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Abstract 

THE PHYSICS OF FULLERENE-RELATED MATERIALS 

by 

Lorin X. Benedict 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Steven G. Louie, Chair 

Graphite, or sp2-bonded carbon, is a semimetallic planar material consisting of sheets 

of interlinked six-fold carbon rings. Materials exist which are made of graphitic sheets 

that have been deformed in various ways. One example is the fullerenes, quasispherical 

cages of carbon made of interlinked five-fold and six-fold rings. Molecular solids of 

fullerenes have been formed; they are semiconductors with band-gaps of several eV. 

Another example is carbon nanotubes. These are cylinders of rolled-up sheets that 

are many microns long, but only nanometers wide. They can be semiconductors or 

metals depending on how the sheet is rolled into a cylinder. We study many physical 

properties of fullerene-related materials in this work. Throughout, the main theme 

is that interesting phenomena emerge when different electronic structures (metal --+ 

semiconductor) couple to reduced dimensionality. 

First we examine optical absorption in solid C6o, and study the physics of excitons 

hopping from molecule to molecule. We find that the lowest-lying excitons have pre

dominantly Frenkel character, with the electron and hole located on the same molecule. 

Next we study carbon nanotubes. The electronic structure of very small-radius tubes is 
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calculated, and large sheet curvature is shown to give rise to metallic behavior. Junc

tions of dissimilar nanotubes are described which act as metal/semiconductor and semi

conductor/semiconductor heterostructures with potential device applications. The low

temperature heat capacity of nanotubes is shown to differ substantially from that of 

graphite, owing to the reduced dimensionality. The static polarizability tensor of single

walled tubes is found to be highly anisotropic, and its magnitude is a simple function 

of both the tube radius and the band-gap. Electron transport through nanotubes and 

nanotube heterojunctions is investigated, and metal/metal heterojunctions are shown 

to have a conductance which depends sensitively on the symmetry of the interface. A 

collapsed, or flattened state of nanotubes is presented, and analysis of TEM images of 

these structures affords an estimate of the graphite intersheet attractive energy. We close 

with a study of planar carbon pentaheptite, a possible metallic alternative to graphite 

consisting of interlinked five-fold and seven-fold carbon rings. 
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Chapter 1 

Introduction 

This work is devoted to the study of a class of materials made solely of carbon. It 

therefore seems appropriate that we begin with a brief discussion of the atom itself. 

Carbon is one of the more abundant elements in the universe, the fifth most abundant 

in the solar system [1]. All life on Earth is carbon-based, a fact which illustrates its 

versatility in forming different kinds of chemical bonds. Carbon has six protons in 

its nucleus (as well as 6 neutrons), so the neutral atom has six electrons. Using the 

hydrogenic, central-field approximation, we can think of the six electrons as being in the 

configuration [1s2]2s22p2 . The brackets surround what we tend to think of as the core 

of the atom. These two electrons are spatially located quite close to the nucleus, and 

the energy to remove one from the atom is very large compared to the energy to remove 

one of the outer shell electrons[2]. Thus, they can be considered as somewhat inert, even 

when perturbed by the fields of other nearby atoms. The ground state configuration is 

one with total orbital angular momentum L = 1, total spin S = 1, and total angular 

momentum, J = L + S = 0, commonly notated 3 Po. 

When many carbon atoms are brought together to form a liquid or solid, it becomes 

energetically favorable for one of the 2s electrons to be promoted to the 2p position, 

so the configuration becomes more like [1s2]2s12p3. This is known as hybridization. It 

will be convenient to represent the three p-states using a cartesian basis, with each p

orbital pointing along a cartesian axis. The valence states are then denoted Is >, !Px > 

, !Py >, !Pz >. There are two common kinds of hybridization that condensed forms of 

carbon naturally favor. The first is sp3 hybridization, in which each carbon atom has 

four identical bonds eminating from it. We can represent these four bond orbitals as 
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CHAPTER 1. INTRODUCTION 

linear combinations of the valence states: !Us> +IPx > +IPy > +IPz >], !Us> +IPx > 

-IPy > -IPz >], ![Is > -IPx > +IPy > -IPz >], ![Is > -IPx > -IPy > +IPz >]. 

The bonds point tetrahedrally outward in space, and each has ts-character, and ~p

character. The second common kind of hybridization is sp2 , in which each carbon atom 

shares three identical bonds in a plane, and one inequivalent bond pointing perpendicular 

to that plane. The three identical bonds each have is-character, and ~p-charar.ter, while 

the perpendicular bond has only p-character. The planar bonds are known as u-bonds. 

Their cartesian representation is: )2Us > +IPx >], )2[1s > -!IPx > +41Py >], 

~[Is > -!IPx > -41Py >]. They are unchanged upon reflection about the plane 

(z ---+ -z). The perpendicular bond is called a 1r-bond, with cartesian representation: 

IPz >. It acquires a minus sign when reflected about the plane. 

It should be noted that carbon is the only element that favors two radically different 

kinds of covalent bonding (at zero pressure). Even other elements with the same valence 

electron configuration, like silicon and germainium, participate almost exclusively in sp3 

bonding. This is thought to be due to the lack of a large core in carbon. Smaller 

bondlengths are needed for sp2 bonding, and this is not allowed for atoms with large 

core regions. 

From a materials point of view, the two types of bonding give rise to condensed 

states with very distinct structural signatures. Matter composed chiefly of sp3-bonded 

carbon tends to extend isotropically in all directions, while sp2-bonded carbon tends to 

be layered, in accordance with the intrinsically planar geometry of sp2 bonding. For this 

reason, it is natural to think of the two situations as opposite extremes. Nevertheless, 

the two forms are equally stable. This freak occurance of nature defies any simple 

explanation, although we will see that it can be postdicted by first-principles calculations. 

