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LECTURES ON PERTURBATIVE STRING THEORIES1 

HIROSI OOGURI and ZHENG YIN 

Department of Physics, University of California at Berkeley 

366 LeConte Hall, Berkeley, CA 94720-7300, U.S.A. 

and 

Theoretical Physics Group, Mail Stop SOA-5101 

Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley. CA 94720, 

U.S.A. 

These lecture notes on String Theory constitute an introductory course designed to 

acquaint the students with some basic facts of perturbative string theories. They 

are intended as preparation for the more advanced courses on non-perturbative as

pects of string theories in the school. The course consists of five lectures: 1. Bosonic 

String, 2. Toroidal Compactifications, 3. Superstrings, 4. Heterotic Strings, and 

5. Orbifold Compactifications. 
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1 Lecture One: Bosonic String 

It had been said that there are five different string theories - (1) open and 

closed superstrings (Type I), (2) non-chiral closed superstring (Type IIA), (3) 

chiral closed superstring (Type liB), (4) heterotic str:ing with E8 x E8 gauge 

symmetry, and (5) heterotic string with Spin(32)/Z2 gauge symmetry. They 

are all formulated perturbatively as sums over two-dimensional surfaces. It had 

been known for a long time (and as we will learn in this course) that (2) can 

be related to (3), and (4) to (5), if we compacitify part ofthe target spacetime 

on 5 1 . These relations were discovered earlier since they hold in each order in 

the perturbative expansion of the theories. During the last two years, it has 

become increasingly clear that in fact all these five string theories are related 

to each other under various duality transformations. It seems likely that there 

is something more fundamental, which we may call the theory, and the five 

string theories describe various asymptotic regions of it. 

One of the purposes of this year's TASI summer school is to guide students 

through this recent exciting development. It is hoped that students attending 

the school will someday reveal what the theory is about. First, however, the 

students have to understand its five known asymptotic regions. This is the 

purpose of this course. We will construct and analyze four perturbative string 

theories, (2), (3), (4) and (5). The type I theory containing open superstring 

will not be discussed here since it will be covered in Polchinski's lecture in this 

school. Due to the limited time, we cannot discuss computations of higher-loop 

string amplitudes at all. This important topic has been covered in previous 
TASI lectures, by Vafa [l) and by D'Hoker [21. Due to the long history of 

the string theory, we were unable to make a complete bibliography of original 

papers. We apologize to numerous contributors to the subject for the omission. 

For works before 1987, we refer to the bibliography of[3l. 

1.1 Point Particle 

Let us begin this lecture on string theory by recalling the relativistic action for 

a point particle moving in D-dimensional spacetime. 

5=-m Jd(J'~, 
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where 
. f)XJJ. 

XJJ. =-a;;-, J-1 = 0, ... , D- 1. 

We are using the Minkowski metric TJJJ.v with signature ( -1, + 1, ... , + 1). It 

is an action defined over the worldline the particle traverses. Its canonical 

momenta are given by 

f)L XJl. 
PJJ. = f)XJJ. = m V-}(2" (2) 

However, they are not all independent but satisfy a constraint equation which 

is simply Einstein's relation between energy, momentum and mass. 

(3) 

The constraint arises since (1) is invariant under worldline reparametrization: 

u -+ u' = f(u). This is a gauge symmetry that we naturally expect since 

changing the parametrization scheme of the worldline should have no physical 

effect at all. It indicates the X's and P's are redundant as coordinates of the 

physical phase space. We can eliminate one of the X's by a choice of gauge. 

For example, we can set X 0 = u so the worldline time u coincides with the 

physical time X 0 . Constraint (3) then tells us how to eliminate one of the 

P's. Upon quantization the constraint (3) then becomes the requirement that 

physical states and observables should be gauge invariant. 

1.2 Nambu-Goto Action 

We now formulate string theory as an analogue of (1) on a two-dimensional 

worldsheet. The fields X J1. on the worldsheet :E define an embedding of :E in 

the D-dimensional spacetime. The pull-back of the Minkowski metric TJ to the 

worldsheet is called an induced metric: 

f)XJJ.f)Xv 
9ab = TJJJ.V QUa QU'b ; a, b = 0, 1; g = det 9ab• (4) 

We then define the Nambu-Goto string action as proportional to the area of 

the worldsheet measured by the induced metric: 

s = --=.!.._ Ja2 
u A. 

21ra' 
(5) 
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Because there are only bosonic degrees of freedom involved, we call it bosonic 

string. It can be shown that the dimensionful constant T = 1/(27ra') gives the 

tension of the string. 

The coordinate u0 is the "time" on the string worldsheet, u 1 is the "space" 

coordinate along the closed string. In these lectures we only consider orientable 

closed strings, which means that the worldsheet can be assigned a definite 

orientation. By a reparametrization, we can let u 1 range from 0 to 21r. Thus 

the Nambu-Goto action describes the motion of a string in spacetime, and the 

worldsheet is the trajectory it sweeps out (fig. 1). Unlike a particle, a string can 

have internal oscillations in addition to its center of mass motion. They include 

oscillation both transverse and longitudinal to the string worldsheet. As we 

will now demonstrate, however, only the transverse oscillations are physical. 

Figure 1. The Worldsheet of A String 

The canonical momentum densities of the N ambu-Goto action (5) are given 

by 

Since (5) has reparametrization in variance on the worldsheet: ( u 0 , u1) -+ 
(u0', u1'), one naturally expects an analog of the constraint (3}. Indeed one 

finds 

1 ;----;:-A 0 a A 1 ;----;:-~0 0 -
2 

,y-gg 9al = -
2 

,y-gu1 = , 
1ra 1ra 

p2 1 )2 A ·00 ( 1 2 ( 1 )2(8 )2 -(-- gg =- -) gu =- -- 1X , 
21ra1 21ra' 21ra' 
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or 

(7) 

known as the Virasoro constraints. 

By using the reparametrization invariance, we can bring the induced metric 

on any coordinate patch of the worldsheet to be a multiple of the standard 

Lorentzian metric: 

( -1 0) §ab = A')'ab, ("'Yab) = O 
1 

· (8) 

Here ). may be a function of ua. This is called the conformal gauge. Note 

that this choice of gauge does not break spacetime Lorentz invariance. In this 

gauge, the momentum densities PJJ are given by 

1 . 
PJ.l=-

2 
,xJJ, X=oox,· 

7ra 

and the Virasoro constraints are 

8oX · 81X 

(8oX) 2 + (81X) 2 

9oi = 0, 

§oo + §u = 0. 

(9) 

In conformal gauge, there is still a residual gauge symmetry. It is called 

conformal symmetry because it only rescales the induced metric. To exhibit 

it, define the light-cone coordinates u:l: :: u 0 ± u 1 . It is not difficult to show 

that a coordinate transformation preserving the conformal gauge condition (8) 

must be of the form 

(10) 

In the light-cone coordinates, 

Since 
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(8) is indeed preserved as 

The worldsheet of a freely propagating string clearly looks like a tube. 

Choosing Ln and Ln, the Fourier components off and h respectively, as the 

generators of conformal transformation on a cylinder, it is not difficult to find 

their commutators: 

[Ln, Lm] (n- m)Ln+m, 

[Ln, Lm] = (n- m)Ln+m, 

[Ln, Lm] = 0. (11) 

We can completely fix this residual gauge symmetry, at the expense of 

spacetime Lorentz invariance. In the conformal gauge, the equation of motion 
for X~'(o-) is 

(85- af)x" = o, {12) 

and its general solution is 

Define x+ =: X 0 + X 1 , x- =: X 0 - X 1. Taking advantage of this residual 

gauge symmetry, we can always choose local coordinates so that: 

(13) 

where p+ is a constant2 which, by (6), is related to the momentum density as 

p+ = p+ /2rr. Substituting this into (7), we obtain 

(14) 

This determines x- = X 0 - X 1 up to a constant of integration x-. Thus the 

gauge invariant information of a propagating string is given by x-, p+, and 

2 We keep p+ rather than absorbing it into u 0 so as to preserve the canonical Poisson 

bracket. In fact, since p+ is a physical observable, we should not be able to gauge it away. 
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X; ( o-0 , o-1 ), ( i = 2, ... , D -1). As in the case of point particles, the worldsheet 

reparametrization invariance removes all degrees of freedom along the light

cone directions except for their zero modes. Intuitively, one can understand 

this as saying that oscillations tangential to the string can be absorbed by a 

worldsheet reparametrization (fig. 2). 

0 s ) 2 ) 
a. No Oscillation b. Longitudinal Oscillation c. Transversal Oscillation 

Figure 2. String Excitations 

On length scales much larger than the string scale#, which is the typical 

size of string, low lying excitations of string look like point particles and should 

form unitary representations of the Poincare group. They are classified by the 

little group of their momenta in a certain Lorentz frame. As we will see, 

the first excitation level of the string makes a rank 2 tensor representation of 

SO(D- 2), including the trace, traceless symmetric and antisymmetric parts. 

The little groups for massless and massive particles in (1, D-1) spacetime are 

SO(D- 2) and SO(D -1) respectively. Since the rank 2 tensor of SO(D- 2) 

alone cannot be made into a representation of SO(D - 1), these excitations 

must correspond to massless particles. According to Weinberg's theorem [41, 

a massless rank 2 symmetric traceless tensor that is observed at low energy 

must describe graviton and implies general covariance. Hence a theory of closed 

strings must be, among other things, a theory of gravity. 

1.3 First Quantization of String 

For point particles, there are two roads from classical physics to quantum 

physics. The first quantization quantizes,the worldline action and yields quan

tum mechanics (i.e. one-dimensional QFT) of the particles. The second quan

tization quantizes their spacetime action and yields a (1, D- I)-dimensional 

QFT. In string theory, the worldsheet is already two-dimensional, so we have 
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a {1, I)-dimensional QFT theory already in the first quantization. 

First, let us recall briefly the results for point particles. Quantization re

places P, by -i a~", so the Einstein constraint on physical states {3) becomes 

the Klein-Gordon equation on wavefunctions. In a similar vein, the quantiza

tion of supersymmetric (spinning) particle would give rise to the Dirac equation 

as the constraint equation, as we will discuss in lecture three. 

Now for strings, let us choose the conformal gauge {8). In this gauge, the 

equation of motion {12) and the expression for canonical momentum (9) can 

be obtained from the action 

S = 4:a' j d2
u ...;=y-yabaaX"'obX, 

= __!_, jd2uo+X"'a_x,. 
1!"(¥ 

{15) 

By varying the worldsheet metric away from "'tab, we can find its (worldsheet) 

energy-momentum tensor Tab "" ,65 . Since the action is conformally in-
Q'"Yab 

variant, the trace of the classical energy-momentum tensor T vanishes. The 

remaining two components are 

1 2 T __ = -(o_X) . 
a' 

{16) 

The reparametrization invariance of the Nambu-Goto action implies the first 

class constraints T++ = 0 and T __ = 0. In fact these are the Virasoro con

straints {7) that we have seen before. 

Canonical quantization give~ 

{17) 

The X's must be periodic. in u 1 with period 211". After Fourier decomposition, 

we separate and recover the center of mass operators and the mode operators 

corresponding to excitations: 

3 In these lectures, ~ denotes ..;=1. 
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(18) 

So the Hilbert space is the tensor product of 2 x D infinite towers of harmonic 

oscillators, each labeled by positive integers (coming from O'n and iin) and 

that of the D-dimensional quantum mechanics (coming from the zero modes 

X" and P"): 

n>O n>O 

0 {(a~n);IO)Ii=O ... oo} 0 {(a~n);IO)Ii=O ... oo}0<J?(X"). 
05.JJ<D 05.JJ<D 

The operator a~n (a~), with n > 0, creates (destroys) a quantum of left 

moving oscillation with angular frequency n along the X" direction in the 

spacetime. a~n (ii~) does the same for the right movers. This decomposi

tion of degrees of freedom into essentially decoupled left and right movers is 
what makes many two-dimensional field theories so much more manageable 

compared to theories in higher dimensions. 

One should note that because of the indefinite signature of the spacetime 

metric TJ in (18), the states created by the oscillators along the time direction 

may have negative norms. Such states are called ghosts, not to be confused 

with the Faddeev-Popov ghosts, which also enter the scene later. They cannot 

be present in the physical spectrum. As we will see presently, the quantum 

mechanical implementation of the constraints (7) eliminates them. 

It also is convenient to Fourier transform the energy-momentum tensor T: 

T - T - 1 (j;} X)2- ""L -•nO'+. = ++ - I V+ = ~ ne ' 
0' 

n 
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These Ln and Ln are well defined except for n = 0, for which there is a normal 
ordering ambiguity. If we define 

La 

= (19) 

the constraint for then= 0 part would be La- a= 0, La- a= 0 where a and 

a are constants reflecting the normal ordering ambiguity. The combination 

(La + La) is the Hamiltonian of the system generating a translation in ua 
direction and (La -La) is the worldsheet momentum. Since 

the n-th oscillator has energy n, equal to its angular frequency. The same 

holds for the right movers. 

We can try imposing 

Ln - aOn,a = 0, Ln - iion,a = 0. (20) 

for all n, as constraints on- physics states. However we run into problems 

immediately. It can be checked that the L 's form a representation of the 

Virasoro algebra, which is the conformal algebra (11) with a nontrivial central 

extension: 

[Ln, Lm] 

[Ln, Lm] 

[Ln, Lm] 

= 

(n- m)Ln+m + 
1
c
2 

(n3
- n)On+m,a, 

(n- m)Ln+m + t
2 

(n3
- n)On+m,a, 

0. (21) 

In our case, the central charge c is equal to D, the spacetime dimension. Im

posing Ln Jphys) = 0 for all n E Z would be inconsistent with the commutation 

relation if D # 0. We may instead adopt the Gupta-Bleuler prescription and 

require that physical states be annihilated by half of Ln 's 

(Ln- aOn,o)Jphys) = 0, n 2: 0. 

11 
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We also define an equivalence relation among them: 

lphys) "" lphys) + L-n I*), n > 0. (23) 

We call a physical state spurious if it is a linear combination of L_n I*) for 

some state 1*). The true physical degrees of freedom are thus the equivalence 

classes of (23). Condition (22) implies that the matrix elements of Ln between 

physical states vanish for all n. This is consistent with (23), which says that 

any Ln has no physical effect on a physical state. It is the same story for the 

right movers. 

As alluded earlier, these 2 x oo set of constraints and equivalence conditions 

effectively remove 2 directions of oscillators of every mode from the physical 

spectrum if the theory is consistent. In the next section we demonstrate this 

explicitly for the first few excited states. Since Ln and Ln have exactly the 

same property, in the following discussion we will concentrate on Ln, bearing 

in mind that the same results obtain for Ln. In particular, we will determine 

a by consistency requirement. Since we can repeat the same story for a, they 

must be the same, implying 

(Lo - Lo) lphys) = 0. (24) 

This is known as the level matching condition. 

