
LBNL-39869 
UC-1240 

ERNEST DRLAND.O LAWRENCE 
BERKELEY NATIONAL LABORATORY 

Application ·of Inverse 
Modeling to Geothermal 
Reservoir Simulation 

S. Finsterle, K. Pruess, D.P. Bullivant, 
and M.J. O'Sullivan 
Earth .Sciences Division 

January 1997 
Presented at the 
Twenty-Second Workshop 
on· GeotherfiiatReserooir.. . 

...... ~.,...,..;-.,•.··-\ 

Engineering, ... ··. 

:::0 

(')0~ ...... o rrJ 
,m;:c 
(')lllrrJ 
s::: z 
-'Z(') 
wom ........ 
CD (') 

0 
"0 
-< 

r 
§gl 

n ~I 
0 w 
'0 ID 
'< (XI 

Ol· 
1-' ID 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 

0 



LBNL-39869 

UC-1240 

Application of Inverse Modeling 
to Geothermal Reservoir Simulation 

S. Finsterlel, K. Pruessl, D.P. Bullivant2, and M.J. O'Sullivan2 

1 Earth Sciences Division 

Lawrence Berkeley National Laboratory 

University of California 

Berkeley, CA 94720 

2 Department of Engineering Science 

University of Auckland 

Auckland, New Zealand 

Paper presented at the 

Twenty-Second Workshop on Geothermal Reservoir Engineering 

Stanford University, Stanford, California 

January 27-29, 1997, 

and to be published in the Proceedings 

January 1997 

This work was supported, in part, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of 
Geothermal Technologies, of the U.S. Department of Energy under contract No. DE-AC03-76SF00098. 



Reprinted with permission of the Proceedings: Twenty Second Workshop on Geothermal Reservoir 
Engineering, Stanford, CA, 1997. 

PROCEEDINGS, Twenty-Second Workshop on Geothermal Reservoir Engineering 
Stanford University, Stanford, California, January 27-29, 1997 
SGP-TR-155 

APPLICATION OF INVERSE MODELING TO GEOTHERMAL RESERVOIR SIMULATION 

S. Finsterlel, K. Pruessl, D.P. Bullivant2, and M.J. O'Sullivan2 

1 Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA 94720 
2 Department of Engineering Science, University of Auckland, Auckland, New Zealand 

ABSTRACT 

We have developed inverse modeling capabilities for 
the non-isothermal, multiphase, multicomponent 
numerical simulator TOUGH2 to facilitate automatic 
history matching and parameter estimation based on 
data obtained during testing and exploitation of 
geothermal fields. The ITOUGH2 code allows one to 
estimate TOUGH2 input parameters based on any 
type of observation for which a corresponding simula­
tion output can be calculated. Furthermore, a detailed 
residual and error analysis is performed, and the uncer­
tainty of model predictions can be evaluated. 
Automatic history matching using ITOUGH2 is 
robust and efficient so that model parameters affecting 
geothermal field performance can reliably be estimated 
based on a variety of field measurements such as 
pressures, temperatures, flow rates, and enthalpies. 
The paper describes the methodology of inverse 
modeling and provides a detailed discussion of sample 
problems to demonstrate the application of the 
method to data from geothermal reservoirs. 

INTRODUCTION 

Development of a numerical model for predicting the 
performance of a geothermal field requires several 
steps. First, the complex physical processes control­
ling multiphase fluid flow and heat transport in 
fractured-porous media have to be described. 
Furthermore, a site-specific model has to be built, 
i.e., the geometry of the reservoir, its hydrogeological 
and thermophysical properties, as well as initial and 
boundary conditions have to be determined. After 
parameter values have been assigned, predictive reser­
voir simulation can be initiated. Parameter values 
can be obtained from laboratory measurements or by 
calibrating the model against data collected during 
well testing or field exploitation. It is important to 
realize that the estimated parameters are both concep­
tually and numerically related to the structure of the 
model. The fact that parameters estimated by inverse 
modeling may not necessarily represent an intrinsic 
property of a reservoir but actually depend on the 
model being used is often considered a drawback. 
However, the problem occurs regardless ofthe method 
being used to determine parameter values, including 
direct measurements of rock properties on core 
samples. By definition, inverse modeling provides 
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the parameter set best suited to reproduce the observed 
reservoir behavior. It can therefore be considered 
adequate to produce reliable predictions provided that 
the simulations are based on a consistent conceptual 
model of the geothermal reservoir. 

