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Abstract 

A high-resolution second-order central-difference method for incompressible flows is 

presented. The method is based on a recent second-order extension of the classical Lax­

Friedrichs scheme introduced for hyperbolic conservation laws [20, 12], and augmented 

by a new discrete Hodge projection. The projection is exact, yet the discrete Laplacian 

operator retains a compact stencil. The scheme is fast, easy to implement, and readily 

generalizable. Its performance is tested on the standard periodic double shear-layer 

problem; no spurious vorticity patterns appear when the flow is under-resolved. A 

short discussion of numerical boundary conditions is also given, along with a numerical 

example. 
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2 R. KUPFERMAN AND E. TADMOR 

Introduction The accurate computation of flow problems is of major importance 
in many fields of science and engineering. Many of the modern high-resolution methods 
used for such computations employ the Godunov approach, where the time evolution of a 
piecewise polynomial approximation of the flow field is sought. Typically, this piecewise 
polynomial approximate solution is reconstructed from its cell averages. In this context we 
distinguish between two main classes of methods, upwind and central methods. 

Upwind schemes evaluate cell averages at the center of the piecewise polynomial elements, 
which in turn requires the evaluation of fluxes along the cell interfaces. Consequently, upwind 
schemes must take into account the characteristic speeds along such interfaces. Special 
attention is required at those interfaces in which there is a combination of forward- and 
backward-going waves, where it is necessary to decompose the "Riemann fan" and determine 
the separate contribution of each component by tracing "the direction of the wind". It 
is the need to trace characteristic fans ( - using exact or approximate Riemann solvers), 
that greatly complicates the upwind algorithms, making them difficult to implement and 
to generalize to more complex systems (e.g. to viscoelastic fluids). The original first-order 
accurate Godunov scheme [8] is the forerunner for all other upwind Godunov-type schemes. 
A variety of second- and higher-order sequels to Godunov upwind scheme were constructed, 
analyzed and implemented with great success during the seventies and eighties, starting 
with van-Leer's MUSCL scheme [15], followed by [22, 10, 21, 6]; see [9, 16, 5] and the 
references therein. For incompressible flows, the upwind-Godunov approach was combined 
with Chorin's projection technique [3] by Bell, Colella, and Glaz (BCG) [1], E and Shu [7] 
and others; consult [2] and the references therein. 

In this paper we use the central differences framework. In contrast to upwind schemes, 
central schemes evaluate staggered cell averages at the breakpoints between the piecewise 
polynomial elements. Thus, averages are integrated over the entire Riemann fan, so that 
the corresponding fluxes are now evaluated at the smooth centers of the cells. Consequently, 
costly Riemann-solvers required in the upwind framework, can be now replaced by straight­
forward quadrature rules. The first-order Lax-Friedrichs (LxF) scheme [14] is the canonical 
example of such central difference schemes. Like Godunov's scheme, the central LxF scheme 
is based on a piecewise constant approximate solution. Its Riemann-solver-free recipe, how­
ever, is considerably simpler. Unfortunately, the LxF scheme introduces excessive numerical 
viscosity, resulting in relatively poor resolution. 

In [20], Nessyahu and Tadmor (NT) introduced a second-order sequel to the central LxF 
scheme in one-spatial dimension. Like its second-order upwind-MUSCL analogue, the NT 
scheme is based on a piecewise-linear polynomial approximation, which yields a consider­
able improvement in resolution; at the same time, the central averaging results in a simple 
Riemann-solver-free recipe. The NT scheme was recently extended to higher orders [19], and 
several spatial dimensions [12]. Numerical experiments reported above and in the related 
work [23, 11, 25], show that the central schemes offer a considerably simpler alternative to 
the upwind schemes while retaining a comparable resolution. 

The central schemes mentioned above were introduced primarily for hyperbolic systems 
of conservation laws, such as those governing compressible flows. These encouraging results 
motivated the use of central differences in related problems, notably for incompressible flows. 
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The two-dimensional Euler equations in its vorticity formulation was addressed along these 
lines in [17]. It is the goal of this paper to introduce a second-order central difference scheme 
for incompressible flows, based on velocity variables. The use of the velocity formulation 
(1) yields a more versatile algorithm. The advantage of our proposed central scheme in its 
velocity formulation is two-fold: generalization to the three dimensional case is straightfor­
ward, and the treatment of boundary conditions associated with general geometries becomes 
simpler. The result is a simple fast high-resolution method, whose accuracy is comparable 
to that of an upwind scheme. In addition, numerical experiments show the new scheme to 
be immune to some of the well-known deleterious consequences of under-resolution. 

