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Abstract 

In the context of the field theory limit of superstrings, we consider 

an almost realistic model of supersymmetry breaking by gaugino con

densation which includes, through nonperturbative corrections to the 

Kahler potential, dilaton stabilization at a. value compatible with a 

weak coupling regime. Invariance under modular transformations is 

ensured through a Green-Schwarz term and string threshold correc

tions, which lead to moduli stabilization at the self-dual point. We are 

thus in a position to discuss several issues of physical relevance: grav

itino, dilaton and moduli masses, axion, soft supersymmetry breaking 

parameters and gauge coupling unification. 
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1 Introduction 

One of the thorniest problems encountered by supersymmetry breaking mech

anisms in the context of superstring models is the stabilization of the dilaton 

. field. Indeed, as long as supersymmetry is conserved, the dilaton corresponds 

to a flat direction of the scalar potential. Supersymmetry breaking lifts the 

corresponding degeneracy and should therefore account for a realistic ground 

state. This is a notoriously difficult problem. According to conventional wis

dom: 

• the problem of supersymmetry breaking is fundamentally coupled to 

the problem of dilaton stabilization, as was just explained. 

• only nonperturbative string effects can account for dilaton stabilization; 

in other words only. a precise knowledge of the strongly coupled string 

theory will allow a solution to this problem. 

Once these two premises are accepted, it does not seem a far cry to conclude 

the following: 

• supersymmetry breaking can be understood only if one knows how to 

deal with strongly coupled string theory. 

Even in these days of duality and M-theory, this seems a remote possibility. 

We argue in this article that, even though the former two statements are 

more than plausible, one should not readily jump to the latter conclusion. 

Our discussion will be based on an explicit model constructed in ref. [1] which 

agrees with the first two assertions but escapes the last one. This model in

cludes supersymmetry broken at a realistic scale, a stabilized dilaton, moduli 

fields with couplings respecting modular invariance and a zero cosmological 

constant. We believe that it is sufficiently realistic to allow for a discussion 

of many issues associated with supersymmetry breaking and moduli physics, 

based on actual computations rather than educated guesses. Needless to say, 
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we have no miraculous solution for either dilaton stabilization or the van

ishing of the cosmological constant. Although these are incorporated in the 

model by fixing some parameters (only the second constraint requires fine 

tuning), the model is still predictive enough in many respects to provide a 

counter-example to the grim prospects mentioned above. 

Before coming to the explicit model, let us explain why one may evade 

the conclusion that supersymmetry is broken in a regime where string the

ory is strongly coupled. Dilaton stabilization deals with the behavior of the 

scalar potential at large and small values of the dilaton field. In what follows 

we describe the dilaton as the lowest component R of a linear supermultiplet 

which also includes the antisymmetric tensor field: we believe that this is the 

natural way to proceed,1 at least when one deals with the weakly coupled 

heterotic string. This is the formalism in which the Green-Schwarz mech

anism for anomaly cancellation is most easily implemented. It is also the 

safest one when one starts to include nonperturbative effects -as we will

since the equivalence between the linear and chiral multiplet formulations 

may be blurred by these effects. 

Moreover R is the string coupling: the ~tring perturbation expansion can 

be organized as a series in Rj(81r2
). As we will see shortly, this string coupling 

should not be confused with the coupling of the effective field theory. In 

the limit of R --+ 0, the string is very weakly coupled and supersymmetry 

should be restored: one returns to the fla~ direction and the scalar potential 

vanishes2
. If one is prepared to cope with a supersymmetric minimum at 

vanishing R, the real problem lies in the limit of strong coupling: R --+ oo. It 

has been argued [3] that nonperturbative corrections to the Kahler potential 

indeed stabilize the dilaton for large R. Our model is an explicit illustration 

of this mechanism [4, 5]. 

1 This view is strongly reinforced by the recent results of [2]. 
2 Presumably S-duality does not help in this case. If it has anything to say, it is that 

similarly in the limit of very strong coupling, the potential of the S-dual theory vanishes. 
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This is important to get a stable minimum but it does not imply that this 

minimum should lie in the large C region. Indeed arguments based on the 

unification of couplings tend to indicate that, if there is a physical ground 

state, it lies in a region where at least the effective theory coupling is small. 

