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Stable Coulomb bubbles ? 

L.G. Moretto, K. Tso and G.J. Wozniak 
Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 

(November 27, 1996) 

Coulomb bubbles, though stable against monopole dis­
placement, are unstable at least with respect to quadrupole 
and octupole distortions. We show that there exists a tem­
perature at which the pressure of the vapor filling the bubble 
stabilizes all the radial modes. In extremely thin bubbles, the 
crispation modes become unstable due to the surface-surface 
interaction. 

PACS numbers: 47.55.Dz, 47.20.Dr, 21.10.Sf 

The possibility of stable or metastable non-spherical 
nuclear configurations, like bubbles or tori, has been oc­
casionally considered [1-6]. Earlier studies, based upon 
the liquid drop model, showed the presence of a bub­
ble monopole minimum above a certain fissility param­
eter (Coulomb bubble) [4]. However, the higher defor­
mation modes of the bubble appeared to be unstable. 
A recent calculation using the generalized rotating liq­
uid drop model has shown the appearance of metastable 
bubble-like minima at high angular momentum [7]. Simi­
larly, finite temperature Hartree Fock and Thomas Fermi 
calculations give indications of the onset of bubble for­
mation [6]. Recent simulations of nuclear collisions by 
means of transport (BUU) equations indicate the possi­
bility of bubble formation [8-11]. 

Coulomb bubbles, their formation, stability, and even­
tual demise are of broad interest, and are relevant not 
only to nuclei, but also to highly electrified fluids when 
the Coulomb interaction becomes dominant over the sur­
face tension. 

In what follows, we will show how the vapor pressure 
solves the outstanding problem of the secular stability 
of Coulomb bubbles. Furthermore we shall illustrate the 
role of a recently discovered surface instability (sheet in­
stability) [12] in their eventual demise. 

Within the framework of the liquid drop model,· the 
energy E of a bubble in units of twice the surface energy 
of the equivalent sphere (constant volume) can be eas­
ily written down as a function of the bubble monopole 
coordinate x: 

E = ~x2 + ~ (1 + x3)2/3 +X [(1 + x3)5/3 + ~xs 
2 2 2 

-~x3 (1 + xs)2/3] + R (l) 
2 [C1 + x3)5/3- xs]- x3P. 

Here x is defined as the ratio of the inner sphere ra­
dius R1 over the radius of the equivalent sphere R 0 • The 
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Coulomb, angular momentum, and pressure terms are de­
fined in terms of the fissility parameter X, rotational en­
ergy R, and reduced pressure P respectively: 

Here the common denominator 2E~ is twice the sur­
face energy ·of the equivalent sphere; E~ and ER. are the 
Coulomb and rotational energies; p and V0 are the actual 
pressure and equivalent sphere volume respectively. 

At zero pressure and angular momentum, the surface 
energy increases as a bubble develops from a sphere, but 
the Coulomb energy decreases as the charges are brought 
farther apart due to the bubble expansion. Therefore, an 
interplay between the Coulomb and surface energies may 
generate a minimum energy point along the monopole co­
ordinate. The bubble minimum appears first at a value 
of the fissility parameter X = 2.022, and becomes the ab­
solute minimum at X= 2.204 [4,13]. How can such large 
values of X be accessible, if the value of X for 238U is 
only 0.714, and even for the nucleus arising from the fu­
sion of two nuclei of 238U, X = 1.427? The obvious pos­
sibility lies in higher temperatures, which decrease the 
surface energy coefficient (which must go to zero at the 
critical temperature). For instance, within the frame­
work of a Thomas-Fermi calculation [14,15], a nucleus 
like 238U +238 U achieves the critical value X= 2.204 for 
bubble formation at T = 8.13 MeV. 

The solid line in the upper insert of Fig. (1) plots the 
dimensionless monopole coordinate of the bubble min­
imum as a function of the fissility parameter X. The 
radius of a Coulomb bubble is found to increase with the 
fissility parameter X. The spherical minimum and the 
bubble minimum are separated by a barrier whose max­
imum value fl.Eb = 0.0306E~ is attained at X = 2.022. 

