 . 

The pole positions in equation 19 correspond precisely to the I = 0 and 

I = 2 amplitudes,5 therefore we want the scalar eigenstates to be unmixed, 

a= 0 in the conventional notation. Since we are only constructing an effective 

tree-level theory to replicate the K-matrix amplitude, equation 10, we are free 

to fine-tune the potential shamelessly. We therefore choose >.3 = >. 5 = 0 so that 

H0 and H2 are the eigenstates with 

(26) 

To determine the angle f3 we proceed as in [2, 3] and use the equivalence 

theorem[4] to determine the U-gauge Higgs sector contribution, 

K K Mu,H = MR- Mgauge sector· (27) 

As always in discussions of strong WW scattering we neglect corrections of order 

g2 and mw/.JS. In that approximation Mgauge sector ~ s/v2 and substituting 

M)f from equation 10 we find 

MK _ ~ s
2 

( 1 +! 1 ) 
. U,H - 3 v2 s - m5 2 s - m~ · 

(28) 

5That is, they are the poles that would emerge by substituting equations 8 ~nd 9 into 

equation 12. 
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This is to be compared with the contribution from exchange of the two 
' 

Higgs scalars in the two doublet model, 

( 
2 )2 2-doublet 9 Va 

Mu,H = t£1. t£2 t£3. Eu L - -2-
a=0,2 

1 

s- m 2 
a 

(29) 

where ELi are the longitudinal polarization tensors for the four gauge bosons. 

Indices 1 and 2 refer to w± and indices 3 and 4 to the final state Z bosons. For 

simplicity, here and in the discussion of BRS invariance below, we assume the 

gauge group is just SU(2)L; I have verified that the conclusions are the same for 

SU(2)L x U(1)y. Approximating ELi = p;fmw we find that equations 28 and 

29 are consistent if 
1 

tan/3 = 2, (30) 

t}Jat is, v5 = 2v2 /3 and vi = v2 /3. With the masses, equation 20 and 21, this 

in turn fixes the coupling constants, 

'.>.0 = -127ri (31) 

and 

(32) 

It is now straightforward to close the circle by using the parameters determined 

above to verify that the tree amplitude M(w+w- -+ zz) computed from the 

two doublet model is indeed the K-matrix amplitude of equation 10. 

We conclude this section by considering one of the BRS identities that is 

nontrivial in the sense that it probes the consistency of gauge and Higgs sector 

interactions, 

(k k M J.LVOt/3 + · (k MJ.LOt/3k Mva{3) 2 M0t{3 ) _ 0 
t3at4{3 lJ.L 2v zmw lJ.L w- 2v w+ - mw w+w- - ' (33) 

where subscripts 1,2,3,4 refer to w+, w-, Z, Z respectively. The subscripts w± 

indicate amplitudes in which gauge boson w± is replaced by Goldstone boson 

w±. Using the Feynman diagram algorithm, which for w+w- -+ ZZ is just 

the standard model Feynman rules, to evaluate the amplitudes in R~ gauge we 

find after canceling identical terms that the left side of equation 33 is 

J~RS = 
9
8

2 

€3 • €4 (-v2 + L ~; 2 (s- 2.>.av~)) 
a=0,2 s ma 

(34) 
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which vanishes by equation 26. Consistency is assured for this and the other 

BRS identities because for Jtl!+w- -+ ZZ our diagrammatic algorithm is just 

the usual Feynman rules for the two doublet model. (BRS invariance of the 

algorithm for the w+w+ channel is less obvious because of departures from the 

usual Feynman rules in that case - see [3].) 

Discussion 

A similar result to the peculiar pole positions found here was obtained in 

a study of the I, J = 0, 0 channel in the 0(2N) Higgs/sigma model solved 

to leading order in the N --+ oo limit.[lO] Evaluating the solution for N = 
2 (only 33% worse than standard operating procedure for large N QCD) the 

authors found a "Higgs remnant" far from the real axis in the fourth quadrant 

of the complex s plane,. In the strong coupling limit the pole position tended 

to -l61riv2 /3, a factor 3 smaller than our K-matrix value for m6 (though, as 

observed by Einhorn[lO], the limit is actually outside the domain of validity of 

the model). 

For a heuristic interpretation of the pole positions on the imaginary axis in 

the complex s plane we can consider the Breit-Wigner form, 

1 
Psw = s- (m- if/2)2 (35) 

where m and r are real. For the pole to occur on the imaginary axis, the width 

must be twice the mass, r = ±2m. 

The imaginary coupling constants suggest a gross violation of unitarity, 

since a non-Hermitian Hamiltonian implies a nonunitary S-matrix, but by con

struction the tree amplitudes satisfy partial wave unitarity exactly. The expla

nation is that chiral symmetry protects the unitarity of the tree amplitudes just 

as it assures the threshold behavior required by the low energy theorems. Explic

itly, in tree approximation the scattering amplitude is the sum of the constant, 

imaginary 4-point contact interaction, -2>.a, and the s-channel Riggs/sigma 

exchange term which contains a canceling imaginary constant. Chiral symme

try requires the amplitudes to vanish at threshold and therefore enforces the 

cancellation of the constants regardless of their phase. 

It is unexpected and interesting that scattering mediated by scalar ex

changes with poles on the imaginary axis in the m 2 plane corresponds to tree 
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amplitudes that precisely follow the trajectory of the Argand circle character

izing exact elastic unitarity. That observation is useful to estimate directly the 

effect of strong WW scattering on low energy radiative corrections. Most discus

sions of low energy radiative corrections in theories with dynamical electroweak 

symmetry breaking have focused on the effects of specific quanta in specific mod

els, for instance, the large oblique corrections from techni-quarks or technicolor 

pseudo-Goldstone bosons.[ll) In the same spirit as the analysis of strong WW 

scattering at high energy experiments, which emphasizes model independent as

pects of electroweak symmetry breaking by a strong force, it would be useful to 

.__ estimate the effect on low energy corrections of just the strong scattering in the 

WW channels, without reference to specific model dependent features. Such 

an estimate can be made using the Higgs boson representation of the K-matrix 

models and will be considered in a subsequent paper. 
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