Let us take this opportunity to stress that this is one of the few predictio'ns 

that one can infer from the low energy values of gauge couplings. It is often 

stated that the precise value of the gauge coupling unification scale (3 X 1016 

Ge V) is another one. We think that this is a misleading statement since most 

models constructed so far that hold a claim for being realistic include new 

forms of matter which perturb the evolution of the gauge couplings at some 

intermediate threshold. 

In the model that we consider, nonperturbative contributions are included 

in the Kahler potential in order to stabilize the dilaton. They play an impor

tant role in providing a stable ground state. But it is not necessary to choose 

unnatural values of the parameters in order to ensure that this ground state 

lies in the phenomenologically preferred region of weak coupling. 

Let us briefly describe the explicit model that we use3 . Supersymmetry 

is broken through the condensation of gauginos associated with ~ hidden 

sector gauge group Q = IL Ya, subgroup of E8 . We use the linear multiplet 

formulation of gaugino condensation [6, 7] which introduces for each gaugino 

condensate a vector superfield Va. The dilaton field is the lowest component 

of the vector superfield V = Ea Ya: C = VJ 8=19:o· The individual components 

Va le=B=o do not appear in the effective theory component Lagrangian. 

The gauge condensate superfields Ua ~ Tr(WaWa)a, where Wa is the 

gauge chiral superfield for the group Ya, appear as the chiral projections of 

Ya: 
(1) 

These condensates are taken to be static (nonpropagating) for reasons to be 

discussed below. 

3 For more details, we refer the reader to ref. [1]. 

3 



The Lagrangian describing the gravitational sector including the dilaton 

simply reads: 

LKE = j d40 E [-2 + f(V)], k(V) = ln V + g(V), (2) 

where k(V) is the dilaton-dependent part of the Kahler potential and the 

functions f(V), g(V) parameterize nonperturbative string effects. One might 

wonder why one needs to introduce the function f(V) besides the correction 

g(V). It turns out that the two are related by the condition 

vdg(V) = _ vdf(V) 1 dV . dV + ' (3) 

which ensures that the Einstein term has canonical form. 

Once these corrections are included, the effective theory coupling is g2 /2 = 
f/[1 + J(f)] (which is nothing but (s + .s)-1 in the dual chiral formulation). 

Thus if f( f) is large, the string theory may be strongly coupled when the 

effective field theory remains weakly coupled. It turns out in our example 

that this is not the case at the ground state that we consider (where we find 

f( < .e >) to be of order one). 

The complete effective Lagrangian includes moduli fields and allows for 

the presence of matter condensates described by chiral superfields rr~ (taken 

to be nonpropagating). It includes the terms necessary to reproduce the 

modular anomaly [8]-[12] and two counterterms which allow the cancellation 

of this modular anomaly: the Green-Schwarz term [13] and the term in

duced by string threshold corrections [14] 4 . A superpotential for the matter 

condensates which respects the symmetries of the underlying theory is also 

added. 

The Kahler potential for the effective theory is taken to be: 

J{ = k(V) + L9r, gr = -ln(TI + fi), 
I 

(4) 

4 However we do not include the moduli-dependent contribution from N = 2 sectors 

that is not related to the Casimir operators of the gauge group [15]. 
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and the complete effective Lagrangian reads: 

Ceff = j d4BE( -2+f(V)+ ~va{b:ln(UaUa/e9V) 

+ ~b~ln (rr~fi~)- ~ 8~2 ln [(r1 + t 1
) lry2

(T
1 )1 2

]}) 

+ ( U d48 ! eKf'W (II", T') + h.c.) (5) 

where II~ = eLI q'}g
1 
12 IIa is a modular invariant combination ( q[ is the mod

ular weight of the matter condensate rra). The coefficients b~ and b~ are 

found by chiral and conformal anomaly matching. The one-loop beta func

tion coefficient is simply ba = b~ +Lab~. One can extract the component 

Lagrangian from (5) using standard procedures. Its bosonic terms are given 

in ref. [1] and we will not write them explicitly here. 

Since the gaugino condensates Ua are nonpropagating in this model, the 

equations of motion fix their scalar components Ua = Paeiwa in terms of other 

fields. One might wonder whether some important physics is missed by doing 

so. We argue that this is the only correct procedure. The dynamical case has 

been studied in detail in ref. [16] using the simpler example of an E8 gauge 

condensate. One may check for this example that both the condensate value 

p and its phase ware fields of mass larger than the condensate scale. In order 

to be consistent, one should therefore integrate over them, in which case one 

recovers the theory with a static E8 condensate [4] 5
. We believe that this is 

general and that the only consistent effective theory below the condensation 

scale is the static theory. Hence the only dilaton-like scalar and axion-like 

pseudoscalar in this effective theory are the model independent dilaton and 

axion of the original string theory (barring some small mixing with the heavy 

static condensates and some high order mixing with the moduli). 