Similarly, at zero fissility and pressure, there exists a 
critical value (R = 0.953) of the rotational parameter at 
which a bubble first appears, and a second critical value 
(R = 1.055) at which the bubble minimum becomes the 
deeper minimum. 

The pressure, on the other hand, does not give rise to a 
bubble minimum on its own. At constant pressure, zero 
fissility, and zero angular momentum, the sphere mini­
mum is the only minimum. When x increases, a barrier is 
encountered beyond which there is a runaway expansion 
of the bubble. At constant Px3 , like at constant tem­
perature and molar number, the pressure term becomes 
a constant energy shift, and the energy rises indefinitely 
with x like the total surface energy. 
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FIG. 1. Effective fissility parameter Xetr as a function of the 
fissility parameter X of the equivalent sphere and the inner 
radius x of the bubble. The dashed lines indicate the onset of 
instability for specified modes. The solid and dotted curves 
plot the value of Xetr as a function of X for reduced pressures 
at 0.0 and 0.2 respectively. (Upper insert) The projections of 
the solid and dotted curves on the x - X plane. 

A Coulomb bubble that is stable against monopole os­
cillations, may be subjected to higher order perturba­
tions. The higher deformation modes of the bubble can 
be divided into two classes [13): the radial modes and the 
crispation modes. The deformations on the two surfaces 
are in phase with each other for a radial mode, and they 
are out of phase for a crispation mode. 

The monopole oscillation obviously belongs to the class 
of radial modes. On the other hand, the lowest order 
crispation mode is the dipole mode which corresponds to 
a rigid displacement of the two spheres, one with respect 
to the other. Notice that this mode, in the absence of the 
Coulomb and rotational terms, is indifferent, and leads 
to the eventual puncturing of the bubble. The intro­
duction of the Coulomb term tends to stabilize a bubble 
against crispation dipole oscillation. The radial dipole 
mode, however, is trivial since it involves only the motion 
of the center-of-mass. Hence, a nuclear bubble is always 
stable with respect to a dipole perturbation within our 
present description. 

Unlike the dipole oscillation, higher multipole pertur­
bations tend to increase the surface energy, and thus sta­
bilize the unperturbed bubbles. This surface effect is the 
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same for the radial and crispation modes, since the two 
modes differ only in the relative orientation of their sur­
faces. On the other hand, the Coulomb effect is drasti­
cally different for the two modes: The Coulomb perturba­
tion energy is always negative for the radial mode, since 
the average distance between charges is increased slightly 
due to the perturbation. A similar effect of Coulomb 
destabilization is observed for the crispation mode in case 
of thick bubbles. In fact, the two modes are indistinguish­
able for a solid sphere. However, this destabilization ef­
fect becomes progressively weaker as the bubble expands. 
When a bubble is sufficiently thin, the Coulomb pertur­
bation energy becomes positive, and stabilizes the crispa­
tion modes. This is because the Coulomb force tends to 
resist the attempt to concentrate the charge in "clumps" 
distributed on the surface of the thin bubble, as required 
by the higher order crispation modes. In general, the 
Coulomb destabilization effect is always stronger for the 
radial modes. Therefore, a bubble that is stable with 
respect to radial perturbations is always stable against 
crispation perturbations within our present description. 

To see the role of the Coulomb term on the stability 
of radial modes, let us recall that for a charged drop, the 
reduced frequency of the nth modes is given by [16) 

1 
w 2 = 8n(n- 1){(n + 2)- 4X}. (2) 

Notice that for X = 1 the frequency goes to zero for 
n = 2. This is the onset of quadrupole instability, or the 
well known fission instability. For X > 1 progressively 
higher modes are destabilized. The last unstable mode 
is nrast = 4X - 2. For instance, nrast increases from 10 
to 14 as X is incremented from 3 to 4. This shows that 
an increase of the Coulomb force destabilizes a larger 
number of radial modes. In addition, Eq. (2) allows one 
to define the most unstable mode (negative minimum of 
w 2 ). For example, the most unstable modes are 7 and 10 
for X = 3 and 4, respectively. Hence, a highly charged 
sphere will not merely fission, but will break up in many 
droplets through an instability associated with a high 
multipole mode. Interestingly, the most unstable mode 
does not coincide with nrast, nor with the lowest (fission) 
mode either. 