The second-order central scheme We consider a two-dimensional 
incompressible flow field, u = ( u, v ), so that \7 · u = 0. The equations of motion for a 
Newtonian fluid in conservation form are 

(1) 

where p is the pressure, v is the kinematic viscosity, and subscripts denote partial derivatives. 
The functions fu,v(-) and gu,v(-) are components of the fluxes of the conserved quantities u 
and-v. 

We now turn to the derivation of our central scheme. The computational grid consists of 
rectangular cells of sizes D.x and .6-y; at time level tn = n.D.t, these cells, Ci,j, are centered at 
(xi=i.6..x,yj=j.6.y). Starting with the corresponding cell averages, un = (u~i,v~i), we first 
reconstruct a piecewise linear polynomial approximation which recovers the point values of 
the velocity field, un(x,y) = (un(x,y),vn(x,y)). For second-order accuracy, the piecewise 
linear reconstructed velocities take the form, 

x, y E Ci,i· (2) 

Here and below, uL/ D.x and u},j/ D.y are discrete slopes in the x- and y-directions, which 
are reconstructed from the given cell averages. To guarantee second order accuracy, these 
slopes should approximate the corresponding x- and y-derivatives of the underlying solution. 
To avoid spurious oscillations, the recipe for construction of such slopes requires certain 
nonlinear limiters- a variety of such recipes was studied extensively during the eighties; see 
[15, 24, 18] and the references therein. In the numerical examples reported below, however, 
we found that the evaluation of the slopes u', u' using simple centered differences without 
limiters would suffice. 
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Figure 1: The staggered grid. 

The second stage is to evolve the piecewise linear approximant to the next time level, 
tn+t. The resulting solution, iin+l(x,y) = (un+l(x,y),vn+l(x,y)), is projected back into the 
space of piecewise constant polynomials. We denote this piecewise constant solution by ii. 
It is a non-zero-divergence field, and it is therefore considered as a provisional field (this 
will require a third and final stage of the evolution step, where we will compute its zero­
divergence projection, un+l ). Specifically, we realize iin+l ( x, y) by its staggered cell averages 
ii~+f. 1 := fc . iin+l(x, y)dxdy. (Throughout this paper, we use fn := l~l fn to denote 

'+2,J+2 •+t.J+t 
normalized integrals, scaled by their length, area, volume, ... ). The central differencing 
feature of our scheme is linked to the staggered cells, Ci+l 3+1, centered around (xi+l, y3-+1). 

2' 2 2 2 

To evaluate these staggered averages, we integrate (1) over the control box Ci+l,j+l x [tn, tn+l]. 
Consider now the difference between the cell averages at the top and at the

2 
bottom of this 

box: in view of the conservation form of (1), this difference is balanced solely by the flux 
across the box's interfaces (see Figure 1), 

- (tn+l) U·+l '+l = 
' 2 ,J 2 

(3) 

A similar averaging applies for v;:t,i+!" Here and below, D"Iwi,. = ( Wi+t,- - Wi,· )/ ~x and 

J.L'f;Wi,. = H Wi+I,- + Wi,.) denote, respectively, forward differences and forward averages in the 
x direction. The meaning of the related operators such as Dt, D;, J.l;, ... is self-evident; in 
particular, \7~ = D'f; D; + Dt D; is the standard 5-point Laplacian. . 

We now turn to the (approximate) evaluation of the terms on the right-hand side of 
(3). The staggered cell average at the bottom on the box, fc. . u(x, y, tn)dxdy, involves 

•+t.J+t 
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contributions from the four intersecting cells, Ci,j, Ci+I,il Ci+l,i+I and Ci,i+l indicated in 
Figure 1. A straightforward computation yields 

1 ( n)d d + + n b.x n+ + , b.y n+ + \ Jc . u x, y, t x y = Jlx Jly ui,j- 8 x Jly ui,j- 8 Y Jlx ui,j· 
0;+~.i+! 

