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On the Geometry of Texture * 

Ron Kimmel Nir Sochen Ravi Malladi 

Abstract 
We consider texture images as a composition of 

manifolds in the feature-space. This geometrical inter
pretation leads to a natural way for texture enhance
ment. A flow, based on manifold volume minimization 
yields a natural enhancement procedure for texture im
ages. The 2D Gabor-Morlet transform is first used 
to decompose the image into sub-band images, where 
each sub-image corresponds to a different scale. Each 
sub-band image may be considered as a 3D manifold 
in a 5D space from which the original image can be 
reconstructed in a numerically stable way. Following 
our previous results, we then invoke Polyakov action 
from String theory, and develop a minimization pro
cess through a geometric flow that efficiently enhances 
each sub-band image in a spatial-orientation feature 
space. Finally, the enhanced sub-band images are com
posed back into an enhanced texture image. 

1 Introduction 
Texture plays an important role in the understand

ing process of many images. Therefore, it became 
an important research subject in the fields of psy
chophysics and computer vision. The study of texture 
starts from the pre-image that describes the physics 
and optics that transforms the 3D world into an im
age, through human perception that starts from the 
image formation on the retina and tracks its interpre
tation at the first perception steps in the brain. 

The psychophysical research of these first steps fo
cuses on the way the brain cells are activated under 
the stimulus of a given image. Such experiments com
bined with recent developments in the field of signal 
representation led to relatively simple mathematical 
models that simulate the first steps in the way our 
brain represents images. One such model is based on 
the 2D Gabor/Morlet-wavelet transform of the image. 
Some nice mathematical properties and the relation of 
this transform to the physiological behavior were stud
ied in [11, 17]. This model was used for the segmenta
tion, interpretation and analysis of texture [2, 12], for 
texture based browsing [14], etc. 

0 This work is supported in part by the Applied Mathematics 
Subprogram of the 'Office of Energy Research under DE-AC03-
76SF00098, ONR grant under N00014-96-1-0381. 

In this paper we use the same space to represent 
texture images. Then, we search for a geometrical 
way to improve and enhance texture based images. 
The geometrical feature enhancement procedure we 
introduce may serve as a step towards segmentation. 
This procedure is bas_ed on _a flow in the transformed 
space in which the transform coefficients are treated as 
higher dimensional manifolds. A special minimization 
process, preserves domains of constant/homogeneous 
texture, enhances the texture in each domain, and 
thereby sharpens the boundaries between neighboring 
domains with different textures. 

The remainder of this paper is organized as follows: 
Section 2 briefly reviews our previous results: the defi
nition of arclength, the consideration of images as sur
faces, and the minimization of Polyakov action that 
leads to a geometric flow we named the Beltrami flow. 
Next Section 3 describes the relevant feature space to 
the texture case. It gives the basics for constructing 
the 2D Gabor-Morlet wavelet decomposition, and a 
simple way for composing the image back. Section 4 
presents experimental results of the Beltrami flow in 
the decomposition feature space, for simple gray level 
texture as well as color texture. 

2 Images as Embedded Maps that flow 
toward Harmonic Maps 

In [20] we consider images as 2D surfaces in higher 
dimensional spaces. We construct enhancement and 
segmentation procedures for color images as 2D sur
faces in 5D (:z:, y, r, g, b) space. As shown in [9] the 
idea of images as curved spaces is not limited to 2D 
surfaces, so that movies and volumetric images can 
be considered as 3D hyper surfaces (manifOlds) in 4D 
(:z:, y, z, I(z, y, z)) space. 
. Our geometric framework finds a seamless link be

tween the L1 (Osher-Rudin TV and its variants) and 
the L2 norms (used in Mumford-Shah and its vari
ants) based on the geometry of the image and its in
terpretation as a surface1 . The aspect ratio between 
the gray l~vel and the zy image plane, is the switch 
between the two commonly used norms. This observa-

1TV (Total Variation) schemes are based on minimizing the 
L1 norm, namely J l'\7 II, while the L2 norm minimizes J IV 112 • 



tion made it possible to show that our multi-channel 
(color) enhancement procedure may be considered as 
a generalization of the powerful TV scheme that is 
now commonly used in the high tech image processing 
industry. This procedure yield very promising results 
for color image enhancement [20]. 