It is instructive to consider carbon solids which consist entirely of one or the other 

type of bonding, and in fact, both solids are familiar from everyday experience. The 

perfect sp3 solid is diamond, in which each carbon atom is surrounded by four carbon 
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CHAPTER 1. INTRODUCTION 

Figure 1.1: Illustration of the atomic structure of cubic diamond. The black circles 

represent carbon atoms. The carbon-carbon nearest neighbor distance is 1.54 A. 

nearest neighbors 1.54 A away in a tetrahedral arrangement. There are two forms of 

diamond, the most common of which is illustrated in Fig. 1.1. All forms are insulators 

with band-gaps of,....., 5.5 eV. The perfect sp2 solid is graphite. Again, there are a couple 

different forms of this, with the most common shown in Fig. 1.2. The geometry is 

layered, with each atom surrounded by three nearest neighbors in the plane. As per 

the above discussion, the nearest neighbor distance is 1.42 A, smaller than the nearest 

neighbor distance in diamond. Graphite is a semimetal, so it has zero band-gap. We 

will consider the specifics of its electronic structure below. Other forms of carbon, such 

as amorphous or liquid carbon, have bonding which is somewhere between these two 

extremes. It is the pure sp3 and sp2 forms which have the lowest energy. State-of

the-art first-principles electronic structure calculations yield a cohesive energy of 7.45 

eV /atom for diamond and 7.40 eV /atom for graphite [3]. This suggests the schematic 

picture of Fig. 1.3, in which perfect sp3 and sp2 solids are roughly degenerate, and 
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CHAPTER 1. INTRODUCTION 

0 

1.42A 

Figure 1.2: Atomic structure of hexagonal graphite. The nearest neighbor distance in 

the plane is 1.42 A, while the inter-planar distance is 3.35 A. 

bonding configuration 

Figure 1.3: Schematic picture of dependence of the cohesive energy of carbon materials 

on bonding configuration. 

everything else is higher in energy. 

The focus of this work is on the properties of carbon materials whose bonding con-

figurations are close to sp2 . Since most physical properties are a direct consequence of 

electronic structure, we now describe the electronic structure of the. perfect sp2 solid, 

graphite, in some detail. We consider only a single sheet of graphite, for the interaction 

between layers is relatively weak, as is evidenced by the large inter-layer distance of 3.35 

A. A graphite sheet consists of interlinked hexagons with a carbon atom at each vertex 

(see a sheet in Fig. 1.2). Although all C atoms are in identical chemical environments, 
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CHAPTER 1. INTRODUCTION 

there are two atoms per unit cell. Each atom is endowed with one s electron and three 

p electrons, so each cell contains eight electrons (we neglect the core electrons from 

this point onward). If we use a tight-binding (TB) basis set with Is >, IPx >, IPy >, 

and IPz > orbitals on each atom, the Hamiltonian is diagonalized by Bloch sums of the 

sp2 bond orbitals given above (with the z-direction perpendicular to the sheet plane). 

Fig. 1.4 shows the resulting TB band structure for graphite. The dashed line marks 

the Fermi energy, EF. First and second neighbor TB parameters were used[4] which 

are fit to reproduce the first-principles pseudopotentiallocal density functional graphite 

band structure. The two bands nearest EF are 7T-bands, while the other six far from 

EF are cr-pands. Since the 7T-bands touch EF, the 1r-states are responsible for electrical 

conduction. The electronic density of states, N(E), is shown in Fig. 1.5. Note that 

although N(EF) = 0, N(E) is nonzero for all other energies in the vicinity of EF. Thus, 

graphite is a semimetal. 

Looking back to the band structure, we see that the 1r-bands meet at the points 

denoted by K. These are the corners of the hexagonal first Brillouin Zone (BZ) (see 

Fig. 1.6). In fact, these are the only points where they meet. The Fermi surface is 

therefore a zero-dimensional set in the two-dimensional BZ. This is why N(EF) = 0. If 

the sheet is doped slightly with either electrons or holes, the Fermi surface will be as 

shown by the dashed curves in Fig. 1.6, circles enclosing the K-points. This leads us 

to two important points regarding the graphite sheet Fermi surface: 1) The size of the 

Fermi surface is much smaller than the BZ, and 2) The Fermi surface is not a closed 

curve which surrounds the f-point (k = 0). These two facts will turn out to be very 

important for understanding the electronic structures of the systems we now discuss. 

Prior to 1985, diamond and graphite were the only known stable forms of pure 

crystalline carbon to exist in bulk at standard temperature and pressure. There were, 

of course, graphite-like stable materials such as carbon fibers [5] and conventional soot, 

but these are only minor deviations from graphite. All this changed when the group 
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M r K 

Figure 1.4: TB band structure of a graphite sheet calculated with the TB parameters 

of Ref. [4]. The k-space points r, M, and K are shown in Fig. 1.6. The Fermi energy 

is at zero and is marked by the dashed line. 
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-10 

Energy 
0 

(eV) 
10 

Figure 1.5: Electronic DOS of a graphite sheet calculated from the TB bands of Fig. 

1.4. The Fermi level is at zero. 
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K 

.... 

Figure 1.6: Graphite sheet BZ. Special points f(k = 0), K, and M are marked. For 

an undoped sheet, the Fermi surface is the collection of vertex points. Dashed curves 

indicate the Fermi surface for low-doping. 
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CHAPTER 1. INTRODUCTION 

Figure 1.7: Atomic structure of C6o· All atoms lie on a sphere of radius 3.57 A. 

of H. Kroto, R. Curl, and R. Smalley [6] discovered a remarkably stable carbon cluster 

containing sixty carbon atoms. It was suggested, and subsequently verified, that its 

structure is that of a soccer ball as shown in Fig. 1.7. At first sight, this looks like 

a spherical version of single-sheet graphite. Each atom is surrounded by three nearest 

neighbors, and many of the atomic rings are hexagons. On closer inspection, it is seen 

that there are twelve pentagons as well. The closed surface topology demands this, so 

the bond network is somewhat different from that of graphite. An equivalent point is 

that the bonding is no longer perfectly planar as it is for a graphite sheet. Thus, C6o is 

a system best described as "mostly sp2 , with a small admixture of sp3". The density of 

electronic states for the cluster is broadly similar to N(E) for graphite. In particular, the 

states nearest EF are mostly 1r-like, consisting of p-orbitals pointing radially outward. 

The curved geometry, together with the quantum confinement of electrons to a small 
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CHAPTER 1. INTRODUCTION 

sphere, results in an electronic energy gap of,...._ 2- 3. eV. 

There are other stable cage-like carbon clusters which have been found as well, such 

as C7o, Cs4, C94 [7], etc. All are closed graphitic surfaces with exacly twelve pentagons. 

As the number of atoms increases, the curvature decreases, as does the ratio of pentagons 

to hexagons. The graphite sheet properties are then recovered. Carbon clusters of the 

C6o variety have been termed fullerenes, for their resemblence to the geodescic dome 

promoted by the architect Buckminsterfuller. 

One of the most important developments in fullerene research was the formation of 

a molecular solid of C6o· This was first done in 1990 by Kratschmer et al. [8], who 

used an arc-discharge method to make large quantities of C6o from graphite rods. It 

was subsequently shown that alkalai-doped solid C6o can superconduct at temperatures 

in excess of 30 K [9]. We will discuss many of the interesting physical properties of 

undoped solid C6o in the next chapter. 