(4) 

It remains to integrate the :fluxes fu, gu, ... across the interfaces of the control box. For second 
order accuracy, the double integrals on the right of (3) are approximated by suitable averages 
of their corner values. Thus, for example, a combination of the second-order trapezoidal and 
mid-point quadrature rules yields the following approximation for the flux associated with 
Ju = -u2 + VUx- Px, 

+itn+1i fu( )d d n+ [ +( n+t)2 v( +u~.j n--n+1 )] () Dx Xi, y, T y T rv x -py ui,j + -2 Jly ~ + x ui+l,j+l . 5 
-r=t" yEJ·+l. uX 2 2 

1 2 

Similar approximations are used .for the remaining fluxes associated with r, gu, gv. Few 
remarks are in order, clarifying the motivation for this type of central discretization: 

• Two of the four relevant fluxes appearing in (1), fu and gv, involve the pressure gra­
dient, (Px,Py), which could be viewed as a Lagrange multiplier enforcing the zero­
divergence constraint, \7 · u = 0. Our approximation of these two fluxes, e.g., (5), 
ignores the pressure gradient at this stage. Here, we follow the projection method, 
[1, 3], which separates the time evolution from the incompressibility constraint, by 
first evolving the :flow field without taking pressure into account. The contribution of 
the pressure will be integrated at the last stage by enforcing zero-divergence fluxes. 

• Temporal integration of the viscosity terms, vux, .. . , is accomplished by second-order 
averaging at tn and tn+l. This quadrature leads to the implicit Crank-Nicholson dis­
cretization which is favored due to its preferable stability properties. 

• The temporal integration of the convective part of the flux, however, (represented by 
the quadratic terms like u2, uv, .. ), is accomplished by the midpoint rule evaluated at 

1 1 

tn+t. This requires the intermediate values, u~r2 and vZr2 • It is here that we take 
advantage of the central framework; since the cell centers (Xi, Yi) are bounded away 
from the discontinuous breakpoints, we may use Taylor expansion to compute these 
mid-values. Thus, the first ingredient of our scheme consists of the following 

I. Predictor step. 

n+t 
U·. 

~.J 

n 2 n t,J + n ~.J n ~.J + Q n \72 Llt [ u~ · v~ · u~ · ] 
- ui,j - 2 ui,j b.x ui,j b.y + vi,j b.y xPi,j - v h Ui,j 

n+t n Llt n ui,j n vi,j n vi,j n 2 
[ 

I I \ . ] 

vi,j - vi,j - 2 vi,j Llx + ui,j b.x + 2vi,j fly + GyPi,j - v\7 h Vi,j . 

(6) 
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Note that the predictor step is nothing but a forward Euler scheme; conservation form is 
not essential for the spatial discretization at this stage. 

. n+1 n+1 n+1 
Equipped with the mid-values of ui,j 2 := ( ui,j 2

, vi,j 2 
), we can now compute the approx-

imate fluxes in (5); these together with (4) yield the staggered averages at tn+I, which we 
summarize in the following 

II. Corrector step. 

( 1 _ v.6.t-r12) -n+l 
2 v h u.+1 ·+1 

t 2.3 2 

+ + n .D.x + + ' .D.y + + ' 
1-Lx /ly ui,j - 8 D x /ly ui,j - 8 D y 1-Lx ui,j + 

(7) 

+ + [ n+t n+~ vui,j] + + [ n+~ n+t vu},j] 
.D.tDx J-ly ui,j ui,j - 2.6.x - .D.tDY J-lx vi,j ui,j - 2.6.y . 

The corrector step, (7) evaluates a non-divergence-free provisional field, iin+I. At the 
third and final stage of the computation, we have to evaluate the zero-divergence projection 
of this provisional field. This zero-divergence constraint in turns determines the pressure 
gradient. We note that satisfying an appropriate discrete zero-divergence constraint is in­
trinsically related to the finite speed of propagation of the velocity field u, and consequently, 
it is essential for the stability of the scheme. Indeed, the zero-divergence constraint enables 
us to rewrite the scheme (7) in an appropriate convective form, which in turns yields a max­
imum upper-bound. ·Such a program was carried out by Levy & Tadmor in [17) where a 
maximum principle was derived based on a convective reformulation of the vorticity equa­
tion. Granted the finite speed of propagation of the velocity field u, one may revisit the 
predictor step with the usual Courant-Friedrichs-Levy (CFL) time step limitation 
max{~! lui,~~ lvl} ~ !· We note in passing that hyperbolicity is not necessary for the 
stability of the central NT scheme [20, 12) - finite speed of propagation will suffice. 