In this work, we propose a flow in a rich feature 
space which is different from the image space. Other 
flows in similar feature spaces were recently proposed 
in [18, 4, 19, 22]; see also [21] for orientation-preserving 
flows on the image itself. All these approaches begin 
with a flat metric [6] that does not yield a meaning
ful minimization process when going to more than one 
channel. 2 The main difference between these schemes 
and the one we propose is the geometric interpretation 
of the information as a manifold flowing so as to min
imize its volume. Our geometric perception of a color 
image as a surface embedded in a higher dimensional 
space enabled us to define a simple and natural cou
pling in the multi-channel color space. It will help us 
to construct a geometric flow in the 2D Gabor/Morlet 
wavelet transform that results in a high dimensional 
space. Other schemes that consider the image as a 
surface were proposed [1, 8, 23, 13], some even used 
the image information to build a Riemannian metric 
for segmentation [3]. However, non of these methods 
were generalized to feature space or any co-dimension 
higher than one. 

2.1 The Metric 
The basic concept of Riemannian differential ge

ometry is distance. Let us start with the impor
tant example X : I:: -+ IR?. We denote the lo
cal coordinates on the two dimensional manifold I:: 
by (ul, u 2). The map X is explicitly given by 
(X1(u1, u 2), X 2(u1, u 2), X 3(u1, u 2)). Since the local 
coordinates ui are curvilinear, and not orthogonal in 
general, the distance square between two close points 
on 1::, p = ( u1, u2) and p + ( du1 , du2) is not ds 2 = 
dur + du~. In fact, the squared distance is given by 
a positive definite symmetric bilinear form 9ii ( u1 , u2 ) 

called the metric 

ds2 g~vdu~duv 
- gu(du1)2 + 2g12dd-1du2 + 922(du2)2, (1) 

where we used Einstein summation convention in the 
second equality; identical indices that appear one up 
and one down are summed over. We will denote the 
inverse of the metric by g~v, so that g~v 9v-r = 6~, 
where 6~ is the Kronecker delta. 

2 This flat metric is called 'structure tensor' in [21). 
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2.2 Induced metric 
Let X : I:: -+ M be an embedding of I:: in M, where 

M is a Riemannian manifold with a metric (9ii )M. 
We can use the knowledge of the metric on M and the 
map X to construct the metric on :E. This procedure, 
is called the pullback and is given explicitly as follows: 

(9pv)~(u1 ,u2) = (9ij)M(X(a.l,u2 ))8pXi8vXi,. (2) 

where i, j = 1, ... , dimM are being summed over, and 

in short we use al'x· = ' . . ax~ql q2) 

ql' 

We will use the following simple and useful exam-
ple that is often used in computer vision: Consider 
embedding of a surface described as a graph in IR3

, 

X: (a.l,u2)-+ (u1,u2,I(u1,u2)). (3) 

Using Eq. (2) we get 

(4) 

where we used the identification X 1 := u1 and X 2 := 
u2 in the map X. 

Actually we can understand this result in an intu
itive way: Eq. (2) means that the distance measured 
on the surface by the local coordinates is equal to the 
distance measured in the embedding coordinates. Un
der the above identification, we can write 

ds2 dx2 + dy2 + di2 

dx 2 + dy2 + (I:r:dx + Iydy) 2 

(1 + 1;)dx2 + 2Ixlydxdy + (1 + 1;)dy2
. 

2.3 Polyakov Action 
Let us briefly review our general framework for non

linear diffusion in computer vision. We will use this, 
framework in Section 3 to diffuse a textured image in 
the transformed domain. The equations will be de
rived by a minimization problem from an action func
tional. The functional in question depends on both 
the image manifold and the embedding space. Denote 
by (I::, g) the image manifold and its metric and by 
(M, h) the space-feature manifold and its metric, then 
the map X : I:: -+ M has the following weight 

S[Xi,gpv,hii] = j d"'uJgg~'v8~Xi8vXih;i(X), 
(5) 

where m is the dimension of 1::, g is the determinant 
of the image metric, g~'v is the inverse of the image 
metric, the range of indices is J.L, v = 1, ... , dim I::, and 
i, j = 1, ... , dim M, and h;i is the metric of the em
bedding space. This functional, for m = 2, was first 



proposed by Polyakov [16] in the context of high en
ergy physics, and the theory known as string theory. 