The use of the arc-discharge method to make large quantities of fullerenes gave 

way to another breakthrough in the field of carbon materials: the discovery of carbon 

nanotubes. In 1991, S. Iijima [10] found long thin whiskers of carbon growing from the 

cathode of his arc. They were many microns long, but only a few nanometers wide. 

Careful analysis with a transmission electron microscope (TEM) revealed that these 

so-called nanotubes are concentric circular cylinders made of rolled-up graphite sheets 

(see Fig. 1.8). Unlike spherical fullerene clusters, the cylindrical nanotubes are curved 

only along one direction, so the bond network need not contain pentagons. Two years 

later, the groups of Iijima and Ichihashi, and Bethune et al. [11] used transition metal 

catalytic particles to grow single-walled carbon nanotubes. These are individual sheets 

of graphite rolled into cylinders with diameters as small as 7 A. 
"\ 

Besides having extremely high tensile strength, [12] carbon nanotubes are predicted 

to have very interesting electronic properties. Tubes with slightly different radii and 

helicities (the spiraling of hexagons up the tube) should have very different band gaps 
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CHAPTER 1. INTRODUCTION 

Figure 1.8: Atomic structure of a two-walled carbon nanotube. All carbon rings are 

hexagons. 
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CHAPTER 1. INTRODUCTION 

[13, 14, 15]. This is a consequence of the two facts about the graphite sheet Fermi 

surface mentioned above. In particular, the electronic structure of a sheet with small 

disconnected regions of Fermi surface is strongly affected by the imposition of periodic 

boundary conditions. When the sheet is rolled into a cylinder, these boundary condi

tions are naturally imposed. The exotic geometric and electronic structures of carbon 

nanotubes should give rise to a host of interesting physical phenomena, many of which 

we will discuss in this work. 

The remainder of this dissertation is divided into three major parts. The first con

cerns solid C6o· We begin by introducing the main facts about the system, including 

electronic and phonon spectra, and the orientational order/disorder transition.· Then 

we move on to a comprehensive study of the optical absorption edge of solid C6o, fo

cusing primarily on the role played by excitions. The second part is devoted to carbon 

nanotubes. The topic is introduced, with special attention paid to the theoretical pre

diction of tube band-gaps using prior knowledge about the graphite band structure. 

We then show how these previously derived results are invalidated when considering 

nanotubes with radii < 3 A. Nanotube heterojunctions are proposed in which a tube's 

local electronic structure varies dramatically along its length. The low-temperature beat 

capacity of different nanotube samples is considered, and the static dielectric response 

of single-walled tubes is calculated as a function of radius and band-gap. Nanotube 

transport properties are then studied. The room-temperature static resistance of SiJ?gle

walled metallic tubes is estimated, followed by a detailed study of quantum conductance 

through nanotubes with vacancies, and nanotube beterojunctions. Finally, we describe 

a collapsed state of carbon nanotubes, and extract information regarding the graphite 

intersheet attractive energy. The last chapter of this work introduces pentaheptite, a 

pure-carbon planar covalent material consisting entirely of 5-fold and 7-fold atomic rings. 

We predict it to be metallic, and metastable at standard temperature and pressure. 
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Chapter 2 

Solid C6o 

Solid C6o, or fullerite, is a molecular solid of C6o in which the C6o molecules are 

centered on the sites of an fcc lattice. They are weakly bonded to each other with 

Van der Waals forces. At low temperature (T < 260 K), the balls are orientationally 

ordered in such a way that there are four C60 /cell [8]. This is known as the Pa3 

structure. Above 260 K, the balls are orienationally disordered, but their centers remain 

fixed on the fcc lattice sites. The reason for this particular orientational ordering at 

low temperature is that the C6o balls have regions of high and low electronegativity. 

The center of each inter-pentagonal bond has the highest electron density, while the 

center of each pentagon-hexagon bond has the lowest. The Pa3 structure allows for 

electronegative sites on one ball to be close to electroposotive sites on neighboring balls, 

thereby minimizing the electrostatic energy. The orientational order/ disorder transition 

temperature, 260 K, is a measure of this attraction. At room temperature, the balls are 

freely rotating about their centers of mass. 

Before discussing the electronic structure of solid C60 , we mention a few facts about 

the electronic structure of an isolated C6o molecule. The single-particle C60 energy level 

spectrum is shown in Fig. 2.1 [16]. If the spectrum is examined over a large energy range, 

it is seen that the density of levels is broadly similar to N(E) for graphite. States with 

energies between -5 eV and 5 eV are primarily 1r-states, made up of atomic p-orbitals 

pointing along the local normal to the sphere. Since the Fermi energy lies between two 

levels, C60 is a closed-shell molecule. All levels are 1, 3, 4, or 5-fold degenerate. This is 

a consequence of the icosahedral symmetry of the molecule. Each state can be classified 

according to irreducible representations of the icosahedral point group [17]. The HOMO 
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Figure 2.1: C60 single-particle energy level spectrum near the Fermi energy, E = 0. The 

HOMO is 5-fold degenerate, and the LUMO is 3-fold degenerate. 



CHAPTER 2. SOLID C6o 

is 5-fold degenerate, and transforms according to the Hu representation. The LUMO 

is 3-fold degenerate, and is a T1u state. The subscript u denotes ungerade, or odd 

under inversion about the ball center. Note that the first excited state consisting of an 

electron in the T1u complex, and a hole in the Hu complex is odd®odd = even. Thus, 

the transition from the even ground state to this excited state is dipole forbidden. 

Solid C6o is a material of extremes; the interaction between neighboring C atoms in 

a C6o molecule is very stong, while the interaction between adjacent molecules is very 

weak. It is the strength of the on-ball interaction that gives rise to the large energy 

spread of the 1r-states ("'-' 10 eV). When many C6o molecules are brought together to 

form a solid, the isolated molecular energy levels spread out into bands. The weakness 

of the inter ball intraction is manifested in the small dispersion ("' 1 e V) of these bands. 

The resulting band gap is"' 2.15 eV [18, 19, 20], smaller than the HOMO-LUMO gap 

in the isolated molecule. It is interesting to compare this to the electronic structure of 

the hypothetical Fm3 phase, in which all balls have the same angular orientation, so the 

structure is fcc with one ball per cell. The Fm3 band widths are a bit larger than those 

of the Pa3 case [21]. This is to be expected, for the increased orientational order makes 

it easier for electrons to hop from ball to ball. 

