
LBNL-39725
UC-405
Preprint

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

A Fast High-Resolution Second-Order
Central Scheme for Incompressible
Flows ·

Raz Kupferman and Eitan Tadmor
Computing Sciences Directorate
Mathematics Department

December 1996
To be submitted
for publication

-~

_.-.........;;....,

:::c ,.,
no.., o,.,
-sCD:::c
01111"1'1
s:: z
--'Z(")
DJOm
t+t+
C'D (")

0
"'C
-<

0.--- i co

i
r-,
C:J z

n ';"r
.g ~·

''< -.J

...... ~·

I

I
'
i

i

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

A FAST HIGH-RESOLUTION SECOND-ORDER
CENTRAL SCHEME FOR INCOMPRESSIBLE FLOWS*

Raz Kupferman
Mathematics Department

Lawrence Berkeley National Laboratory
University of California

Berkeley, CA 94720, USA

Eitan Tadmor
School of Mathematical Sciences

Tel-Aviv University
Tel-Aviv 69978, Israel

and
Department of Mathematics

University of California
Los Angeles, CA 90095, USA

December 1996

LBNL-39725

*This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Re­
search, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098, the National Science Foundation
under Grant DMS94-04942, and the Office of Naval Research under Grant N00014-91-J-1076.

@1996
001

A fast high-resolution second-order central scheme for
incompressible flows

Raz Kupfermant Eitan TadmorU

December 4, 1996

Abstract

A high-resolution second-order central-difference method for incompressible flows is

presented. The method is based on a recent second-order extension of the classical Lax­

Friedrichs scheme introduced for hyperbolic conservation laws [20, 12], and augmented

by a new discrete Hodge projection. The projection is exact, yet the discrete Laplacian

operator retains a compact stencil. The scheme is fast, easy to implement, and readily

generalizable. Its performance is tested on the standard periodic double shear-layer

problem; no spurious vorticity patterns appear when the flow is under-resolved. A

short discussion of numerical boundary conditions is also given, along with a numerical

example.

AMS(MOS) subject classification. Primary 65M10; Secondary 76C05

Keywords: hyperbolic conservation laws, second-order accuracy, central difference schemes,
non-oscillatory schemes, incompressible flows.

tMathematics Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 50A-2152, Berke­
ley, CA 94720. Email: razQmath.lbl.gov.

tschool of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978 Israel.
§Department of Mathematics, UCLA, Los-Angeles CA 90095. Email: tadmorQmath. ucla. edu.

1

2 R. KUPFERMAN AND E. TADMOR

Introduction The accurate computation of flow problems is of major importance
in many fields of science and engineering. Many of the modern high-resolution methods
used for such computations employ the Godunov approach, where the time evolution of a
piecewise polynomial approximation of the flow field is sought. Typically, this piecewise
polynomial approximate solution is reconstructed from its cell averages. In this context we
distinguish between two main classes of methods, upwind and central methods.

Upwind schemes evaluate cell averages at the center of the piecewise polynomial elements,
which in turn requires the evaluation of fluxes along the cell interfaces. Consequently, upwind
schemes must take into account the characteristic speeds along such interfaces. Special
attention is required at those interfaces in which there is a combination of forward- and
backward-going waves, where it is necessary to decompose the "Riemann fan" and determine
the separate contribution of each component by tracing "the direction of the wind". It
is the need to trace characteristic fans (- using exact or approximate Riemann solvers),
that greatly complicates the upwind algorithms, making them difficult to implement and
to generalize to more complex systems (e.g. to viscoelastic fluids). The original first-order
accurate Godunov scheme [8] is the forerunner for all other upwind Godunov-type schemes.
A variety of second- and higher-order sequels to Godunov upwind scheme were constructed,
analyzed and implemented with great success during the seventies and eighties, starting
with van-Leer's MUSCL scheme [15], followed by [22, 10, 21, 6]; see [9, 16, 5] and the
references therein. For incompressible flows, the upwind-Godunov approach was combined
with Chorin's projection technique [3] by Bell, Colella, and Glaz (BCG) [1], E and Shu [7]
and others; consult [2] and the references therein.

In this paper we use the central differences framework. In contrast to upwind schemes,
central schemes evaluate staggered cell averages at the breakpoints between the piecewise
polynomial elements. Thus, averages are integrated over the entire Riemann fan, so that
the corresponding fluxes are now evaluated at the smooth centers of the cells. Consequently,
costly Riemann-solvers required in the upwind framework, can be now replaced by straight­
forward quadrature rules. The first-order Lax-Friedrichs (LxF) scheme [14] is the canonical
example of such central difference schemes. Like Godunov's scheme, the central LxF scheme
is based on a piecewise constant approximate solution. Its Riemann-solver-free recipe, how­
ever, is considerably simpler. Unfortunately, the LxF scheme introduces excessive numerical
viscosity, resulting in relatively poor resolution.