5If we take the example of QCD, the same should be correct for the matter condensates, 

at least in the absence of Goldstone bosons associated with broken global chiral symmetry. 
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One finds: 

where b = CE8 /(87r2
), CE8 is the quadratic Casimir operator in the adjoint 

of E8 , and Ccx are couplings in the superpotential, presumably of order one. 

This is an interesting formula in many respects. One recovers in particular 

a behavior in e-2/bag
2 

once one identifies correctly the squared gauge coupling 

of the effective theory as given by 21!/(1 + f(l!)). 
This behavior reveals the limitations of the dual formulation using the 

chiral supermultiplet S to describe the string dilaton. In such a formulation, 

the gaugino condensate is described by a chiral superfield H 3 which is found 

to depend on the dilaton as e-S/ba. This seems to be in agreement with the 

preceding behavior since a duality transformation yields at lowest order: 

1+f(L)=S+S 
L 

and it is often attributed to the "power of holomorphy". 

(7) 

However powerful, holomorphy should be taken with a grain of salt in 

this instance because higher order corrections modify the relation (7). In 

particular, the Green-Schwarz term contributes to the right-hand side in a 

nonholomorphic way. This is the standard observation that, in the chiral 

formulation, the expansion parameter which is given in terms of t~e dilaton 

field as 1 /ReS needs to be redefined at each order of perturbation theory. 

One may wonder how the chiral superfield H3 dependence in S may un

dergo these nonholomorphic redefinitions. The point is that it is incorrect to 

take H 3 as an unconstrained superfield because it describes Tr(WaWcx) in 

the effective theory, and this field is subject to the usual Bianchi identities 

of the gauge sector. The correct treatment is through the use of a 3-form 

superiiJ.ultiplet [17] and is naturally implemented in the linear multiplet for

mulation [7]. 

6 



The scalar potential reads: 

16£'V = ( 1 +£~) ~~ {1 +b.£) u.l' -3£
2 IP·u·l' +4£' (1 + b£) ~~~;/I' 

(8) 
where I '"' Ua ( b - ba) ( 4 07] I I) 

F = ~ 4(1 + bf)2 1 + rt(ti) ot (t )Ret (9) 

is the TI auxiliary field. 

The minimum with respect to the modulus ti is obtained at the self-dual 

point ti = 1 where FI = 0. This has some important phenomenological 

consequences as we will see below. 

As for the remaining terms, the potential appears to be dominated by 

the condensate with the largest one-loop ,8-function coefficient, so the general 

case is qualitatively very similar to the single condensate case6 , and it appears 

that positivity of the potential can always be imposed. One thus does not 

need to appeal to another source of supersymmetry breaking to cancel the 

cosmological constant. 

The gravitino mass is found to be 

' 1 1 '"' 
m{; = -(!M!) = -(I L_., bauai) 

3 4 a 
(10) 

where M is the supergravity auxiliary field. The mass is thus also governed 

by the vev of the condensate with the largest beta-fU:nction coefficient. The 

scale of supersymmetry breaking is therefore found to be naturally low as long 

as the gauge group is smaller than E8 • There is in fact a further reduction 

·due to the dependence of the condensate (6)_ on the moduli: at the self-dual 

point the reduction factor is approximately e--rr(b-ba)/2ba. 

Of course, what plays an important role in stabilizing the dilaton as well 

as fine-tuning the cosmological constant to zero is the exact form of the 

6 This is quite different from racetrack models [18] where one has to play one condensate 

against another. 
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functions J(f) and g(f). They are constrained by (3) and subject to the 

weak coupling boundary conditions: 

J(f = 0) = 0, g(f = 0) = 0. (11) 

Thus g(f) is completely determined once we have chosen J(f). Also, the 

requirement of boundedness of the potential (8) in the strong coupling limit 

g1ves: 

(12) 

Two possible choices for the function f are [3) f = Ae-Bf£ and [19) f = 
Ap( -Je)-Pe-Bfvf. Since all the constraints on the functions f and g are 

invariant under a rescaling of .e, the coefficient B can be fixed to obtain the 

right value of < .e > as measured by the gauge coupling at unification. And 

the parameter A (or Ap) can be used to fine-tune the cosmological constant 

to zero. 