Just as for the electronic states, the phonons of solid C6o are governed by two widely 

different energy scales. The first is the large intra-ball stretch energy, and the second 

is the small inter-ball stretch energy. Calculations of Vashishta et al. [22] show that 

the modes below 15 meV are interball phonon modes, where the individual balls are 

undistorted, and they are moving against each other. The modes above 25 meV are 

primarily on-ball in character. They have extremely small dispersion, analogous to the 

small dispersion for electronic energy bands. Above the orientational order/disorder 

transition, much of the weight below 15 me V is shifted to even lower energy [22]. This is 

because some of these modes are librons, where the balls are rotating about their fixed 

centers of mass. In the orientationally disordered phase, there is little or no restoring 
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force for librations, so their energies approach 1i2 /21"' 10-4 -10-3 meV, where I is the 

moment of inertia of C6o about its center. 

In the following chapter, we will be concerned with the optical absorption edge of 

solid C6o as a function of pressure both below and above the orientational ordering 

temperature. We will show that the main features below the single-particle continuum 

are due to excitons strongly coupled to phonons. We consider excitons consisting of 

an electron in the T 1u band and a hole in the Hu band. The experimentally measured 

temperature dependence of the exciton lines sheds light on the strength of the electron

phonon interaction in orientationally ordered and disordered phases. 
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Chapter 3 

Excitons and optical absorption edge 

The electronic structure of solid C6o has attracted much interest from both theoreti

cal and experimental points of view. Thoeretically, different approaches have been taken 

to study this material, including the local density approximation (LDA) [23] and the 

ab initio quasiparticle method [24]. These methods predict the same band ordering for 

C6o in the hypothetical Fm3 structure, but the band gap changes from 1.04 e V (in the 

LDA calculation) to 2.15 eV (in the GW quasiparticle picture). Experimentally, direct 

and inverse photoemission [18, 19, 20] give values for the gap closer to the GW predic

tion than to the LDA one. This can be compared to results of microwave conductivity 

experiments [25] providing excitation energies of about 1.85 eV, whereas luminescence 

experiments [26] report an emission band at around 1.7 eV. The discrepancy with the 

optical gap could be due to excitons, but this remains to be determined. 

In order to investigate the properties of the absorption edge of this semiconductor, 

the group of G. Martinez has performed transmission measurements on fullerite single 

crystals grown by the group of A. Zettl. The absorption coefficient was determined 

as a function of pressure, temperature, and applied magnetic field strength. Fig. 3.1 

displays the absorption coefficient measured at different temperatures. While the ab

sorption edge remains structured below 260 K, it gets smeared above the orientational 

order/disorder transition. The magnitude of the absorption is quite weak compared to 

standard values for direct-gap and electric-dipole-allowed transitions in semiconductors. 

This is not surprising since the HOMO-LUMO gap is electric-dipole-forbidden in the 

isolated molecule. All transitions above 1.75 eV have a reproducible oscillator strength. 

However, the band around 1.7 eV is probably of extrinsic origin because its shape is 
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Figure 3.1: (a) Absorption coefficients of the fundemental absorption edge offullerite at 

5 and 295 K and (b) comparison between absorption curves without magnetic field and 

with a magnetic field of 15 T. The calculated density of states (see discussion below) 

for excitonic transitions is displayed in the lower part of the figure. 
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not conventional and its strength is significantly decreased following a heating process 

under vacuum. 

The intrinsic transitions can be grouped in three bands around 1.86 eV (A), 1.94 eV 

(B), 2.03 eV (C), and a broad structure at 2.3 eV (D). In order to obtain more insight 

into the nature of the intrinsic transitions, a magnetic field investigation was performed. 

The results are shown in Fig. 3.1, where spectra at 0 and 15 T are compared. Within 

the experimental uncertainty (....., 0. 5 me V), both spectra are identical. This result agrees 

with the picture of very localized excitations: if the transition takes place on a single 

molecule with an exciton Bohr radius of about 0.5 nm, the expected diamagnetic shift at 

15 T would be less than 10-3 meV, which is not measurable. High-pressure experiments 

at low temperatures (30 K) have also been performed. Results are presented in Fig 3.2. 

It is found that the three excitonic peaks shift with pressure: -45 ± 5 meV /GPa (peak 

A), -60 ± 8 meV /GPa (peak B), and -80 ± 10 meV /GPa (peak C). These values were 

deduced from a linear interpolation of four measurements made between 0 and 1.5 GPa. 

We present calculations modeling low-lying exciton levels in fullerite. Our approach 

makes no assumptions regarding the symmetries or character (Frenkel, charge-transfer, 

or Wannier) of excitons. Instead, we seek to determine these properties from the calcu

lation. We consider excitons formed from a hole in the Hu-band and an electron in the 

T 1u-band. The electron-hole interaction is appropriately screened, as we will discuss. 

We find the energy needed to form the lowest, optically accessible (i.e., singlet) exciton 

is 1.58 e V, in reasonable agreement with the measured 1.83 e V [27]. The lowest several 

exciton levels have strong Frenkel character. The main effects influencing these levels' 

energies are the average Hu- T1u splitting, which equals the minimum quasiparticle gap 

plus the mean band widths for the Hu- and T1u-derived bands, and the intramolecular 

electron-hole attraction, which is dominated by a large monopolar part. Multipolar com

ponents of this attraction induce splittings by several tenths of an electron volt between 

exciton states having predominantly T1u®Hu = T29 , T19 , G9 and H9 total symmetries. 
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(In the solid, unlike the molecule, such symmetries are not completely realized. However, 

for the Frenkel excitons, these symmetries are almost realized, so that the symmetry 

labels are still descriptive.) Within each group of excitons, e.g. T29 excitons; we find 

exciton band widths ranging from 20 meV to 40 meV for the low-temperature Pa3 struc-

ture. The level schemes for triplet and singlet excitons are qualitatively similar. The 

interval between the lowest triplet and singlet exciton levels is found to be 0.28 eV, in 

agreement with the 0.28 eV found experimentally [28]. At energies immediat~ly above 

the Frenkel exciton levels, we find some well defined charge-transfer exciton states which 

are energetically close to the quasiparticle, electron-hole continuum. 

In the remainder of this chapter, we describe our approach used to model excitons, 

and present results for singlet and triplet excitons in the Fm3 and Pa3 crystals. We 

illustrate the two kinds of excitons found in this work (Frenkel and charge-transfer), and 

we present an estimate of pressure derivatives for excitons in Pa3 C6o· Several pertinent 

implications and aspects of the results are discussed. 

3.1 Methodology 

The exciton states are solutions of a Hamiltonian, Hex· This Hamiltonian consists 

of three terms, which respectively account for the dynamics of an electron (Hez), of a 

hole (Hhole), and of the electron-hole interaction (He-h): 

(3.1) 

Individually, Hel and Hhole would govern the dynamics of independent quasiparticles: 

a single conduction-band electron or valence-band hole in a fullerite crystal. These 

dynamics are described using a Slater-Koster parameterization of ab initio quasiparticle 

results, presented earlier [24]. Specifically, we have 

(3.2) 
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where R and R' indicate1 unit cells of the crystal, and i and i' indicate T1u orbitals 

of the various molecules in each unit cell. Indices i and i' also include spin degrees of 

freedom. Here fe is the T1u term energy. The t's are transfer (or hopping) integrals 

between molecular orbitals (MO's) on neighboring molecules, so these are non-zero only 

when Rand R' are close. We neglect nonorthogonality of MO's on different molecules. 