1.4 Critical Dimensions 

Another way to quantize the string is to start with the light-cone action and 

perform canonical quantization. In this gauge, the constraint equations (3) 

are explicitly solved and only the (D - 2) oscillatory excitations transverse 

to the string worldsheet remain. Whether we choose the light-cone gauge or 

the conformal gauge is a matter of convention and their results should agree 

unless there is an anomaly obstructing conformal invariance from becoming 

a full fledged quantum symmetry. As conformal invariance is the remnant of 

gauge symmetry on the worldsheet, an anomaly for it would spell disaster. 

Let us look at the spectrum in the conformal gauge, taking into account 

the physical state condition (22) and the string gauge covariance (23). As a 

12 



measure of oscillator excitation, define 

(25) 

and similarly N for the right moving sector. By (19) and the Einstein relation 

m2 = -k2 , they also determine the mass of the states: 

4 
m2 = -(N- a). 

o:' 
(26) 

Therefore the constraint Lo = a is the mass shell condition. The level matching 

condition (24) implies that N = N. As mentioned above, it is sufficient to 

concentrate on the left movers. 

Ground State - N = 0. There is no oscillator excitation and the states 

are simply lk) where 

The only nontrivial condition from (22) is the mass shell condition 

which implies 

o:' 
(Lo- a)ik) = ( 4k2

- a)lk) = 0, 
' 

2 4 
m =--a. 

o:' 

If a > 0, then the ground state would correspond to a tachyon. As it turns out, 

this is indeed the case for both bosonic string and superstring theory. In the, 

latter, we will be able to consistently truncate the spectrum of the superstring 

so that the ground state tachyon is no longer present, but this seems impossible 

for the bosonic string theory. As we know from field theory, the presence of a 

tachyon indicates that we are perturbing around a local maximum of potential 

energy- we are at a wrong vacuum. However, to this date it is not known 

whether one can find an alternative vacuum for the the bosonic string theory 

so that it is free of tachyons. 

13 



First excited level- N = 1. The states are e~(k)a~ 1 lk). It is simple to 

deduce from (22) the following constraints: 

4 
(Lo-a) lphys) = 0 -+ k2 = (a- 1)-, 

a' 
Lt lphys) = 0 -+ k · e = 0. 

The equivalence relation (23) states that 

(27) 

which has precisely the form of a gauge transformation in QED, However, this 

does not yields a spurious physical state unless k2 = 0. This is familiar from 

QED: if states on this level are massless (i.e. a = 1), then physically there 

are only ( D - 2) independent polarizations; otherwise there are ( D- 1) polar

izations. Since the light-cone gauge quantization gives (D- 2) polarizations, 

the anomaly-free requirement picks a = 1. Incidentally, this result can also be 

obtained if we determine the normal ordering prescription of La in light-cone 

gauge by ihe (-function regularization. 

Also by analogy to QED, k · e = 0 can be interpreted as the Lorentz 

gauge condition. Combined with k 2 = 0, the massless Klein-Gordon equation, 

we obtain the Maxwell equation 8" F"v = 0. These statements are precise 
in open string theory. In closed string, when we combine them with the their 

counterparts for the right movers, we obtain the equations of motion and gauge 

transformations appropriate for graviton, antisymmetric tensor, and dilaton 

fields. 

2nd excited level - N = 2. The states take the form (e"va~ 1 a~ 1 + 
e"a~ 2] lk). The mass shell condition reads 

2' 4 
( Lo - 1) = 0 -+ k = --, 

a' 

where we have used the result a = 1. This means states at this level are 

massive. The other two nontrivial physical state conditions from L 2 and L1 

impose (D + 1) conditions on e"v and ew They leave us with 

1 1 
2D(D + 1) + D- (D + 1) = "2(D2 +D)- 1 

14 



degrees of freedom in the polarization. On the other hand, light-cone quanti
zation gives 

1 1 2 
-(D- 1)(D- 2) + D- 2 = -(D -D)- 1 
2 2 

degrees of freedom. The deficit of D must be accounted for in the equivalence 

relation (23). The spurious states at level two are spanned by 4 

and 

for some constants X~' and 'Y· Requiring the first type of spurious states to be 

physical leads to the condition 

x·k = o. 

Therefore the spurious state of the first type accounts for ( D - 1) degrees of 

freedom. Since we need to have D spurious states, the second type of state 

must also satisfy the physical state condition. It is left to students to verify 

that the £1 constraint requires 1 to be ~ and the £ 2 constraint fixes D to be 

26. Thus we have arrived at the famous conclusion that bosonic string theory 
propagates in 26 dimensions. 

We can continue this program to states of higher levels. The result is the 

same - only for. a = 1 and D = 26 do we have an agreement between light

cone and conformal gauge. If one insists on _considering D ::j; 26 nonetheless, 

then it has been found that spacetime Lorentz invariance is completely lost 

in the light-cone gauge unless D = 26 (ref. 204 in [31, Vol 1). On the side 

of the conformal gauge, although one can show there is no ghost in the tree 

level spectrum if D :5 26 (refs. 65 and 202 of[31, Vol 1), they do show up as 

unphysical poles in one-loop string amplitudes unless D = 26. Below we will 

mention very briefly the correct formulation of such non-critical string theory 

found by Polyakov (ref. 366 in [31, Vol 1). 

4 The particular choice of basis given here is purely a matter of convenience. 
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1.5 Massless Spectrum 

Now let us examine the spectrum of massless states in 26-dimensional bosonic 

string theory. According to (26), the masses of the string states are integral 

multiple of 2/#. From last section, we see the massless particles arise from 

the first excited level of the string. Combining left and right moving sectors 

of the Pock space in accordance with the level matching condition (24), they 

have the form 

e;j 0'~15~1 lk)) (k2 = 0; i,j = 1, ... 24) (28) 

in the light-cone gauge. We may decompose e;j into irreducible representations 

of 50(24), each of which would correspond to a certain type of particle: 

1 1 . 1 1 
[-(e· · + e ··)- -6· ·Tr e)+ [-(e· · - e ··)] + [-6· ·Tr e) 2 •J J• 12 •J 2 •J J• 24 •J 

[h;i] + [Bij} + [6;i~J. 

The traceless symmetric, antisymmetric, and trace parts of e;j are denoted 

as h;j, B;j and ~ respectively. B;j is known as the antisymmetric tensor. ~ 

is called dilaton. Being a massless scalar, ~ may develop a vacuum expecta

tion value (VEV). We will later see that (~) = ~o shifts the string coupling 
constant K to K.ell>o. h;j is identified with the graviton because it observes gen

eral covariance. To see this we should choose the conformal gauge, which is 

26-dimensional Lorentz covariant. Now we use Greek indices p, v, ... , rang

ing from 0 to 25, to label the tangent space. We mentioned earlier that the 

equivalence relations from L_ 1 , L_ 1 have the spacetime interpretation of gauge 

transformations. It is not difficult to show that these gauge transformations 

act on hJJ., and BJJ., as 

h~-~., -+ hJJ., +a~-~~., + a.,~JJ, 
BJJ., -+ s~-~., + aJJ~.,- a.,~~-~. 

The first is simply diffeomorphisms acting on the spacetime metric in the 

Minkowski background. The second can be written in the language of dif

ferential forms as B -+ B + dA. This suggests that the physical observable 

ass?ciated with the 2-form B should be its 3-form field strength H =dB. 

16 



1.6 Polyakov Action 

There is another interpretation of the requirement D = 26, due to Polyakov. 

Consider the action 

(29) 

where both, the metric 9ab as well as X~-', are treated as dynamical variables. 

The worldsheet metric 9ab has no local propagating degrees of freedom. Clas
sically, the equation for g requires it to be proportional to the induced metric 

(4). Substitute this back to (29) and we obtain the Nambu-Goto action (5), 

establishing their classical equivalence. 

In fact the worldsheet metric consists almost purely of gauge degrees of 

freedom. First the worldsheet metric has three independent degrees offreedom, 

two of which can be gauged away using worldsheet diffeomorphism, bringing 

the metric into the standard form 

( 
->. 0 ) 

(9ab) = O ~ , (30) 

in what is known as conformal coordinates. Furthermore, the Polyakov action 

(29) has the Weyl rescaling symmetry which allows us to scale ). to, say, 1. In 

this gauge, the equation of motion and canonical momenta can be obtained 

from the same conformal gauge action as for the Nambu-Goto action (15), so 

the same quantization procedure can be carried over. 

There are two complications to this story. First, in general (30) can only be 

enforced in each coordinate patch. Between patches there can be global degrees 

of freedom left. Roughly speaking they describe the shape of the worldsheet 

and are known as complex moduli, for reasons to be discussed in Greene's 

lecture at this school. A simple example appears in the next section. Second, 

quantum mechanically the Weyl rescaling symmetry may became anomalous, 

and the algebra of conformal transformation (11) is not realized on the Hilbert 

space. It is deformed to be the Virasoro algebra with the central extension. 

The central charge c measures the violation of conformal invariance. As we saw, 

the central charge for X~-' is D, equal to the dimension of the spacetime. The 

Faddeev-Popov ghosts, which provide the correct normalization for the path 
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integral respecting the reparametrization invariance, carry central charge -26. 

Since the conformal anomaly is additive, only when D = 26 does the anomaly 

from the X's cancel against that from the ghosts and give us a consistent 

theory. When D i= 26, one can no longer gauge away .A and has to treat it as 

dynamical degrees of freedom, known as Liouville field. The resulting theories, 

known as non-critical string, are interesting in their own right but will not be 
discussed in this lecture. For reviews on this topic, see (s) and (s). 

1. 7 String Propagation and Interactions 

>---< 
Figure 3. Some Feynman Diagrams for Point Particles 

a. Tree-level 4-string scattering b. One-loop 2-string scattering 

Figure 4. String Interaction 

Point particles propagate in a straight line with amplitude given by their 

Feynman propagators. They interact at a well-defined point in the spacetime, 
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where straight lines intersect at vertices. Each vertex also has some coupling 

constant associated with it. We calculate a scattering amplitude of them by 

drawing the corresponding Feynman diagrams, and multiplying together all 

the propagators and the coupling constants at each vertex (fig. 3). In string 

theory, the picture is similar (fig. 4). Propagation of string is represented by 

a tube. A slice of the worldsheet at any time determines a string state at 

that instant. However, because of worldsheet reparametrization invariance, no 

scheme of time slicing is preferred over others. This and the smooth joining and 

splitting of string tubes mean that there is no freedom in assigning coupling 

,constants to any particular point. Indeed it will soon become clear that there 

is only one measure of string coupling, which is however a field carried by and 

distributed over the strings themselves. 

To study string worldsheets of various topologies, it is convenient to choose 

the worldsheet metric to be Euclidean rather than Lorentzian. This can be 

done by performing a Wick rotation on the worldsheet: 

Z ;: tO"+ = o-2 + zo- 1 , Z = tO"- = o-2 - zo-1 , 

t -X~-'= x~-'- za'p~-'Rez + ~ -{a~-'e-nz + a~-'e-nz} 
L..Jn n n 
n¢0 

We will use this Euclidean notation from now on. 

Figure 4 shows the worldsheet for a string-string scattering. Its amplitude 

is calculated by evaluating the Polyakov path integral over it. After gauging 

away arbitrary reparameterizations, the integration over the worldsheet metric 

g of Polyakov action is reduced to a sum of over all possible shapes and sizes of 

worldsheets of a given topology. Since the size of the worldsheet can be gauged 

away for critical string theory, this reduces to a finite dimensional integral over 

its moduli space, the space that parameterizes the shape of worldsheet with 

this topology. Worldsheet actions themselves do not tell us which topology 

of worldsheet we should choose, but analogy with Feynman diagrams suggests 

that handles in the worldsheet represent. internal loops and we should sum over 

all number of handles. In fact the unitarity of the S-matrix dictates how to 

sum over topologies of the worldsheet. 
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As a simple and useful illustration, consider the one-loop vacuum to vac

uum string amplitude (fig. 5). This has the physical interpretation of cal

culating the vacuum energy. There is no external string and the worldsheet 

is topologically a torus. By Weyl scaling we can always make it a flat torus, 

defined as the quotient of the complex plane by a lattice generated by 1 and 

r-'- we identify points related by n + mr, n, mE Z (fig. 6). r is the complex 

moduli for the topological class of torus and cannot be gauged away by Weyl 

rescaling. The integration over g now reduces to an integration over the moduli 

parameter -1'. Nondegeneracy of the torus requires Im r 'f= 0, and by choices of 

basis of lattice vector we can require r to live on the upper complex half-plane. 

Let us look at this from the worldsheet viewpoint. Choose the imaginary axis 

as worldsheet "time" and real axis as the spatial extent of the string. Then 

Im r is the worldsheet time. Worldsheet states evolve along it as usual with 

Hamiltonian L 0 + L0 • Re r is a spatial twist, generated by the worldsheet mo

mentum Lo - L0 . As there is no end to the string in this one-loop amplitude, 

the path integral sums over all states in the Hilbert space - it is a trace. In 

fact it is the partition function 

Z(q) 

q = e2"''T, Im r 2:: 0. (31) 

The number 2
1
4 in the exponent is due to the conformal anomaly. A proper 

explanation /would take us too far afield, but it can be found in, for example, 

§7.1 of(7J. The combination (D- 2) is easy to understand in light-cone gauge, 

but can also be obtained in the conformal gauge if one also includes the con

tribution from the Faddeev-Popov ·ghosts. Here it is sufficient to note here 

that with D = 26 we recover the correct normal ordering constant a = ii = 1. 

We also note that the mass for states in a level can be read from the corre

sponding exponent for q and ij outside the (21m r)-D/2 factor. For example, 

the exponent for the tachyon is negative, and that for massless states are zero. 

5 However there are, further discrete identification due to large diffeomorphisms, to be 

discussed in lecture two. 
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The (21m r)-Df'i factor is the result of momentum integration, and here we 

have D rather than (D- 2) since the string zero modes are not affected by the 

light-cone gauge condition. The coefficient in front of a monomial in q counts 

the multiplicity of states with the corresponding mass ( = the degree of the 

monomial). For example, from (31) one sees that there is just one tachyon. 

