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Abstract 
Based on discrete multicomponent stability theory, a new method is developed for 

obtaining analytical expressions for spinodal and critical-point criteria for polydisperse fluid 
mixtures. This method is based on a theorem that follows from the classical theory of stability. 
Coupled with constraints ( e.g. mole-fraction balance), this theorem yields analytical stability 
criteria for several multicomponent systems: a system containing one homologous series; a 
system containing one homologous series and one discrete component; and finally, a system 
containing an arbitrary number of homologous series and an arbitrary number of discrete 
components. The calculation procedure is much simpler than that using the classical 
determinant method. 

Keywords : equation of state, lattice model, critical state, spinodal, continuous thermodynamics 

I. INTRODUCTION 

The theory of stability plays an important role in phase-equilibrium thermodynamics 
because it provides quantitative information on spinodals, i.e., the limit of instability, and on 
critical points, where two coexisting phases become indistinguishable. For multicomponent 
systems, especially those with .very many components (e.g. petroleum, shale oil, coal-tar 
derived liquids, vegetable oils, polymer solutions and polymer blends), continuous 
thermodynamics is often useful; a comprehensive review by Cotterman and Prausnitz (I] 
discusses bubble-point, dew-point, flash and liquid-liquid-separation calculations. However, for 
such systems, application of stability theory is far from complete. 

Most published work concerning stability for polydisperse systems was developed for 
polymer solutions and polymer blends, based on lattice models. Two different procedures have 
been established. The first one, the discrete multicomponent procedure, considers various 
species as discrete components. Expressions for spinodals and critical points are derived for a 
polydisperse polymer system by solving determinants from classical thermodynamics based on 
various lattice models, while the continuous distribution function for polymer species is only 
used for calculations ofvarious moments of this function [2,3,4,5,6]. The second, more recent, 
procedure is the functional method developed primarily by Kehlen, Ratzsch and coworkers 
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[7,8,9, 10]. In their framework, thermodynamic functions were defined for continuous mixtures. 
Expressions for spinodals and critical points based on lattice models were derived using 
functional theory where the second-order variation of the Gibbs function of mixing was 
obtained by using the Lagrang~ method of undetermined multipliers. More recently, Hu, Ying, 
Wu and Prausnitz [11,12,13] adopted both procedures for a close-packed lattice model and a 
lattice-fluid model, as well as a generalized molecular-thermodynamic model based on lattice 
theory. They found tha~ the two procedures give exactly the same results. 

For engineering application for mixtures containing a very large number of components, it 
is desirable to apply multicomponent stability theory to an equation of state. Browarzik and 
Kehlen [ 14] successfully extended the functional method to polydisperse fluid mixtures 
containing one homologous series. Hu and Ying [ 15] also obtained analytical expressions for 
the same system using the discrete multicomponent method. 

The discrete multicomponent approach is intuitive and rigorous. The calculation procedure 
conforms with classical theory. However, because of the huge number of components, the 
dimension of the determinants approaches. infinity. To obtain analytical expressions for real 
systems, the derivation procedure is very tedious, often prohibitive, even though the 
computational complexities are· usually not evident until one tries to use them for a realistic 
mixture. On the other hand, the functional method is attractive due to its mathematical integrity 
and simplicity. However, its reliability must be checked with results by the discrete approach; 
because the components are discretely distributed, a continuous distribution function for the 
description of composition is at best a good approximation. In this work, we develop a new 
method based on the discrete multicomponent theory. With a theorem that follows from the 
classical criterion of stability, we obtain analytical expressions for the spinodals and the critical 
points for multicomponent systems containing one homologous series; or one homologous 
series and one discrete component; or an arbitrary number of homologous series and an 
arbitrary number of discrete components. Spinodals and critical points are easily derived by 
solving a set of linear equations. The new method can be used for both lattice models and 
equation-of-state models. 

II. A THEOREM FOR STABILITY CALCULATIONS 

We consider a molar Helmholtz function Am for a K-component mixture; Am is a 
function of temperature T, molar volume Vm, and mole fractions X;, i= 1 ,2, .. . ,K-1. At constant 
temperature, we propose a virtual process starting from an _equilibrium state: volume is varied 
by c>""Vm, and mole fractions are varied by ox; . The resulting change in Am , oAm, can be 
calculated by expanding Am in a Taylor series about the conditions of the original state, 
provided that all those variations ofvolume and mole fractions are small perturbations [16]: 

oA = o<l) A +-1 o<2> A +_!_o<3) A + (1) 
m m 2! m )! m 

where 8k>Am is the kth-order variation of Am. Here o<1>Am and o<2>Am are expressed by 
(I) _ K-1 . 