In [20], Nessyahu and Tadmor (NT) introduced a second-order sequel to the central LxF
scheme in one-spatial dimension. Like its second-order upwind-MUSCL analogue, the NT
scheme is based on a piecewise-linear polynomial approximation, which yields a consider­
able improvement in resolution; at the same time, the central averaging results in a simple
Riemann-solver-free recipe. The NT scheme was recently extended to higher orders [19], and
several spatial dimensions [12]. Numerical experiments reported above and in the related
work [23, 11, 25], show that the central schemes offer a considerably simpler alternative to
the upwind schemes while retaining a comparable resolution.

The central schemes mentioned above were introduced primarily for hyperbolic systems
of conservation laws, such as those governing compressible flows. These encouraging results
motivated the use of central differences in related problems, notably for incompressible flows.

HIGH-RESOLUTION CENTRAL SCHEME FOR INCOMPRESSIBLE FLOWS 3

The two-dimensional Euler equations in its vorticity formulation was addressed along these
lines in [17]. It is the goal of this paper to introduce a second-order central difference scheme
for incompressible flows, based on velocity variables. The use of the velocity formulation
(1) yields a more versatile algorithm. The advantage of our proposed central scheme in its
velocity formulation is two-fold: generalization to the three dimensional case is straightfor­
ward, and the treatment of boundary conditions associated with general geometries becomes
simpler. The result is a simple fast high-resolution method, whose accuracy is comparable
to that of an upwind scheme. In addition, numerical experiments show the new scheme to
be immune to some of the well-known deleterious consequences of under-resolution.

The second-order central scheme We consider a two-dimensional
incompressible flow field, u = (u, v), so that \7 · u = 0. The equations of motion for a
Newtonian fluid in conservation form are

(1)

where p is the pressure, v is the kinematic viscosity, and subscripts denote partial derivatives.
The functions fu,v(-) and gu,v(-) are components of the fluxes of the conserved quantities u
and-v.

We now turn to the derivation of our central scheme. The computational grid consists of
rectangular cells of sizes D.x and .6-y; at time level tn = n.D.t, these cells, Ci,j, are centered at
(xi=i.6..x,yj=j.6.y). Starting with the corresponding cell averages, un = (u~i,v~i), we first
reconstruct a piecewise linear polynomial approximation which recovers the point values of
the velocity field, un(x,y) = (un(x,y),vn(x,y)). For second-order accuracy, the piecewise
linear reconstructed velocities take the form,

x, y E Ci,i· (2)

Here and below, uL/ D.x and u},j/ D.y are discrete slopes in the x- and y-directions, which
are reconstructed from the given cell averages. To guarantee second order accuracy, these
slopes should approximate the corresponding x- and y-derivatives of the underlying solution.
To avoid spurious oscillations, the recipe for construction of such slopes requires certain
nonlinear limiters- a variety of such recipes was studied extensively during the eighties; see
[15, 24, 18] and the references therein. In the numerical examples reported below, however,
we found that the evaluation of the slopes u', u' using simple centered differences without
limiters would suffice.

4 R. KUPFERMAN AND E. TADMOR

,.-------------- --------------.;
' ' ! 'i.k+l 'i+t.k+l !

...... m---+---lffifF~---~---------i'·-m
: SW SE :
' ' ' ' ' ' ' ' ' ' ' ' : c;. «;.t,k :
' '
~--------------+--------------~

lj..t/2 ...

'!+112

Figure 1: The staggered grid.

The second stage is to evolve the piecewise linear approximant to the next time level,
tn+t. The resulting solution, iin+l(x,y) = (un+l(x,y),vn+l(x,y)), is projected back into the
space of piecewise constant polynomials. We denote this piecewise constant solution by ii.
It is a non-zero-divergence field, and it is therefore considered as a provisional field (this
will require a third and final stage of the evolution step, where we will compute its zero­
divergence projection, un+l). Specifically, we realize iin+l (x, y) by its staggered cell averages
ii~+f. 1 := fc . iin+l(x, y)dxdy. (Throughout this paper, we use fn := l~l fn to denote

'+2,J+2 •+t.J+t
normalized integrals, scaled by their length, area, volume, ...). The central differencing
feature of our scheme is linked to the staggered cells, Ci+l 3+1, centered around (xi+l, y3-+1).

2' 2 2 2

To evaluate these staggered averages, we integrate (1) over the control box Ci+l,j+l x [tn, tn+l].
Consider now the difference between the cell averages at the top and at the

2
bottom of this

box: in view of the conservation form of (1), this difference is balanced solely by the flux
across the box's interfaces (see Figure 1),

- (tn+l) U·+l '+l =
' 2 ,J 2

(3)

A similar averaging applies for v;:t,i+!" Here and below, D"Iwi,. = (Wi+t,- - Wi,·)/ ~x and

J.L'f;Wi,. = H Wi+I,- + Wi,.) denote, respectively, forward differences and forward averages in the
x direction. The meaning of the related operators such as Dt, D;, J.l;, ... is self-evident; in
particular, \7~ = D'f; D; + Dt D; is the standard 5-point Laplacian. .