To complete the calculation of the amplitude, one also needs to integrate over 

the moduli parameter r, which parameterizes the length and twist ofthe torus 

as discussed earlier. Observe that the integration over ReT enforces the level 

matching condition, as those terms with unequal exponents for q and ij will 

vanish. 

lm• 

-·-· -· ·-·-·-·-·-·-·- .. 
"11 Re 

Figure 5. One loop vacuum Figure 6. Torus and lattice 
to vacuum amplitude 

1.8 Conformal Field Theory 

The conformal gauge action (15) .is an example ofa 2d conformal field theory 

( CFT). Although the details of CFT are outside the scope of this lecture (for 

extensive discussion on the subject, see for example [71 and [81), we will now 

introduce some facts and concepts that will be useful. Consider a path integral 
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calculation of a CFT over some Riemann surface, with some tubes extending to 

infinity. The field configurations at the ends of the tube correspond to states in 

the CFT Hilbert space. In string theory they represent external, asymptotic 

string states in a scattering process. We can perform arbitrary conformal 

transformations when evaluating the path integral of a CFT. Let us choose 

one that brings the tube C in {fig. 7) from infinity to within a finite distance 

from the scattering region. Because this would involve an infinite rescaling in 

the neighborhood of the end circle of tube C, the end circle, which has finite 

radius, will shrink to a point. Its effect should therefore be represented by the 

insertion of a local field operator at that point. It is called a vertex operator. 

Therefore there is a one-to-one correspondence between states and operators in 

CFT. In string theory, for example, a vertex operator taking momentum k has 

the form, : (oscillator part) xeik·X :, where :: denotes the normal ordering. 

The oscillator part of the operator is determined by its counterpart for the 

corresponding state. For example, the operator that creates an insertion of a 

massless operator of momentum k is 

For the tachyon, the oscillator part is just the identity, so the vertex operator 

is simply : eik·X :. Of course, not all vertex operators correspond to insertion 

of physical states. They have to obey the operatorial version of the physical 

state condition {22). The condition for the tachyon is simply k 2 = 4/a'. 

States that satisfy {22) with a and a not necessarily equal to 1 are called 

Virasoro primary states of conformal weight (a, a'f. The corresponding oper

ators are called Virasoro primary fields. For a Virasoro primary operator <1>, 

its defining properties can be summarized in the singular parts of its oper~tor 
product expansion (OPE) with the energy-momentum tensor: 

T(z)q)(w, w) 

T(z)q)(w, w) 

aq)(w,w) oq)(w,w) 
(z-w)2 + (z-w)' 

aq)(w,w) . B<P(w,w) 
(z- w) 2 + (z- w) . 

6 So physical states are Virasoro primary states of conformal weight (1, 1) 
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7a. Before conformal transformation: 
asympototic states coming from infinity 

7b. After conformal transformation: 
vertex operators inserted 

Figure 7. 2-loop 3-string worldsheet, before and after conformal transformation 

The Virasoro algebra {21) itself can be written as 

T(z)T(w),..., c/2 + 2T(w) + 8T(w) , 
(z-w) 4 (z-w) 2 (z-w) 

(33) 

and similarly forT with no singularity between T and T. Thus Tis almost a 

Virasoro primary field of weight (2, 0) except for its conformal anomaly. It is 

a fundamental property of a conformal field theory that its Hilbert space and 

operator content is a direct sum of often infinitely many irreducible represen

tations of the left x right Virasoro algebra, each of which is generated by the 

action of the algebra on a highest weight state. The Virasoro primary fields of 

a CFT and their operator product expansion (OPE) completely characterize 

it. For later use, let us state the OPE between basic fields in the bosonic action 

(15): 

8X~-'(z)X"(w) 
_a' ry~-'" 

2 . 

(z- w)' 

-~a' k~-' 
2 . 

(z- w)' 

I _ la'kt·k2. 1k1 -X(z)+•k·X(w). z w . e .. 
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1.9 Low Energy Effective Action 

Let us sum over momentum and make a Fourier transformation, then the 

vertex operators for the massless particles are 

for the graviton field and 

for the antisymmetric tensor field. Now consider inserting coherent states of 

these fields - exponential of their integral over the worldsheet - in every 

correlation function we compute for the Polyakov action (29). Physically, this 

should be interpreted as vacuum expectation values for these spacetime fields. 

From the worldsheet viewpoint, they simply modify the action (29) into 

S = -
4 

1 
Jd2u {(yggabG~ow(X) + t:ab B1.w(X))8aXJ.I8bX"'}, (35) 

1rCX' 

where GJ.Iv = "'J.Iv +hJ.Iv· We can also introduce a super-renormalizable term to 

(35) which corresponds to a VEV for the tachyon~ Noting that the worldsheet 

scalar fields such ~ XJ.I have zero scaling dimension, it is easy to see that the 

result is the most general renormalizable action we can write with XJ.I and their 

derivatives in two dimensions. However, if we add a background for any one of 

the massive states, the corresponding operator would be non-renormalizable 

and would in general generate terms corresponding to the VEV's for all other 

massive states. 

Students may notice that the dilaton <I> is missing in this discussion. If we 

allow ourselves to use the worldsheet metric 9ab in addition to the scalar field 

XJ.I, there is another operator of dimension two on the worldsheet, R<I>(X), 
where R is the worldsheet curvature. It is a long story to explain why this 

is a proper coupling of the worldsheet to the dilaton field!. The complete 

worldsheet action under the background of the massless fields is then 

S = 
4
:a' J d2

u {(yggabGJ.Iv(X) + €ab BJ.Iv(X))8aXJ.I8bX"' + a'JgR<I>(X).} 

(36) 
7 Very briefly, this coupling is obtained by regularizing the dilaton vertex operator on a 

curved worldsheet and rescaling the background metric. 
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We note that if we let <P --+ <P +<Po, where <Po is a constant, then S--+ S +<Pox, 
where x = 2 - 2h - b is the Euler number of the worldsheet surface, h is the 

number of handles and b that of boundaries on the worldsheet. Since h is the 

number of loops in the string "diagram," shifting the dilaton field by a constant 

<Po is equivalent to multiplying the string loop expansion parameter K2 by e24>o. 

Looking closely enough, all string diagrams can be seen as combinations of ¢3 

type of vertices and " their coupling constant. 

Recall that earlier on when we considered the simple case in which all 

the VEVs of these massless spacetime fields vanish, i.e. when the sigma model 

string action (36) is free, the decoupling of the conformal factor >. in the metric 

9ab requires conformal invariance at the quantum level. This then led to the 

requirement of D = 26. Now with s01ne of the VEV's being n'onzero, quantum 

conformal invariance requires the vanishing of f3 functions: 

I 

o:' R,_w + 2a'V' p. Y' v<P - : H p.>.pH v >.p + 0( o:'2 ) (37) 
I 

- ~ 'V>.H>.p.v + o:'('V>.<P)H>.p.v + O(o:'2 ) (38) 

0 = /34> _ o:' Y'2<P + o:' (Y'<P )2 _ _!_a:' H2 + O( o:'2) 
2 24 = (39) 

These can be regarded as the equation of motion coming from a spacetime 

action of G, B, and <P: 

Here we see explicitly that the shift <P --+ <P + <Po can be compensated by 

"--+ Ke4>o for constant <Po. 
In this action, the normalization of the Einstein-Hilbert term is not stan

dard, and the sign of the dilaton kinetic term is wrong. We can cure these 

problems by a field redefinition: 

( 41) 

and the action (40) can be rewritten as 
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Different choices of the metric correspond to different units of length (different 

-rulers). G is known as the Einstein metric while G is called the string metric. 

2 Lecture Two: Toroidal Compactifications · 

The restriction on spacetime dimension by requiring quantum mechanical con

sistency is a striking result. Some analog of it may one day tell us why we live 

in three spatial and one temporal dimensions. However, as a candidate theory 

of everything, string theory faces the immediate criticism that it gives us too 

many dimensions. Later, when we come to superstring, the critical dimension 

will be lowered to (9 + 1), but that is still 6 dimensions in excess. Naturally 

one entertains the possibility that the true spacetime takes the form of a direct 

product M 4 xI<, where M 4 is the 4-dimensional Minkowski space we recognize 

everyday and I< an extremely tiny compact manifold that our crude probes of 

nature have so far failed to reveal. As you all know, this idea has existed in 

field theory in the form of Kaluza-Klein program long before string theory was 

invented. However, as we will presently see, string compactifications introduce 

interesting "stringy'' effects not seen in the usual Kaluza-Klein schemes. 

For a string propagating in a M x I< background spacetime with constant 

VEV <P for the dilaton, we may absorb <P into the string coupling constant. 

The conformal gauge action is then 

(43) 

where we have set o:' to 2 by choosing a unit of length. Because of the direct 

product structure of M xI<, Scan be split into an external part SM involving 

coordinates on M and an internal part SK on /{, which can be studied sep

arately. The analysis of SM is trivial and all the interesting consequences of 

compactification come from SK. In this lecture we concentrate on the simplest 

possible choices for I<: the tori. They are simply products of S 1 and are flat. 

One can choose constant metrics for them and the nonlinear sigma models 

describing string propagating on them are still free as a two-dimensional QFT. 

We will consider the spacetime as being M 26-D x TD. Although the ultimate 

goal of string theory is to describe the D = 4 world we live in, it turns out 
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to be very instructive and enlightening to consider diverse choices of D. We 

will encounter many ideas useful for the rest of these lectures as well as many 

others to come in this school. 

2.1 Lattice and Torus 

We can always parameterize a flat torus TD so that its metric G;j is constant 

and the coordinates xi have period 211", i.e. 

(44) 

where 

We will use indices i,j , ... in this coordinate system. It turns out to be conve

nient to introduce a constant vielbein ef and new coordinates xa to bring the 

metric into the .standard Euclidean form: 

a= l, ... ,D. 

We use indices a, b, ... in these coordinates. In the new coordinates xa, the 

periodicity condition is changed to 

(45) 

In this way, instead of characterizing the size and shape of a torus by defining 

it with a fixed lattice (ZD) as in (44) with an arbitrary constant Riemannian 

metric G;j, we can use the fixed metric 6ab and an arbitrary nondegenerate 

D-dimensional lattice: 

A 

!RD 

21rA' 
{efmi;·mi E .Z} 

The momentum ka conjugate to the coordinates xa on the torus is quantized 

so that 
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where D. X E 271" A is a lattice vectorS. Therefore 

Namely the momentum k is in the dual lattice A* of A, 

Let us consider string compactification over f{ = TD, with vanishing B 

for the time being, 

SK =- d zoaboxaax . 1 J 2 - b 
471" 

(46) 

The most general solution of the equation of motion for X is 

xa Xa + 2pau0 +WaUl+ I: ~{a~e-onu+ + a~e+mu-} 
n;CO 

xa- zpa(z + z)- zwa(z- z)/2+ I: ;{a~e-nz + a~e-nz-}.(47) 
n;CO 

This differs from the solution for :!Rd (18) in a new term linear in u 1 • As u 1 goes 

from 0 to 271"' xa is displaced by 21l"Wa. On a TD' wa does not have to vanish, 

because the closed string can wind around a nontrivial loop on TD, provided 

wa E A. For this reason wa is called the winding number. After canonical 

quantization, we find the same commutation relations between xa, pa, and the 

mode operators as in the last lecture. The ~a's commute among themselves as 

well as with the other operators. So we can group states into winding sectors

eigensubspaces of wa. On the other hand, since pais the momentum conjugate 

to the center of mass position xa' by our previous discussion it takes values 

in A*. 

Let us rewrite the mode expansion for X's in a more symmetrical form: 

8 More precisely, eigenstates of k have wavefunction eik·z in the basis in which X is 

diagonal. The wavefunction of a scalar particle must be single-valued. Since X and X+ LlX 
represent the same point of the torus, e•k·X must be equal to e•k·(X +~X). 
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Here we have introduced operators oa which are the canonical conjugates to the 

winding numbers wa. Their existence is ensured by the existence and unique

ness of a winding sector for each winding number. PL and PR are called left 

and right momentum respectively. They also appear in the energy-momentum 

tensor: 

L- "1_-
n = L.J ·~r O'n-mO'm :, 

m 

-a a 
O'o = PR 

The OPE between the vertex operators eik·XL IS 

with similar expression for the right movers. 

The expressions for PL and PR suggest some "duality" between the winding 

number w and the momentum p. Consider a pair of compactification lattices 
whose lattice vectors e't and eia are related as eia = 2e•ai. These two compact

ifications give the same spectrum since their allowed values of the momenta 

are related as 

PL t+ p[,; (50) 

by interchanging the labels ni and mi. 

2.2 Example: Compactification on 5 1 

Let us try out the above construction on the simplest case: compactification 

over a circle of radius R. Then the lattice structure is trivial: 

et- R· 1- , 
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The allowed values for the momenta are simply 

1 R 
PR = -n- -m. R 2 

(51) 

The duality just mentioned also takes a simple form. Consider another theory 

compactified on radius R' = :k· If we interchange n and min (51), then we 

can identify the momentum operator for R' = :k with that of R with the 

isomorphism (50). Now extending this to an isomorphism of the fields in the 

two theories, the commutation relation between XL,R and PL,R forces us to 

require also 

(52) 

In order to have the spacetime interpretation of this duality as inverting the 

radius of (or equivalently the metric G;j on) the circle, we need to transform 

the oscillators as well: 

(53) 

The isomorphism (50, 52, 53) can be summarized in a more compact forrr?: 

(54) 

This isomorphism of operators clearly translates into an isomorphism of the 

Hilbert space. To see this more explicitly, we can compute the partition func

tion (31): 

z = Tr qL 0 -1/24ijL0 -1/24, 

= 1 :2:::: qt(n/ R+mR/2) 2 qt(n/ R-mR/2) 2
, 

lql/24 rr:=l (1- qn) 12 n,m 

q = e2
,.'

7
, Im r 2: 0. (55) 

It is invariant under R -r :k 10 . To show that the two theories are actually 

equivalent, we have also to show that this map is an operator algebra isomor

phism. This is easy, since both theories are free and their operator product 
9 As a side remark, we note that this is a two-dimensional version of the "electro

magnetic" duality discussed in the later courses of this school. 
10 One can also evaluate the path integral on closed Riemann surfaces of arbitrary genus. 

There R ..... Ji is an invariance provided one shifts the constant dilaton field appropriately. 
See[91. 
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expansions can be computed exactly. Thus R -+ :if is an exact symmetry of the 

action ( 43), on arbitrary Riemann surfaces. But is it really a symmetry of the 

spacetime theory that the worldsheet action describes? From the discussion 

of string perturbation in lecture one, we see that it is a symmetry of string 

theory order by order in string perturbation expansion. In fact, as we will see 

presently, it is a gauge symmetry of string theory. 

2.3 Self-Dual Radius: R = .J2 1 

At the particular value of R = j21 1 , the duality R-+ :if maps R back to its 

original value and we expect something interesting to occur. Indeed, at this 

radius, the partition function (55) can be rewritten, after some elementary 

manipulation, as 

(56) 

where Dedekind's ry-function is simply the denominator in (55): 

00 

1] '= q-f.. II (1- qn). 
n=l 

The first term in the sum is the modulus squared of q--1.(1 + 3q + · · ·). The 

second term is that of q- -d. (2qt +· · ·). They (the unsquared sums) are actually 

the character formulae of the two irreducible representation of an algebra, 

called SU(2) affine Lie algebra at level k = 1. Where does the algebra comes 

from? 