o Am - L Ai&i + AvOVm (2) 
i=l 

(3) 
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Expressions for higher-order variations can be written accordingly. In eqs (2) and (3), A; and 
Av are first-order partial derivatives of Am with respect to X; and Vm; Ay·, Aw and Aware second
order partial derivatives of Am with respect to X; and x1, X; and Vm, and Vm alone, respectively. 
At constant temperature, the spinodals and the critical points are determined by: 

8(2) A
111 

= 0 spinodal criterion (4) 

and 

o<3) Am = 0 critical-point criterion (5) 

respectively. To satisfy eq.(4), it is necessary and sufficient that the coefficient determinant of 
eq.(3) should be zero. Therefore, the spinodal criterion can be written as: 

Avv Avi Av2 Av,K-I 

Aw Alj A12 

Dsp = A2v A21 A22 (6) 

AK-I,V AK~I,I AK-1,2 ······ AK-l,K-1 

The critical-point criterion can be expressed by a similar determinant. It is difficult to obtain 
analytical expressions from those determinant when K approaches infinity. 

We now introduce a theorem that follows from the spinodal criterion which is useful for 
obtaining analytical expressions for the spinodal and critical-point criteria. The verification of 
this theorem is shown in Appendix I. 

Theorem: At constant temperature, the partial derivatives of second-order variation of the 
molar Helmholtz function, o<2>Am , with respect to variations of volume and mole fractions, 
8Vm and ox; , should be zero on the spinodal surface. The theorem can be expressed by two 
equations: 

(
o(8(

2
) Am)) = 0 

o(8VnJ T,& 
(7) 

(
o(o<2

) A )) 

o(8 xi) T,OV,Ox[i] = 0 
i=l, 2, ... , K-1 (8) 

where 8x[i] in the subscript means that all 8x1 except Ox; and 8xK are kept constant. 
This theorem is equivalent to the spinodal criterion 82>A~,=O or to eq.(6). Upon using this 

theorem coupled with constraints, · we find that the subsequent calculation procedure for 
obtaining analytical expressions for the stability criterion is much simpler than that based on the 
classical method, i.e., to solve the very large determinant. 

ID. POLYDISPERSE FLUID MIXTURES CONTAINING ONE HOMOLOGOUS 
SERIES DESCRIBED BY AN EQUATIONS OF STATE 

For a K-component polydisperse fluid mixture composed of one homologous series (e.g 
mixtures of normal alkanes), the Helmholtz function can be expressed: 

K K . 
Am= L,xiA~zj + L,xiRTlnxi + A;1(T,V111 ,a,b,c) =A::;+ A~ (9) 

j i 
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where A~j , A;1 and A~~ are, respectively, the molar Helmholtz function for pure 

component i in its standard state, the residual molar Helmholtz function for the mixture and the 
ideal-solution contribution to the molar Helmholtz function. The second summation term refers 
to the ideal Helmholtz function of mixing. The residual molar Helmholtz function is a function 
of temperature, molar volume and characteristic parameters of a relevant equation of state, a, b 
and c for the mixture. These parameters are functions of composition determined by mixing 
rules. Because we are concerned with a mixture containing a homologous series, the 
parameters for pure components can be considered as molar mass (M) dependent. Parameters 

for the mixture are then functions of the temperature and the average molar mass M of the 

mixture as shown by Cottermann and Prausnitz ( 1991 ), 
a= a(T,M) , b = b(T,M) , c = c(T,M) (10) 

where 
K 

M = "f.x;M; {11) 
i=l 

Spinodal Criterion: On the spinodal surface at constant temperature, the second-order 

variation of Am can be expressed by variations ox;, liM and OVm. 

(2) K-lK-1 ;jl Aid - 2 - 2 
8 Am= "f. "f. m &;lixj + AMM(liM) +2AVMliMOVm + Avv(OVm) = 0 (12) 

i=l j=l i1x;iJx j 

where 
--2 "d cr A~, . RT . 

-----"-''--=-=]K 
ox;f}xj XK 

(13) 

cfl Aid RT RT nz · · _ _:..:.~=-+-=]; + }K 
ox'f X; XK 

{14) 

A - o2 A~ 
VM- 8V. oM 

m 

{15) 

(16) 

Eq.(12) can then be rewritten: 

(2) K-l . 2 . 2 - 2 - 2 
8 Am= L. };(&;) + JK(oxK) +AMM(OM) +2AVM8MOVm +Avv(Wm) (17) 

i=l 

Variations ofmolefractions and average molar mass in eqs (12) and (17) are subject to 
the constraints: 

K 
"f.&;= 0 
i=l 

K 
OM= L.Miox; 

i=l 

or 

K-l 

K-l 
oxK =- L.oxi 

i=l 

= L. Mt&; 
i=l 

where Mt = M; -MK. 