We now turn to the (approximate) evaluation of the terms on the right-hand side of
(3). The staggered cell average at the bottom on the box, fc. . u(x, y, tn)dxdy, involves

•+t.J+t

HIGH-RESOLUTION CENTRAL SCHEME FOR INCOMPRESSIBLE FLOWS 5

contributions from the four intersecting cells, Ci,j, Ci+I,il Ci+l,i+I and Ci,i+l indicated in
Figure 1. A straightforward computation yields

1 (n)d d + + n b.x n+ + , b.y n+ + \ Jc . u x, y, t x y = Jlx Jly ui,j- 8 x Jly ui,j- 8 Y Jlx ui,j·
0;+~.i+!

(4)

It remains to integrate the :fluxes fu, gu, ... across the interfaces of the control box. For second
order accuracy, the double integrals on the right of (3) are approximated by suitable averages
of their corner values. Thus, for example, a combination of the second-order trapezoidal and
mid-point quadrature rules yields the following approximation for the flux associated with
Ju = -u2 + VUx- Px,

+itn+1i fu()d d n+ [+(n+t)2 v(+u~.j n--n+1)] () Dx Xi, y, T y T rv x -py ui,j + -2 Jly ~ + x ui+l,j+l . 5
-r=t" yEJ·+l. uX 2 2

1 2

Similar approximations are used .for the remaining fluxes associated with r, gu, gv. Few
remarks are in order, clarifying the motivation for this type of central discretization:

• Two of the four relevant fluxes appearing in (1), fu and gv, involve the pressure gra­
dient, (Px,Py), which could be viewed as a Lagrange multiplier enforcing the zero­
divergence constraint, \7 · u = 0. Our approximation of these two fluxes, e.g., (5),
ignores the pressure gradient at this stage. Here, we follow the projection method,
[1, 3], which separates the time evolution from the incompressibility constraint, by
first evolving the :flow field without taking pressure into account. The contribution of
the pressure will be integrated at the last stage by enforcing zero-divergence fluxes.

• Temporal integration of the viscosity terms, vux, .. . , is accomplished by second-order
averaging at tn and tn+l. This quadrature leads to the implicit Crank-Nicholson dis­
cretization which is favored due to its preferable stability properties.

• The temporal integration of the convective part of the flux, however, (represented by
the quadratic terms like u2, uv, ..), is accomplished by the midpoint rule evaluated at

1 1

tn+t. This requires the intermediate values, u~r2 and vZr2 • It is here that we take
advantage of the central framework; since the cell centers (Xi, Yi) are bounded away
from the discontinuous breakpoints, we may use Taylor expansion to compute these
mid-values. Thus, the first ingredient of our scheme consists of the following

I. Predictor step.

n+t
U·.

~.J

n 2 n t,J + n ~.J n ~.J + Q n \72 Llt [u~ · v~ · u~ ·]
- ui,j - 2 ui,j b.x ui,j b.y + vi,j b.y xPi,j - v h Ui,j

n+t n Llt n ui,j n vi,j n vi,j n 2
[

I I \ .]

vi,j - vi,j - 2 vi,j Llx + ui,j b.x + 2vi,j fly + GyPi,j - v\7 h Vi,j .

(6)

6 R. KUPFERMAN AND E. TADMOR

Note that the predictor step is nothing but a forward Euler scheme; conservation form is
not essential for the spatial discretization at this stage.

. n+1 n+1 n+1
Equipped with the mid-values of ui,j 2 := (ui,j 2

, vi,j 2
), we can now compute the approx-

imate fluxes in (5); these together with (4) yield the staggered averages at tn+I, which we
summarize in the following

II. Corrector step.

(1 _ v.6.t-r12) -n+l
2 v h u.+1 ·+1

t 2.3 2

+ + n .D.x + + ' .D.y + + '
1-Lx /ly ui,j - 8 D x /ly ui,j - 8 D y 1-Lx ui,j +

(7)

+ + [n+t n+~ vui,j] + + [n+~ n+t vu},j]
.D.tDx J-ly ui,j ui,j - 2.6.x - .D.tDY J-lx vi,j ui,j - 2.6.y .

The corrector step, (7) evaluates a non-divergence-free provisional field, iin+I. At the
third and final stage of the computation, we have to evaluate the zero-divergence projection
of this provisional field. This zero-divergence constraint in turns determines the pressure
gradient. We note that satisfying an appropriate discrete zero-divergence constraint is in­
trinsically related to the finite speed of propagation of the velocity field u, and consequently,
it is essential for the stability of the scheme. Indeed, the zero-divergence constraint enables
us to rewrite the scheme (7) in an appropriate convective form, which in turns yields a max­
imum upper-bound. ·Such a program was carried out by Levy & Tadmor in [17) where a
maximum principle was derived based on a convective reformulation of the vorticity equa­
tion. Granted the finite speed of propagation of the velocity field u, one may revisit the
predictor step with the usual Courant-Friedrichs-Levy (CFL) time step limitation
max{~! lui,~~ lvl} ~ !· We note in passing that hyperbolicity is not necessary for the
stability of the central NT scheme [20, 12) - finite speed of propagation will suffice.