The contributions from (56) to the massless spectrum of the complete 

string theory are those terms first order in q and ij inside the absolute values 

signs. Let us look at the left movers. The states are 

(LI IPL = 0)' IPL = ±\1'2), 

which respectively correspond to vertex operators 

(57) 

11 If we put o/ back, the self-dual radius would be N by dimensional analysis. 
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The first of the three exists for arbitrary radius R, but it is not difficult to 

show that the last two states only exist in the spectrum when R = J2. Using 

(34) and (49), one can evaluate the OPE's among them as 

J4(w)Jb(z),..., kJab/2 + ifabcJc(z) 
(w-z) 2 (w-z) ' 

(58) 

J1 :::: ~(e•v'2XL + e-•v'2XL ), J2:::: ~z (e'yi2"XL _ e-•v'2XL ), j3:::: z ~8X, 

with k = 1. Here f~b is the structure constant of SU(2). This is precisely 

the definition of SU(2) affine Lie algebra with level k = 1. The same story is 

repeated for the right movers. 

To construct a consistent bosonic string theory, we have also to take into 

account M 25
, the external part of the spacetime. Let the coordinate for the 

S 1 be X 25 . To make a vertex operator for the massless particle we have to 

choose, for both the left and right moving parts, contributions from either the 

coordinates on M 25 or X 25 • At generic radius, they are 

8XP.tJX"', J..l, v = 0, ... , 24, 

which include the graviton, the antisymmetric tensor, and the dilaton in M 25 , 

which correspond to two U ( 1) gauge fieldS. 2 in M 25 , and 

a neutral scalar field in M 25 • This is the usual massless part of Kaluza-Klein 

spectrum. But as we just found, at R = J2, there will be two additional gauge 

fields, 
r 

and 8 more scalars 

e±•v'2X~s e±•hX'ks 
' 

12 Weinberg showed in [41 that a consistent theory of massless spin one field AI-' must have 

gauge invariance with AI-' as gauge field. 
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Thus we have in total 6 = 3 + 3 gauge fields and 1 + 8 = 9 = 3 x 3 scalars at 
the massless level. The OPE {58) allows one to calculate tree level S-matrix 

elements among the gauge fields, and one finds that the gauge group is SU{2). 
Hence we see that, at R = .;2, we have an enhancement of gauge symmetry 

from U{1)L x U(1)R13 to SU(2)L x SU(2)R with a Higgs transforming in {3, 3) 

under them. To make a connection between this observation and the R -+ i 
duality, let us make a digression into conformal field theory. 

From the last lecture we see that conformal invariance and hence cancel

lation of conformal anomaly is crucial for a consistent string theory. Generic 

conformal field theories do not have a spacetime interpretation. Since only the 

spacetime in the uncompactified Minkowski space is observable, one may con

sider using arbitrary CFT to represent the effects of "compactification" even if 

they do not have any spacetime interpretation like that of {43). This is consis

tent as long as they have the right amount of central charge so that the total 

conformal anomaly still cancels. Therefore we should study the moduli spaces 

of CFT. Recall that for a given conformal field theory, we may perturb it by 

adding marginal operators to the action while maintaining conformal invari

ance. Therefore the space of marginal operators for a theory at a particular 

point on the moduli space of CFT is the tangent space at that point. 

A marginal operator for two-dimensional conformal field theory is one with 

conformal dimension {1, 1f4 . It is not t~o difficult to see that they are exactly 

those which create scalar massless particles in the Minkowski space. Therefore, 

for our case, there seem to be 9 independent directions to deform the c = 1 

conformal field theory away from the self-dual radius, corresponding to giving 

VEV's to the {3, 3) Higgs. When the VEV is turned on, the SU(2)L x SU(2)R 
gauge symmetry is spontaneously broken down to a U{1)L x U(1)R· How~ver, 
the same gauge symmetry tells us we can always choose a gauge so that only one 

component of them, say, the one coupled to 8X258X25 , has a nonzero VEV a. 

It has the sim pie spacetime interpretation of a = R-v'2 when R is close to the 

self-dual value .;2. Moreover, there is a residual Z2 gauge symmetry, namely 

13 Here the subscript "L" ( "R") just refers to their origin from the left (right) movers. It 
has nothing to do with spacetime chirality. ' 

14 In general, this is just a necessary condition. One must also require that after an 

infinitesimal deformation by themselves their conformal weights remain unchanged. 
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the Weyl group for either of the two SU (2) 's, which inverts the sign of the a. 

This is to first order the map R = (J2 +a) -t ~ = V2- a+ O(a2 ). Therefore 

at generic radius R, the T-duality R -t ~is the remnant of a spacetime gauge 

symmetry. 

From this we also see that near the self-dual radius, the moduli space 

for the conformal field theory corresponding to compactification on a circle is 

one-dimensional and looks like figure 8. 15 If we try to go to smaller radius 

than .J2, we will end up, via T-duality, with a larger radius. This is a hint 

that string theory possess a minimal length scale H and we cannot probe or 

define the physics at a smaller sca!Et 6 . 

~----------------.. ------------------············ 
R==-42 

self-dual radius 
R=1 

free fermion radius 

Figure 8. Moduli space of e=1 CFT 
in the neighborhood of the self-dual radius. 

2.4 R = 1 

Let us also study the case R = 1 or equivalently R = 2: The motivation will 

be self-evident soon. By using the product formulae of the theta functions, we 

can rewrite the sums in the partition function into products: 

z t{ I~ ~·'''•'!' +I~ P·l·'(-l)"f +I~ ~·l(•+ll'l'} 
~ tl·-"1' { ;i];t~+ ,·-1>' '+ j];t1 - r 1>'1' 

15 The complete moduli space is much more complicated, with a new branch and some 

discrete points. See §8.7 of[71 for an introduction. 
16 This statement requires significant qualification after D-branes come into the story, as 

discussed by S. Shenker in this school. 
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We will recover the same partition from worldsheet fermions. 

The spectrum of momenta at R = 1 is 

1 
PL = n+ -m; 

2 
1 

PR = n- 2m, m,nEZ. 

(59) 

(60) 

To understand why this is related to the fermions, consider the following op

erators 

WL(z) = e'XL(z)' 

WR(z) = e'XR(z), 

One can calculate the OPE between them: 

- 1 
WL(z)W'L(w)"' ( ) , z-w 

~L(z) = e-•XL(z) 

~R(z) = e-•XR(z)_ (61) 

(62) 

As we will see, these are precisely the OPE's for a massless free Dirac fermion 

W on the worldsheet, with W L and W R being its two Weyl components. Thus 

we call them free fermion operators. To be precise, W L and ~ L do not have 

corresponding states in the spectrum since they carry momenta PL = ±t and 

p R = 0 and hence map states labeled by ( n, m) E Z ® Z to states that are not. 

What we do have in the spectrum are operators bilinear in these fermions as 

WLWR, WL~R-
As a-1 ~ a- 1 + 21r, there are two types of boundary conditions for the 

fermions. When PL E Z+ ~(and thus PRE Z+ ~),they obey the periodic, 

Ramond (R), boundary condition. On the other hand, when PL E Z (and ac

cordingly PR E Z), the fermions obey the anti-periodic, Neveu-Schwarz (NS), , 

boundary condition17. Clearly both types of boundary conditions show up in 

the lattice (n, m) E Z ® Z. The free fermion operators do not mix between 

17 This statement requires some further elaboration. If : exp ( 1X L): were given by 

exp(2::::n>0(1/n)a~nenz) exp(1XL) exp(-1PLZ) exp(Ln>0(1/n)a~ne-nz), by our defini
tion NS (R) sector should be (anti- )periodic. However, in the the coordinate system we are 

using, where the worldsheet is a cylinder, there should be an additional factor of e-z/2 • This 
modifies the term linear in z on the exponent to e(PL -l/2)z and gives the correct period-
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R and NS boundary conditions. This suggests us to define two correspond

ing sectors of Hilbert space to host the free fermion operators. The periodic 

boundary condition happens when (n, m) E Z 0 (2Z + 1). We call them in 

the R-R sector since both WL and WR obey the R boundary condition. On 

the other hand, the anti-periodic boundary condition is realized in the NS-NS 

sector with (n, m) E Z 0 (2Z). 

Hence the worldsheet boson describing compactification over a circle of 

radius R = 1 is equivalent to the worldsheet fermions after including both pe

riodic and anti-periodic boundary conditions and then take a certain projection 

(explained below). This is called bosonization or fermionization depending on 

how you look at it. 

Now let us study this from the fermion side. Consider the action for a 

massless Dirac spinor 'lf(z) in (1 + 1) dimension18: 

s 

(63) 

Just like the bosonic theories we have discussed so far, the left and right movers 

decouple. In fact, it is a conformal field theory with the same central charge 

icity. The simplest way to understand the origin of this factor is to note that the operator 
: e•kXL(z) :, when acting on the vacuum, should create a state with energy k2 /2 since this 

vertex operator's conformal weight is (k2 /2, 0). In the cylindrical coordinate we are using, it 

should have a (Euclidean) time dependence of e-k
2
tf 2 . Since it is holomorphically dependent 

on z, the correct factor is e-k
2 

z 12 • In our case, k = ± 1, and the factor is e-z 12 • 
18 In (1, I)-dimensional or in (T, T + 8k)-dimensional spacetime, the Weyl condition can 

~e compatible with the Majorana con(di~on., F)or instance, (on 
0
the-7o)rldshe.et, which has 

signature (1, 1 ), one can define -y0 = t 
0 

, -y1 = t 
0 

which are purely 

imaginary. Then •-r4 8a is real and it is consistent with Dirac equation to require '1/J to be real, 

i.:. Majorana. At the same time, -y0-y1 = ( ~l ~ ) is diagonal and real as well, so we 

can define '1/J = ( ~~ ) , with '1/JL and '1/JR each being a Majorana- Wey/ fermion. However, 

such a thing does not exist if the signature is (2,0), so to Euclideanize the worldsheet, we 

should combine pairs of Majorana-Weyl spinors 'r/J's into complex Weyl spinors W's. 
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c = 1. Let us concentrate on the left movers. We will freely drop the subscript 

L without warning when there is no ambiguity. The mode expansions for the 

fermion fields are 

(64) 
r r 

Canonical quantization gives commutation relation between the modes: 

(65) 

from which one can derive the OPE (62) we previously calculated through 

bosonization. To make contact with the two sectors of Hilbert space discussed 

earlier, we note that the fermions are worldsheet spinors. As such, they can 

be either periodic or anti-periodic as o-1 --+ o-1 + 21r, identified as R and NS 

sector respectively. The (anti-)periodicity also determines the mod ding r in 

(64). Therefore, r E Z in R sector andrE Z +~inNS sector. 

Using bosonization, we can also find 

(66) 

where : : denotes the non-singular part of the OPE "WL(w)'ll!L(z) in the limit 

w --+ z. axL is the current associated with the U(l) symmetry which shifts 

XL by a constant. The charge for this current is its zero mode PL· Since the 

fermion operators \If L and 'll! L carry p L = ± 1, the operator 

measures the fermion number. The bosonization rule (66) allows us to re

express the energy-momentum tensor for the bosonic theory in terms of the 

ferrilionic fields 

T(z) = LLne-nz = -~: 8X8X := -~: 'll!8w: -~: w8'1l!:, 
n 

in agreement with the energy-moment urn tensor for· the fermionic theory found 

by the usual means. In particular, its zero mode is 

Lo = L r(W-r'll!r +'ll!-rWr). (67) 
r>O 
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Now we are ready to compute the partition functions for the fermionic 

theory and have our final check of bosonization. We have for NS sector, 

00 1 
TrqLo =II (1 + qr-2 )2, 

r=l 

00 1 

Tr ( -1)F qLo = II (1- qr-2 )2' 
r=l 

and for R sector, 
00 

TrqLo = (1 + 1)qi II (1 + qr)2' 
r=l 

00 

Tr ( -1)F qLo = (1- 1)qi II (1- qr) 2 = 0. 
r=l 

Some explanation is warranted. The squares in all four expressions are due 

to that we have both WL and "ljrL at each modding. In R sector, since the 
modding is even, we have the commutation relation 

{W'o, "ljro} = 1. 

This is represented by a single fermionic oscillator. Note we can also rewrite 

this as the Clifford algebra in two dimensions: 

i,j = 1,2, 

W = ~( .,pl + z'l/12 ). 

Its straightforward generalization to higher even-dim~nsional Clifford algebra 

will be useful in the next lecture. The R ground states here therefore consist 

of two states: I+) and 1-): 

W'o 1-) = 0, "ljro I+)= 0, 

W'o I+)= 1-), "ljro 1-) =I+)· 
States built from I+) and 1-) with nonzero modes give identical contribution 

to Tr qLo. However they have opposite ( -1 )F parity as 

{wo,(-1)F} =0, {"1jro,(-1)F} =0. 
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Therefore their contributions to Tr ( -l)F qLo are equal in magnitude but oppo

site in sign. The R ground states have charges PL = ±!, and their conformal 

weight is k which accounts for the q118 factor in the R sector partition func

tion. In fact one can map the NS ground state to the two R ground states 

using operators 
1 

± ±1-
2

¢L 
u :=e 

with conformal weight k 19 • Using the OPE {49) one can show that they trans

form into each other under, and flip the boundary condition of, the free fermion 

operators. They are called spin field operators and form a representation of 

Clifford algebra in two dimensions under the actions of "Ill in OPE. 

Combining the left and right movers, we can rewrite {59) as 

Z - Tr p qLo-1/24q-Lo-1/24 
- NS-NS$R-R {69) 

where we introduce a projection operator 

(70) 

This P projects out states with odd number offermions from NS-NS and R-R 

sectors to obtain the Hilbert space for the original bosonic theory. 

2.5 Modular lnvariance and Narain's Condition 

Let us continue the discussion of string on S1 with R = 1. As mentioned 
before, the partition function TrqLo-l/ 24 ijLo-l/24 for a 2d theory can be inter

preted as evaluating its path integral on a torus (fig. 6). The path integral 

formally involves integrating over all possible field fluctuations, which must sat

isfy appropriate boundary conditions when a nontrivial manifold is involved. 