We now turn to the computation of the incompressible projection. We decompose the 
provisional field u.n+l, into the sum of a divergence-free flow field, un+I := ( un+I, vn+I ), and 
a gradient field of a scalar grid function, </>i,j, [1) 

-un+I - un+l + n+,+A.. .. 
i+~,j+~ - i+~.i+t x ry 'f/t,3, 

where the new field u~+; . 1 = (u~+;. 1 , v~++11 .+ 1 ) has to satisfy the zero divergence condi-
,+2,3+2 '+2·3+2 ' 2•3 2 

tion, 
D - - n+l + n- - n+l - 0 x /ly u.+1 ·+1 y 1-Lx v.+1 ·+1 - · 1 2'32 '2'32 

(8) 

This dictates the scalar potential </>i,j, which is calculated by 
Poisson problem. Thus, we end up with the following step. 

solving the corresponding 

III. Projection step. Compute the potential </>i,j solving the Poisson equation 

[D+n- + - + n+n- + -] .).... . - n- - -n+l + n- - -n+l x xlly/ly y yllxllx '1/t,J- xllyU·+l. ·+1. yJ-lxU·+l ·+l" 
t 2 ,J 2 t 2 .3 2 

(9) 
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Then, the pressure gradient at tn+I is being updated, 

G pn+l ·- n+ II+ A. 
X i+t,j+t .- X ry '!'i,j, (10) 

and finally, it is used to evaluate the divergence-free velocity field, un+I 

(11) 

It is noteworthy that our projection operator Pis exact, i.e., P 2 = P; and it is substantially 
simpler in comparison with the original BCG projection [1]. Thus for example, the Poisson 
equation (9) becomes a particularly simple 5-point star stencil (for a square grid, ~x = ~y). 

Numerical experiments We turn now to numerical examples which demon­
strate the efficiency of our proposed central scheme ( 6-7, 9-11). All our computations were 
carried out with the CFL limitation max{!!JuJ, !;JvJ} = 0.45. 

The first example is a double shear layer governed by the Navier-Stokes equations (1), in 
a unit !-periodic domain, subject to the initial conditions 

{ 
tanh [p(y-! )] 

u~(x, y) = tanh [p(~- ;)] 
Y<l 

- 2 
1 

y > 2' 
vg(x,y) = 8 sin(21rx). (12) 

The parameter p determines the slope of the shear layer, while vg represents a small pertur­
bation of the steady solution, ( u~, vg). The initial layer rolls up in time into strong vortical 
structures. This problem is a canonical test problem for a scheme's accuracy and resolution 
in incompressible flows. Brown and Minion (BM) [2] performed for this problem a systematic 
comparison between a number of schemes, concentrating on the effect of under-resolution. 
Their results will serve us as a reference. 

Under-resolution and stability. In Figure 2, we plot vorticity contours for two shear layer 
problems studied in [2]: the inviscid "thick" shear layer problem corresponding to (u~, vg) 
with p = 30, and a viscous "thin" shear layer problem (with v = 5 · 10-5 ), corresponding to 
( u~, v&) with p = 100. As in [2], both plots in Figures 2a and 2b are recorded at timet = 1.2, 
and are subject to an initial perturbation vg, with 8 = 0.05. 
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Figure 2: Contour lines of the vorticity, w = Vx- uy. at t = 1.2 with initial (uP, v6), 8-:- 0.05, 
using a 256 x 256 grid. (a) A "thick" shear layer with p = 30, and 11 = 0. The contour levels 
range from -36 to 36 ( cf. Figure 3c in Ref. [2]). (b) A "thin" shear layer with p = 100, and 
11 = 5 · 10-5

. The contour levels range from -70 to 70 ( cf. Figure 9b in Ref. [2]). 

The vorticity contour plot for the "thick" shear layer (Figure 2a) is comparable to the 
corresponding upwind results reported in [2]. For the thin layer, however, the results of 
the central scheme are qualitatively different. When the upwind solution of the "thin" 
shear layer problem is under-resolved, Brown & Minion observed the formation of spurious 
vortices, as additional roll-ups develop; these additional vortices are found with both upwind 
and spectral methods, and eventually cause the calculation to break down. (The spurious 
nature of these vortices is confirmed only as the mesh is further refined, and these vortices 
disappear). In contrast, the effect of under-resolution on our scheme is an increased numerical 
viscosity that smears the vorticity distribution. Yet the central scheme has the advantage 
that it does not introduce new unphysical vorticity patterns. No spurious pattern was 
observed as the resolution was further decreased down to a 32 x 32 grid. Thus, the stability 
of our central method appears to prevent the formation of any under-resolution-induced 
structure, although the method is less accurate than an upwind scheme for a given grid. 
The issues of accuracy, resolution and stability as inspected in Figure 2, may, of course, 
vary with different parameterizations. We carried out additional (unreported) numerical 
experiments, measuring vorticity contours and enstrophy behavior with varying 11's and N's. 
These experiments reconfirm the high-resolution content of our central scheme - resolution 
comparable to the upwind results; at the same time, they show that our central scheme 
is immuned to spurious oscillations due to under-resolution. We note in passing that this 
demonstrates again that accuracy and resolution may be two distinct qualities of a scheme 
[4]. 