Given the above functio~al, we have to choose the 
minimization. We may choose for example to min
imize with respect to the embedding alone. In this 
case the metric g p.v is treated as a parameter and may 
be fixed by hand. Another choice is to vary only with 
respect to the feature coordinates of the embedding 
space, or we may choose to vary the image metric as 
well. In [20] we show how different choices yield dif
ferent flows. Some flows are recognized as existing 
methods, other choices are new and will be described 
below. 

Using standard methods in variation calculus (see 
[20]), the Euler-Lagrange equations with respect to 
the embedding are: 

1 h;1 6S 1 . -2-JY fJXl = .,;gop.(JggP.vavxs) (6) 

Few remarks are in order. First notice that we used 
our freedom to multiply the Euler-Lagrange equations 
by a strictly positive function. Since (g p.v) is positive 
definite, g = det(gp.v) > 0 for all (rll. This factor is 
the simplest one that doesn't change the minimization 
solution while giving a reparametrization invariant ex
pression. The operator: that is acting on Xi is the nat
ural generalization of the Laplacian from flat spaces 
to manifolds and is called the second order differen
tial parameter of Beltrami [10], or for short Beltrami 
operator, and we will denote it by !:l.9 . 

For a surface I:, embedded in 3 dimensional Eu
clidean space, we get a minimal surface as the solution 
to the minimization problem. In order to see that and 
to connect to the usual representation of the minimal 
surface equation, we notice that the solution of the 
minimization problem with respect to the metric is 

(7) 

On inspection, this equation is simply the induced 
metric on I:. For the case of a surface embedded in 
IR3 we calculated it explicitly in (see Eq. (4)). Plug
ging this induced metric in the first Euler-Lagrange, 
Eq. (6) we get the steepest decent flow 

(8) 

where H is the mean curvature, Jl is the normai to 
the surface: 3 

H 
(1 + t;)Iyy - 2Ixiyixy + (1 + I;)Ixx 

~ 92 

3 Note also that some definitions of the mean curvature in
clude a factor of 2 that we omit in our definition. 
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jJ 1 ( T .J9 -Iy, -Ix, 1) , (9) 

and g = 1 + I; + I;. We see that this choice gives us 
the mean curvature flow! This should not be a sur
prise, since the action functional for the above choice 
of metric g p.v is 

S = j d2u.,j9 = j d2uJdet(op.XiovX;), 

which is the Euler functional that describes the area 
of the surface (also known in high energy physics as 
the Nambu action). 

In general for any manifold I: and M, the map 
X : I: - M that minimizes the action S with re
spect to the embedding is called a harmonic map. 
The harmonic map is the natural generalization of 
the geodesic curve and the minimal surface to higher 
dimensional manifolds and for different embedding 
spaces. 

The generalization to any manifold embedded with 
arbitrary co-dimension is given by using Eq. 6 for 
all the embedding coordinates and using the induced 
metric Eq. 7; see [20] for more details. 
2.4 The Beltrami flow 

Let us present a new and natural flow for images 
as surfaces. First let consider the case in which the 
gray level image is regarded as an embedding map 
X : I: - IR3

, where I: is a two dimensional manifold 
and the flow is natural in the sense that it minimize~ 
th~ action functional with respect to I and (Uii ), while 
bemg reparametrization invariant. The coordinates 
X 1 and X 2 are parameters from this view point and 
are identified as_ above with u1 and u 2 respectively. 
The result of the minimization is the Beltrami opera
tor acting on I: 

1 - -
It= !:l.9 I = rno11 (.,j9g 11vovi) = HNi (10) 

.y9 

wher: the metric is the induced one given in Eq. 4, 
and I is the unit vector in the I direction. 

The geometrical meaning is obvious. Each point on 
the image surface moves with a velocity that depends 
on the mean curvature and the I component pf the 
normal to the surface at that point. Since along the 
edges the normal to the surface lie almost entirely in 
the x-y plane, I hardly changes along the edges while 
the flow drives other regions of the image towards a 
minimal surface at a more rapid rate. 