The theory is that of free fermions (spinors). Spinors cannot be defined on 

all manifolds. But when they can, there is often more than one consistent 

but inequivalent way to do so, called spin structures. A proper explanation of 

these matters is outside the scope of these lectures but can be found in §12 

19 A.s mentioned earlier, the boundary condition of the left and right moving sector are 

correlated. The complete operator that does this is exp(±~t<PL ± ~t<PR)· 
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of[3l. As a matter of fact, there are four consistent ways to define spinors on 

a torus, corresponding to choosing periodic or anti-periodic boundary condi

tions as a spinor goes around either of the two independent nontrivial cycles 

shown in figure 5. After identifying "/2 as "time" and -y1 as the spatial extent 

of the string, R (NS) sector corresponds to (anti-)periodic boundary condition 
around the latter. Because (-l)F anticommutes with "llr, its insertion in the 

trace flips the boundary condition around -y2 • It can be shown that without 

its insertion, that the boundary condition is antiperiodic. These situations are 

summarized in figure 9. Therefore we can interpret the projection and the sum 

over R-R and NS-NS sectors in (69) as a sum over all possible spin structures, 

but what is the reason behind this summation? 

p A 

I_ f ___ ; I_ 
trR-R (-1t trR-R 

p A 

I_ ; I_ 
trNS-NS (-1 t ··· trNS-NS ··· 

Figure 9. Spin Structure of T2 

To understand this we need to introduce the notion of modular invariance. 

As mentioned in the last lecture, we can characterize the shape of a torus by a 

complex parameter T taking value in the upper complex half-plane. However, 

not all distinct values of T correspond to distinct tori. In fact, define the 

operations T : T -r T + 1 and S : T -r - ~. The operation T corresponds 

to changing one of the lattice basis defining the torus and S to swapping the 

basis. They generate large diffeomorphisms of the torus, which cannot be 

smoothly connected to the identity map. It should be clear that they map 
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the different spin structures into each other. Only the spin structure which 

is periodic around both cycles is invariant. This is not surprising since the 

corresponding partition function vanishes identically. For the bosonic theory, 

the counterpart of spin structures correspond to the different windings around 

the target space S 1 as the coordinate X goes around the two cycles of the 

worldsheet torus. When we sum over all possible value for the center of mass 

momentum and the winding numbers, we are summing over all these different 

contributions, rendering the partition function invariant under S and T- it is 

modular invariant. Th~refore to have an equivalence between the bosonic and 

fermionic theories, we must sum over spin structures on the fermionic side. 

As a side note, S and T generates the group SL(2, Z), the group of 2 x 2 
matrices with integral elements and unit determinant: 

T:(~ ~) 

s: ( ~ ~1 ) 

This group will appear time after time throughout this schoof2°. Here we 

merely note that they have the interpretation of changing the basis (e 1 , e2 ) of 

the lattice defining torus: 

Their action on the moduli r is 

, ar+b 
r-+r = cr+d. 

This discrete identification divides the upper complex plane into infinite num

ber of fundamental domains, each of which is a single cover of the true moduli 

space for the torus. 

We will now demonstrate the modular invariance of the partition for the 

most general class of toroidal compactification of the bosonic string. Recall 

20 It eventually made its way to the official T-shirt for this school. 
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our earlier expression for the left and right moving momenta: 

wa · 1 · 
PRa = pa-- = e*a'n·- -e~m' 2 • 2 • . 

Let us combine them into one (D +D)-component column vector: 

p = ( PL ) . 
P'k 

This construction treats A and A* on equal footing as 

(71) 

where 

(72) 

Hence p takes value in a ( D + D)-dimensional lattice A spanned by { e•i} and 

{ej}· 
We also define a metric of signature (D, D) on this 2d-dimensional space: 

J = ( O~b -~ab ) 

This metric captures some of the most important properties of the lattice A. 
Because of (72), 

• • • • • •f •I • 

(e*'n; + e3m3). (e*'n~ +2m3 ) = n;m' + njmJ 

(73) 

(74) 

which implies (1) if q E A, then q · q E 2.Z and (2) the dual lattice of A is 

A itself. Such a lattice is called even, because q2 is even, self-dual, because 

A"• = A, and Lorentzian, because of the signature of the metric with respect 

to which the conditions are imposed. 

Now consider as the internal part of string "compactification" a conformal 

field theory the same as that of (46) except that its momenta live on some 

general (D +D)-dimensional lattice A. Its partition function is 

1 . 1 2 1 -2 

ZA = --~2D= L q""i.P q""ip 
177( q) I (p,p)EA 
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What requirement should we impose on A? Recall that string theory has 

worldsheet diffeomorphism invariance. Modular transformations are diffeomor

phisms of the torus that cannot be contracted smoothly to the identity. They 

are residual gauge symmetries after gauge fixing. Like the Weyl rescaling sym

metry, it might be anomalous quantum mechanically. In the last lecture, we 

see that conformal invariance at the quantum level is responsible for removing 

unphysical states from the string spectrum and determining the critical dimen

sion. Similarly, modular invariance would imply we need only to integrate over 

a fundamental domain as the moduli space of the torus. This turns out to be 

essential for preventing ultraviolet divergences in string theory (§8.2 of[31). It 
is natural to ask what kind of A would ensure the modular invariance of Z A. 

Since the modular group SL(2, Z) is generated by S and T, it is sufficient 

to require that Z is invariant under both of them. For the T-transformation, 

Since (p2 - p2 ) E 22: for an even Lorentizan lattice A, the partition function 

is invariant under T. For the S-transformation, we make use of the Poisson 

resummation (see the appendix), and the identity 

77(-.!_) = V-IT11(r). 
T 

One then finds 
1 A 

ZA(--) = vol(A*)ZA.(r). 
T 

Here vol(A) denotes the volume of the unit cell of the lattice A. Since 

vol(A)vol(A*) = 1 

for any lattice A, vol(A*) = 1 provided A is self-dual. In this case, the above 

equation gives 
1 

ZA(--) = ZA(r). 
T 

Therefore if A is an even self-dual Lorentzian lattice, Z A is modular invariant 

and is a candidate for consistent string compactification. This is known as 

Narain's condition _(ref. 340 in [31, Vol 1). 
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Let us now figure out what is the moduli space of such a compactification. 

Any nontrivial O(D, D) rotation would map one even self-dual Lorentzian lat

tice into a different one. The converse is a mathematical fact: any two even 

self-dual Lorentzian lattices are related by some O(D, D) rotation. There

fore the space of such lattices is simply O(D, D). However, not all of them 

correspond to different compactifications. The spectrum for the (26 - D)
dimensional theory is determined by PI and Ph· They are left invariant by 

O(D) x O(D), the maximal compact subgroup of O(D, D), acting indepen

dently on the left and right momenta respectively. Therefore the space of 

vacua is locally O(D, D)/(O(D) x O(D)), of dimension D2 • 

In fact a spacetime interpretation can be given to such a construction. 

In (46) we have set to zero the background antisymmetric tensor field B. 

The dimension of the space of possible G is only D(D + 1)/2. However B's 

contribution to the total energy vanishes as long as its field strength H is zero. 
This allows us to give to B arbitrary constant VEV while staying in the vacua. 

Since B contains D(D-l) independent components, this fully accounts for the 
dimension of the space of vacua. Indeed, by canonically quantizing the action 

one finds that (72) is modified: 

e. - .!. ( e•ai B;; + ej ) ; 
3 - 2 e•ai B;; - ej 

(75) 

It is easy to verify that this satisfies Narain's condition. 

Just as for the moduli of the worldsheet torus, there are further discrete 

identifications of points in the moduli space of a toroidal compactification. 

Let us now find what theyc are. The toroidal compactification does not affect 

the oscillators, and the operator algebra works out as usual. All that distin

guishes one compactification from another is the lattice A in which the left 

and right momenta live. Thus we arrive at the important conclusion that any ·· 

two toroidal compactifications are equivalent if their lattices are the same, i.e. 

they differ only by a change of lattice basis. The most general change of basis 

is an element of SL(2D, Z), acting on the labels of lattice basis. But when we 
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parameterize the space of even self-dual Lorentzian lattices acting by O(D, D) 
on some reference lattice of the form (72), the inner product matrix of the 

basis vectors always takes the ( ~ ~ ) form in (73). Therefore the analog of 

the modular group for the vacua is contained in O(D, D;7l), the stabilizer of 

(73) in SL(2D, 7l). It is easy to identify some of its elements. For example, the 

analog ofT : r -t r + 1 is adding to B;j an integral antisymmetric matrix. The 

analog of S : r -t -1/r is to change the basis of the compactification lattice 

A. And then there are the generalizations of the R -t :k symmetry. Since 

TD "' (51 )D, there are now D of them. Consideration in a similar vein to that 

for R -t :k duality shows that they are gauge symmetries. The detailed forms 

of these discrete transformations can be found in [91. They do not commute with 

each other but actually generate the whole O(D, D; 7l), the T-Duality group 

for compactification over TD. The moduli space for such compactifications can 

therefore be written as O(D, D; 7l)\O(D, D)/(O(D) x O(D)). 

Appendix: Poisson Resummation 

Consider a function f defined on JRn and its Fourier transform !*: 

f(x) = J rFk e•k·xf*(k). 
(27i)n 

Let A be some lattice in JRn and A • be its dual, then one finds 

Lf(m) 
mEA J dnk f*(k) ""e•k·m 

(27i)n L....t 
mEA 

vol(A*) L f*(27im). 
nEA• 

3 Lecture Three: Superstrings 

The bosonic string theory we studied in the lasttwo lectures has displayed some 

very interesting structures, yet it conspicuously lacks one important ingredient: 

fermions. In the real world, we of course know that fermions are the basic 

constituents of matter. So we should find some way to incorporate them into 

string theory ifthe latter is to become a theory of reality. From the last lecture, 
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we see that under certain conditions a theory of bosons can be equivalent to 

a theory of fermions. That was in the context of worldsheet, while what we 

really want are spacetime fermions. However the two are not unrelated. As 

we have seen, the Ramond sector of a theory of worldsheet fermions furnishes 

a representation of the Clifford algebra with the worldsheet fermion operators, 

which carry spacetime Lorentz indices, playing the role of gamma matrices. In 

this lecture we will indeed see how to build a theory of spacetime fermions out 

of worldsheet fermions with worldsheet supersymmetry. At the end of the day 

we will find that the annoying tachyon has disappeared. Moreover we will find 

a symmetry between spacetime bosons and fermions. 

3.1 From Superparticle to Superstring 

Let us start at a more humble level and try to construct an action for a super

particle by adding new fields to the worldline action for the point particle ( 1). 

In fact there is more than one way to do it, but we will consider what is called 
the spinning partic/~ 1 . 

First let us write an action with a worldline einbein 

1 J { · 2 m
2

} S = - 2" d(j eX - -e- . (76) 

This is to (1) what the Polyakov action is to the Nambu-Goto action. The 

einbein e is a Lagrange multiplier rather than a dynamical variable. By solving 

equations of motion for e and substituting the solution back to (76), we regain 

(1) for m :f. 0. For m = 0 the latter fails but (76) is still valid as an action 

for a massless particle. Let us supersymmetrize the action (76) when m = IJ2 . 

We add worldsheet Majorana spinors tf;~-' as the superpartners of X~-' and a 

21 Another approach, which exhibits spacetime fermion and supersymmetry manifestly, 

can also be generalized to string theory - the Green-Schwarz action. We will mention it 

briefly below. For more details, see §5 of[3] 
22 If the cosmological constant m :f. 0, worldline supersymmetry, if present at all, must be 

spontaneously broken. To keep the action supersymmetric one must introduce an additional 

fermion as the Nambu-Goldstone particle, which decouples from the rest of the theory in the 

limit m -> 0. We will not consider this case, since for string theory, Weyl rescaling invariance 

forces m to vanish even for the bosonic string. 
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worldsheet gravitino v as the superpartner of e. 

S = - ~ j du { eX2 
- ze1/J~ - 2zvx1/J}. (77) 

Clearly this action is invariant under worldline diffeomorphisms. As implied 

above, it also has a local supersymmetry: 

6e = -2z8v; 
. 1 . 

6v = Be - 2oe. 

Just as in the Polyakov action, v and e do not have dynamical degrees of free

dom. Their equations of motion are algebraic and serve to impose constraints 

on the physical phase space. Variation of the action with respect to v implies 

X ·1/J = 0. (78) 

Canonical quantization for this action yields 

f) . 
-z (}XII- = Pp = 9ppXP, 

{ 1/Jil-, 1/JP} = gll-P. 

Therefore 11;11- realizes the Clifford algebra for the spacetime, for which the 

Hilbert space forms a representation. The spinning superparticle is a spacetime 

spinor. The constraint equation (78) then states that physical states satisfy 

the Dirac equation as befit for a spinor: 

It is simple to generalize this to strings. The supersymmetrization of the 

bosonic Polyakov action (29) is: 

S = -
1-jd2uF9 {gab(aaXIl-fJbXp + z1/;p>..aaa1/JJJ) 

41ra1 

+xa>..b>..a(abx~~- + ~1/;~~-1/J~~-Xb)} · 

Here >..a are the worldsheet Dirac matrices. New field contents include D 
worldsheet spinors 11;11- that transform in spacetime as a tangent vector, and 
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a worldsheet Rarita-Schwinger field Xa with no spacetime index. The action 
. has four local symmetries: the worldsheet diffeomorphism and Weyl rescaling 

symmetries already present for the bosonic string, and their superpartners: 

local supersymmetry and super-Weyl transformation. Classically they together 

allow one to gauge away the metric g and the Rarita-Schwinger field X a, and 
impose constraints on the physical phase space. In the supen:onformal gauge, 

gab can be set to A/ab and Xa to 0. Again, there are potential anomalies. 

The new Faddeev-Popov ghosts introduced by gauge fixing the local fermionic 

symmetries raise the central charge for the ghost sector to -15. On the other 

hand, the contribution from the t/J's increases the matter sector central charge 

to ~D. Therefore the critical dimension for them to cancel is now D = 10. 

Like the conformal gauge, the superconformal gauge is preserved by some 

residual gauge symmetries, which are called superconformal transformations. 

The superconformal gauge action, 

is the supersymmetric extension of {15). It is a superconformal field theory 

(SCFT), a conformal field theory with additional structures and algebra re

flecting its superconformal symmetry. Gauge fixing them leads us again to 

light-cone gauge, where 2 directions of the oscillatory excitations are taken 

away from both the X's and the 'If's. Manifest Lorentz covariance is lost 

but the constraints are explicitly solved. Back in the superconformal gauge, 

the same result should be obtained if we impose constraint conditions on the 

physical states in the same way as we did for the bosonic string. The con

straint conditions correspond to the vanishing of the matrix elements ofT (T), 

left (right) moving energy-momentum tensor, and G {G), left {right) moving 

super-current, between physical states. 