We now turn to the computation of the incompressible projection. We decompose the
provisional field u.n+l, into the sum of a divergence-free flow field, un+I := (un+I, vn+I), and
a gradient field of a scalar grid function, </>i,j, [1)

-un+I - un+l + n+,+A.. ..
i+~,j+~ - i+~.i+t x ry 'f/t,3,

where the new field u~+; . 1 = (u~+;. 1 , v~++11 .+ 1) has to satisfy the zero divergence condi-
,+2,3+2 '+2·3+2 ' 2•3 2

tion,
D - - n+l + n- - n+l - 0 x /ly u.+1 ·+1 y 1-Lx v.+1 ·+1 - · 1 2'32 '2'32

(8)

This dictates the scalar potential </>i,j, which is calculated by
Poisson problem. Thus, we end up with the following step.

solving the corresponding

III. Projection step. Compute the potential </>i,j solving the Poisson equation

[D+n- + - + n+n- + -] .).... . - n- - -n+l + n- - -n+l x xlly/ly y yllxllx '1/t,J- xllyU·+l. ·+1. yJ-lxU·+l ·+l"
t 2 ,J 2 t 2 .3 2

(9)

HIGH-RESOLUTION CENTRAL SCHEME FOR INCOMPRESSIBLE FLOWS 7

Then, the pressure gradient at tn+I is being updated,

G pn+l ·- n+ II+ A.
X i+t,j+t .- X ry '!'i,j, (10)

and finally, it is used to evaluate the divergence-free velocity field, un+I

(11)

It is noteworthy that our projection operator Pis exact, i.e., P 2 = P; and it is substantially
simpler in comparison with the original BCG projection [1]. Thus for example, the Poisson
equation (9) becomes a particularly simple 5-point star stencil (for a square grid, ~x = ~y).

Numerical experiments We turn now to numerical examples which demon­
strate the efficiency of our proposed central scheme (6-7, 9-11). All our computations were
carried out with the CFL limitation max{!!JuJ, !;JvJ} = 0.45.

The first example is a double shear layer governed by the Navier-Stokes equations (1), in
a unit !-periodic domain, subject to the initial conditions

{
tanh [p(y-!)]

u~(x, y) = tanh [p(~- ;)]
Y<l

- 2
1

y > 2'
vg(x,y) = 8 sin(21rx). (12)

The parameter p determines the slope of the shear layer, while vg represents a small pertur­
bation of the steady solution, (u~, vg). The initial layer rolls up in time into strong vortical
structures. This problem is a canonical test problem for a scheme's accuracy and resolution
in incompressible flows. Brown and Minion (BM) [2] performed for this problem a systematic
comparison between a number of schemes, concentrating on the effect of under-resolution.
Their results will serve us as a reference.

Under-resolution and stability. In Figure 2, we plot vorticity contours for two shear layer
problems studied in [2]: the inviscid "thick" shear layer problem corresponding to (u~, vg)
with p = 30, and a viscous "thin" shear layer problem (with v = 5 · 10-5), corresponding to
(u~, v&) with p = 100. As in [2], both plots in Figures 2a and 2b are recorded at timet = 1.2,
and are subject to an initial perturbation vg, with 8 = 0.05.

8 R. KUPFERMAN AND E. TADMOR

Figure 2: Contour lines of the vorticity, w = Vx- uy. at t = 1.2 with initial (uP, v6), 8-:- 0.05,
using a 256 x 256 grid. (a) A "thick" shear layer with p = 30, and 11 = 0. The contour levels
range from -36 to 36 (cf. Figure 3c in Ref. [2]). (b) A "thin" shear layer with p = 100, and
11 = 5 · 10-5

. The contour levels range from -70 to 70 (cf. Figure 9b in Ref. [2]).

The vorticity contour plot for the "thick" shear layer (Figure 2a) is comparable to the
corresponding upwind results reported in [2]. For the thin layer, however, the results of
the central scheme are qualitatively different. When the upwind solution of the "thin"
shear layer problem is under-resolved, Brown & Minion observed the formation of spurious
vortices, as additional roll-ups develop; these additional vortices are found with both upwind
and spectral methods, and eventually cause the calculation to break down. (The spurious
nature of these vortices is confirmed only as the mesh is further refined, and these vortices
disappear). In contrast, the effect of under-resolution on our scheme is an increased numerical
viscosity that smears the vorticity distribution. Yet the central scheme has the advantage
that it does not introduce new unphysical vorticity patterns. No spurious pattern was
observed as the resolution was further decreased down to a 32 x 32 grid. Thus, the stability
of our central method appears to prevent the formation of any under-resolution-induced
structure, although the method is less accurate than an upwind scheme for a given grid.
The issues of accuracy, resolution and stability as inspected in Figure 2, may, of course,
vary with different parameterizations. We carried out additional (unreported) numerical
experiments, measuring vorticity contours and enstrophy behavior with varying 11's and N's.
These experiments reconfirm the high-resolution content of our central scheme - resolution
comparable to the upwind results; at the same time, they show that our central scheme
is immuned to spurious oscillations due to under-resolution. We note in passing that this
demonstrates again that accuracy and resolution may be two distinct qualities of a scheme
[4].