The Beltrami operator is not limited to act on gray 
level images (2D surfaces in 3D). In what follows we 
apply this operator to construct a feature preserv
ing flow, e.g. the Beltrami flow of the coupled maps 



A(x, y, z) and B(x, y, z) that define a manifold in the 
5D space (x, y, z, A, B), is given by 

At 'V9 A 
Bt = 'V9 B. (11) 

The metric g is 'pulled back' from the relevant ar
clength definition, e.g. 

ds2 = dx 2 + dy2 + dz 2 + dA2 + dB 2
. 

3 2D Gabor /Morlet-wavelets: 
A Natural Space for Texture Images 

In [11] Lee argues that the 2D Gabor/Morlet 
wavelet transform with specific coefficients is an ap
propriate mathematical description for images. He 
based his findings on recent neurophysiological evi
dence based on experiments on the visual cortex of 
mammalian brains. These experiments indicate that 
the best model for the filter response of simple cells 
are self-similar 2D GaborjMorlet wavelets. 

A full review of non-orthogonal wavelets, frames 
and frame bounds, is beyond the scope of this paper. 
We refer the interested reader to [15] for implemen
tation considerations, and to the rich literature on 
wavelet theory, e.g. [5]. Here, we will comment on 
the basic concepts that are relevant to our discussion. 

Following Lee [11], let us briefly describe the 2D 
Gabor/Morlet wavelets that model the simple cells 
while satisfying Daubechies' wavelet theory [5]. The 
2D wavelet transform on an image I(x, y), is defined 
as 

(rwav I)(xo, Yo, 0, a)= 

JJ (x-xo y-yo) llall- 1 dxdyl(x,y)'I/Je _a_'_a_ , (12) 

where a is a dilation parameter, xo and Yo are the 
spatial translations, and 0 is the wavelet orientation 
parameter. 

_ 1 x- xo y- Yo 
1/J(x, y, xo, yo, 0, a)= llall 1/Je(--, --), (13) 

a a 

is the 2D elementary wavelet function rotated by 
B. Based on neurophysiological experiments, a spe
cific Gabor elementary function is used as the mother 
wavelet to generate the 2D Gabor /Morlet wavelet fam
ily by convolving the image with 

1 .!.( 2 2) "k k2 
,P(x, y) = m=e- s 4x +Y (e' x- e-2), (14) 

v27r , 

and ,P8 (x, y) = ,P(x, y) is defined by rotation of (x, y) 
v1a 

x cos 0 + y sin 0 
-x sin 0 + y cos 0. 

(15) 
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The discretization of Eq. (12) is given by 

Wp,q,l,m = (T;,;,l,ml) = 

a-m j j dxdyl(x,y)t/J!Lle(a-m(x- p~x),a-m(y- q~x)), 

where Llx is the basic sampling interval, and the an
gles are given by .:lO = 21rljL, where,/= O, ... ,L-1 
and L is the total number of orientations. p, q and 
m are integers determining the position and scaling. 
Note that as m increases the sample intervals get 
larger forming a pyramidal structure. Eq. 16 can 
be read as a projection onto a discrete set of basis 
functions 

Wp,q,l,m = (/, 1/Jp,q,l,m}· (17) 

Figure 1: The wavelet basis functions (up to trans
lations). The basis functions are presented in a 
gray level array, real (symmetric) and imaginary (a
symmetric) for the 8 angles [0, 1r] and 5 scales. 

The real number k determines the frequency band
width of the filters in octaves via the approximation 

a¢+1 ~ 
k= a¢_ 1v2ln2, (18) 

where ¢ is the bandwidth in octaves, e.g. for a = 2 and 
¢ = 1.5 we get k ~ 2.5. In the above approximation 
the DC normalization term e-k

2 
/2, that is required 

to make a wavelet basis out of the Gabor basis, is 
ignored and we consider a = k/wo. So the peaks of 
the scaled mother wavelets in the frequency domain 
are (approximately) at the locations a-mw0 ._ 

For our application we have chosen L = 16 (16 
orientations), a = 2, Llx = 1, k = 2.5, and 5 scales, 

{16) 



Figure 2: The half peak contours in the frequency 
domain of the wavelet basis functions in the previous 
Figure, (5 scales 16 orientations). 

i.e. mE {0, .,,4}. This selection results in a frame 
bounds ratio of B/A = 1.19. The fact that this ratio 
is close to 1 means that we have a tight frame that 
allows simple summation reconstruction. Figs. 1 and ( 
2 show the basis functions we used. 