As discussed in the last lecture, there are two sectors of Hilbert space for 

a worldsheet fermion, with different boundary conditions. Spacetime Lorentz 

covariance requires all the left {right) moving fermions to be in the same sector, 

but we let the choice for left and right movers be independent. Hence the 

superstring has 4 sectors: NS-NS, NS-R, R-NS and R-R, in contrast to what 

we did in the last lecture. As usual, left and right moving operators decouple, 
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and we will concentrate on the left movers: 

T = ""Lne-nz =-.!.ax· oX- .!.1j; · 81/;, 
L..J 2 2 

n 

n 

Because oX's have integer modding, the modding of G is the same as that of 

1/;'s: r E Z in R sector; r E Z + t in NS sector. The superconformal algebra is 

[Ln, Lm] = (n- m)Ln+m + ~ (n3
- n)6n+m,O· 

{ } 
D 2 1 

Gr,Gs =2Lr+s+2(r -4)6r+s,O 

[Ln,Gr] = (tn-r)Gn+r· 

The corresponding OPE's can be found in §12 of[81. 
We learned from the last lecture that the R sector realizes the Clifford 

algebra, therefore they transform as spacetime spinors. We also see that for 

every complex W or, equivalently, every pair of real'lj;, an R sector ground state 

is t x ( t) 2 

= 1
1
6 higher in Lo eigenvalue, its conformal weight, than the NS 

ground state. Therefore it is natural to shift L 0 by - fs for the R sector so 

that the R ground state also obeys L 0 = 0. With this definition of L 0 , we have 

[Ln, Lm] = (n- m!Ln+m + ~ n3 6n+m,o, 

{Gr,Ga} = 2Lr+s + ~ r 26r+a,o, 

for the R sector. In particular G5 = L 0 . This is the rigid supersymmetry 

algebra in 2 dimensions. From a spacetime point view, Go is the Dirac operator 

fJ, Lo the d'Alembertian operator D. So G5 = L0 translates into the identity 

fJ 2 = D. The constraints T,..., 0, G,..., 0 in particular contain the Dirac and the 

Klein-Gordon equations. 

The constraints on physical states are 

(Gr- Mr,o) iphys) = 0, (Ln - a6n,o) iphys) = 0, 
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In the R sector, the relation between Go and £ 0 implies a = b2
. Equivalence 

with the light-cone gauge spectrum then leads to a = 0 and D = 10, as the 

students should verify. Below we briefly demonstrate the procedure for the NS 

sector. 

Ground State 

(Lo -a) lk) = 0, ~ m2 = -k2 = -2a (79)' 

First excited level 
. I 

) JJ I)- 2_ 2_ a (Lo-a ep'r/;_ 112 k -0 ~ m - -k - 1- 2a4. 

Gl/2ep'r/;~ 112 lk) = 0 ~ k · e = 0. 

G-112lk)- 0 ~ e~-'(k)- e~-'(k) + f.P'. 

These two conditions remove 2 degrees of freedom, in agreement with the 

light-cone gauge, only if this level is massless. Hence a = ~23 and the tachyon 

remains, for the time being. 

3rd excited level 

For reasons similar to the case of the second excited level of bosonic string, 

we reqmre 

. to be physical in order to have the same number of states as in the light-cone 

gauge. This implies"'/= 2 and D = 10. Thus we obtain again that the critical 

dimension for superstring is 10. 

Define 

(80) 

23 This agrees with a = 0 for the R sector and the relative normalization of Lo for the two 

sectors if and only if D = 10- 2- another consistency check. 
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for the NS sector and 

N = 2:: n (a-n ·an+ 1/J-n · t/Jn) 
n>O 

(81) 

for the R sector, and similarly define N for the right movers. Then the level 

matching condition is again N = N. The mass shell condition can be written 

as 

3.2 Spacetime Supersymmetry 

If superstring theory has spacetime supersymmetry, then its one-loop vacuum 

amplitude should vanish due to cancellation between bosons and fermions. We 

know from the first lecture that such an one-loop amplitude correspond to the 

partition function of the worldsheet action. The partition function also tells 

us the spectrum of the theory, and unbroken supersymmetry would imply a 

perfect matching between bosonic and fermionic spectra. As we are working 
on a closed string theory, we need to glue the left and right movers together to 

obtain a physical state or vertex operator. As the R sector realizes the Clifford 

algebra, spacetime bosons should come from the NS-NS and R-R sectors and 

fermions from the NS-R and R-NS sectors. Hence the superstring partition 

function takes the form: 
- - - - 2 

Z = (ZNsZNs + ZRZR)- (ZNsZR + ZRZNs) = IZNs- ZRI , 

where ZNs and ZR are the partition function for the (left moving) NS and R 

sectors respectively. For Z to vanish, ZNs - ZR must be zero. However4 

Tr NS qLo-12/24 

= [ 00q-
1
;: n J

8
[q-1/24ft(l+qn-1/2)2]

4 

I1n=1 ( q ) n=1 

-1/2 (TI:'-1 (1 + qn-1/2)] 8 
q IJ:':1(1-qn) 

------------------------
24 We are calculating in the light-cone gauge, or equivalently we have taken into account 

the ghost contribution. We also neglect to write the trivial factor of (2lmr)-5 from inte

grating over momentum. It is an instructive exercise for the students to justify the various 

factors and powers of q based on the discussion from the last lecture. 
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is definitely not equal to 

= 

= 

Therefore as it is there is no spacetime supersymmetry. In fact, the ground 

state in the NS sector is a tachyon, whereas in the R it is massless. Anyhow, 

the tachyon's presence would indicate vacuum instability, in direct conflict with 

supersymmetry. It is therefore clear that to have spacetime supersymmetry 

we have to truncate the spectrum consistently so that the tachyon disappears. 

This reminds us of the projection operator P introduced in the last lecture 

to obtain a bosonic theory from a fermionic one. However, since we want to 

remove the tachyon, the projection operator should be defined as 

for the NS sector, with the ground state having fermion number F = 0, where 

F = L '1/J-n-1/2 · '1/Jn+l/2· 
n~O 

Its most important property is 

The lowest level that survives this projection consists of 8 massless fields with 

(spacetime) vector indices. It is easy to see that this projection keeps states 

with integral values of N as define? in (80). 

In the R sector, we want to project out half of the ground states because 

there are 16 of them at the start. This can also be accomplished with (-1)F, 
if we define its action on the ground states carefully. As a representation of 

the 10-dimensional Clifford algebra, the Ramond ground states make a Dirac 

spmor. It can be split into two irreducible representations of Spin(10). They 
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are distinguished by their chirality and are mapped into each other with any 

odd power of gamma matrices, i.e. the zero modes of 1/J~'. Let us define 

(82) 

where 111 is the 10-dimensional chirality operator defined as usual in terms of 

the products of the gamma matrices and 

The projection operator P = ~(1 - ( -1 )F) will project out spinors of either 

chirality depending on the choice of sign in (82). Although the overall choice 

of sign is merely a convention, it will become clear in the next section that the 

relative sign between left and right movers matters greatly. 

Now let us compute the partition function again. Inserting the projector 

in the trace, one finds that 

ZNs(P) = TrNsPqLo- 8 / 24 

! -1/2 [TI:-1 (1 + qn-1/2)8- TI:-1 (1- qn-1/2)8] 
2q n:=1(1-qn)8 ' 

= 

Again, the partition function with completely periodic spin structure vanishes. 

Amazingly, these two truncated partition functions are equal, thanks to Ja

cobi's aequatio identica .satis abstrusa: 

This result is so remarkable that it is worthwhile to understand it in a 

different light. In the light-cone gauge, we may group the 8 transverse into 4 

pairs and define 
wi = (1,b2i-1 + z'l,b2i)/..J2 
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and their conjugate ~;, for i = 1, ... , 4. Their modes obey the commutation 

relations 

We may bosonize them: 

The (left) momentum for the left moving bosons take values in a charge lattice 

in ~4 , which is different for the NS and R sectors. The 8 massless states in NS 

sector have charge vectors of the form (±1, 0, 0, 0), (0, ±1, 0, 0), ... , (0, 0, 0, ±1). 

They are in fact the weight vectorS!5 for the vector representation of so(8). 

The 16 ground states in the R sector have charges ~(±1, ±1, ±1, ±1). From 

the commutation relations for \IT's and ~'s in the R sector, we see that their 

zero modes - the gamma matrices - can be expressed in terms of fermion 

creation and annihilation operators. Using this procedure one can explicitly 

construct the representations of Clifford algebra of any dimension. The ± 
sign in each entry of the charge vectors for the massless states reflects the 

occupation number of a corresponding fermionic oscillator. We can define the 

fermion number operator F directly in terms of \If as 

Thus the chirality of the massless states is given by the parity of the number 

of minus signs in their charge vectors. Not surprisingly, the charge vectors for 

(anti-)chiral states turn out to be the weight vectors for the (conjugate-) spin or 

representation of so(8). Now there is a triality symmetry of the Dynkin dia

gram of so( B) (see fig. 10), which gives· isomorphisms among the vector, spinor, 

and conjugate spinor representations of so(8). In fact, these isomorphisms ex

tend beyond these three representations and hence the massless states. so(8) 

has four conjugacy classes of representationS!6 , three of which are represented 

by the vector and two spinor ones respectively. After GSO projection, the 

25 Weight vectors and conjugacy classes of representation will be defined in the next 

lecture. 
26 See the last footnote. 
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charge lattice for the NS sector consists of the weight vectors in the vector 

class, while that of the R sector consists of either of the two spinor classes. 

The equality ZNs ( P) = ZR ( P) is then a consequence of triality. 

Figure 1 0. Triality of so(S) 

The triality also allows us to make contact with another approach to su

perstring theory, which is discussed in chapter 5 of[3l. Instead of the spinning 

particle action (77) which is found to describe a spacetime fermion only af

ter quantization, one can define an action with spacetime spinor built in and 

with manifest spacetime supersymmetry. It can be generalized to describe 

superstrings (the Green-Schwarz approach). To find a relation between the 

Green-Schwarz approach and the Neveu-Schwarz-Ramond approach that we 

are studying here, let us consider the spin field operators which ~ap the NS 

ground state to R ground states: 

0' = (±,±,±,±). (83) 

These spin fields sa transform as a spinor of so(8) with chirality determined 

by the number of minus signs. Furthermore they all have conformal weight 

4 x k = t so they are also worldsheet spinors. They are in fact the spinor 

variables used in the Green-Schwarz approach, in the light-cone gauge. The 

field redefinition (83) demonstrates the equivalence between Neveu-Schwarz

Ramond and Green-Schwarz superstrings. 

3.3 Massless Spectrum 

Now let us examine the massless particles in superstring theory for their space

time meaning. We will use the language of the covariant superconformal gauge, 
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therefore our counting will be off-sh~ll. For NS-NS sector, we clearly get the 

same fields as for bosonic string: the dilaton <P, the metric G 1w and the an

tisymmetric tensor field BJJv· For the NS-R and R-NS sectors, the Ramond 

parts transform as spacetime spinors >.L or >.R. In fact they are Majorana-Weyl 

spinors. The NS parts are of course vectors, so we have two 10-dimensional 

Rarita-Schwinger fields. The only known way to incorporate such fields con

sistently is to couple them to the supergravity current. They are therefore 

the gravitinos. So a GSO projected superstring theory contains N = 2 super

gravity. Depending on the choice of the relative sign in defining ( -1 )FL and 

( -l)FR, ~e have two inequivalent possibilities, corresponding to the relative 

chirality of the surviving >.L and >.R. If we choose opposite chiralities, we ob

tain the type IIA superstring theory whose low energy effective theory is the 

type IIA supergravity. The type IIA theory is non-chiral and can be obtained 

by dimensional reduction from 11-dimensional supergravity. This is the first 

and simplest ~vidence for the relation between type IIA string theory and a 

theory in eleven dimensions, "M theory." M theory is discussed by Duff and 

Schwarz at this school. If we 'choose the same chirality for both left and right 

movers, we obtain the type liB superstring theory. The corresponding type 

liB supergravity is chiral and potentially anomalous. Cancellation of gravi

tational anomaly in type liB supergravity was shown by Alvarez-Gaume and 

Witten (ref. 20 in[3l, Voll). 

More novelties come from the R-R sectors. Here the massless states trans

form as the products of two spinors. Contracting them with antisymmetrized 
products of gamma matrices, we see that they are related to antisymmetric 

tensors of rank 0 to 10. However, because the spinors making the products are 

chiral, not all the possibilities can appear. For the type IIA theory, >.L and >.R 
are of the opposite chiralities, and we obtain even rank tensors 

On the other hand, the type liB theory contains odd rank tensors 

Here 'YJJ, ... iJn is the antisymmetrized product of n gamma matrices. Moreover 
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they are not all independent. There is an important -y-matrix relation: 

€ Pn+l ···PIO -v ,..._ ""\Ill""\/ 
P.l···P.n 1Pn+1···P10 I 11-'l···Jl.n• 

Because of the GSO projection, \II L and \II R both have definite eigenvalue of 

-y11 . Therefore 

p{n} ,..._ *p{lO-n}. (84) 
( 

In particular, p{S} is self-dual. The students should verify that the number of 

independent components of the antisymmetric tensor fields, taking into account 

these relations, is equal to that of the tensor product of two Majorana-Weyl 

spinors. What kind of fields are they? It is not difficult to show that the 

massless Dirac equations for A£ and AR are equivalent to 

d* p{n} = 0, dF{n} = 0. 

They are the equations of motion and Bianchi identities for antisymmetric 
tensors fields A{n- 1} such that p{n} = dA{n- 1}. Note that A{n- 1} and A{ 9-n} 

are related by electric-magnetic duality, which exchanges equations of motion 

and Bianchi identities. The way they arise out of string theory places them on 

equal footing. 

There is also an antisymmetric tensor field B in NS-NS sector, but the 

way it is coupled to the string is very different from the R-R fields. Recall 

from lecture one that the vertex oper-ator for it couples directly to the VEV of 

its potential B !JV. Its contribution to the string action is just the integral of 

the pullback of B over the worldsheet. By analogy with the minimal coupling 

of the usual 1-form potential A~-' to the worldline of a charged point particle, 

we see that this means a string carries unit "electric" charge with respect to 

B. However, the coupling of R-R fields with string involves only the field 

strength. This means elementary string states cannot carry any charge with 

respect to the R-R fields. However, it was discovered by Polchinski that there 

are solitonic objects called D-branes which do carry such charges f101. These 

are discussed extensively in his lectures at this school. 
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3.4 Dilaton and Antisymmetric Tensor Fields 

The low energy effective action for the NS-NS fields is the same as that of the 

bosonic string:, 

where H = dB. The variation of S with respect to B gives 

The origin of the coupling between H and <I> can be traced to the way the 

dilaton couples to the string worldsheet, ftR<I>. Since T - .)g 6~~., if the 

. dilaton is not constant, the energy-momentum tensor Tis modified as 

The equation of motion for H can then be obtained from the Virasoro con

straint (22) on physical states, which receives the additional contribution from 

<1>. 