Now we use our theorem. Substituting eq.(l7) into eqs.(7) and (8), we obtain 

(18) 

(19) 
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AvA.f8M + Avv8Vm = 0 (20) 

};Ox;- }KoxK + AMM(OM)Mt + AVM(8V M )Mt = 0 (21) 
We then consider the two constraints, eqs.(18) and (19). Substitution of eq.(21) into 

eq.(l8) yields 

.JK&K = (AMMOM + AVM8VM )M+ (22) 

·where M+ = "Lf:}1x;Mt . Substitution ofeq.(21) into eq.(19) yields 
-- --

. -· +2 - + 
JKOxK =[RTOM +M (AMMOM +AVM8VM)]I M (23) 

where M+2 = "Lf:11 x;Mt2 
. Variables M+ and M+2 can be related with the average 

- 2 
molar mass M and the average square molar mass M through the second-order central 

moment f.1.(2) as follows: 
K - - -2 K - -· - -2 

f.1.(2) = LX;(M;- M )2 = M 2 
- M = LX;(Mt- M+) 2 = M+2

- M+ (24) 
i=l i=l 

where M 2 is the defined by 

2 K 2 
M = LX;M; (25) 

i=l 

Combining eqs.(22)(23) and (24), we have 

OM = AVM f.1.(2) 0V. 
RT + AMM f.1.(2) m 

(26), 

Now we have two equations connecting OM and 8Vm, eqs.(20) and (26). The former is 
directly derived from eq.(7) of the theorem. The latter comes from eq.(8) of the theorem and 
the two constraints. Combining eqs.(20) and (26) and eliminating OVm yields the spinodal 
criterion. 

Fsp = AvvRT- f.1.(2 )(Atu- AMMAvv) = 0 (27) 

or 
f..lc2) = RTAvv I B (28) 

where 

B = A0.-t- AvvAMM (29) 
Eqs.(27) or (28) are exactly the same as those derived by solving the determinant, eq.(6), 

as shown earlier by Hu and Ying [ 15] by a lengthy derivation. Also, it is the same in form as 
that from Browarzik and Kehlen [14] using a functional procedure. 

Critical-Point Criterion: We use eq.(5), 83>Am=O, for the critical-point criterion. Because 
Fsp is a function of voiume, average molar mass and average square molar mass, 83lAm=O is 
equivalent to 

oFsp oFsp - OFsp 2 
oFsp = -8Vm +-=-OM +-=oM = 0 (30) 

bVm avf oM2 
All those partial derivatives in eq.(30) can be obtained from eq.(27): 

oFsp I OVm = AvvvRT- f.1.(2)(2AvuAVVJvt- AwvAA1M- AvvAMMV) (31) 
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8Fsp I av1 = AvvuRT- J.l(2)(2AVMAVMfvt- AvvuAMu- AvvAMMM) 
- 2 

+2M(AVM -AvvAMM) 

8Fsp I 8M2 = -(Aru- AvvAMM) 

(32) 

(33) 

where Avvv, AVVM, AMMv and AVMM are third-order derivatives of A~ with respect to 

corresponding subscripts. For eliminating those variations, we need relations between 

liM, 6M2 and 8Vm .The relation between liM and 8Vm is shown in eq.(26). For 8M2 , 
from eq.(25), 

-2 K 2 K-1 +2 -
8M = L:M; 6x; = L: M; lix; +2MK8M (34) 

i=l i=l 

By using eqs.(20), (21) and (22), and replacing 8x; and 8M by 8Vm, we have from eq.(34), 

6M2=- - MM VM (2) + AVM (M M2- M3)8V. - 1( A A ,u J --
RT RT + AMM J.l(2) · m 

(35) 

3 _ K 3 
where M - Li=I X;M; . 

Combining eq.(30) with eqs.(31), (32), (33), (26) and (35), and eliminating all Wms, we 
obtain the critical-point criterion. 

Fer= AvvvRT- J.l(2)(2AVMAVVM- AvvvAMM- AvvAMMV) 

AVMJ.l(2) -
- [2MB- J.l(2)(2AVMAV'MM- AVVMAMM- AvvAMMM) + AVVMRT] 

RT + AMM J.l(2) 

+( AMMAVVf.l(2) - AVMJ('M M2- M3)!!_ = 0 
RT + AMMJ.l(2) RT 

(36). 
After rearragement, eq.(36) transforms to 

J.l(
3

) = (RT)2 [- B M A~ + Bv Avv AVM + Avv AvVM _ AVM Avvv] 
· B B2 B B B B B B B 

(37) 

where J.l( 3) is the third-order central moment defined by 

K 3 3 -.-2- - 3 
J.l(3)=L:x;(M;-M) =M -3M M +2M 

i=l 
(38) 

8!3 
BM =--= 

eM 
8B 

Br, =-, ov (39) 

Again, eq.(37) is exactly the same as that derived by solving the corresponding determinant 
as shown earlier by Hu and Ying [15] by a lengthy derivation. It is also the same in form as that 
from Browarzik and Kehlen [14]. 