In this paper we discuss the determination of model­
related reservoir parameters by automatically calibrat­
ing a numerical model against data obtained during 
well testing or exploitation of a geothermal field. We 
first describe the modeling approach used to simulate 
fluid and heat flow in fractured-porous media. The 
inverse problem is then formulated in the framework 
of maximum likelihood theory, followed by a brief 
discussion of the optimization algorithm. A sample 
problem is given to demonstrate the application of 
the method to (synthetic) field performance data, and 
preliminary results are shown from an effort to 
calibrate actual field data. 

MODELING APPROACH 

Fluid and heat flow in a geothermal field is simulated 
using the TOUGH2 code (Pruess, 1991). Solving the 
forward problem in an efficient and stable manner is 
the most important step for automatic parameter 
estimation. TOUGH2 is used here to simulate non­
isothermal flow of a single component (water) in two 
coexisting phases (liquid, vapor). The mass and 
energy balance equations for an arbitrary subdomain 
V 0 bounded by the surface T0 can be written in the 
following form: 

.Q. JM dV= dt 
Vn 

(1) 

The accumulation term M represents mass (m) or 
internal energy (h) per unit reservoir volume: 

(2) 

M h = l/J (St PI Uf + Sv Pv uv) + (1 - l/J) PR CR T (3) 

Here l/J is porosity, S is saturation, pis density, u is 
internal energy, Cis specific heat, and Tis tempera­
ture. The subscripts 1, v, and R denote liquid, vapor, 
and rock, respectively. The mass flux is a sum over 
the fluxes in the liquid and vapor phase: 



Fm = L-k~Pf3(VP[3- Pf3g) 
jh:l,v /1{3 

(4) 

where k denotes the permeability tensor, k, is 
relative permeability, J1 is viscosity, P f3 is the 
pressure in phase ~. and g is acceleration of gravity. 
In Eq. 1, n is the inward unit normal vector. The 
total heat flux containing conductive and convective 
components can be written as follows: 

Fh = -KVT + L (hf3 F~) 
~=l,v 

(5) 

with K the thermal c;onductivity of the. rock-fluid 
mixture, hf3 the specific enthalpy, which is a non­
linear function of temperature, and F~ the mass flux 
in phase~ (see Eq. 4). Thermophysical properties of 
liquid water and vapor are calculated using steam table 
equations given by the International Formulation 
Committee (IFC, 1967). The continuum equations 
(1) are discretized in space based on an integral finite 
difference formulation (Narasimhan and Witherspoon, 
1976), and a multiple interacting continua (MINC; 
Pruess and Narasimhan, 1985) approach is used to 
represent fractured-porous media. Time is discretized 
fully implicitly as a first-order finite difference. 
Discretization results in a set of nonlinear coupled 
algebraic equations which are solved simultaneously 
by means of Newton-Raphson iterations. A conju­
gate gradient method is used to solve the linear 
equations arising at each iteration. 

THE INVERSE PROBLEM 

The determination of reservoir properties from 
performance data, such as pressures, temperatures, and 
flow rates, is referred to as the inverse problem. The 
indirect approach to inverse modeling consists of 
minimizing the differences between the observed and 
simulated field responses, which are assembled in the 
residual vector r with elements 

Ti = Yi*- Yi(P) (6) 

Here Yi* is an observation (e.g., pressure, tempera­
ture, flow rate, etc.) at a given point in space and 
time, and Yi is the corresponding simulator predic­
tion, which depends on the vector p of all unknown 
or uncertain model parameters, including initial and 
boundary conditions. If the error structure of the 
residuals is assumed Gaussian and described by a co­
variance matrix C, the objective function to be min­
imized is simply the sum of the squared residuals 
weighted by the inverse of the prior covariance 
matrix: 

z(p) = rT c-I r (7) 

In maximum likelihood theory, it can be shown that 
minimizing z is equivalent to maximizing the proba-
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bility of reproducing the observed system state. Eq. 7 
corresponds to the generalized nonlinear least squares 
estimator. 