Now let us find out what happens to the antisymmetric tensor fields in the 

R-R sector. The dilaton field also modifies the supercurrent as 

As we recall, the zero mode of the super-Virasoro constraint yields the mass

less Dirac equation in the constant dilaton background. If the dilaton is not 

constant, the Dirac operator is modified as 

Correspondingly, the equations of motion for the R-R fields are 

Therefore it is the rescaled fields 
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which obey the usual Bianchi identity and equations of motion for an antisym
metric tensor. We can then write fi'{n} = dA.{n-l} and their spacetime action 

is J d10 X ft'{n} 1\ *ft'{n}, 

without the usual e- 2<1> factor. Thus, we find that the R-R fields do not couple 

to the dilaton if they are suitably defined. This is contrary to the case of 

the NS-NS B field, for which such rescaling is not possible. This has far 

reaching consequences in string dualities, which are discussed extensively by 

other lecturers in this school. 

3.5 T-Duality 

To end this lecture, let us briefly discuss how the T-duality R -+ -ft acts on 

superstring compactified on M 9 x S1 • Recall from the last lecture that this du

ality involves the isomorphism 8Xf +-+ 8Xf' and 8Xk +-+ -8Xk'. This same 
clearly carries over to superstring, but we also have to respect the worldsheet 

supersymmetry. It is clear that the isomorphism for the worldsheet fer'mions 

should be 1/.!'i +-+ w'i' and Wk +-+ -1/.!k'. In particular, the zero mode of 1/.19 in R 

sector, which acts as ''l on the right movers, changes its sign. This means that 

the relative chirality between the left and right movers is flipped. Therefore 

R -+ -ft maps type II A superstring compactified on a circle of radius R to type 

liB superstring on a circle of radius -ft. This is an identification of two differ

ent types of theories, rather than a gauge s:ymmetry as in the case of bosonic 

string. What happened is that the operators responsible for the enhancement 

of gauge symmetry, e±n/2XL, are removed by the GSO projection, as are the 

physical states corresponding to them. 

4 Lecture Four: Heterotic Strings 

In lecture one we studied the bosonic string which lives in (25+ !)-dimensional 

spacetime. It contains only spacetime bosons, in particular a tachyon. In lec

ture three we studied the superstring, which includes spacetime fermions in 

its spectrum, and which, after GSO projection, loses the unwanted tachyon 

and exhibits spacetime supersymmetry. At first sight it seems hardly feasible 
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to combine such two drastically different theories into one without running 

into disastrous inconsistencies. However, one important property of 2d (su

per)conformal field theories that we have used often in the last three lectures 

is the decoupling of left and right movers. The decoupling even extends to the 

zero modes - momentum and position - if we consider compactification on 

torus and take into account the winding sectors. In this lecture we will exploit 

this feature again and consider a theory with the right movers being those of a 

critical superstring and the left movers being those of a critical bosonic string. 

This is the heterotic string of Gross, Harvey, Martinec and Rohm (refs. 235, 
236 and 237 in [a), Vol 1). 

4.1 Marrying Bosonic String and Superstring 

When we say the left movers of the heterotic string are those of the bosonic 

string, we mean that they possess the same diffeomorphism and Weyl rescaling 

invariance. The central charge for the ghost action is fixed to be -26. Anomaly 

cancellation or equivalently absence of ghosts thus requires there to be 26 left 

moving bosons in the matter sector. By similar reasoning the right moving 

sectors must consist of 10 matter bosons and fermions. To have genuine target 

spacetime interpretation as a coordinate, a boson must have both left and right 

movers, therefore an "uncompactified" heterotic string lives in 10 spacetime 

dimensions. The additional 16 left movers can be thought of as parametrizing 

an internal 16-dimensional torus. 

When a theory discriminates between being left and right - when it vi

olates parity invariance - it is liable to incl!r a gravitational anomaly. This 

could be an especially acute problem on the (1 + I)-dimensional worldsheet, 

where the scalars can be chiral and where a chiral fermion and its CPT conju

gate have the same chirality. It would be a disaster for the heterotic string, a 

manifestly left-right asymmetric theory, to develop some gravitational anomaly. 

Fortunately this does not happen for the critical heterotic string theory we 

are discussing. In fact, there is a relation between the gravitational anomaly 

and the Virasoro anomaly. Details can be found in §3.2.2-3.2.3 of[3l. Very 

briefly, from (33) one can deduce that the contributions from the left and right 

· movers to the gravitational anomaly are proportional to their respective cen-
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tral charges. As shown in the reference mentioned above, if and only if they 

are equal, one can introduce local counterterms so that the total gravitational 

anomaly vanishes. This is certainly true for the critical heterotic string theory, 

where the total central charges are 0 for both the left and right movers. 

4.2 Lattice and Gauge Group 

Let us recall from lecture two that an affine Lie algebra g of level k can give 

rise to spacetime symmetries g. When the affine Lie currents are present in 

the physical spectrum for, say, the left movers, we can pair it with fJXP. of 

the right movers to make a physical vertex operator. Its tree level scattering 

amplitudes reproduce those of a Yang-Mill theory with gauge group g. If such 

vertex operators are not in the physical spectrum, say due to GSO projection, 

then g cannot be a gauge symmetry for the lack of gauge fields. However, 

the worldsheet SCFT still possess the symmetry, and the physical states and 

operators fall into representations of g. So g appears as a global symmetry for 

the perturbative string theory. Now just what kind of group g can be obtained 

from string theory in this way? 

To answer this question, we need to make a detour to the representation 

theory of Lie groups and algebras. We will not focus on the mathematical 

details but only sketch the necessary ideas. 

Given a finite dimensional Lie algebra, we can always find a maximum 

set of mutually commuting generators, the Cartan subalgebra. We call the 

commuting generators H; (i = 1, ... , n); n is the rank of the Lie algebra. All 

H's can be simultaneously diagonalized in a given representation, and every 

state can therefore be labeled by its eigenvalues for each of the H's, which 

we call charges or quantum numbers. We may naturally associate to each 

set of charges a point in JRn, a weight vector. If we plot all of them, they 

form a lattice in lRn. The reason is that the charges are additive. When you 

multiply two representations, the charge of the product of two states is the 

sum of those of each of them. As every finite dimensional representation can 

be obtained from finite products of a finite set of "basic" representations, their 

charge vectors form a lattice, the weight lattice Aw. By the same token, weight 

vectors of representations that can be obtained from products of the adjoint 
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representation form a sublattice of the weight lattice, called the root lattice Ar. 
The quotient of the weight lattice by the root lattice gives rise to the conjugacy 

classes of representations of 9, where the conjugation is multiplication with 

the adjoint representation. Between the weight and root lattices there can be 

intermediate lattices. They and the weight and root lattices, are collectively 

known as Lie algebra lattices. Starting from the Lie algebra g, one can construct 

its universal covering Lie group 9. The subgroup of9 whose elements commute 

with all of g is known as its center Cg. Every element of Cg acts nontrivially 

on some representations in the weight lattice, but clearly they all act trivially 

on those in the root lattice. For representations on a Lie algebra lattice, they 

act as the quotient of Cg by some subgroup of it. 

Every Lie algebra has an adjoint representation. Applying the above con

struction to this particular case, we obtain the Cartan- Weyl basis: Hi from 

the Cartan subalgebra and the remainder, denoted by A, that are eigenstates 

ofthe H, 

Thus each A is associated with a root vector ai in the weight space. One can 

show that each root vector is associated with only one generator. 

What kind of construction can realize these structures in the context of 

string theory? The additivity of charges gives us a hint - we can represent 

them as momenta. Consider a Lie algebra lattice A of some Lie algebra g. 

That the charges take values on the lattice A reminds us of compactification 

over a torus of the same dimension as the rank, namely' n. Denote the left 

moving bosons parameterizing the "torus" as <Pi. The Cartan generator Hi is 

realized by the zero mode of the current 8<PL as they measure the charges -

momenta. Therefore this "torus" is nothing but the maximal Abelian subgroup 

of g, generated by the H 's, known as the maximal torus of g. Let A be the 

charge lattice for the left moving bosons. The momentum carried by a state 

in the lattice is simply equal to its weight vector w. It is created by the vertex 

operator : exp(zw · <PL) :. We see now why A must be a Lie algebra lattice: it 

must contain the adjoint representation so that the A's can also be represented 

as vertex operators. Furthermore, those in the adjoint should have the same 

conformal weight of ( 1, 0) as 8<Pi, so they can together form the affine Lie 
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algebra (58). This requires all the generators Aw to have w 2 = 2. Lie algebras 

satisfying this requirement are called simply-laced. They are so(2n), su( n + 1), 

and en27
, and the products thereof. The SU(2) enhanced symmetry at self-dual 

radius encoun~ered in lecture two is their simplest example. If A is the weight 

lattice, the symmetry group is the universal covering group(}. Otherwise, it is 

the quotient of g by some subgroup of Cg. To be precise, for this construction 

to satisfy the OPE for the affine Lie algebra, we need to introduce additional 

factors known as cocyles. Details can be found in §6.4.4-6.4.5 off31. Moreover 

we should always remember there is a crucial additional requirement from 

string theory itself- modular invariance. Therefore the lattice must be even 

and self-dual. 

4.3 Es Lattice 

For the heterotic string, the left movers do not suffer the GSO projection. 

Therefore the vertex operators for the non-Abelian generators A's remain in the 

spectrum and we conclude that the theory has non-Abelian gauge symmetry 

with gauge group determined by the left components of the lattice. For the 

heterotic string in 10 dimensions, the appropriate lattice is 16-dimensional. 

However, it is instructive to start with the 8-dimensional even self-dual lattices. 

Let tis first state some facts about even self-dual lattices A in (D, D + n) 

spaces. It is known mathematically that such objects exist only for n = 0 

(mod 8). They are unique up to O(D, D + n) isomorphism for D :j:. 0, and 

even so for D = 0 if n = 8. In (0, 8), the lattice can be chosen to be f£8 , 

generated by 

e1 = (1,-1,0, ... ,0) 

e2 (0,1,-1,0, ... ,0) 

e7 = (0, ... ,0,1,-1) 

es ( ~, ~ , ... , ~). 

27 en exits for n = 6, 7, 8 
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The associated theta function 

B;.(q):: L qP2 
pEA 

is invariant under the modular group SL(2, Z). The first seven vectors are 

root vectors of so(16). The eighth is a weight vector for the chiral spinor 

representation of so(16). Together they generate all the weight vectors for the 

adjoint and chiral spinor representations of so(16). Therefore Ae8 is a so(16) 

Lie algebra lattice. Weight vectors for the vector representation take the form 

± v; ± Vj, where v; is the 8-vector with the i-th component 1 and the rest 0. 

Those for the chiral spinor representation are ( ± 1/2, ±1/2, ... , ±1/2) with an 

even number of minuses. Corresponding to them we have vertex operators 

a, b = 1. .. 8 (85) 

and 

(86) 

This suggests us to fermionize these left moving bosons.,.. Recall from lecture 
two that the operators 

a= 1, ... ,8 

are 8 complex Weyl (worldsheet) fermions. We can decompose them into 16 

Majorana-Weyl fermions: 

wa = t ( ,p2a-1 + z,P2a). 

Then the operators in (86) are just the spin fields of S0(16) with a definite 
chirality. 

Based on our discussion in lecture two, it is easy to write down the partition 

function for these fermions: 

Here we choose the projection so that the vacuum is not projected out since 

the origin is certainly in AEa. If this were part of a "compactification" of a 
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bosonic string, its contribution of massless states would be from those with 

weight 1. From NS sector there are 16 x 15/2 = 120 of them, corresponding 

to the antisymmetrized product of two Majorana-Weyl worldsheet fermions 

tf;P.tf;v. From R sector there are 28 /2 = 128 of them, corresponding to the R 

sector vacuum of definite S0(16) chirality. 

Which symmetry group would this lattice generate? The first thought 

might be Spin(16) or its quotient by some center. However, so(16) only has 

120 generators, accounted for the massless states in the NS sector. The R 
sector ground states which transform as chiral spinor of Spin(16) also have 

weight (1,0) and hence correspond to affine Lie currents as well. In fact they 

enlarge so(16) to Ei8 , which has 120+128 = 248 generators. We now construct 

it explicitly. 

Let us start with so(N). The generators are JP.v = -JVP., f-1 -::j: v ranging 

between 1 and N. Their commutation relations are well known: 

To this, let us add a generator rT 0 with spinor index a. Because there ex

ist Majorana-Weyl spinors in (16+0) dimension, we may consider Hermitian 

operators with definite chirality. Their commutation relation with the J's, if 

nonzero, must be 

[JJJ.V, rT0 ]"' (-yP.V)of3rTf3· 

The normalization is fixed by demanding Jacobi identities on [[rT, J], J]. The 

commutators among the rT's, after proper normalization, must take the form 

However, one can then check that the Jacobi identity for [[rT, rT], rT] holds only 

if 

(-yP.v)o/3(-rp.v)...,o +cyclic permutation in( a, {3, I') = 0. 

For so(N), this "Fierz" type identity holds only for N= 8, 9, 16. For N = 8, 

it extends so(8) to so(9). For N = 9, it extends so(9) to f 4 . For the relevant 

28 It is customary to denote with Es both the Lie group and the Lie algebra associated 

with it. There is no ambiguity as Es has only one conjugacy class of representations, which 

means that there is only one group (i.e. Es) associated with this Lie algebra. 
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case of N = 16, it extends so(16) to E8 . For more details and other interesting 

facts about E8 , the students are referred to appendix 6.A of[31. 

4-4 Es x Es and Spin(32)/Z2 

Now let us consider 16-dimensional self-dual even lattices. Mathematically, it 

is known that there are two of them up to 80(16) rotations. One of them 

is simply the direct product of 2 copies of AE8 • Its generators, in one-to

one correspondence with weight one vertex operators, are simply generators of 

either of the two E8 's. The associated partition function 

But there is another lattice, unrelated to the one above by any 80(16) 

rotation yet equally simple to describe. It is generated by 

± w; ± Wj, i :j:. j, 

where w; is now a JR16 vector with the i-th components 1 and the rest 0, and 

( ± 1/2, ±1/2, ... ' ±1/2), 

with an even number of minuses. By analogy with AE8 , it contains the root 

vectors of.so(32) and the weight vectors of its chiral spinor representation. It 

is the so(32) Lie algebra lattice. The difference between this and the last case 

is that the chiral spin fields now have weight (2, 0) so do not form the currents. 

The weight (1,0).operators all correspond to the roots of so(32). The lattice 

does not include the vector and anti-chiral spinor representations. So the gauge 

group is not quite Spin(32), but rather its quotient by a Z2 subgroup of its 

z2 X z2 center. It is usually written as Spin(32)/Z2 to distinguish it from 

80(32~9 . It is simple to check that so(32) has the same number of generators 

as Es xEs, namely 496. We can also calculate the partition function 

Zso(32)/'lh = ~q-2/3 {g (1 + qn-1/2)32 

29 S0(32) is the quotient of Spin(32) by the other~ in its~ X~ center. It would have 

been the gauge group if the Lie algebra lattice had included both the adjoint and the vector 

representations but neither of the two spinor representations. 
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By using Jacobi's abstruse identity, introduced in lecturfl three, it is easy to 

show that'3a 

Zso(32)/~ = zE.xE. = z~ •. 