Numerical results were presented by Browarzik and Kehlen using a cubic equation of state. 
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IVa. POLYDISPERSE FLUID MIXTURES CONTAINING ONE HOMOLOGOUS 
SERIES AND ONE DISCRETE COMPONENT DESCRIBED BY A LATTICE 
MODEL 

For a K -component polydisperse fluid mixture containing one homologous series and one 
discrete component designated by "o" (e.g. mixtures of a polydisperse polymer and a solvent), 
the molecular-thermodynamic model based on lattice theory by Hu, Ying, Wu and Prausnitz 
[13] can be written as: 

_ t/Jo K-1 t/J; K-1 ** 
Gv = -ln¢0 + 2: -In¢;+ t/Jo 2: t/J;g; (40) 

ro i=1 r; i=1 

where Gv = L1mixG I NrkT is the reduced Gibbs function of mixing per site; Nr is the total 

number of sites in a lattice; tjJ 0 ,¢;, r0 ,r; are volume fractions and chain lengths of the solvent 

o and the polydisperse solute i, respectively; g;* is the effective Flory parameter 

characterizing the interactions between the solvent o and the solute i. 
Spinodal Criterion: For a lattice model [eq.(40)], the spinodal criterion, eq.(4), must be 

changed to 8(2)Gv = 0 , which can be expressed by the variations of volume fractions: 
(2) _ K-1K-1-_ 

8 Gv = 2: 2: Gif8¢;8t/J i = o (41) 
i=1 j=l 

where 

- (cl-Gv) G-· = = J + 2J- +A. 
II 2 I I 

Ot/J; T,p,q>(i] 

-, ( cl-Gv) G-· = = J + J. + J . 
I) 0¢-ot/J. ' ; 

I J T,p,q>(i,j) 

. -I _1 K-1 **' K-1 **" 
J=ro (1-t/Js) -2 L ¢kgk +(1-t/Js) L ¢kgk 

i=l i=l 
** . **' 1; = -gi + (1- t/Js)g; 

A; = (r;t/J;) -I 

(42) 

(43) 

(44) 

(45) 

(46) 
**' **" Here t/Js=Li t/Ji is the total volume fraction of the solute; g; , g; are the first-order and the 

second-order derivatives of g;** With respect to t/Js, respectively. Eq. (41) is then rewritten. 
K-1 K-1 

8(2)Gv = J(8¢ 0 )
2 + 2: A;(8t/J; )2

- 28¢0 2:1;8¢; (47) 
i=1 i=1 

where the following constraint for the variations of volume fractions has been used: 
K-1 

8¢ 0 =- 2:8¢; (48) 
i=l 

Now we use the theorem. Eq.(7) vanishes. Eq.(8) should be changed to 

(
8(8(2)Gv )) = 

0 
8(8¢;) T,o¢(i) 

(49) 
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Substituting eq.(47) into eq.(49) combined with the constraint eq.(48), we obtain the spinodal 
criterion by using the Lagrange method of undetermined multipliers. 

K-1 _1 K-1 2 -I K-1 -I 2 
Fsp = L: A; (J- L: 1; A; ) +(I+ L: J;A; ) (50) 

i-1 i-1 i-1 

The derivation is shown in Appendix II. Eq.(50) is the same as that derived previously [13], 
the latter requires a much longer and more tedious derivation. 

The critical-point criterion can also be derived using a method similar to that in section III. 
It is the same in form as that derived previously [ 13]. 

Numerical results for the spinodals and critical points were presented earlier [11, 12, 13]. 

IVb. POLYDISPERSE FLUID MIXTURES CONTAINING ONE·HOMOLOGOUS 
SERIES AND ONE DISCRETE COMPONENT BASED ON AN EQUATION OF 
STATE 

For a K-component polydisperse fluid mixture composed of one homologous series and 
one discrete component K (e.g. mixtures containing an oil and a solvent), the Helmholtz 
function is the same as that ofeq.(9). 

K K . 
Am= L:x;A~,i + L:x;RTlnx; + A:;,(T,Vm,a,b,c) =A::+ A:;, 

i i 

The total mole fraction of the homologous series is designated by x. The average molar mass of 
that series is 

K-1 
xM = L:x;M; (51) 

i=l 

Parameters of the equation of state for the mixture are then functions of the temperature, the 
average molar mass of the homologous series and the total mole fraction of that series: 

a= a(T,xM,x) , b = b(T,xM,x) , c = c(T,xM,x) (52) 

Spinodal Criterion: On the spinodal surface at constant temperature, the second-order 

variation of Am can be expressed by variations Ox;, 8xM , Ox and Wm. 
K-1 K-1 ;j2 Aid 

8(2
) Am= L L: m OX;OXj + AA-1M[o(xM)f + A.u-(&) 2 + Avv(OVm)2 

i=I j=1 a;ikj 

+ 2AMxo(xM)& + 2AVMo(xM)8Vm + 2Av.-r:&OVm 

K-1 . 2 . 2 - 2 2 2 = L: J;(&;) + JK(oxK) +AA-1M[o(xM)] +A.u-(&) +Avv(OVm) 

(53) 

i=1 . 