Operators a+ and a are electron creation and annihilation operators for the various 

MO's. Analogously, for holes we have 

(3.3) 

Based on quasiparticle calculations, the average Hu-T1u splitting, Ee - Eh, is about 3.03 

eV in fullerite, whereas the measured value of this quantity ranges from 3.5 eV [20] to 

3.7 eV [29]. We use the theoretical value of 3.03 eV in the present analysis. 

Because of the complexity of the electron-hole interaction, we describe it in four 

stages. First, we describe ways of subdividing the electron-hole interaction in order to 

facilitate its calculation. Next, we discuss interactions between the electron and hole 

when they are on different molecules. Then we consider the case of the electron and hole 

on the same molecule. Finally we discuss how solid-state screening effects renormalize 

the electron- hole interaction. After discussing the form of the electron-hole interaction,· 

we briefly mention how the exciton Hamiltonian is solved. 

Our notation is defined as follows. Electron and hole motion are coupled by He-h, 

which we write as: 

- (1) (2) 
He-h - He-h + He-h' (3:4) 

where 

and 

(3.6) 
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Here, 'TRi denotes the location of the molecule associated with the i-th T1u MO in the 

R-th unit cell; there is a corresponding definition for 'TSj which involves the Hu MO's. 

This division of He-h into H!:}h and H!~h is a division into effects occurring when the 

electron and hole are on the same and different molecules, respectively. 

A different conceptual subdivision of the electron-hole interaction is also worth not

ing. The interaction may be divided into direct and exchange parts [30]. This distinction 

is important, since one must carefully consider how each part is to be screened. In this 

work, Hex is really an effective Hamiltonain describing the low-lying excitons formed 

from Hu --+Tlu electron promotions. All virtual promotions besides Hu --+Tlu serve 

to renormalize the properties of the Hu hole and T1u electron, and lead to a new effec

tive electron-hole interaction which is reflected in Hex· In the C6o molecule, whether in 

the vapor phase or solid state, care must be taken to include the effects of these many 

other, possible promotions: only these promotions are treated collectively in screen

ing the exchange effective electron-hole interactions, whereas all promotions are treated 

collectively in screening of the effective direct interactions. 

This particular screening of the exchange parts would not be appropriate in treat

ments of excited states of molecules and solids involving the full Hamiltonians with bare 

electrons and holes [30, 31]. Yet, as described above, we use an effective Hamiltonian 

which treats only the dynamics of the T1u electron and Hu hole with an effective fun

damental interaction that is screened by the remainder of the system. Our screening 

of the exchange parts is not novel. It is highly analogous to a similar screening of the 

effective fundamental interaction between valence electrons within the core-polarization

potential fashion of core- valence· partitioning (as well as analogous to the screening of 

the fundamental interaction between 7!'-electrons when (j and 7r electrons have been 

similarly partitioned). As was explicitly derived within the core-polarization- potential 

framework, evaluation of the dielectric response of a semiconductor using the random

phase approximation resulted in a screening, because of core-polarization effects, of the 
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exchange part of the (valence) electron-(valence) hole interaction [32]. [To clarify this 

(standard) terminology, we note that only the exchange part of the electron-hole inter

action is included within the random-phase approximation.] 

Consider the case when TRi and TSj correspond to different molecules. Then for the 

screened interaction, W, we include interactions between the monopole moments of the 

T 1u or Hu charge distributions on each molecule. This screened interaction includes a 

term equal to -e2 /[47rEoiTR; - TSi 1], plus a term accounting for solid-state screening 

effects, which will be described below. Our H~~h affects the direct part of the electron 

hole interaction, because of the minimal spatial overlaps between orbitals on different 

molecules. 

One might also consider multipolar contributions to intermolecular Coulomb inte-

grals. Such contributions could influence exciton band widths. However, we presume 

that they are quite small, and do not consider them further. In our model, therefore, 

exciton band widths are determined by single-particle hopping through Het and Hhole· 

A Frenkel exciton can move from one molecule to its neighbor via successive hops of the 

electron and hole. 

If TR; and Tsi correspond to the same molecule, the electron- hole interaction is of 

the form: 

~·~' ··' = f; .. ,s .. , [q>0 -Ax ( e
2 

)] +A(P .. , +A'(~ .. ,. (3.7) 
u ,JJ u JJ 47rEoRo u ,JJ u ,JJ 

The term q>0 accounts for the solid-state screening effects which occur when the elec-

tron and hole are on the same molecule. The parts scaled by the factor A represent 

monopole (first term) and multipole (second term) contributions to the intramolecular, 

direct electron-hole interaction. The parts scaled by the factor A' represent multipole 

parts of the intramolecular, exchange electron-hole interaction. Modulo scalings by A 

or A', intramolecular interactions are computed within the Parr-Pariser-Pople approach 

[33], which involves a parametrization of multi-center Coulomb integrals for 1r-electron 
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systems. Ref. [33] presents several sets of parameters appropriate for use in calculations 

with neglect of differential overlap, an assumption made in this work. We use parameters 

given by Lowdin, whereas a different set of semi-empirical parameters gives somewhat 

different results. To illustrate this, approximate level schemes for triplet and singlet ex-

citons in the Pa3 structure are shown in Fig. 3.3 as we continuously interpolate between 

Lowdin's and the semi-empirical parameters [33]. Notably, the nearly degenerate T 19 

and T29 singlet levels can change order. 

One may be justifiably concerned with the use of intramolecular electrons, based on 

studies of benzene, in the study of C6o· However, the parameters are fairly independent 

of the 1r-electron system studied, in part since the associated Coulomb integrals approach 

a form of e2 jd, where d > 0.3 nm is the distance between two carbon atoms. Therefore, 

the systematic uncertainty ofour extrapolation of parameters from benzene to C6o is 
' 

indicated by the effects in the above comparison of Lowdin's parameters and the semi-

empirical parameters. To improve precision would require detailed, quantum-chemical 

treatment of intramolecular correlation that is well beyond the scope of this work. 