4.5 Particle Spectrum 

We now study the low lying particle spectrum for the two heterotic string 

theories in 10 dimensions. The procedure for the left movers is identical to 

that of bosonic string; for the right movers it is identical to that of the type II 

string. Therefore we will be very brief. 

For the right movers, the mass shell condition is La = 1/2 or 

m 2 = -p2 = 2N 

where p is the 10-dimensional spacetime momentum, and N is the measure of 

oscillator excitation defined as in (80) and (81). The ground state is projected 

out by GSO projection, so the lowest lying physical states are either 

Jl = 0, ... ' 9 

in the NS sector, satisfying the massless Klein-Gordon equation 

k2 = 0, k · e = 0, 

or the ground states in the R sector with definite chirality: 

satisfying the massless Dirac equation 

#f.= 0. 

For the left movers, the mass-shell condition is La = 1 or 

30 This is not a coincidence. Mathematically it is known that there is a unique modular 

form of modular weight 8. 
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where PL is the internal momentum living on the 16-dimensional even self-dual 

lattice, and N the measure of left moving oscillator excitation as defined in 

(25). The ground state is 

Because of the left and right asymmetry, the level matching condition for the 

heterotic string is modifie<£31
: 

2 -N+pLf2= N+ 1. (87) 

Note that this means PL and hence the internal lattice must be even. Note 

also that for N = 0, PL must be at least 1. This means that although the left 
movers have no GSO projection, the tachyon is still projected out. The first 

excited states are massless. They include the usual 

p. = 0, ... 9k · e = 0 

and contribution from the internal bosons: 

J::_ being the Fourier modes of the current Ja. 

Putting the left and right movers together, the massless spectra of the 

heterotic strings include the usual spacetime bosons GJJv, BJJv, and <J> coming 

from 

and spacetime fermions - gravitinos - coming from 

These are similar to what one would get from NS-NS and NS-R sectors of 

superstring, but the additional 16 left moving bosons or, equivalently, 32 left 

31 One can again understand this by looking at the partition function. The integration 

over the twist moduli hn T enforces the level matching condition (87). The constant 1 and 

1/2 originate from the different central charges of the left and right movers in the light-cone 

gauge. 
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handed fermions give rise to something quite new. We have now gauge fields 

from 

and gauginos !rom 

Therefore the low energy approximation to a heterotic string theory would be 

a theory with N = 1 supergravity and N = 1 super-Yang-Mills. It is anomaly 

free only when the gauge symmetry algebra is E8 x Es, so(32), u(1) 248 x E8 

or u(1)496 . We have thus explained the "existence" of the first two as being 

low energy approximation to the two heterotic string theories . 

. {6 Narain Compactification 

Recall that in lecture two, we considered generalized compactification over TD 

by letting the internal left and right momenta to live on a ( D +D)-dimensional 

lattice A. The requirement of modular in variance then places stringent restric

tions on A. This construction can be carried over for the heterotic string, in 

which case the left moving bosons have 16 more "dimensions" than the right 

moving ones. Thus in toroidal compactification down to 10- D dimensions, 

the left and right momenta lives on a (16 + 2D)-dimensionallattice AH. Mod

ular invariance again requires AH to be even and self-dual with respect to a 

metric of signature (16 + D, D). Such a AH is known as Narain lattice (ref 

340 in f3l, Vol 1). 

Following the discussion earlier, the non-Abelian gauge symmetry of the 

compactified heterotic theory is determined by the special points in the lattice 

of the form (PL, 0) with PI= 2, and the global symmetry determined by those 

with charge vector (0, PR) with Ph = 2. Generically, there will be no points like. 

those, and the gauge symmetry of the theory is Abelian U(1) 16+D x U(1)D. 
The U(1)D x U(1)D are just the Kaluza-Klein gauge fields. The U(1) 16 is what 

remains of the original gauge symmetry of the heterotic string. The breaking 

of the gauge symmetry E8 x Es or Spin(32)/Z:2 down to products of U(1) 

is achieved by turning on Wilson lines, which we will discuss presently. Let 

us note, however, that there are also nongeneric lattices where such special 
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points do exist. The self-dual radius is again the simplest example. As in that 

case, we would have an enhancement of gauge and/or global symmetries. The 

existence of such points plays an important role in understanding the string

string duality between the heterotic string on T 4 and the type II A string on 

K 3 . It is discussed in Aspinwall's lectures in this school. 

The discussion in lecture two on the moduli spaces for toroidal compacti

fication can be carried over to the present case. As expected, they are 

O(D + 16, D; Z)\O(D + 16, D)/O(D + 16) x O(D) 

for D > 0. By arguments similar to those given in lecture two, these Narain 

moduli are VEV's for the massless fields oXM tJXN and o<PitJXN, where M 

are indices tangent to the compactification torus TD and i are labels in the 

Cartan subalgebra of either Spin(32)/Z2 or E8 x E 8 . The first type are just 

the familiar Kaluza-Klein scalars GMN, BMN· The latter are components 

Ak of the gauge fields in the Cartan. For D = 0, the moduli space consists 
of two discrete points, corresponding to Es x E8 and Spin(32)/Z2· However, 

as mentioned earlier, for D > 0 the moduli space is connected. This has 

the interesting implication that one can continuously interpolate between the 

two heterotic string theories compactified over TD. We now sketch one such 

interpolation for compactification on S 1 • Starting with S0(32), we give some 

constant VEV1s to A~ in the Cartan. This is known as "turning on the Wilson 

line" around S 1 . It is so called because it lets the Wilson loop around S1 , i.e. 

the path ordered exponential 

P (i f 
1 

A9dx9
) exp Js , 

develop a nontrivial VEV, which can be chosen to break S0(32) down to 

S0(16) x S0(16). After an appropriate 0(17, l;Z) T-duality transformation, 

it becomes a Wilson line configuration for the E8 x E8 heterotic string com

pactified on S 1 
• 

• Exercise 4.1 
Another way to obtain gauge symmetry in string theory is to consider open strings. This 

subject is discussed extensively in Polchinski's lectures. For this exercise, reconsider 

bosonic string on a worldsheet L: with a boundary oL:. To solve the Cauchy problem, 
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one must impose boundary conditions along 8E. This leads to new constraints on the 

phase space. Repeat the classical and quantum analysis of lecture one for this case, 

assuming the Neumann boundary condition 

8norma!X = DiaL: 

for all X's. Find the Virasoro constraints and determine the massless spectrum. What 

happens if instead we use Dirichlet boundary condition 

for some X's? 

5 Lecture Five: Orbifold Compactifications 

Although simple and interesting, toroidal compactifications cannot give rise 

to realistic theories because they have a rather large number of unbroken 

spacetime supersymmetries for the uncompactified spacetime. To see this, 

consider the compactification over T 6
• Both heterotic string theories have 

N = 1 spacetime supersymmetry in 10 dimensions, corresponding to 24 = 16 

real components of supercharges forming a constant Majorana-Weyl spinor in 

(9 +I)-dimensions. Because T 6 i_s flat, all of them survive as unbroken su

persymmetry for M 4 . N = 1 supersymmetry in M 4 has 4 real components 

of supercharge. Thus the heterotic string compactified on T 6 gives rise to an 

N = 4 theory in 4 dimensions. The number of supersymmetries is doubled for 

type II theories, because they start with N = 2 in 10 dimensions. 

To obtain realistic models one has to consider compactifications on more 

complicated manifolds known as Calabi-Yau spaces or more general supercon

formal field theories as the internal part. These are discussed extensively in 

Greene's lectures at this school. Here we will discuss the simplest type of 

Calabi-Yau spaces, known as orbifolds[11l. 

This is the simplest illustration of the idea of orbifold compactification. As 

you recall from lecture two, T 1 ......_ 5 1 can be defined as the quotient of IR1 by 

27r R7l.. Now let us consider a further 71.2 equivalence relation: 

X......_-X. 
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This defines the quotient S1 /'1l.2. What does the resulting space look like? To 

find out, note that it has two fixed points: 0 and rrR. The latter is a fixed 

point because -rr R "' rr R on the S 1 . S 1 /71.2 therefore looks like a line segment 

(fig. 11). 

1t 

Figure 11, S 1 I Z2 
0 

Recall that in toroidal compactifications, requiring the spacetime wave

function to be single valued results in the quantization of center of mass mo

mentum. We could alternatively say that we project out all the states which 

are not invariant under the equivalence relation defining the torus ( 44) with 

the operator 
L eip·:D.X 

:D.XEA 

where eip·:D.X is the operator that performs a translation by the lattice vec

tor ~X. It is clear that this operator is simply a periodic delta function in 

momentum space singling out the correctly quantized momenta. Similarly, for 

orbifold compactification we should project out states which are not invariant 

under the 71.2 operation with the projection operator 

p = (1 + Q)/2 

where Q is the operator that perform the appropriate '1l.2 on X: 

n- 1 X(z, z)Q = -X(z, z). 

This is very similar to the action of (;--1 )F ·introduced in lecture two, so it is 

easy to see that the partition function is 

Zu := Tr (PqL0 -1/24qLo-1/24) 
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= {88) 

There is an immediate problem with this partition function. We know the 

first term in {88) is modular invariant, because it is simply the internal part of 

the partition function for the string compactified on S 1 , derived in lecture two. 

However, it can be checked that the second part is not modular invariant. In 

fact it is e_asy to figure out the modular transformation property of the second 

term since q1124 Tin {1 +qn) is exactly the partition function of the free fermion 

studied in lecture two. Under the modular transformation S 

becomes 

which then becomes 

11·-'''.1!(1 + .·-'''>' 
after the T transformation. Therefore. we must include all of them in the 

modular invariant partition function 

What is the meaning of the last two terms? Recall again the case of 

toroidal compactification. There not only do we quantize the center-of-mass 

momentum to ensure the single-valuedness of the wavefunction, but we also 

have to take into account the winding sectors, which represent strings wrapping 

around nontrivial loops on the torus: 
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On 5 1 /71.2 there are more sectors due to the identification X ,...., -X. We should 
consider twisted sectors, which correspond to 

The minus sign in this boundary condition requires that the modding of X be 

half integral. 
""' z -X= X+ ~ ;(ane-nz + One-nz). 

nE7Hl/2 

We cannot have nonzero momentum or winding number here since they are not 

consistent with the anti-periodic boundary condition. The boundary condition 

also restricts x to be 0 or 1r R. Therefore there are two twisted sectors, each 

centering on a fixed point of the ~ action on S1 . This is a general feature of 

orbifold compactification. 

The additional terms in the partition function can now be understood as 

contribution from the two twisted sectors. They both give the same contribu

tion 

Tr twi
3
ted { p qL 0 -l/24qio-l/24} 

- .! -1/24--1/24 ' + -----'------::: 
{ 

ql/16q-l/16 ql/16ql/16 } 

-2q q ITin{l-qn-1/2)12 ITin{l+qn-1/2)12 . 

Note that the formula (89) contains the factor 2, reflecting the fact that there 

are two fixed points of 7!.2 . Modular transformation mixes the partition func

tion for twisted and untwisted sectors, with or without the insertion of the 

operator n, in exactly the same fashion it mixes different spin structures as 
discussed in lecture two. 

Recall that in the free fermion theory, the ground state of the periodic, Ra

mond, sector has a higher energy relative to the anti-periodic, Neveu-Schwarz 

sector. For the bosonic orbifold theory, however, the ground state of the anti

periodic, i.e. twisted sector, has a higher eigenvalue of Lo and £0 • Its weight 

is (1/16, l/16f2 per twisted coordinate. This is the same as that of the R-R 

ground states per real fermion. 

32 This can be obtained by computing the OPE of the energy-momentum tensor with 

a twist field, which generates the twisted boundary condition of X, or by the (-function 

regularization. Here we derive it by requiring modular invariance. 
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Now let us consider an only slightly more involved example which is nonetheless 

already a limiting case of Calabi-Yau compactification. The compact manifold 

is now T 4 /~ ,..._ ( S 1 ) 4 /Z2 , where the Z 2 acts on each of the four S1 as in the 

last example: 

As each S1 has 2 fixed points, on this orbifold there are 24 = 16 fixed points. 

An analysis similar to the one given above shows there is a twisted sector 

associated with each of them. The weight of their ground state is 

Since we want to discuss superstring compactified on this orbifold, we 

should include the worldsheet fermion 1/;'s as well. They transform as tangent 

vectors in spacetime. Now the ~ map clearly acts on the tangent space as 

well, as it reverses spacetime direction: 

tf;i -+ -1/Ji. 

In fact this is also required by the superconformal invariance, which mixes 

between X; and 1/;;. As the 1/;'s already have periodic and anti-periodic bound

ary condition, the Z2 action merely exchanges their assignment to Rand NS 

sectors respectively. Previously we saw that each 1/;i increases the conformal 

weight of the ground state by l6 when going from the NS to the R sector. 

Thus, in the twisted sector, the .fermions should contribute 4 x 1
1
6 = t to the 

conformal weight. The total conformal weight of the twisted sector is then 

(1/2, 1/2). In particular, they correspond to massless states in the physical 

spectrum of type II superstring. 

In fact each fixed point gives rise to 4 massless scalar fields in the uncom

pactified (5 + 1) dimensions. In order to change the boundary condition of 

the fermions, we may bosonize the 4 fermions into 2 bosons </; 1 and </; 2 , and 

consider the spin operators 
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The GSO projection forces the number of minuses to be even, so there are 2 

choices. Since the left and the right movers can have different choices, there 

are 2 x 2 = 4 ways to change the boundary condition of the fermions. Since 

there are 16 fixed points, the type II superstring on T 4 /~ gives 4 x 16 = 64 

massless scalar fields from the twisted sector. 

In addition, there are 4 x 4 = 16 massless sc~lars coming from the untwisted 

sector. They are constant modes of the metric G;j and the NS-NS B;j (i, j = 
1, ... , 4) and correspond to the Narain moduli ofT4 . In fact, the 64 scalars from 

the twisted sector share a similar geometric interpretation. They are so-called 

blow-up modes, and their VEV's deform and resolve the orbifold singularity 

at the fixed points. When these singularities are fully resolved, one recovers 

a smooth Calabi-Yau manifold known as K 3 . Combining the twisted and the 

untwisted sectors together, the moduli space of type II string compactification 

. over /{3 is 16 + 64 = 80. This is the same as that of the heterotic string 

compactified over T 4 since 4 x (16 + 4) = 80. This is not a mere coincidence, 
and its deeper reason will be uncovered during the school. 

We hope you have acquired the necessary knowledge to cope with the more 

advanced lectures in this school. Bon Voyage! 
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