The concept of frames was introduced in [7]. It 
states that a family of functions ( 1/Ji) is a frame if there 
exist A > 0, B < oo that are called frame bounds so 
that for every f we have 

Allfll2 :S L 1{!,1/JjW :S Bllfll 2
, 

j 

where llfll = J P. One could recognize it as a gener
alization of Parseval's theorem. A discrete family of 
wavelets that forms a frame provides a complete repre
sentation of any function. In some cases it is possible 
to recover a function with good approximation by the 
inversion formula 

(19) 

The ratio B /A measures the tightness of the frame. 
When A = B, the frame is tight and the reconstruc
tion by summation is exact. Thus, as B/A approaches 
1 we may still use the above reconstruction equation 
as a good approximation. That is, we treat our dis
crete wavelets as an orthonormal basis. For further 
analysis of the 2D Gabor/Morlet-wavelet transform, 
motivated by its close relation to the neurophysiologi
cal behavior of simple cells, we refer the reader to [11]. 
It gives the 2D extension of Daubechies [5] numerical 
analysis for some relevant frames and their bounds. 

We denote the 2D Gabor/Morlet-wavelet trans-. 
form as W(x, y, e, u), such that R = Real(W) and 
J = Imag(W), where for the discrete case u = am 
and e = 1.6..0. The response of a simple cell is then 
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modeled by the projection of the image onto a specific 
Gabor/Morlet wavelet. 

Motivated by the arrangement of simple cells in our 
brain, with as tight a frame as possible, we consider 5 
spatial frequency octaves, and 16 angles that discretize 
the [0, 27r] angular interval. Practically, we used the 
symmetry properties of the 2D Gabor /Morlet-wavelet 
transform: W(x, y, e + 71", u) = W(x, y, e, u). Thus, 
only 8 angles are needed to represent the discretization 
of the full [0, 21r] angular interval into 16. Periodic 
boundary conditions are used for the real (symmetric) 
part, and negative periodicity for the imaginary part, 
forming a 'Klein bottle' coordinate system in (x, y, 0). 
This enables us to reduce the memory complexity by 
a factor of 2. 

The induced metric for the full transform; 4D man
ifold embedded in 6D space is given by 

(g;j) = 
1+R;+J1 R:rRy + J:rJy R:rRe + J:rJe R:rRT + J:rJT 
R:rRy + J:rJy 1+R;+J; RyRe + JyJe RyRT + JyJ.,. 
R:rRe + J:rJe RyRe + JyJe 1 + R~ + J~ ReR.,. + JeJ.,. 
R:rR.,. + J:rJ.,. RyR.,. + JyJ.,. ReR.,. + JeJ.,. 1+R~+J; 

where the space coordinates are (x, y, e, T, W) and T = 
log u. For practical implementation that avoids the . 
special numerical treatment needed along the pyrami
dal discrete u scale axis, we consider each scale as a 
separate space. The induced metric for each scale is 
then given by 

(g;i) = 

)· 

( 

1 + R; + J1 R:rRy + J:rJy R:rRe + J:rJe ) 
R:rRy. + J:rJy 1 + R; + J; RyRe + JyJe . (21) 
R:rRe + J:rJe RyRe + JyJe 1 + R~ + J~. 

This result can be understood from the arclength 
definition in this spatial-orientation complex space, 
namely 

ds2 = dx2 + dy2 + d02 + dJ 2 + dR2
. 

Applying the chain rule on dR = Rxdx+Rydy+RsdO, 
and similarly for dJ, we obtain the desired bilinear 
structure that describes the above induced metric for 
this case. 

4 Experiment/a! Results 
Let us start with a simple example. In Figure 3 we 

first decompose an image via the wavelet transform 
into 4 separate sub-scale channels. The decomposition 
and the result of applying the Beltrami flow on each 
sub scale are shown. 