Due to the strong nonlinearities of function Yi(p), an'­
iterative procedure is required to minimize the objec­
tive function. The Levenberg-Marquardt modification 
of the Gauss-Newton algorithm (Levenberg, 1944; 
Marquardt, 1963) has been found to be the most 
robust for our purposes. The basic idea of this 
method is to move in the parameter space along the 
steepest descent direction far from the minimum, 
switching continuously to the Gauss-Newton 
algorithm as the minimum is approached. This is 
achieved by decreasing a scalar ll, known as the 
Levenberg parameter, after a successful iteration, but 
increasing it if an uphill step is taken. The following 
system of equations is solved for Llp at an iteration 
labeled k: 

(JkT c-I Jk + llkDk) LlPk = -JkT c-I rk (8) 

Here, J is the sensitivity matrix with elements lij = 
-ar/dpj=ay/aPj· D denotes a matrix of order n (n 
being the number of parameters to be estimated) with 
elements equivalent to the diagonal elements of 
matrix (Jk T c-I Jk). The improved parameter set is 
finally calculated: 

Pk+I = Pk + LlPk (9) 

Under the assumption of normality and linearity, a 
detailed error analysis of the final residuals and the 
estimated parameters can be conducted (for details see 
Finsterle and Pruess (1995)). For example, the 
covariance matrix of the estimated parameter set is 
given by: 

T c-I 
r r (JT c-I Jtl 
m- n 

(10) 

where m is the total number of observations. As a 
byproduct of calculating the Jacobian matrix J. one 
can qualitatively examine the contribution of each 
data point to the solution of the inverse problem as 
well as the total parameter sensitivity. 

The inverse modeling formulation outlined above is 
implemented in a computer program named 
ITOUGH2 (Finsterle, 1993). 

SYNTHETIC EXAMPLE 

The purpose of this section is to illustrate the use of 
the proposed methodology for the characterization of 
geothermal reservoirs. ITOUGH2 provides the flexi­
bility to take advantage of any type of data usually 
collected during field exploitation. For the sake of 
simplicity and reproducibility, we will analyze a 
synthetic case. A preliminary application of 
ITOUGH2 to actual data is discussed in the next 
section. 



We consider a two-dimensional five-spot production­
injection problem (see Fig. 1) previously studied by 
Pruess (1991) and Pruess and Wu (1993). The prob­
lem specifications correspond to conditions typically 
encountered in deeper zones of two-phase geothermal 
reservoirs. The medium is assumed to be fractured 
with embedded impermeable matrix blocks in the 
shape of cubes with side lengths of 50 m. The per­
meable volume fraction is 2% with a porosity of the 
fracture domain of 50 %. Reservoir thickness is 
305m. Water with an enthalpy of 500 kJ/kg is 
injected at a rate of 30 kg/s. Production rate is also 
30kg/s. 
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Fig. 1. Five-spot well pattern with grid for model­

ing 118 symmetric domain. Observation 
points and type of data measured is also 
indicated. 

We assume that temperature and pressure measure­
ments are taken in the injection (lnj) and production 
well (Pro) as well as in two abandoned wells (W1, 
W2; see Fig. 1). Furthermore, liquid and vapor flow 
rates are measured in the production well. Note that 
temperature and pressure measurements are redundant 
as long as two-phase conditions prevail. TOUGH2 is 
run in forward mode to generate synthetic data for five 
years of field performance history, and random noise 
is added to simulate measurement errors (see Table 1 
for standard deviations). 

Subsequently, the model is automatically calibrated 
against these observations in order to determine cer­
tain input parameters considered unknown or uncer­
tain. The parameters include the effective permeabil­
ity of the fracture system, porosity, heat conductivity, 
specific heat of the rock grains, fracture spacing a 
(which is a parameter of the MINC preprocessor), and 
the initial reservoir temperature Ti. 
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The estimated parameter set is shown in Table 2. 
The covariance and correlation matrices are summa­
rized in Table 3, and some statistical measures are 
given in Table 4. The latter need some explanations. 
The second column of Table 4 contains the standard 
deviation O"p of the estimate which is the square root 
of the corresponding diagonal element in Table 3. 

Table 1. Observations Usedfor Model Calibration 

Data Type Location Standard Dev. 
Pressure Inj/Pro/W1/W2 2.00 bar 
Temperature Pro/W1/W2 5.00 ·c 
Liquid flow rate Pro 1.60 kg/s ( -5 %) 
Vaporflowrate Pro 0.08kg/s(-5%) 

Table 2. True, Initial, and Estimated Parameter Set 

Parameter True Initial Best 
Value Guess Estimate 

log (perm. [m2]) -14.22 -13.00 -14.22 
fracture porosity [-] 0.50 0.30 0.56 
specific heat [Jikg·q 1000.00 800.00 971.00 
heat cond. [W/m·C] 2.10 2.50 2.25 
fracture spacing [m] 50.00 20.00 50.50 
temperature [•q 300.00 250.00 300.10 