One may look more closely at the second case which is a genuine stringy 

nonperturbative effect 7 • Taking for illustrative purposes f = [A0+A1£-112] e-m-
112

, 

where the condition (12) requires A0 to be larger than 2, one finds a realistic 

minimum for values of the parameters of order one: B < .e >-112
,..__ 1.1 to 

1.3, A0 "' 2. 7 to 5.3 and A1 "' -3.1 to -4.6. 

One particularly interesting aspect of the model is axion physics. Pseu

doscalar fields are the phases Wa of the condensates and the so-called model

independent axion which is dual to the fundamental antisymmetric tensor 

field. The latter couples in a universal way to the paJ.Lv FaJ.Lv term of each 

gauge group factor. If again we look at the dynamical model with one E8 

condensate [16) we find that out of the two possible pseudoscalars, the con

densate phase is very heavy whereas the model-independent axion remains 

massless. This is obviously the supersymmetric counterpart of what happens 

7 We do not consider here the case where the coefficient B in the exponent is moduli

dependent [20]. If such nonperturbative stringy contributions turn out not to be modular 

invariant, this would perturb the moduli ground state away from the self-dual point. 
I 
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with the scalars. Again, it justifies our approach which treats the condensate 

degrees of freedom as static in the effective theory. If we allow for more than 

one condensate, the model-independent axion acquires a very small mass 

(typically exponentially suppressed relative to the gravitino mass by a factor 

·of order J p2/ p1 in the two-condensate case [1]). Thus we are left with a very 

light pseudoscalar which has the right couplings to be the QCD axion. This 

was actually noted by Banks and Dine [3] who used an argument based on 

the breaking of a continuous R-symmetry. Our model provides an explicit 

realization of this phenomenon. Because of corrections to its gauge kinetic 

term, the model-independent axion must be normalized properly, which gives 

a reduction factor for the axion decay constant fa equal to tJ2[1 + fdg / d.e]. 

in reduced Planck mass units (mp1 = 1). This factor is approximately equal 

to bat'2 ..j6 at the vacuum for the single gauge condensate case studied in [1]. 

This gives a suppression factor of about 1/50 if the gravitino mass is found 

around 103 GeV. Higher-dimension operators might give extra contributions 

to the mass of this axion field [3]. 

One may easily extract from the scalar potential the masses of the dilaton 

and of the moduli, which are in particular relevant for cosmology. One finds 

for the moduli a mass 
m ::::::: (7rP+ (b- b+)). 

t . 6 _(1 + bf) 
(13) 

where P+ is the hidden sector condensate with the largest ,8-function coeffi

cient b+, and for the dilaton 

(14) 

In order to generate a hierarchy of order m 0 "' I0-15mp1 "' 103 Ge V we 

require [1] bfb+::::::: 10 in which case mt::::::: 20m(;, md rv 103m(;, which may be 

sufficient to solve the so-called cosmological moduli problem. 

It is also straightforward to determine the soft supersymmetry breaking 
. l 

terms, that are generated at the condensation scale J-lcond = (p.t), _in our 
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model [1]. The gaugino masses are 

= _ (gl(Jlcond) (J!f}g + 1) "'_ (1 + b /!)),..., -~g;(Jlcond)b! (- ) 
ffi>.b 8/!2 f)f! ";;-- Ua a "' 8 1 + b+ (/!) U+ · 

(15) 
The soft terms in the scalar potential are sensitive to the- as yet unknown

details of matter-dependent contributions to string threshold corrections and 

to the Green-Schwarz term. We neglect the former, 8 and write the Green

Schwarz term as 

Vas= b L9I + LPAeL19191 I<I>AI 2 + O(I<I>AI4), (16) 
I A 

where the <I>A are gauge nonsinglet chiral superfields, the q~ are their modular 

weights, and the full Kahler potential reads 

I<= k(V) + Ll + 2:eLiqfgii<I>AI2 + O(I<I>AI4). (17) 
I A 

With these assumptions the scalar masses and cubic "A-terms" are given, 

respectively, by 

where </> = <I>o=B=O and W(<I>) is the cubic superpotential for chiral matter. 