Eq. (2) can be applied to the radial modes of the 
bubble as well, provided that, at any given value of the 
monopole coordinate x, an "effective" fissility parameter 
is defined 

Ee(x) 
Xeff = 2Es(x). 

Since the Coulomb term decreases with x, while the cor­
responding surface term increases, the value of Xeff de­
creases as the bubble expands at a given fissility param­
eter, as shown in Fig. (1). If the original nucleus (x=O) 
is unstable up to the multipole of order n, as it develops 



into a bubble (x > 0) it starts stabilizing the higher order 
radial modes. The dashed lines in Fig. ( 1) show that the 
last unstable mode decreases with increasing x. 

The solid curve in Fig. (1) indicates the values of Xetr 
associated with the bubble minima at different fissilities. 
At the threshold fissility of X = 2.022, the value of Xetr 
lies just about at the n=4 stability line, indicating that 
the bubble is unstable up to the n = 4 mode. As more 
charge is brought into the bubble with increasing values 
of X, the Coulomb bubble expands and it becomes stable 
with respect to the n = 4 and even to the octupole mode 
(:n = 3) at X=2.5. However, the Coulomb bubble is still 
unstable with respect to the quadrupole mode (n = 2). 
In fact, a further increase of X does not stabilize the 
quadrupole mode. 

Yet, it may be possible to have a stable nuclear bubble. 
If the bubble is warm, it fills up with vapor arising from 
the fluid itself. The effect of pressure on the stability 
of the radial modes is most remarkable! The resulting 
pressure acts only upon the monopole mode, by displac­
ing outwards the Coulomb minimum. The effect on the 
other radial modes is nil, since only changes in volume 
are relevant to pressure. Consequently, the positions in 
x of the last unstable modes for a fixed value of X do 
not change. The dotted curve in the insert of Fig. (1) 
shows the expansion of the Coulomb bubble provided by 
a reduced pressure of 0.2. When this dotted curve is 
projected onto the surface of Xetr, it appears below the 
quadrupole stability line. This shows that the bubble has 
become secularly stable with respect to all the modes. 

To study this pressure effect in combination with the 
fissility parameter, a contour plot indicating the inner ra­
dius at the bubble minimum is shown as a function of P 
and X in the top panel of Fig. (2). The lower limit of X 
is 2.022, the fissility at which a bubble minimum first ap­
pears. The dashed line indicates the onset of instability 
for the quadrupole mode, which also define the bound­
ary conditions of bubble stability against all the radial 
modes. It can be seen that at a given value of X, it is al­
ways possible to find a pressure large enough to shift the 
bubble minimum to a thinner and stable configuration. 

A natural source for this pressure, in the case of nuclei 
or other fluids in vacuum, is the pressure of the saturated 
vapor, which spontaneously fills up the bubble if T > 0. 
As the outer surface is looking into vacuum, one might 
think that no pressure is exerted on it. However, since 
the outer surface is constantly evaporating, an ablation 
pressure is generated. Since the average impulse brought 
in by a vapor particle is equal at equilibrium to that of the 
evaporated particle, it follows that the ablation pressure 
is exactly equal to one half of the vapor pressure. 

Using the Thomas-Fermi model [17], a temperature 
can always be found at which the vapor pressure stabi­
lizes the bubble against all the radial mode perturbations. 
An example for the system of 238U +238 U is shown in 
the bottom panel of Fig. (2). The dashed line is equiv-
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FIG. 2. (Top) The linear contour plot (dotted and solid 
lines) shows the inner radius of a bubble minimum as a func­
tion of reduced pressure P and fissility parameter X. The 
dashed line indicates the onset of instability for quadrupole 
mode. (Bottom) For the system of 238 U +238 U, the line plots 
the increasing values of P and X with temperature. The 
dashed line is the dashed line from the top panel. 

alent to the dashed line in the top panel, which defines 
the boundary conditions of bubble stability against all 
the radial modes. The solid line shows the temperature 
effect on both the reduced pressure and the fissility pa­
rameter. In this case, a nuclear temperature of about 
10 MeV is sufficient to stabilize a bubble configuration 
against perturbations of all radial modes. 