Efficiency. The central scheme enjoys improved stability properties which prevent spurious
vortices due to under-resolution. What is the cost of regaining this stability in comparison
to the upwind schemes? Table 1 presents L2-errors for our calculation of the inviscid double
shear layer problem, subject to initial data (ug, vg) with p = 30. Here, UN represents the

HIGH-RESOLUTION CENTRAL SCHEME FOR INCOMPRESSIBLE FLOWS 9

numerical approximation computed at time t = 1.2 using N x N spatial grid points.

II N = 32 I N = 64 I N = 128 I
l!uN - u2NIIL2 .143 I .0627 I .0172
rate I 1.19 I 1.86 I

Table 1: L2-error and extrapolated convergence rates for the double shear layer problem,
(12) with p = 30, 8 = 0.05, v = 0, at t = 1.2.

The convergence rate was estimated by Richardson extrapolation. The asymptotic con­
vergence rate is approached only as the resolution becomes sufficiently high, so that there
are enough points to resolve the shear layer. Compared to the results in [2], our errors are
about 3-4 time larger. Thus, to obtain similar errors, our scheme would roughly require a
grid twice as dense. For a given grid size, however, our scheme results in a code up to five
time faster than a parallel upwind scheme. Therefore, it is about 60% more time consuming
for a given accuracy.

Boundary conditions. The treatment of non-trivial boundary conditions requires special
attention, as the numerical grid is translated by half a grid cell at each time step while the
physical boundaries remain fixed in space. For example, if an edge cell lies entirely inside
the system after a given time step, only half of it will lie inside the system after the next
step. In most respects, the treatment of the boundaries fits naturally into the recipe given
above; only slight changes are required. In particular, numerical derivatives at walls have to
be evaluated by one-sided expressions. The boundary conditions on the projection operator
are more delicate. The following treatment results in second-ord~r convergence: When
the centers of the edge cells lie on the boundary, the prescribed boundary values, Ubc, are
explicitly imposed, that is, Gx¢> = ii- Ubc· In the remaining cases, it is the incompressibility
condition (8) that is imposed.

0.8

~0.6

~ U U U U M ~ M M
y

Figure 3: A viscous flow (with v = 0.01) in a channel with immobile walls, subject to initial
conditions u0 (x,y) = 1,v0 (x,y) = 0. Number of grid points is 128 x 128. The successive solid
and dashed lines represent the flow profiles u(y), at times t = 0, .1, .3, .5, ... , 1.5.

10 R. KUPFERMAN AND E. TADMOR

As an example, we present the results for flow in a two-dimensional channel with immobile
parallel walls. Periodic boundary conditions are assumed for the longitudinal axis. Figure 3
shows a succession of flow profiles u(y), for a realization in which the initial conditions are
a uniform longitudinal flow. At timet = 0, infinite shear gradients are formed, and then
gradually smoothed out by the viscous forces. Note the resolution at the shear walls. In this
context it is worth repeating that no limiters [15, 24, 18] were used.

Conclusions We have presented a numerical scheme for incompressible flows that
offers significant improvement over available methods in terms of simplicity, adaptability and
resolution, with only a small loss of accuracy per given amount of labor. In two respects,
the performance of our scheme is particularly noteworthy: low resolution and sharp gradi­
ents do JlOt result in spurious structures, and limiters are unnecessary. These observations
are consistent with previous results using the staggered central scheme in the context of
hyperbolic conservation laws [20],[19],[12], and in particular, [17], regarding the robustness
of the staggered central scheme; it is not clear whether the two manifestations of robustness
mentioned above are due to the same reason. We have observed this robustness of staggered
centered schemes in other contexts and shall report on it in more detail elsewhere.

Acknowledgments. The authors are grateful to Profs. A. Chorin and A. Majda for
suggesting the combination of central schemes with the projection method and to Prof. A.
Chorin for a critical reading of the manuscript. R.K. also benefited from useful conversations
with Profs. P. Colella, M. Denn, D. Gottlieb, and Dr. A. Kast, and from the assistance of Dr.
D. Adalsteinsson on programming issues. This work was supported by the U.S. Department
of Energy, under contract DE-AC03-76SF-00098, by U.S. NSF grant #DMS94-04942 and by
U.S. ONR contract #N00014-91-J-1076.

References

[1] Bell J.B., Colella. P., and Glaz. H.M. (1989) J. Comp. Phys. 85, 257-283.

[2] Brown. D.L. and Minion. M.L. (1995) J. Comp. Phys. 122, 165-183.

[3] Chorin A.J. (1969) Math. Comp. 22, 745-762.

[4] Chorin A.J. (1977) J. Comp. Phys. 25, 253-272.