Table 3. Variance-Covariance Matrix (Main 
Diagonal and Lower Triangle) and 
Correlation Matrix (Upper Triangle) 

log(k) ¢ CR K a Ti 
log(k) 
¢ 

i$?~ 0.21 0.17 -0.25 -0.21 -0.18 

· · · ~~of 'ij~~~ ·i;i'~lik~: -g:~~ -g:~~ ~g:g; CR 
K -sE-4 -o.o1 io~is·:c!In1~~ · o.98 o.29 

-4E-3 -0.08 14.52 8.27 ;'\~2;g~;:.; 0.19 a 
T-l -4E-5 -2E-4 0.24 0.02 0.20 iiiJQ)Q~Iii 

Table 4. Statistical Measures and Parameter 
Sensitivity 

Parameter Standard O"p * /crp Parameter 
Deviation Sens. 

log (perm. [m2]) 0.002 0.88 3623.1 
fracture porosity [-] 0.05 0.90 19.6 
specific heat [Jikg·q 29.10 0.03 64.7 
heat cond. [W/m·q 0.89 0.18 50.5 
fracture spacing [m] 9.40 0.03 253.6 
temperature [·q 0.10 0.94 1768.2 

Note that the standard deviation shown in Table 4 
refers to the joint probability density function, i.e., it 
takes into account the uncertainty of the parameter 
itself and the influence from correlated parameters. 
The conditional standard deviation O"p *, on the other 



hand, reflects the uncertainty of an estimate provided 
that all >the other parameters are exactly known. 
Therefore, the ratio <Jp * /crp shown in the third 
column of Table 4 is a measure of how independently 
a parameter can be estimated. A value close to one 
indicates an independent estimate, whereas small 
values can be interpreted as a loss of parameter identi­
fiability due to its correlation to other uncertain 
parameters. Finally, we show the total parameter 
sensitivity (column 4) which is the sum of the abso­
lute values of all sensitivity coefficients, weighted by 
the inverse of individual measurement errors and 
scaled by a reasonable parameter variation. 

First we note that permeability and reservoir tempera­
ture are accurately identified. They are the most 
sensitive parameters and can be determined almost 
independently. The estimates of fracture spacing, heat 
conductivity and specific heat exhibit relatively high 
standard deviations which is easily explained by the 
large correlation coefficients among these three 
parameters (see Table 3). Especially the fracture spac­
ing and heat conductivity have a high positive correla­
tion coefficient, i.e., a larger fracture spacing can be 
almost completely compensated by an increase in heat 
conductivity. This statement is true for the type and 
amount of data available, i.e., the correlation between 
these two parameters may be reduced by taking addi­
tional data. Finally, the fracture porosity can be rela­
tively well determined despite its low overall sensitiv­
ity. This is simply due to the fact that fracture poros­
ity is only weakly correlated to the other parameters, 
resulting in an independent estimate. 

The system response as observed in the injection, 
production and observation wells is shown in Fig. 2. 
The squares are the synthetically generated and 
perturbed data points used to calibrate the model. The 
triangles represent the future system response for the 
true parameter set (see Table 2, column 2). The solid 
lines are the pressures, temperatures, water and vapor 
flow rates simulated using the estimated parameter set 
(Table 2). For the first 5 years, the deviations 
between the solid lines and the squares minimize Eq. 
7. Beyond 5 years, the solid lines are predictions, 
i.e., an extrapolation of the system response matched 
during the calibration period. The model predictions 
are uncertain due to uncertainties in the estimated 
parameters. The standard deviation of the calculated 
system response, i.e., the uncertainty of the predicted 
temperature in the production well at a certain point 
in time, is the square root of the corresponding diago­
nal element of matrix Czz which is calculated using 
first-order error propagation analysis: 

(11) 

Here, matrix J is the sensitivity matrix for the 
predicted system response, and Cpp is the covariance 
matrix of the estimated parameters (Eq. 10). The 
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resulting 95% error bands on the model predictions 
are shown as dash-dotted lines in Fig. 2. They have 
to be considered optimistic because only the uncer­
tainty of the six selected parameters is taken into 
account. All the other parameters as well as the 
model structure are assumed to be exactly known, 
which is only true for a synthetic case. However, it 
is interesting to note that the true system response 
(triangles) lies within the estimated error band despite 
the fact that the parameter set used for the prediction 
does not exactly correspond to the true one (Table 2). 