+2Auxo(xM)&+2AvMo(xM)8Vm +2Av.-r:ox0Vm = 0 

where AMM, Axx, AMx, AVM, Avx and Aware second-order partial derivatives of A:;, with respect 

to the corresponding subscripts, i.e., xM , x and Vm. 
Variations of mole fractions and average molar mass are subject to two constraints. 

K K-1 
L:&; = 0 or &K = -& =- L:&; (54) 
i=1 i=1 
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K-1 
8(xM) = 2: M; &; 

i=l 

Now we use our theorem. From eqs.(7) and (53), we have 

AVM8(xM) + Avx8x + AvvWm = 0 
From eqs.(8) and (53), we have 

};Ox;- JK&K + AMMMi 8(xM) + Axx&+ AMx[M;Ox+O(xM)] 

+ AVMM; Wm + Avxb"Vm = 0 

(55) 

(56) 

(57) 

Combining eqs.(56) and (57) with the constraints, eqs.(54) and (55) to eliminate Ox; and 

8xK, and to find relations between & , 8(xM) and b"Vm , we obtain the spinodal criterion. 

Fsp = AVMC + AvxD + Avv = 0 (58) 

where 

D = ox = x(AMMM + AMx)C + x(AVMM + Avx) 
Wm RT+xUK +Axx +AMxM) 

Here M 2 is the average square molar mass of the homologous series defined by 

-2 K-1 2· 
xM = 2: x;M; 

i=1 

Critical-Point Criterion: For the critical-point criterion, similar to eq.(30), we write 
iF 8F iF _OF-

8Fs = _!!!_b"Vm +_!!!_&+ sp 8(xM)+ sp 8(xM2) = 0 
:p bVm a 8(xM) 8(xM2) 

where 

Here 

ffsp I 8Vm = AVVMC + AVMCv + AvvxD + AvxDv + Avvv 

OFsp I a= AVMxC + AVMCx + AvxxD + AvxDx + Avvx 

tFsp I 8(xM) = AVMMC + AVMCM + AvMxD + AvxDM + AVVM 

OFsp I 8(xM2
) = AVMCM2 + AvxDM2 . 

C - ;x; v---
bVm 

m 
Dv =--

bVm 

K C=
x a 

D=OD 
x a 

c - a::~ 
M- o(xM) 

D _ oD 
M- 8(xM) 

c - ;x; 
' , M2 - 8(xM2) 

CD 
D , =--,...,. ==-

M- o(xM2 ) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 
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To eliminate those variations, we need relations between them. The relations between ox, 
OxM and 8Vm are given by eqs.(59) and (60). From eq.(61), we have 

2 K-l 2 
o(xM )= 2: Mi oxi . (69) 

i=l 

Substitution of eqs.(57), (59) and (60) into eq.(69) yields the relation between oxM2 and 8Vm: 

o(xM2
) . -2 -2 3 

E= =x[-(JKM +AxxM +AuxM )D 
8Vm (70) 

-(AMMM3 +AMxM2 )C- AvuM3
- AvxM2 ]1 RT 

Combining eq.(62) with (63), (64), (65), (66) and (59), (60), (70), and eliminating 8Vm, 
we obtain the critical-point criterion. 

Fer = AvvuC + AvuCv + AwxD + AvxDv + AvvF 

+ (Ari,\1XC + AvuCx + AvxxD + AvxDx + Avvx)D 

+ (AVMMC + AvuC M + AVMxD + AvxDM + Avvu )C 
(7I) 

V. POLYDISPERSE FLUID MIXTURES CONTAINING AN ARBITRARY 
NUMBER OF HOMOLOGOUS SERIES AND AN ARBITRARY NUMBER OF 
DISCRETE COMPONENTS BASED ON AN EQUATION OF STATE 

We consider a K-component fluid mixture containing L homologous series and N discrete 
components. The ordinal numbers for the components in the series a. are designated from 
Na_1+I to Na, a.=I, 2, ... , L , where Na is the cumulative total number of components from 
series I to series a . The ordinal numbers for the discrete components are designated from K
N+ I to K. For the homologous series a., the total mole fraction is Xa; the average molar mass 

M a is defined by 

Na 
XaMa = L xiMi 

i=Na-t+l 

The Helmholtz function is the same as that of eq.(9). 
K K . 