Efficiency. The central scheme enjoys improved stability properties which prevent spurious 
vortices due to under-resolution. What is the cost of regaining this stability in comparison 
to the upwind schemes? Table 1 presents L2-errors for our calculation of the inviscid double 
shear layer problem, subject to initial data (ug, vg) with p = 30. Here, UN represents the 
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numerical approximation computed at time t = 1.2 using N x N spatial grid points. 

II N = 32 I N = 64 I N = 128 I 
l!uN - u2NIIL2 .143 I .0627 I .0172 
rate I 1.19 I 1.86 I 

Table 1: L2-error and extrapolated convergence rates for the double shear layer problem, 
(12) with p = 30, 8 = 0.05, v = 0, at t = 1.2. 

The convergence rate was estimated by Richardson extrapolation. The asymptotic con­
vergence rate is approached only as the resolution becomes sufficiently high, so that there 
are enough points to resolve the shear layer. Compared to the results in [2], our errors are 
about 3-4 time larger. Thus, to obtain similar errors, our scheme would roughly require a 
grid twice as dense. For a given grid size, however, our scheme results in a code up to five 
time faster than a parallel upwind scheme. Therefore, it is about 60% more time consuming 
for a given accuracy. 

Boundary conditions. The treatment of non-trivial boundary conditions requires special 
attention, as the numerical grid is translated by half a grid cell at each time step while the 
physical boundaries remain fixed in space. For example, if an edge cell lies entirely inside 
the system after a given time step, only half of it will lie inside the system after the next 
step. In most respects, the treatment of the boundaries fits naturally into the recipe given 
above; only slight changes are required. In particular, numerical derivatives at walls have to 
be evaluated by one-sided expressions. The boundary conditions on the projection operator 
are more delicate. The following treatment results in second-ord~r convergence: When 
the centers of the edge cells lie on the boundary, the prescribed boundary values, Ubc, are 
explicitly imposed, that is, Gx¢> = ii- Ubc· In the remaining cases, it is the incompressibility 
condition (8) that is imposed. 

0.8 

~0.6 

~ U U U U M ~ M M 
y 

Figure 3: A viscous flow (with v = 0.01) in a channel with immobile walls, subject to initial 
conditions u0 (x,y) = 1,v0 (x,y) = 0. Number of grid points is 128 x 128. The successive solid 
and dashed lines represent the flow profiles u(y), at times t = 0, .1, .3, .5, ... , 1.5. 
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As an example, we present the results for flow in a two-dimensional channel with immobile 
parallel walls. Periodic boundary conditions are assumed for the longitudinal axis. Figure 3 
shows a succession of flow profiles u(y), for a realization in which the initial conditions are 
a uniform longitudinal flow. At timet = 0, infinite shear gradients are formed, and then 
gradually smoothed out by the viscous forces. Note the resolution at the shear walls. In this 
context it is worth repeating that no limiters [15, 24, 18] were used. 

Conclusions We have presented a numerical scheme for incompressible flows that 
offers significant improvement over available methods in terms of simplicity, adaptability and 
resolution, with only a small loss of accuracy per given amount of labor. In two respects, 
the performance of our scheme is particularly noteworthy: low resolution and sharp gradi­
ents do JlOt result in spurious structures, and limiters are unnecessary. These observations 
are consistent with previous results using the staggered central scheme in the context of 
hyperbolic conservation laws [20],[19],[12], and in particular, [17], regarding the robustness 
of the staggered central scheme; it is not clear whether the two manifestations of robustness 
mentioned above are due to the same reason. We have observed this robustness of staggered 
centered schemes in other contexts and shall report on it in more detail elsewhere. 
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This is a short and simplified version of the original code. The complete program 
and library routines can be made available. 
Contact: raz@math.lbl.gov. 

'*************************************************************************** 

This program solves the Navier-Stokes equations in 2D for doubly periodic 
boundary conditions. The initial conditions are the double shear-layers. 