[5] Colella. P. and Puckett. E.G. "Modern Numerical Methods for Fluid Flow". In prepa­
ration.

[6] Colella. P. and Woodward. P. (1984) J. Comp. Phys. 54, 174-201.

[7] E. W. and Shu C.-W. (1993) J. Comp. Phys. 110, 39-46.

[8] Godunov S.K. (1959) Mat. Sb. 47, 271-290.

HIGH-RESOLUTION CENTRAL SCHEME FOR INCOMPRESSIBLE FLOWS 11

[9] Godlewski E. and Raviart P.-A. (1991) Hyperbolic Systems of Conservation Laws, Math­
ematics & Applications, Ellipses, Paris.

[10] Harten. A. (1989) J. Comp. Phys. 83, 148.

[11] Huynh. (1995) AIAA-95-1739-CP, The 12th AIAA CFD Con£.

[12] Jiang G.S. and Tadmor E. (1996), UCLA CAM report No. 96-36.

[13] Lai. M.F. (1993) PhD. Thesis, University of California, Berkeley.

[14] Lax. P.D. (1954) CPAM 7, 159-193.

[15] van Leer B. (1979) J. Comp. Phys. 32, 101-136.

[16] LeVeque. R.J. (1992) "Numerical methods for conservation laws", Birkhauser Verlag.

[17] Levy D. and Tadmor E., (1996) UCLA CAM report No. 96-37.

[18] Liu X.-D. and Osher S. (1996) SIAM J. Numer. Anal. 33, 760-779.

[19] Liu. X.-D. and Tadmor. E. (1996) UCLA CAM report No. 96-42.

[20] Nessyahu. H. and Tadmor. E. (1990) J. Comp. Phys. 87, 408-463.

[21] Osher S. (1984) SIAM J. Numer. Anal. 21, 217-235.

[22] Roe. P. (1981) J. Comp. Phys. 43, 357-372.

[23] Sanders. R. and Weiser. A. (1992) J. Comp. Phys. 101, 314-329.

[24] Sweby P. K. (1984) SIAM J. Numer. Anal. 21, 995-1011.

[25] Tadmor E. and Wu C.C. Central scheme for the multidimensional MHD equations, in
preparation.

[26] Woodward P. and Colella P. (1988) J. Comp. Phys. 54, 115-173.

This is a short and simplified version of the original code. The complete program
and library routines can be made available.
Contact: raz@math.lbl.gov.

'***

This program solves the Navier-Stokes equations in 2D for doubly periodic
boundary conditions. The initial conditions are the double shear-layers.

The program is written in C++. The two-dimensional matrices that
contain the calculated fields are stored in a C++ class of type
"Scalar2D". The main characteristics of this class, as well as the
specification of the class functions are given below.

**

The Scalar2D class:
===================

This class handles objects that contain a two-dimensional array of real
numbers. An object of this class is constructed by the call

Scalar2D(int,int),

where the two integer arguments define the physical size of the
two-dimensional array.

In order to simplify the treatment of doubly-periodic boundary
conditions, the two-dimensional matrix is embedded into a larger one,
such that the outer perimeter cells are always defined to satisfy the
system periodicity. This allows to treat all cells equally as bulk cells.

The class functions used below are:

(*)void Scalar2D::Clear()
initializes all matrix elements to zero.

(*) Scalar2D Scalar2D::Copy(void) const­
creates a copy of a given object.

(*)double Scalar2D::max(void) const­
returns the largest element in the matrix.

(*) Scalar2D operator*(const Scalar2D&, const Scalar2D&) -
pointwise multiplication of two matrices.

12

(*) Scalar2D xForwardDifference(const Scalar2D&) -
(*) Scalar2D xBackwardDifference(const Scalar2D&) -
(*) Scalar2D xCentralDifference(const Scalar2D&) -
(*) Scalar2D yForwardDifference(const Scalar2D&) -
(*) Scalar2D yBackwardDifference(const Scalar2D&) -
(*) Scalar2D yCentralDifference(const Scalar2D&) -

returns x/y forward/backward/central discrete differences.

(*) Scalar2D xForwardAverage(const Scalar2D&) -
(*) Scalar2D xBackwardAverage(const Scalar2D&) -
(*) Scalar2D yForwardAverage(const Scalar2D&) -
(*) Scalar2D yBackwardAverage(const Scalar2D&) -

returns x/y forward/backward averages.

(*) Scalar2D Laplace(const Scalar2D&) -
returns a five-point discrete Laplacian.

(*) Scalar2D InversePoisson(const Scalar2D&) -
inverts the Poisson equation using Fourier transform.

(*) Scalar2D InverseDiffusion(const Scalar2D&, double D) -
inverts the implicit diffusion equation with diffusion
constant D.