Am= :LxiA~j + :LxiRTlnxi + A;,(T,Vm,a,h,c) =A~~+ A; 
i i 

(72) 

Parameters of the equation of state for the mixture are functions of the temperature, the 
average molar masses and the total mole fractions of L series, and the mole fractions of N-1 
discrete components: 

a=a(T;x1 M 1 ,x2 M2 , .. . , xLML;x1 ,x2 , ... ,xL;xK-N+l, .. . , xK_2 ,xK-l) 
-- -

h =b(T;x1 M 1 ,x2 M2 , ... ,xLML;x1 ,x2 , .. . ,xL;xK-N+l, ... ,xK_2 ,xK_l) 

c=c(T;x1M 1,x2 M2 , ... ,xLML;x1,x2 , ... ,xL;xK.:.N+l•····xK-2 ,xK-I) 

(73) 

(74) 

(75) 
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Spinodal Criterion: On the spinodal surface at constant temperature, similar to eq.(53), 
the second-order variation of Am can be expressed by variations ox; for all components, 

&aM a and OXa for homologous series, ox11 for discrete components, and Wm. 

(2) K-! . 2 · 2 
0 Am= L JJiix;) + lK(oxK) 

i=l 
L L 

+ a~!;=![AMaMpo(xa Ma)o(xpMp) + AapOXaOXp +2AMapo(xa Ma)&p] 

L K-! 
+2 L L [Aa11t5xat5xt7 + AMa'1o(xaMa)t5xT7] 

a=! t7=K-N+! 
K-! K-! L 

+ 2: L A71~&71ox~ + 2 L [AvalixaWm + Avu o(xa Ma )Wm] 
t7=K-N+l ~=K-N+! a=! a 

K-! 
+2 2: Av11 t5x115Vm + Avv(Wm)2 = o 

t7=K-N+l 
(76) 

where AM M , A~ x , Ax x , Avv and those with cross subscripts are second-order partial 
aP ap 11,; 

derivatives of residual Helmholtz function A~ with respect to corresponding subscripts, i.e., 

Xa Ma 'Xa, Xq and Vlll. 
Variations of mole fractions and average molar mass are subject to two kinds of 

constraints: 
(1) mole fraction balance. 

Na 
L OX;= lixa a= l,2, ... ,L (77) 

i=Na-1+! 
L K-! 
L OXa + L lix11 = -oxK 

a=! t7=K-N+! 
(78) 

(2) molar mass balance. 
Na 
L M;OX; = o(xa Ma) a~ 1,2, ... ,L (79) 

i=Na-1+1 
Now we use our theorem. From eqs.(7) and (76), we have 

L K-! 
:L [Avu o(xa Ma) + Avalixa] + :L Av11& 11 + AvvWm = 0 (80) 

a=1 a . t7=K-N+1 
From eqs.(8) and (76), we have 

L. -
};OX;- JK&K + :E[AM M M;o(xpMp)+(Aap+AM pM;)Oxp +AM ao(xpMp)] 

P=l a p a p 

K-1 
+ L (AMat7M; + Aa'1)t5x11 + Avua M; Wm + Avat5Vm = 0 

t7=K-N+I 

i=Na_1 +I, ... ,Na a=I, ... ,L 
(81) 

ll 



K-1. L _ 

J.,.,&.,.,- }KoxK + f2 A.,.,q&q + 2: [AMa.,.,o(xa Ma) + Aa.,.,oxa] + Av.,.,OVm = 0 
q=K-N+1 a=1 (82) 

17 = K- N + 1, ... ,K -1 

We now introduce two constraints, eqs.(77), (78) and (79). Substituting eq.(81) into 
eq.(77), we obtain for homologous series a, 

-L 
OXa = {jKxa&K- XaMa 2: [AM M o(xpMp) +AM plixp] 

P=l a p a 

L - K-1 
-xa 2: [Aaplixp +AMpao(xpMp)]-xaMa f2 AMa.,.,ox.,., 

P=l 1]=K-N+! 

K-1 
-Xa 2: Aa.,.,&.,., -xaMaAVM OVM -xaAvabVm}l RT 

1]=K-N+1 a 

a= 1, ... , L 

(83) 
For discrete component 11 from eq.(78), 

K-1 L 
&.,., = x.,.,{JK&K- 2: A.,.,qlixq- 2:[AMa178(xa Ma) + Aa.,.,&a]- Av.,.,OVm} I RT 

q=K-N+l a=1 · (84) 

1]=K-N+1, ... ,K-1 

Substituting eq.(81) into eq.(79), we obtain for homologous series a, 
- - -2-L -