Thus far, we have considered the effects of surface, 
charge, and pressure, on distorted bubbles, and found 
that a) stability against radial perturbations can be 
achieved, and b) that it is a sufficient condition for the 
overall bubble stability. However, when a bubble be­
comes rather thin, a possible demise of the bubble may 
be associated with the sheet instability which has not 
been treated here so far. The sheet instability [12] is a 
new kind of Rayleigh-like surface instability associated 
with the crispation modes. A nuclear sheet of any thick­
ness tends to escape from the high surface energy by 
breaking up into a number of spherical fragments with 
less overall surface. However, any perturbation of fi­
nite wavelength increases the surface area, and conse­
quently the energy of the sheet, independent of the sheet 
thickness. Clearly, this barrier prevents the sheet from 
reaching the more stable configurations. However, when 
a nuclear sheet becomes sufficiently thin, the two nuclear 
surfaces interact with each other. This proximity inter­
action may become sufficiently strong to overcome the 



sharp barrier and causes the sheet to puncture into nu­
merous fragments. Using the expression in Ref. [18] for 
the proximity potential, a critical wavelength is deter­
mined for the onset of this surface instability for a flat 
sheet: Ae = 1.1b · exp(2d/3b), where b is the range of the 
proximity interaction and dis the thickness of the sheet. 

A bubble behaves much like a sheet, and is subject to 
the sheet instability. Since a bubble, like a sheet, must 
rely on the proximity interaction to become unstable, 
it will retain its surface stability until the range of the 
surface-surface interaction is of the order of its thickness. 
Thus a critical range of proximity interaction for the on­
set of bubble instability against crispation perturbation 
can be defined as be= f(x,X,n). 

Fig. (3a) plots the value of be for the onset of dipole 
instability at the indicated values of fissility. Notice that 
the line for X = 0 is missing, since the dipole mode of 
a neutral bubble is indifferent, and any finite proximity 
effect is sufficient to trigger the instability. Recall that 
the introduction of charge stabilizes a bubble against the 
dipole oscillation, and thus offsets the proximity effect. 
Consequently, the value of be at any given bubble radius 
increases with X as shown in Fig. (3a). 

Unlike the dipole mode, the surface energy of higher 
multi pole perturbations increases monotonically with the 
bubble radius. To study the interplay between this sur­
face effect and the proximity interaction, a neutral bub­
ble is considered. The solid lines in Fig. (3b) plot be 
as a function of x for progressively higher order modes 
(n = 2- 10). Clearly, the quadrupole instability is most 
easily triggered among the multipole modes. As the prox­
imity interaction becomes stronger (larger be), higher or­
der multipoles are gradually destabilized. The dashed 
line in Fig. (3b) shows the onset of quadrupole instabil­
ity for a charged bubble with X = 1.5. Interestingly, the 
dashed and the corresponding solid lines cross at about 
x = 0.6, reflecting different Coulomb effects mentioned 
earlier for thin and thick bubbles undergoing multipole 
crispation perturbations. An increase in charge stabilizes 
a bubble against higher order modes and offsets the prox­
imity effect (larger be) until it becomes sufficiently thick 
(x < 0.6 for the quadrupole mode at X= 1.5). 

In conclusion, the depletion of charge in the central 
cavity of nuclear bubbles reduces the Coulomb energy sig­
nificantly and thus stabilizes "Coulomb" bubbles against 
monopole oscillations. These Coulomb bubbles, however, 
are at least unstable to perturbation of the quadrupole 
radial mode. On the other hand, a sufficiently high tem­
perature generates a vapor pressure in the central cavity 
which drives the bubble to a thinner configuration that 
is stable against all the radial modes. Finally, a thin 
Coulomb bubble behaves like a sheet, and becomes sus­
ceptible to a proximity surface instability via the crispa­
tion modes when its thickness is comparable to the range 
of the proximity interaction. 

This work was supported by the Director, Office of En-
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FIG. 3. (a) Critical range of proximity interaction (be) as 
a function of inner radius ( x) for the dipole mode at various 
fissility parameters (X = 0.5 - 3.0). (b) be as a function 
of x for multipole modes (n = 2- 10) of a neutral bubble. 
The dashed line indicates values of be for a charged bubble 
(X= 1.5) undergoing quadrupole perturbation. 
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