The high accuracy of the model prediction can only be 
achieved by a combined inversion of all available 
data. It is obvious that the temperature decrease in 
observation well W1 could not have been predicted by 
relying only on temperature data during the calibra­
tion phase. In fact, the contribution of temperature 
measurements to the determination of the parameter 
set is minor. This is mainly due to the fact that a 
temperature change of 1 ·c leads to a vapor pressure 
change of about 1 bar which can be more easily 
detected given the assumed accuracy of pressure 
measurements. 

Table 5. Total Sensitivity of Observations, Standard 
Deviation of Residuals, and Contribution to 
Objective Function. 

Observation Sensitivity Std. Dev. 
Pressure Inj. 789 1.9 
Pressure Pro. 1500 2.0 
Pressure W1 426 2.2 
Pressure W2 358 2.1 
Temp. Pro. 680 4.6 
Temp. W1 107 5.4 
Temp. W2 100 5.2 
Water flow rate 87 1.6 
Vapor flow rate 1735 0.1 
COF: Contribution to Objective Function [%) 

COF 
9.7 

10.3 
12.5 
11.6 
8.9 

12.2 
11.3 
10.5 
13.0 

Provided that the expected measurement errors (see 
Table 1, column 3) are reasonable, the bulk of the 
information about the parameters of interest is 
contained in the accurate vapor flow rate measure­
ments and the pressure data in the production well. 
The contribution of a certain observation (e.g., flow 
rate data of a given accuracy taken over the entire 
measurement period) to the solution of the inverse 
problem can be evaluated by adding all the absolute 
values of the corresponding sensitivity coefficients, 
weighted by the expected measurement error and 
scaled by the inverse of the parameter variation. This 
qualitative measure is summarized in Table 5, column 
2. Comparing total sensitivities of individual obser­
vations, one can conclude that accurate measurements 
of vapor flow rates and pressures and temperatures in 
the injection and production wells would be sufficient 
to solve the inverse problem, i.e., data from the 



observation wells are less sensitive in our 
example.This kind of an analysis can be performed 
without actually collecting data, i.e., it can be used to 
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design and optimize monitoring systems. Details of 
such a procedure are described in Finsterle and Pruess 
(1996). 

10 15 

10 15 

Prediction 

10 15 
Time [year] 

Fig. 2. Synthetic example: Calibration and prediction of pressures, temperatures, water and vapor flow rates. 
Squares are synthetic data points used for calibration. Triangles represent the true system response. 
Simulation results based on the estimated parameter set are shown as solid lines. Error bands (dash-dotted 
lines) are calculated using linear error propagation analysis. 



The standard deviations of the final residual (Table 5, 
column 3) are on the order of the measurement errors, 
indicating that no significant systematic errors are 
present. Finally, the contribution of each observation 
type to the final value of the objective function 
(Table 5, column 4) is evenly distributed among the 
measurements, rendering the choice of the weighting 
factors in matrix c-1 reasonable. 

Recall that this ·study uses synthetic data with known 
error structure, and that no systematic errors are made 
because the conceptual model is correct. In field 
applications, the proper conceptual model and the 
structure of the random errors are not exactly known. 
Note, however, that the relative weighting of data 
points can easily be adjusted and is partly automated 
in ITOUGH2 following the suggestions by Carrera 
and Neuman (1986). 

While the problem of systematic errors is not directly 
addressed by inverse modeling, the automation of the 
calibration step makes it possible to examine a 
number of alternative conceptual models. The 
extensive residual analysis performed by ITOUGH2 
provides a means to identify aspects of the model that 
need to be refined. Moreover, model identification 
criteria (Carrera and Neuman, 1986) are evaluated 
which help select the model that most likely 
represents field conditions. 

APPLICATION 

ITOUGH2 has been successfully applied to a variety 
of problems involving laboratory and field data (see 
e.g., Finsterle and Persoff, 1996; Finsterle and 
Pruess, 1995; 1996). Applications of ITOUGH2 to 
geothermal field data are described in O'Sullivan and 
Bullivant (1995), and White (1995). 

In this section we present preliminary results of an 
inversion of pressure and enthalpy data from a 
geothermal well, using a simple, one-dimensional, 
radial model with homogeneous rock properties. The 
thickness of the reservoir is assumed to be 200 m; the 
feed zone is at a depth of about 1600 m. Initial reser­
voir temperature was measured to be 336 ·c. 