Let us gain more motivation on the advantage of 
the wavelet decomposition. Figure 4 shows the re
sult of composing the image back from just the first 

(20) 



2, and then the first 3 sub-scale channels. The can
celation of the shadowing can also be realized by a 
very simple high pass filter. However, as a by prod
uct of the wavelet decomposition, at each scale u we 
now have the complex function Wa(x, y, B). It defines 
a surface in the 5D space (3 real and one complex di
mensions) (x,y,B, W.,.). The extra coordinate B that 
describes the behavior of the image along a specific di
rection enables us to smooth the image while keeping 
the meaningful orientation structure of the texture. 
Moreover, we have the freedom to apply different fil
ters to the different scales. This enables us to preserve 
the nature of texture images by processing them only 
at significant scales. In other words, we are able to 
sharpen a specific scale without effecting the rest of of 
the sub-band images. Fig. 5 is the original image and 
the result of .applying the Beltrami flow to filter out 
non-oriented structures. More examples are shown in 
Fig. 6. 

In the last example we deal with texture in color 
images. We first decompose each of the three 
(r, g, b) channels into its wavelet feature space as be
fore. Denote the transformed complex functions as 
(Wr, ws, Wb). Now we have 6 functions (a complex 
function for each channel) that map the (x, y, B, u) co
ordinates into a lOD feature space ( 4 coordinates plus 
3 complex functions). In the following experiment we 
treat each scale separately, thus we deal with maps 
from 3D to 9D. The metric in this case is derived from 
the arclength 

ds2 = dx 2 + dy2 + dB2 + dRr 2 + dF 2+ 
dRB 2 + dJ9 2 + dRb

2 + dJb
2

, (22) 

where r, g, b stand for the three color channels, and R 
and J are the real (e.g. Rr = Real(Wr)) and imag
inary (e.g. Jr = Imag(Wr)) parts of the decomposi
tion for each channel. The metric for this case is given 
by its elements 

bij + Rr;Rri + Jriri + R9;R9j+ 
J9;J9i + Rr;Rbi + J dbi, (23) 

where b;j is the Kronecker delta, and R,r; = dRr j di 
where i, j E {x, y, B}. Fig. 7 is a color image and the 
result of the flow. Fig. 8 shows the effect on the three 
color channels. Fig. 9 is the :Bow effect on a larger 
color-texture image. This example demonstrates the 
natural way the proposed framework applies to even 
richer feature spaces. 

5 Concluding Remarks 
We proposed to combine a psychophysically sup

ported texture space (via 2D Gabor/Morlet-wavelet 
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Figure 3: A schematic diagram of Gabor/Morlet 
wavelet decomposition of the original image (at the 
top) into the ( x, y, B, W.,. ( x, y, B)) and the images that 
are the result of reconstruction by summation for each 
scale u separately (bottom). The last row presents the 
reconstruction result after 70 iteration of the Beltrami 
flow at each scale. 

Figure 4: Reconstruction by summation, of only 2, 3, 
and all layers of the different scales: the low frequency 
scale contribute the shadowing, thus summing only 
over the first 3 scales cancels this effect (a simple high 
pass effect). 



transform), with a geometrical flow to enhance texture 
images. The texture was considered as a manifold in 
its natural space. The flow was realized by invoking 
Polyakov action and the result was the Beltrami flow 
in the feature space. In our future work we intend to 
overcome the numerical complexity along the pyrami
dal logarithmic scale axis, and apply the flow in the 
full 6D (x, y, (), u, R, J) space (and the full 10D space 
for the color-texture space) . 
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Figure 5: Left: Original image 128 x 128, Right: Re
sult of Beltrami flow for 70 numerical iterations in each 
sub-scale. 

Figure· 6: Example of 2 steps along the evolution for 
different texture images, Left: Original image 64 x 64. 
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Figure 7: Texture and color: 2 steps along the evolu
tion for a color texture image. The left is the original 
64 x 64 image. This is a color image. 
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Figure 8: Texture and color; The three color channels 
of the flow result in the previous figure. Upper row: 
The original r, g, b channels (of the left most image in 
the previous figure). Bottom row: The r, g, b channels 
after 100 numerical iterations, (of the right image in 
the previous figure). 

Figure 9: Texture and color; Right : original 128 x 
128 color image. Left: The result after 70 numerical 
iterations . This is a color image. 
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