OXaMa = UKxaMaOXK -xaMa 2:[AM M o(xplvfp)+AM pOXp] 
P=1 a p a 

-L - -.-2 K-1 
- Xa Ma 2: [Aap&p + AMpao(xpM p)]- Xa Ma 2: AMaT/&T/ 

P=1 1]=K-N+1 

- ·K-1 2 -
-xaMa 2: Aa.,.,ox.,., -xaMaAVM OVM -xaMaAvaOVm}l RT 

1]=K-N+1 a 

a= 1, ... , L 

(85) 
The number of equations in eqs.(83), (84) and (85) is 2L+N-1. Eq.(78) has not yet been 

used. Therefore, altogether we have 2L+N linear equations. For homologous series, the 

number of variations oxa is L; the number of variations o(xa Ma) is also L. For discrete 

components, the number of variations 8x71 is N. Therefore, besides OVm , altogether we have 
2L+N unknown variations. Upon solving this set of linear equations, we can obtain relations 
between those variations and OVm. 

o(xa Ma) = CaOVm a= 1 ,2, ... , L (86) 

lixa = DaOVm a= 1 ,2, ... ,L (87) 

&.,., = D.,.,ovm 17 = K- N + 1 , ... ,K -l,K (88) 

Substituting eqs.(86), (87) and (88) into eq.(80), we obtain the spinodal criterion: 
L K-1 

Fsp = 2:(AVMa Ca + AvaDa) + 2: Av 17 D,7 +An·.= 0 (89) 
a=1 1]=K-N+1 
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A critical-point criterion can also be obtained using a procedure similar to that indicated by 
eqs.(62-71 ). 

VI. DISCUSSION AND CONCLUSION 

We have derived a relatively simple method for determining the stability of polydisperse 
fluid mixtures with very many components. In the classical method, we have to obtain 
analytical expressions for spinodal and critical-point criteria by solving determinants whose 
dimensions approach infinity. That procedure is not always successful. In this work, we retain 
the familiar, intuitive, discrete, multicomponent approach. With the use of a theorem that 
follows from the basic principle of stability thermodynamics, the tedious determinant with 
infinite dimension is reduced to solving a set of2L+N linear equations. For example, if we have 
two homologous series and four discrete components, the number of linear equations is eight. 
This set of linear equations can easily be solved by standard methods such as the Cramer 
method. Concise analytical expressions can be easily obtained. However, if we solve the 
determinant, the computation is very large. 

The essence of our new method is the theorem that tells us that, at constant temperature, 
on the spinodal surface, the partial derivatives of a second-order variation of the Helmholtz 
function with respect to variations of volume and mole fractions should be zero. This theorem 
is similar to the principle used in the functional approach. Although we have a verification for 
the theorem, it is essentially intuitive. On the spinodal surface, the second-order variation of the 
Helmholtz function is independent of the magnitude of the variations of volume and mole 
fractions, provided that the variations are sufficiently small to be considered as perturbations. 

The method presented here can be used for both equation-of-state and lattice models. 
Although we derived the theorem using the Helmholtz · function, the well-known 
thermodynamic relation 

G-· =(iiGmJ =A··_ AwAvi (go) 
lJ £7.c.O;. lJ A 

I ) T,p,x[i,j] vv 
enables us to transform the Helmholtz function to the Gibbs function. For lattice models where 
the Gibbs function is used, the theorem is simplified by neglecting the variation of volume. 
When we apply our theorem with the constraints in the lattice approach, the Lagrange method 
of undetermined multipliers should be used. However, when we use an equation of state, the 
Lagrange method of undetermined multipliers is not needed. Directly coupling the constraints 
with the theorem gives analytical results. 

In this work we limited ourselves to cases where the parameters of the lattice model only 
depend on the chain length and the temperature, and the parameters of the equation of state 
only depend on the average molar mass for each homologous series as well as on the 
temperature and the volume. In these cases, the derivatives of the reduced Gibbs function of 
mixing for the former cases and the derivatives of the Helmholtz function for the latter cases 
needed in the calculations of spinodals and critical points can be obtained in analytical form 
straightforwardly. More complex cases, where the parameters depend on more then one 
property (e.g. aromaticity, degree of branching), the method discussed here can also be used to 
obtain a set of linear equations. 
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As shown in textbooks, binary fluid mixtures exhibit a variety of phase behavior and 
critical phenomena. For multicomponent systems, that variety increases. For mixtures with very 
many components, as found in nature, we expect to find an even wider, possibly highly 
surprising, variety of phase behavior. The method described here provides a tool for calculating 
such behavior. 
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Appendix I. Verification of the theorem: 
We start from the determinant in eq. (6). We multiply the first column by AvJ.1IAw, then 

subtract that column from thejth column. For the spinodal surface, we obtain 

Ar~"v 0 0 0 

Aw A11 - Aw Av1 I Avv 

A2v A21- A2vAv1 I Avv 

A12 - Aw Av2 I Avv 

A22 - A2v Av2 I Avv 

A1,x_1- AwAv .K-1 I Avv 

A2,K-1- A2vAv ,K-1 I Avv 

AK-1F AK-l.l- AK-lYAV1 I Avv AK-1..2- AK-IFAv2 I Avv ... AK-1,K-I- AK-IyAv,K-1 I Avv 