Note that the pressure and enthalpy data were obtained 
at the wellhead whereas the simulation results refer to 
downhole conditions. While heat loss and enthalpy 
changes along the wellbore are not expected to be 
large, the pressure drop is significant and a function 
of flow rates and phase composition. A wellbore 
simulator would have to be connected to the reservoir 
simulator to accurately model wellhead pressures. In 
this preliminary study, we assume the pressure drop 
to be independent of flow rate, and it will be treated as 
an unknown parameter to be simultaneously esti­
mated with the reservoir properties. 
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The parameters to be estimated are selected based on a 
sensitivity analysis. Only the most sensitive parame­
ters of relative low overall correlation are subjected to 
the estimation process. They include the logarithm 
of the absolute permeability, porosity, initial vapor 
saturation, residual liquid saturation, the van 
Genuchten parameter n in the relative permeability 
function (Luckner et al., 1989), and a constant ewell 
representing the pressure drop along the wellbore. 

Data from 85 days of production were used to 
calibrate the model. The production rate during this 
period varied around 4 kg/s. Data are again available 
after t=106 days, where production rate was increased 
to about 10 kg/s. This latter period was not used for 
calibration, but for testing the model predictions. 
Fig. 3 shows the prescribed production rate, the 
observed and calculated enthalpies and pressures for 
the initial parameter set as well as the best estimate, 
along with the 95 %·error band. The corresponding 
parameter sets are given in Table 6. 

Comparison of the responses obtained with the initial 
and final parameter set demonstrates the sensitivity of 
the modeling results with respect to the relatively 
minor updates needed to improve the match. More 
important, it reveals the difficulties of the current 
model to simulate the relatively strong pressure drop 
between t=55 and t=70, without yielding too low 
pressures once the production rate is increased. Recall 
that wellbore effects are not modeled. While the 
enthalpies are matched reasonably well except at early 
times, where fracture flow may be dominant, the 
model fails to predict the enthalpy during the last 
period of high production, where most of the produced 
fluid in the model consists of vapor. · 

It should be realized that the conditions during the 
validation phase are quite different from the ones 
encountered while calibrating the model. Vapor 
saturation near the well is increased, i.e., the relative 
permeabilities are extrapolated beyond the calibrated 
range. We mention in passing that the van 
Genuchten model performs best compared to a 
number of competing models. It is obvious that 
systematic errors have to be eliminated before the 
parameter set can be further assessed. 

Table 6. Initial, Best Estimate, and Uncertainty 

Parameter 

log (perm. [m2]) 

porosity [-] 
initial saturation [-] 
res. liq. sat. [-] 
vG parameter n [-] 
Cwell [bar] 

Initial Best Standard 
Guess 

-14.50 
0.02 
0.02 
0.20 
3.00 

40.00 

Estimate 
-14.48 

0.05 
0.01 
0.18 
2.45 

45.40 

Deviation 
-0.01 
0.01 
0.01 
0.04 
0.08 
1.14 
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Fig. 3. Application case: Calibration and prediction of flowing enthalpy and wellhead pressure. The top panel 
shows the prescribed production rate. Squares are measured data used for calibration. Triangles are measured 
data used for validation. The dash-dotted lines are the model results with the initial parameter set (see Table 
6 ). Simulation results based on the estimated parameter set are shown as solid lines. Error bands (dashed 
lines) are calculated using linear error propagation analysis. 



CONCLUDING REMARKS 

The purpose of this study was to demonstrate the 
flexibility of an inverse modeling approach for 
automatic history matching and the estimation of 
model parameters by performing a joint inversion of 
all available data. In addition to automatic model 
calibration, the ITOUGH2 code provides a number of 
semi-quantitative measures to study parameter 
sensitivities, correlations between parameters and 
observations, prediction uncertainties, total parameter 
sensitivities, and the potential benefit from taking 
measurements of a certain kind and in a certain 
location. This information is useful for the design 
and optimization of reservoir delineation and monitor­
ing programs. 

The advantage of inverse modeling procedures is that 
they overcome the time and labor-intensive tedium of 
trial-and-error model calibration. Effective, model­
related parameters are automatically determined on the 
scale of interest. This ensures that the reliability of 
subsequent predictions can be improved if they are 
based on the same or a similar conceptual model of 
the geothermal reservoir. 

In order to take full advantage of inverse modeling, it 
is imperative to minimize systematic errors in the 
conceptual model. We plan to incorporate a flo~in_g 
wellbore pressure correction into ITOUGH2 to elimi­
nate the bias introduced when using pressure data for 
calibration. 
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