The scalar squared masses are positive and independent of their modular 

weights by virtue of the fact that < pi > vanishes in the vacuum. They 

are universal - and unwanted flavor-changing neutral currents are thereby 

8 If the threshold corrections are determined by a holomorphic function, they cannot 

contribute to scalar masses. 
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suppressed - if their couplings to the Green-Schwarz term are universal, in 

which case the A-terms reduce to 

f"V 3 K/2 _ PA (1 + 2b+.e) - b~f _ K/2 VA(<P)f"V-e W(<P)u+( f)( b f) +h.c.=Ae W(<P)+h.c .. (19) 
4 1 + PA 1 + + 

If the Green~Schwarz term is independent of the matter fields <f>A, PA = 0 

and we have mA =me, A~ 2m>;. A plausible alternative is that the Green

Schwarz term depends only on the radii R1 of the three compact tori that 

determine the untwisted sector part of the Kahler potential ( 1 7): 

J{ = k(V)- Lln(2R~) + O(I<I>~wistedl 2 ), 
I 

where 2R7 = T 1 + '1'1 - I:A I<I>11 2 in string units. In this case PA = b for the 

untwisted chiral multiplets <I>j and the untwisted scalars. have masses com

parable to the moduli masses: mA = mt/2 ~ A/3. 9 Finally, we note that if 

b+ ~ b/10 ~ 1/30, gaugino masses are suppressed relative to the gravitino 

mass at the condensation scale f.Lcond "' 10-4 mpz: m>; "' mscalar/40. If there 

is a sector with PA =band a Yukawa coupling of order one involving SU(3) 
(anti-) triplets (e.g. DDN, where N is a standard model singlet), its two

loop contribution to gaugino masses [22] can be more important than the 

standard one-loop contribution, generating a physical mass for gluinos that 

is well within experimental bounds for me "' TeV. Such a coupling could 

also generate a vev for N, thus breaking possible additional U(1)'s at a scale 

"' 10 TeV. The phenomenologically required 11-term of the MSSM may also 

be generated by .the vev of a Standard Model gauge singlet or by one of the 

other mechanisms that have been proposed in the literature [23]. Clearly, 

a better understanding of the <!>-dependence of the string scale gauge cou

pling functions is required to make precise predictions for soft supersymme

try breaking. Neverthless our model suggests soft supersymmetry breaking 

patterns that may differ significantly from those generally assumed in the 

9Scenarios in which the sparticles of the first two generations have masses as high as 

20 TeV have in fact been proposed[21]. 
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context of the MSSM. Phenomenological constraints such as current limits 

on sparticle masses, gauge coupling unification and a charge and color in

variant vacuum can be used to restrict the allowed values of the PA as well 

as the low energy spectrum of the string effective field theory. 

String non-perturbative corrections necessary to stabilize the dilaton could 

make significant corrections to the unification of gauge couplings. The func

tions f(£) and g(f.) introduced above and the threshold corrections whose 

form is dictated by T-duality invariance contribute as follows to the value of 

couplings at unification: 

with 

-2 
9s ----;;F' 

(20) 

2 \ 2 2 
/ls = A9s ffip[l (21) 

(22) 

Let us note however that this parameter is worth 1/(2e)"" .18 in the pertur

bative case and e-1.65 
f"V .19 in the one condensate model. 

We stress that the dependence on the radii moduli T 1 does not allow an in

terpretation of the unification scale as the inverse radius of compactification. 

While the result (20) has been derived only for orbifold compactifications, its 

large T 1 limit is consistent with the behavior found in the large T 1 limit of 

Calabi-Yau compactification. (Note that our moduli are fixed at the self-dual 

point, therefore far from this limit.) 

To conclude, we would like to stress that the model presented above is 

certainly not final and some of the results obtained, especially on the low en

ergy sector of the theory, may be modified. Possible sources of modification 

are the presence of an anomalous U(1) symmetry [24] or a constant term in 

the superpotential that breaks the modular in variance [25, 26]. Our model 

should be understood as an existence proof of the fact that, even when non

perturbative effects play an important role -especially in the stabilisation 
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of the dilaton- one may compute in a reliable way quantities of rel~vance 

in the low energy world. This opens the way to a discussion of a certain 

number of issues not addressed here, in particular the cosmology of the dila

ton, the axion and the moduli. Moreover, we have shown on our example 

that predictions may be somewhat different from what appears to be the 

standard lore. Finally, if one assumes that the strongly interacting string is 

described along the lines of M-theory [27], one may obtain information about 

non-perturbative contributions [2()] but we expect that the general picture 

for low energy physics will not be modified drastically. 
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