**'

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream.h>

#include "Scalar2D.h"

II ***

13

int main() {

II DECLARATION OF THE MODEL PARAMETERS
II ===================================
int Nx = 256;
int Ny = 256;
double h = 1.01256;
double nu = 0.001;
double Tfin = 1.0;

II DECLARATION OF THE FIELDS
II=========================

Scalar2D u(Nx, Ny);
Scalar2D v(Nx, Ny);

Scalar2D uinit(Nx, Ny);
Scalar2D vinit(Nx, Ny);

Scalar2D ux(Nx, Ny);
Scalar2D uy(Nx, Ny);
Scalar2D vx(Nx, Ny);
Scalar2D vy(Nx, Ny);

Scalar2D upredict(Nx, Ny);
Scalar2D vpredict(Nx, Ny);

Scalar2D uprovisional(Nx, Ny);
Scalar2D vprovisional(Nx, Ny);

Scalar2D DxP(Nx, Ny);
Scalar2D DyP(Nx, Ny);

Scalar2D rho(Nx, Ny);
Scalar2D phi(Nx, Ny);

II NUMBER OF POINTS ALONG THE x-AXIS
II NUMBER OF POINTS ALONG THEy-AXIS
II GRID SPACING: SYSTEM SIZE=1
II VISCOSITY
II TOTAL RUN TIME

II THE x-COMPONENT OF THE FLOW
II THEy-COMPONENT OF THE FLOW

II INITIAL CONDITION FOR u
II INITIAL CONDITION FOR v

II THE x-DERIVATIVE OF u
II THEy-DERIVATIVE OF u
II THE X-DERIVATIVE OF v
II THEy-DERIVATIVE OF v

II THE x-COMPONENT OF THE PREDICTOR
II THEy-COMPONENT OF THE PREDICTOR

II THE x-COMPONENT OF THE CORRECTOR
II THEy-COMPONENT OF THE CORRECTOR

II THE x-COMPONENT OF THE PRESSURE GRAD.
II THEy-COMPONENT OF THE PRESSURE GRAD.

II THE SOURCE OF THE POISSON EQUATION
II THE SOLUTION OF THE POISSON EQUATION

14

II SET INITIAL CONDITIONS ON (uinit,vinit):
II A DOUBLE SHEAR LAYER
II==
double rho_init;
double delta_init;

for (int i=O; i<Nx; i++)
for (int j=O; j<Ny; j++) {

if (j <= Nyl2) {

II THE SLOPE OF THE SHEAR-LAYER
II THE AMPLITUDE OF THE INITIAL PERTURB.

uinit(i,j) = tanh(rho_init*(double(j)INy-0.25));
} else {

uinit(i,j) = tanh(rho_init*(0.75-double(j)INy));
}
vinit(i,j) = delta_init*sin(2*PI*ilmin(Nx,Ny));

}

II SET INITIAL CONDITIONS FOR THE PRESSURE GRADIENT
II ==
DxP.Clear();
DyP.Clear();

II COPY THE INITIAL CONDITIONS INTO (u,v)
II ======================================
u = uinit.Copy();
v = vinit.Copy();

II FLAGS AND COUNTERS:
II ===

~

II (i) CalcinitialPressureCounter: THE FIRST SIX STEPS ARE
II USED TO CALCULATE THE PRESSURE GRADIENT ITERATIVELY.
II AFTER EACH SUCH STEP, THE PRESSURE GRADIENT IS UPDATED,
II WHILE THE FLOW FIELD GETS BACK ITS INITIAL VALUES.
II THIS COUNTER COUNTS THE NUMBER OF ITERATIONS.
II (ii) OddStep: A 011 FLAG THAT EQUALS ONE WHEN THE STEP NUMBER
II IS ODD. THE PROCEDURE ALTERNATES BETWEEN FORWARD AND
II BACKWARD STAGGERING ACCORDING TO THE PARITY OF THE STEP.
II ==
int CalcinitialPressureCounter = 0;
int OddStep = 1;

II THE MAIN LOOP
II =============

double time=O;
vhile (time <= Tfin) {

15

II SELECTION OF THE TIME STEP: dt = CFL*hiMAX(u,v).
II ==
double CFL = 0.4;
double dt = CFLimax(u.maxabs(),v.maxabs())*h;
time += dt;

II CALCULATE THE NUMERICAL DERIVATIVES USING CENTRAL DIFFERENCING
II ==
ux = xCentralDifference(u);
uy = yCentralDifference(u);
vx = xCentralDifference(v);
vy = yCentralDifference(v);

II PREDICTOR STEP
II ==============
upredict = u - 0.5*(dtlh)*(2*U*UX + U*VY + V*UY

(nulh)*Laplace(u));
vpredict = v - 0.5*(dtlh)*(2*V*VY + U*VX + V*UX

(nulh)*Laplace(v));

+ h*DxP -

+ h*DyP -

II AFTER THE PREDICTOR STEP, THE PROCEDURE SPLITS BETWEEN THE
II ODD AND THE EVEN TIME STEPS.