In Fig. 3.3 and throughout this work, intramolecular direct integrals are scaled by 

the factor A, to achieve the correct interaction as determined from measurements of 

the lowest triplet state in vapor-phase C6o· Haufier et al. [34] found that the lowest 

triplet state lies 1.7 eV above the molecular ground state in the vapor phase. With 

an ionization potential, 7.6 e V [35], and electron affinity, 2. 7 e V [36], this implies an 

electron-hole attraction energy c.:~ 7.6 eV - 2.6 eV - 1.7 eV = 3.3 eV. Without any 

scaling, the Lowdin parameters would give an attraction energy of 3.98 eV. Therefore, 

we use A = 0.83 for those parameters. This scaling compensates for the lack of a more 

complete treatment of intramolecular correlation effects. 

The scaling of the exchange parts of the electron-hole interactions by the factor 

A' requires further motivation. We cannot have A' =A exactly, because A reflects 

screening effects via all virtual Hu ~ T1u promotions, whereas A' should not. Rather, 
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Figure 3.3: Approximate dependence of approximate singlet and triplet level schemes 

(for crystal momentum, q = 0, in the Pa3 structure) on the Parr-Pariser- Pople param-

eters used for 1r-electron multi-center intergrals. The parameter TJ defines the admixture 

of Lowdin and semi-empirical ( cf. Ref. [33]) parameters used in weighted average of 

these two sets, where Lowdin's parameters are given weight (1-TJ), and the latter, weight 

TJ· Exciton symmetries are indicated, and splittings within each complex (e.g. T 29 ) are 

suppressed in the presentation, to clarify the dependence of results on the parameters. 
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we would expect A < A' < 1. However, because A is close to 1 and because of the great 

number of promotions other than those Hu - T1u promotions which form excitons, 

many of which are only a few electron volts above the band gap, we expect A' "' A. 

The validity of such an approximation is supported a posteriori by the accuracy of our 

predicted 3T29 - 1T29 interval. Although it is conceptually important that A and A' 

differ, better knowledge of the latter is not helpful in this system: because variation of 

A throughout its possible range would affect the exciton-level energies by percents of an 

electron volt, any uncertainty in A' will contribute minimally to our other systematic 

uncertainties. 

We now discuss solid-state screening effects on W in H~~h and H~~h' and the eval

uation of q,O· Consider He-h acting on a given configuration in which the electron 

and hole are respectively in some pair of T1u and Hu MO's. There may be rrmltipo

lar contributions to intramolecular electron-hole interactions. Beyond that, the form 

of He-h implies that its action is simply multiplicative; it will not produce a different 

configuration. This multiplicative action of He-h is modified by solid-state screening 

effects, which are effective screening of the electron-hole interaction via induced molec

ular dipoles. Each molecule develops a dipole because of the fluctuating electric fields 

of the electron, the hole, and other molecular dipoles. However, solid-state screening 

effects are presumably negligible for intramolecular multipolar interactions between the 

electron and hole. 

For computing solid-state screening effects, electric fields of the electron and hole 

may be approximated by the associated MO's having spherical probability distributions 

on each molecule. This leads to polarization of molecules in the vicinity of the electron 

or hole, whereas there is no contribution by a particle to the electric field at the center 

of a MO's probability distribution. Also, interactions between molecular dipoles are 

assumed to be adequately treated in a point-dipole picture [37]. Suppose the electron 

and hole are located on molecules at positions re and rh, while the molecular dipole of 

27 



CHAPTER 3. EXCITONS AND OPTICAL ABSORPTION EDGE 28 

a molecule at position r is indicated by p( r). Then we have, 

a: [e(re- r) e(rh- r) ~ , 1 l 
p(r)=-4- I 13-1 13-L...V'T(p(r)·V"_,)I 'I. 

7r€Q re - r rh - r 1 r - r 
'T 

(3.8) 

Given electron and bole coordinates, all molecular dipoles are determined simultaneously 

and self-consistently using the above relation. We use the theoretical, static molecular 

polarizability, a:, and restrict ourselves to linear response theory. The value of a: used, 

given by Pederson and Quong [38], includes all intramolecular electron-electron inter-

actions within the random phase approximation. Computation of solid-state screening 

effects follows straightforwardly for a finite solid. Application of appropriate boundary 

conditions permit us to extrapolate these effects to what they would be in an infinite 

solid, or as is appropriate at a surface, a semi-infinite solid. 

The induced dipoles' potential is the sum of a potential induced by the electron and 

a potential induced by the bole. To obtain solid-state screening effects on the electron-

bole interaction, we include half of the dipoles' potential as felt by the electron, which 

would arise because of the bole alone, and half of the dipoles' potential felt by the bole, 

which would arise because of the electron alone. (These two terms are equal within the 

model. The electron and hole self-energy effects, i.e. effects of each particle feeling the 

dipole potentials caused by itself, are already incorporated in the model through Het 

and Hhole·) 

The solid-state screening effects involve a dynamical screening of the electron-hole 

interaction: these effects depend on the fluctuating electron and hole coordinates, as 

opposed to the expectation value of the total, exciton charge distribution. This fact 

notwithstanding, we only need to use the static molecular polarizability in the present 

model, since electron and hole dynamics are slow compared to the dynamics of the 

relevant collective electronic molecular excitations. At large Ire - rhl, the solid-state 

screening effects converge to the correct, asymptotic limit, in which the electron-hole 

interaction is -e2 /[( 47rE) Ire - rhl], where E, the dielectric constant, is related to the 
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molecular polarizability, a, through the Clausius-Mossotti relation. 

We solve Hex with the following, general form of exciton wave function: 

(3.9) 

The exciton has total crystal wave vector, q, which is a good quantum number in a 

periodic system; n distinguishes the various exciton states having a given q. Summation 

of R over unit cells establishes the crystal wave vector of the exciton, and summation 

over values of S permits the hole and electron to be in different unit cells. In practical 

calculations, we truncate the range of S, and this truncation is progressively relaxed to 

insure that each exciton wave function achieves the desired degree of relative electron-

hole separation. By summirc ;)\"er i and j, we consider every possible pair of Hu and 
' 

T 1u MO's lying within each pair of unit cells, R and R + S. Operators a+ and b+ 

act on the crystal ground-state wave function to create all desired electron-hole pairs 

·states. The C-coefficients weigh these pair states according to their amplitudes in the 

stationary solutions of Hex· Solution for singlet or triplet exciton levels may be carried 

out using pre-selected combinations of the C-coefficients which project onto a given 

S- Sz subspace. Solving Hex, which in this work involves evaluating up to about 10,000 

degrees of freedom, is accomplished by iterative diagonalization techniques. Exploiting 

the sparseness of Hex significantly reduces the required computational resources. 

In the set-up of Hex, one must be careful to include time-reversal effects when describ-

ing the hole dynamics, if these dynamics are derived from an electron band structure. 