The program is written in C++. The two-dimensional matrices that 
contain the calculated fields are stored in a C++ class of type 
"Scalar2D". The main characteristics of this class, as well as the 
specification of the class functions are given below. 

**************************************************************************** 

The Scalar2D class: 
=================== 

This class handles objects that contain a two-dimensional array of real 
numbers. An object of this class is constructed by the call 

Scalar2D(int,int), 

where the two integer arguments define the physical size of the 
two-dimensional array. 

In order to simplify the treatment of doubly-periodic boundary 
conditions, the two-dimensional matrix is embedded into a larger one, 
such that the outer perimeter cells are always defined to satisfy the 
system periodicity. This allows to treat all cells equally as bulk cells. 

The class functions used below are: 

(*)void Scalar2D::Clear() 
initializes all matrix elements to zero. 

(*) Scalar2D Scalar2D::Copy(void) const­
creates a copy of a given object. 

(*)double Scalar2D::max(void) const­
returns the largest element in the matrix. 

(*) Scalar2D operator*(const Scalar2D&, const Scalar2D&) -
pointwise multiplication of two matrices. 
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(*) Scalar2D xForwardDifference(const Scalar2D&) -
(*) Scalar2D xBackwardDifference(const Scalar2D&) -
(*) Scalar2D xCentralDifference(const Scalar2D&) -
(*) Scalar2D yForwardDifference(const Scalar2D&) -
(*) Scalar2D yBackwardDifference(const Scalar2D&) -
(*) Scalar2D yCentralDifference(const Scalar2D&) -

returns x/y forward/backward/central discrete differences. 

(*) Scalar2D xForwardAverage(const Scalar2D&) -
(*) Scalar2D xBackwardAverage(const Scalar2D&) -
(*) Scalar2D yForwardAverage(const Scalar2D&) -
(*) Scalar2D yBackwardAverage(const Scalar2D&) -

returns x/y forward/backward averages. 

(*) Scalar2D Laplace(const Scalar2D&) -
returns a five-point discrete Laplacian. 

(*) Scalar2D InversePoisson(const Scalar2D&) -
inverts the Poisson equation using Fourier transform. 

(*) Scalar2D InverseDiffusion(const Scalar2D&, double D) -
inverts the implicit diffusion equation with diffusion 
constant D. 

****************************************************************************' 

#include <string.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <iostream.h> 

#include "Scalar2D.h" 

II *********************************************************************** 
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int main() { 

II DECLARATION OF THE MODEL PARAMETERS 
II =================================== 
int Nx = 256; 
int Ny = 256; 
double h = 1.01256; 
double nu = 0.001; 
double Tfin = 1.0; 

II DECLARATION OF THE FIELDS 
II========================= 

Scalar2D u(Nx, Ny); 
Scalar2D v(Nx, Ny); 

Scalar2D uinit(Nx, Ny); 
Scalar2D vinit(Nx, Ny); 

Scalar2D ux(Nx, Ny); 
Scalar2D uy(Nx, Ny); 
Scalar2D vx(Nx, Ny); 
Scalar2D vy(Nx, Ny); 

Scalar2D upredict(Nx, Ny); 
Scalar2D vpredict(Nx, Ny); 

Scalar2D uprovisional(Nx, Ny); 
Scalar2D vprovisional(Nx, Ny); 

Scalar2D DxP(Nx, Ny); 
Scalar2D DyP(Nx, Ny); 

Scalar2D rho(Nx, Ny); 
Scalar2D phi(Nx, Ny); 

II NUMBER OF POINTS ALONG THE x-AXIS 
II NUMBER OF POINTS ALONG THEy-AXIS 
II GRID SPACING: SYSTEM SIZE=1 
II VISCOSITY 
II TOTAL RUN TIME 

II THE x-COMPONENT OF THE FLOW 
II THEy-COMPONENT OF THE FLOW 

II INITIAL CONDITION FOR u 
II INITIAL CONDITION FOR v 

II THE x-DERIVATIVE OF u 
II THEy-DERIVATIVE OF u 
II THE X-DERIVATIVE OF v 
II THEy-DERIVATIVE OF v 

II THE x-COMPONENT OF THE PREDICTOR 
II THEy-COMPONENT OF THE PREDICTOR 

II THE x-COMPONENT OF THE CORRECTOR 
II THEy-COMPONENT OF THE CORRECTOR 

II THE x-COMPONENT OF THE PRESSURE GRAD. 
II THEy-COMPONENT OF THE PRESSURE GRAD. 