II ***
II ODD TIME STEPS
II ***

if (OddStep) {

II CALCULATE THE rhs OF THE PROVISIONAL FIELD
II ==
uprovisional = xFor~ardAverage(yFor~ardAverage(u))

- (1/8)*xFor~ardDifference(yFor~ardAverage(ux))

(1/8)*yFor~ardDifference(xFor~ardAverage(uy))

(dtlh)* xFor~ardDifference(yFor~ardAverage(upredict*upredict))
(dtlh)* yFor~ardDifference(xFor~ardAverage(upredict*vpredict))

+ (0.5*dt*nulhlh)* xFor~ardDifference(yFor~ardAverage(ux))
+ (0.5*dt*nulhlh)* yFor~ardDifference(xFor~ardAverage(uy));

vprovisional = xFor~ardAverage(yFor~ardAverage(v))
- (1/8)*xFor~ardDifference(yFor~ardAverage(vx))

- (1/8)*yFor~ardDifference(xFor~ardAverage(vy))

- (dtlh)* xFor~ardDifference(yFor~ardAverage(upredict*vpredict))
- (dtlh)* yFor~ardDifference(xFor~ardAverage(vpredict*vpredict))
+ (0.5*dt*nulhlh)* xFor~ardDifference(yFor~ardAverage(vx))

16

+ (O.S*dt*nulhlh)* yForwardDifference(xForwardAverage(vy));

II SOLVE THE IMPLICIT DIFFUSION EQUATION
II ======================~==============
uprovisional = InverseDiffusion(uprovisional, -O.S*(dtlh)*(nulh));
vprovisional = InverseDiffusion(vprovisional, -O.S*(dtlh)*(nulh));

II CALCULATE THE SOURCE TERM FOR THE POISSON EQUATION
II ==
rho = xBackwardDifference(yBackwardAverage(uprovisional))

+ yBackwardDifference(xBackwardAverage(vprovisional));

II SOLVE THE POISSON EQUATION
II ==========================
phi= InversePoisson(rho);

II CALCULATE THE PRESSURE
II======================
DxP = xForwardDifference(yForwardAverage(phi))ldt;
DyP = yForwardDifference(xForwardAverage(phi))ldt;

II UPDATE THE FLOW FIELD
II======================
u = uprovisional - DxP*dt;
v = vprovisional - DyP*dt;

II ***
II EVEN TIME STEPS
II ***

} else {

II CALCULATE THE rhs OF THE PROVISIONAL FIELD
II ==
uprovisional = xBackwardAverage(yBackwardAverage(u))

- (118)*xBackwardDifference(yBackwardAverage(ux))
(118)*yBackwardDifference(xBackwardAverage(uy))
(dtlh)* xBackwardDifference(yBackwardAverage(upredict*upredict))
(dtlh)* yBackwardDifference(xBackwardAverage(upredict*vpredict))

+ (O.S*dt*nulhlh)* xBackwardDifference(yBackwardAverage(ux))
+ (O.S*dt*nulhlh)* yBackwardDifference(xBackwardAverage(uy));

vprovisional = xBackwardAverage(yBackwardAverage(v))
- (118)*xBackwardDifference(yBackwardAverage(vx))
- (118)*yBackwardDifference(xBackwardAverage(vy))
- (dtlh)* xBackwardDifference(yBackwardAverage(upredict*vpredict))

17

}

}

}

- (dtlh)* yBackwardDifference(xBackwardAverage(vpredict*vpredict))
+ (0.5*dt*nulhlh)* xBackwardDifference(yBackwardAverage(vx))
+ (0.5*dt*nulhlh)* yBackwardDifference(xBackwardAverage(vy));

II SOLVE THE IMPLICIT DIFFUSION EQUATION
II =====================================
uprovisional = InverseDiffusion(uprovisional, -0.5*(dtlh)*(nulh));
vprovisional = InverseDiffusion(vprovisional, -0.5*(dtlh)*(nulh));

II CALCULATE THE SOURCE TERM FOR THE POISSON EQUATION
II==
rho = xForwardDifference(yForwardAverage(uprovisional))

+ yForwardDifference(xForwardAverage(vprovisional));

II SOLVE THE POISSON EQUATION
II==========================
phi= InversePoisson(rho);

II CALCULATE THE PRESSURE
II======================
DxP = xBackwardDifference(yBackwardAverage(phi))ldt;
DyP = yBackwardDifference(xBackwardAverage(phi))ldt;

II UPDATE THE FLOW FIELD
II ======================
u = uprovisional - DxP*dt;
v = vprovisional - DyP*dt;

II DURING THE FIRST SIX PASSES, CALCULATES THE PRESSURE
II GRADIENT ITERATIVELY. AT THE END OF THE PASS, RESET
II THE FLOW FIELD TO THE INITIAL CONDITIONS.
II ===
if (CalcinitialPressureCounter < 6) {

CalcinitialPressureCounter++;
u = uinit.Copy();
v = vinit.Copy();
time = 0;

}

II TOGGLE ODDSTEP FLAG
II ===================
OddStep = OddStep ? 0 : 1;

18

@l!;J~IiiJ.:-f\f l'iil'm.gim@ ~•J'U13§(IDi4;;J:ii¥4H£RI ~ ~

@m~~~'~O~~

0