Also, one needs to be· mindful of possible phase shifts related to q when the electron 

or hole move between adjacent unit cells. Finally, care must be taken to account for 

the Fermi statistics in the signs of He-h matrix elements for singlet- and triplet-exciton 

cases. Due attention to all of these issues is tedious but straightforward. 
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Figure 3.4: Level scheme (for crystal momentum, q = 0) singlet and triplet excitons in 

Pa3 structure of C6o. Symmetries of Frenkel exciton levels are indicated. Higher-lying, 

charge-transfer excitons, whose formation requires about 2.33 eV excitation, possess 

more similar level schemes for singlet and triplet states. The quasiparticle band gap is 

indicated (at 2.52 eV), although this gap is not neccessarily direct in the Pa3 structure. 

3.2 Results 

Except for the results in Fig. 3.3, all .results are based on Lowdin's parameters 

[33]. In Fig. 3.4, we present computed level schemes for singlet and triplet excitons 

in Pa3 C60 [39]. In the Fm3 structure, the lowest exciton levels are typically 0.05 

eV lower than those given in Fig. 3.4. Experimentally, the lowest triplet and singlet 

excitons for Pa3 C60 have energies of 1.55 eV and 1.83 eV, respectively. Here, they 

are predicted to be 1.30 eV and 1.58 eV, respectively. The singlet-triplet splitting is 
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therefore accurately predicted. While we find the lowest singlet exciton levels have T 29 

symmetry, the T19 excitons are quite close energetically, and the relative ordering of 

excitons with these two symmetries depends sensitively on the detailed treatment of the 

interactions, as discussed previously and illustrated in Fig 3.3. In these regards, one 

might also compare the various results cited in Ref. [39]. Therefore, our results do not 

establish which symmetry corresponds to that of the lowest-lying, singlet exciton. 

In Fig. 3.5, we illustrate the dependence of exciton-level energies on the maximum 

allowed electron-hole separation. Compared to when the electron and hole are con

strained to be on the same molecule, the energies of the actual Frenkel excitons are 

lowered by 0.1 eV to 0.2 eV. This lowering may be estimated by using second-order 

perturbation theory; We consider as an unperturbed Hamiltonian one which is equal to 

Hex, but with all transfer integrals reset to zero, and we include effects of the transfer 

integrals perturbatively. In order of increasing energy, stationary solutions of such a 

zero-transfer-integral Hamiltonian are excitons with purely Frenkel character, then ex

citons with purely charge-transfer character, and so forth. Once one includes the true 

transfer integrals as a perturbation, the energies of Frenkel excitons will be affected by 

approximately Zlti 2 j(U- V). Here, Z is the molecular coordination number, and tis 

a typical transfer-integral magnitude. U and V are the electron-hole interaction when 

the electron and hole are on the same molecule and on adjacent molecules, respectively. 

Both U and V are negative, and U is larger in magnitude than V. 

Correspondingly, one would expect exciton band widths to be larger in the Fm3 

crystal than in the Pa3 crystal, because transfer integrals (and electron and hole band 

widths) are larger in the former structure. We find this to be the case. For example, the 

T 29 exciton band width is roughly 60 meV in the Fm3 structure, vs. roughly 20 meV 

in the Pa3 structure. We present the exciton bands for the Pa3 structure in Fig. 3.6. 

(The energies of Frenkel excitons should likewise be lower in the Fm3 structure than in 

the Pa3 structure, as has already been noted.) 
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Figure 3.5: Dependence of (q = 0) exciton energies, in Fm3 structure, on the maximal 

range of wave-function cut-off, S. As suggested by this plot, only the T29 , T 19 and G9 , 

singlet excitons have nearly complete Frenkel character in the Fm3 structure, whereas 

the H9 excitons acquire considerable charge-transfer character. The horizontal, dashed 

line indicates the theoretical, Fm3 quasiparticle band gap. 
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Figure 3.6: Exciton energy bands in Pa3 structure of C60 . In order of increasing energy, 

the bands depicted are for singlet excitons with T29 , T 19 and G9 symmetry. In units 

of 2-rr j a, where a is the lattice constant,r, X, M and R correspond to crystal momenta 

(0,0,0), (1/2,0,0), (1/2,1/2,0), and (1/2,1/2,1/2). 
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Using the present model, we can estimate the pressure derivatives of exciton energies. 

Pressure derivatives arise from the dependence of transfer integrals on the separation 

between adjacent molecules. Within local-density-functional theory [40], which reliably 

estimates the effects of compression on band energies [41], Hu and T 1u band widths vary 

(approximately) inversely with the third power of the molecular volume [42]. Therefore, 

the effects of intermolecular hopping on exciton energies should vary inversely as the 

sixth power of the molecular volume, since they vary as the squares of the transfer 

integrals. If we take the bulk-modulus of solid C6o to be 10.3 GPa [43], the model 

predicts that the pressure derivatives for T29 , T19 and G9 exciton energies for Pa3 C60 

are -44 meV /GPa, -44 meV /GPa, and -54 meV /GPa, respectively. This is in reasonable 

agreement with the observed pressure derivatives, -45 meV /GPa ± 5 meV jGPa, -60 

meV /GPa ± 8 meV jGPa, and -80 meV /GPa ± 10 meV /GPa, of the three spectral 

features near the absorption edge of the Pa3 structure [27]. 

3.3 Discussion 

A strong Frenkel character of low-lying excitons in the fullerites is suggested by 

experiments measuring the Zeeman effect [27], and by the remarkable similarity of optical 

absorption spectra for C6o in the solid state and dissolved in n-hexane as well as other 

solutions [44]. Whereas optical spectra primarily probe singlet excitons, we note that the 

1.55 e V required to form a triplet exciton in the solid in electron energy-loss experiments 

is close to the 1. 7 e V required in the vapor phase. These C6o Frenkel excitons are 

aptly described in the fashion used by Knox [45] regarding Frenkel excitons in other 

molecular solids. That is, the formation of an exciton does not necessarily imply a 

substantial alteration in the charge distribution in the solid, but perhaps only a more 

subtle rearrangement of internal molecular degrees of freedom. On the simplest level, 

energies required for formation of both triplet and singlet excitons exhibit a 0.1 e V to 
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0.15 eV downward shift in the solid, if one considers results for isolated C60 molecules 

and C6o molecules in the solid state. This red-shift is commonly attributed to the Frenkel 

excitons having some charge-transfer character in the solid. 

An unresolved issue in this work which we have yet to mention is the role of quantized 

vibrations in measured excitation spectra. Phonons are believed to account for the 

observed cross-sections for creating the lowest-lying, parity-forbidden excitons by optical 

means, whereas electric-quadrupole effects would produce much smaller cross-sections. 