II THE SOURCE OF THE POISSON EQUATION 
II THE SOLUTION OF THE POISSON EQUATION 
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II SET INITIAL CONDITIONS ON (uinit,vinit): 
II A DOUBLE SHEAR LAYER 
II======================================== 
double rho_init; 
double delta_init; 

for (int i=O; i<Nx; i++) 
for (int j=O; j<Ny; j++) { 

if (j <= Nyl2) { 

II THE SLOPE OF THE SHEAR-LAYER 
II THE AMPLITUDE OF THE INITIAL PERTURB. 

uinit(i,j) = tanh(rho_init*(double(j)INy-0.25)); 
} else { 

uinit(i,j) = tanh(rho_init*(0.75-double(j)INy)); 
} 
vinit(i,j) = delta_init*sin(2*PI*ilmin(Nx,Ny)); 

} 

II SET INITIAL CONDITIONS FOR THE PRESSURE GRADIENT 
II ================================================ 
DxP.Clear(); 
DyP.Clear(); 

II COPY THE INITIAL CONDITIONS INTO (u,v) 
II ====================================== 
u = uinit.Copy(); 
v = vinit.Copy(); 

II FLAGS AND COUNTERS: 
II =========================================================== 

~ 

II (i) CalcinitialPressureCounter: THE FIRST SIX STEPS ARE 
II USED TO CALCULATE THE PRESSURE GRADIENT ITERATIVELY. 
II AFTER EACH SUCH STEP, THE PRESSURE GRADIENT IS UPDATED, 
II WHILE THE FLOW FIELD GETS BACK ITS INITIAL VALUES. 
II THIS COUNTER COUNTS THE NUMBER OF ITERATIONS. 
II (ii) OddStep: A 011 FLAG THAT EQUALS ONE WHEN THE STEP NUMBER 
II IS ODD. THE PROCEDURE ALTERNATES BETWEEN FORWARD AND 
II BACKWARD STAGGERING ACCORDING TO THE PARITY OF THE STEP. 
II ============================================================ 
int CalcinitialPressureCounter = 0; 
int OddStep = 1; 

II THE MAIN LOOP 
II ============= 

double time=O; 
vhile (time <= Tfin) { 
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II SELECTION OF THE TIME STEP: dt = CFL*hiMAX(u,v). 
II ================================================ 
double CFL = 0.4; 
double dt = CFLimax(u.maxabs(),v.maxabs())*h; 
time += dt; 

II CALCULATE THE NUMERICAL DERIVATIVES USING CENTRAL DIFFERENCING 
II ============================================================== 
ux = xCentralDifference(u); 
uy = yCentralDifference(u); 
vx = xCentralDifference(v); 
vy = yCentralDifference(v); 

II PREDICTOR STEP 
II ============== 
upredict = u - 0.5*(dtlh)*(2*U*UX + U*VY + V*UY 

(nulh)*Laplace(u)); 
vpredict = v - 0.5*(dtlh)*(2*V*VY + U*VX + V*UX 

(nulh)*Laplace(v)); 

+ h*DxP -

+ h*DyP -

II AFTER THE PREDICTOR STEP, THE PROCEDURE SPLITS BETWEEN THE 
II ODD AND THE EVEN TIME STEPS. 

II *************************************************************** 
II ODD TIME STEPS 
II *************************************************************** 

if (OddStep) { 

II CALCULATE THE rhs OF THE PROVISIONAL FIELD 
II ========================================== 
uprovisional = xFor~ardAverage(yFor~ardAverage(u)) 

- (1/8)*xFor~ardDifference(yFor~ardAverage(ux)) 

(1/8)*yFor~ardDifference(xFor~ardAverage(uy)) 

(dtlh)* xFor~ardDifference(yFor~ardAverage(upredict*upredict)) 
(dtlh)* yFor~ardDifference(xFor~ardAverage(upredict*vpredict)) 

+ (0.5*dt*nulhlh)* xFor~ardDifference(yFor~ardAverage(ux)) 
+ (0.5*dt*nulhlh)* yFor~ardDifference(xFor~ardAverage(uy)); 

vprovisional = xFor~ardAverage(yFor~ardAverage(v)) 
- (1/8)*xFor~ardDifference(yFor~ardAverage(vx)) 

- (1/8)*yFor~ardDifference(xFor~ardAverage(vy)) 