=0 . (I.l) 
This determinant is equivalent to 

K-1K-1 K-1K-1 . K-1 
2 :L :L(A;f- A;vAv; I Avv )&;lix1 = :L :L Ay1ix;&1 - ( 2: A;v&;) I Avv = 0 (1.2) 

i=1 j=1 i=1 J=l i=l 

Substitution of eq.(I.2) into eqs.(3) and (4) yields 

1 ( K-1 2 K-1 2 2) 
-- ( :L A;voxJ +2Avv :L A;v&;5Vm +Avv(5Vm) 
Avv i=1 i=1 

(1.3) 

= -1-(~1A;vox; +Avv5Vm )

2

:::: 0 . 
Avv i=1 

We then have 

K-1 · (8(8(2
) Am)J 

2 :L A;v&; + 2Avv5Vm = = 0 (1.4) 
i=I o(oVm) T,& 

Eq.(7) then follows when 82>Arn=O. 
Further, by substituting eq.(I.4) into eqs.(3) and (4), we obtain 

K-1K-l K-1 K-1(K-l J 
. L :LAijOX;OXj + :LA;v&;5Vm = L :LA;fOxi + Aw8Vm &; = 0 

i=1 f=l i=l i=l J=! 
(1.5) 

Because all ox;s ( i= I, ... ,K-1) are independent, the quantity inside the brackets is zero. We then 
have 
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K-1 (8(8(2
) A )J 

2 LAi;.&j +2Aw0Vm = m = 0 
J·-1 o(o x.) 

- I T,&(i] 

(1.6) 

Eq.(8) then follows when 82>Am=O. 

Appendix II . Derivation of eq.(SO): 
Substituting eq.(47) into eq.(49), we obtain 

(
acoC2)CJ. )) K-1 
--'----=-v....:.... · = -2Jo¢ 0 +2A-;8f/J; +2 ~J;8f/J; -2J;8¢; 0 = 0 

o(of/J;) T,O¢[iJ 1=1 
(II.l) 

Now we use the Lagrange method of undetermined multipliers. We take the derivative of 
eq.(47) with respect to 8¢; with all other variations, including 8f/Jo, kept constant. We obtain 

( 

(2)- ) 
8( 8 Gv) = 2.A .or'-. - 2J.8rl-

o(orl- ) I Y1 1 Yo 
Yi T,O¢[i],o¢o 

(II.2) 

We then take the derivative of the constraint eq.(48) with respect to 8¢; with all other 
variations, including 8¢;0 , kept constant and multiply by an undetermined multiplier 2A.. We 
then add the obtained equation to eq.(II.2) and let the sum equal zero. We obtain 

2A-;8f/J;- 2J;8f/J 0 - 2.A = 0 (II.3) 

Substitution of this equation into eq.( 48) yields 
K-1 K-1 

- 8¢; 0 = .A L: Xj1 + 8¢; 0 L: J;Xi1 (II.4) 
i=l i=1 

Upon eliminating A, from eqs.(I1.3) and (II.4), we have 
_1 K-1 -I K-1 _1 8¢; = 8¢ 0 A-; [J;- (I+ L: J;A-; ) I L: X; ] (II.S) 

i=1 i=1 

Substitution ofthis equation into eq.(II.l) yields eq.(SO). 

List of Symbols 

A Helmholtz function 
Av first-order derivative of A with respect to V 
A vM second -order derivative of A with respect to V and M or x M 
A,,x second -order derivative of A with respect to Vand x 

A I·MM third-order derivative of A with respect to V, M and M or x M 

B A~ -AvvAMM 

B v derivative of B with respect to V 
B~v~ derivative of B with respect to M 
a, b, c model parameters 
C function defined by eq.(59) 
Cv derivative of C with respect to V 
C derivative of C with respect to x 

eM derivative of c with respect to X M 
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C M~ derivative of C with respect to x M 2 

D function defined by eq.(60) 
Dv derivative of D with respect to V 
Dx derivative of D with respect to x 

DM derivative of D with respect to x M 

D Ml derivative of D with respect to x M 2 

Dsp spinodal determinant 
E function defined by eq.(70) 
Fer critical criterion 
Fsp spinodal criterion 
); RT!x; 
G Gibbs function 
Gv reduced Gibbs function of mixing per site 
K total number of components 
L number of homologues 
M molarmass 
M" M,-M~; 

M average molar mass 

M 2 average molar mass square 

M 3 average molar mass to the third 
N number of discrete components 
Nr total number of site in a lattice 
r chain length 
T temperature 
x mole fraction 
Greek letters 
8kJX k-th order variation of X 
f.i.<nJ n-order central moment 
¢ volume fraction 
superscript 
o standard state 
r residual properties 
hat 

average 
subscript 
m molar 
1 component i 
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