- (dtlh)* xFor~ardDifference(yFor~ardAverage(upredict*vpredict)) 
- (dtlh)* yFor~ardDifference(xFor~ardAverage(vpredict*vpredict)) 
+ (0.5*dt*nulhlh)* xFor~ardDifference(yFor~ardAverage(vx)) 
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+ (O.S*dt*nulhlh)* yForwardDifference(xForwardAverage(vy)); 

II SOLVE THE IMPLICIT DIFFUSION EQUATION 
II ======================~============== 
uprovisional = InverseDiffusion(uprovisional, -O.S*(dtlh)*(nulh)); 
vprovisional = InverseDiffusion(vprovisional, -O.S*(dtlh)*(nulh)); 

II CALCULATE THE SOURCE TERM FOR THE POISSON EQUATION 
II ================================================== 
rho = xBackwardDifference(yBackwardAverage(uprovisional)) 

+ yBackwardDifference(xBackwardAverage(vprovisional)); 

II SOLVE THE POISSON EQUATION 
II ========================== 
phi= InversePoisson(rho); 

II CALCULATE THE PRESSURE 
II====================== 
DxP = xForwardDifference(yForwardAverage(phi))ldt; 
DyP = yForwardDifference(xForwardAverage(phi))ldt; 

II UPDATE THE FLOW FIELD 
II====================== 
u = uprovisional - DxP*dt; 
v = vprovisional - DyP*dt; 

II *************************************************************** 
II EVEN TIME STEPS 
II *************************************************************** 

} else { 

II CALCULATE THE rhs OF THE PROVISIONAL FIELD 
II ========================================== 
uprovisional = xBackwardAverage(yBackwardAverage(u)) 

- (118)*xBackwardDifference(yBackwardAverage(ux)) 
(118)*yBackwardDifference(xBackwardAverage(uy)) 
(dtlh)* xBackwardDifference(yBackwardAverage(upredict*upredict)) 
(dtlh)* yBackwardDifference(xBackwardAverage(upredict*vpredict)) 

+ (O.S*dt*nulhlh)* xBackwardDifference(yBackwardAverage(ux)) 
+ (O.S*dt*nulhlh)* yBackwardDifference(xBackwardAverage(uy)); 

vprovisional = xBackwardAverage(yBackwardAverage(v)) 
- (118)*xBackwardDifference(yBackwardAverage(vx)) 
- (118)*yBackwardDifference(xBackwardAverage(vy)) 
- (dtlh)* xBackwardDifference(yBackwardAverage(upredict*vpredict)) 
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} 

} 

} 

- (dtlh)* yBackwardDifference(xBackwardAverage(vpredict*vpredict)) 
+ (0.5*dt*nulhlh)* xBackwardDifference(yBackwardAverage(vx)) 
+ (0.5*dt*nulhlh)* yBackwardDifference(xBackwardAverage(vy)); 

II SOLVE THE IMPLICIT DIFFUSION EQUATION 
II ===================================== 
uprovisional = InverseDiffusion(uprovisional, -0.5*(dtlh)*(nulh)); 
vprovisional = InverseDiffusion(vprovisional, -0.5*(dtlh)*(nulh)); 

II CALCULATE THE SOURCE TERM FOR THE POISSON EQUATION 
II================================================== 
rho = xForwardDifference(yForwardAverage(uprovisional)) 

+ yForwardDifference(xForwardAverage(vprovisional)); 

II SOLVE THE POISSON EQUATION 
II========================== 
phi= InversePoisson(rho); 

II CALCULATE THE PRESSURE 
II====================== 
DxP = xBackwardDifference(yBackwardAverage(phi))ldt; 
DyP = yBackwardDifference(xBackwardAverage(phi))ldt; 

II UPDATE THE FLOW FIELD 
II ====================== 
u = uprovisional - DxP*dt; 
v = vprovisional - DyP*dt; 

II DURING THE FIRST SIX PASSES, CALCULATES THE PRESSURE 
II GRADIENT ITERATIVELY. AT THE END OF THE PASS, RESET 
II THE FLOW FIELD TO THE INITIAL CONDITIONS. 
II ========================================= 
if (CalcinitialPressureCounter < 6) { 

CalcinitialPressureCounter++; 
u = uinit.Copy(); 
v = vinit.Copy(); 
time = 0; 

} 

II TOGGLE ODDSTEP FLAG 
II =================== 
OddStep = OddStep ? 0 : 1; 
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