Vibrations also cause absorption spectra to exhibit many more lines than the discrete 

lines predicted theoretically, which is direct evidence for Herzberg-Teller mechanisms. 

The variation of the absorption coefficient for the exciton bands reflects the relative 

electron-phonon coupling strength, since simple consideration of excitonic density of 

states (Fig. 3.1) do not explain the differences. 

The electron-phonon interaction is also evident in the temperature variation of the 

optical transitions. We can write, for any transition energy Eo (n is the system volume): 

(aEo) = 2. (an) n (aEo) + (aEo) , 
ar P n aT P an r aT n 

(3.10) 

where the temperature coefficient is decomposed into an extrinsic part (first term above) 

due to thermal expansion of the lattice at constant pressure, and an intrinsic part 

due to the electron-phonon interaction at constant volume. The extrinsic part can be 

evaluated with the temperature-dependent thermal expansion coefficient [46], the bulk 

modulus for the different phases [43], and the pressure coefficient of the transition energy. 

These quantities are not determined with good accuracy and are temperature dependent 

(especially across the phase transition). We assume constant values for them, and have 

checked that our conclusions do not depend on this crude choice. The integral, 

{T (aE0 ). 
Iel-ph = Jo 8T n dT (3.11) 

can then be evaluated for different values of the absorption coefficient specific to the 

structures A, B, and C. The results are displayed in Fig. 3. 7. It is clear that the intrinsic 
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Figure 3. 7: Intrinsic contribution of the electron-phonon interaction to the transition 

energy vs. temperature for constant values of the absorption coefficient a. 
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part of lei-ph is a monotonically increasing function of temperature that undergoes an 

abrupt increase at the orientational order/ disorder phase transition. This interaction is 

also specific to the symmetry of the excitonic state and appears to be significantly more 

important for the exciton A. 

The increase of lei-ph with temperature can be understood from the theories of Fan, 

and Brooks and Yu [47], as applied to excitonic states. In this description, electronic 

states, renormalized by phonons, are shifted to lower energy. As temperature increases, 

the phonon occupation numbers increase, leading to a larger shift in the exciton energies. 

The discontinuity in the energy shifts at the structural phase transition is most likely a 

result of the discontinuous change in the low-energy phonon spectrum, as calculated in 

Ref. [22]. 

3.4 Conclusions 

In summary, we have calculated the properties of excitons in undoped solid C60. 

Our model involves a conduction-band T1u electron and a valence-band Hu hole, whose 

motions are coupled by their mutual attraction. The isolated dynamics of the particles 

were described previously within a quasiparticle approach. The electron-hole attraction 

is modeled using a screened Coulomb interaction. Intramolecular electron-hole interac

tions are described using a semi-empirical Parr-Pariser-Pople scheme. These and inter

molecular electron-hole interactions are screened by the lattice of polarizable molecules. 

We predict that the lowest-lying excitons exhibit a strong Frenkel character, whereas 

some higher-lying excitons exhibit a distinct charge-transfer character. The results for 

Frenkel excitons are consistent with previous studies dealing with isolated C6o molecules 

[39]. The lowest triplet and singlet excitons are found to have T29 symmetry, and can 

be formed with an excitation energy of 1.30 eV and 1.58 eV, respectively. These ener

gies differ from the experimentally measured values by 0.25 eV, and the singlet-triplet 

37 



CHAPTER 3. EXCITONS AND OPTICAL ABSORPTION EDGE 

splitting is accurately predicted. In our results, the T29 and T 19 singlet excitons lie close 

in energy, and their ordering is sentitive to. the precise Parr-Pople-Pariser parameters 

used, so this work does not establish which is actually the lowest. Within the singlet and 

triplet cases, the exciton states characterized by different symmetries (T29 , T 19 , G9 and 

H9 ) span an energy range of several tenths of an electron volt. As a function of crystal 

momentum, exciton energy levels disperse by about 20 meV in the Pa3 structure. 

Since the average HOMO-LUMO separation in solid C6o is around 3 eV, the in

tramolecular electron-hole interaction (or electron-hole, "Hubbard U" parameter) is 

about -1.5 eV. Just as for the electron quasiparticle states in this molecular solid, the 

properties of excitons exhibit a coexistence of features which are characteristic of single 

molecules and of extended systems. 
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Chapter 4 

Carbon nanotubes 

Carbon nanotubes are circular cylinders formed from graphite sheets. At the time of 

this writing, there are three major types of carbon nanotube samples which have been 

produced in the laboratory. The first is multi-walled tubes [10]. These are concentric 

cylindrical tubes with at least two walis, inner radii ,...., 10 - 100 nm, and can be up to 

hundreds of microns in length. A TEM image of such a tube is shown in Fig. 4.1. The 

distance between adjacent concentric walls is always nearly 3.35 A, as for graphite. They 

are grown in a carbon-arc chamber, similar to the one used for making large quantities 

of C6o· The second type is single-walled tubes [11]. Each tube has only a single wall, 

and a radius ,...., 3- 10 A. They are grown with transition metal catalytic particles. A 

TEM picture is shown in Fig. 4.2. The third sample type will be called ropes [48]. A 

rope consists of a triangular array of single-walled tubes with radii ,...., 7.8 A, presumably 

held together by Van der Waals forces. They are very long, and bend continuously along 

their length. A TEM image is shown in Fig. 4.3. These tubes are made with a laser 

vaporization technique using catalysts. 

In order to simplify the theoretical analysis of nanotube properties, we begin by 

describing a classification scheme for tube geometries [13]. We focus on single-walled 

tubes, for multi:-walled tubes and ropes are just collections of single-walled tubes. A 

single-walled carbon nanotube is uniquely defined by its circumference vector, c = na1 + 

ma2, where ai and a2 are lattice translation vectors of a graphite sheet, chosen to be 

60° apart. The atom at position (0,0) is made equivalent to the atom at position (n, m) 

by rolling. The length of c, lei = aJn2 + m2 + nm, becomes the circumference of the 

resulting cylinder. An example is shown in Figs. 4.4, and 4.5. Note that if n =I= m, 
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' 
Figure 4.1: TEM image of a 10-walled carbon nanotube taken by N.G. Chopra. The 

distance between adjacent walls is nearly 3.35 A. 
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Figure 4.2: TEM image of single-walled carbon nanotubes taken by N.G. Chopra. Unlike 

the single-walled tubes of Ref. [11], these tubes were extracted from ropes of single

walled tubes discussed below. 
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Figure 4.3: TEM image of ropes, or arrays of single-walled tubes taken by N.G. Chopra. 

The costituent single-walled tubes have radii "' 7.8 A. 

Figure 4.4: Circumference vector of the (7,1) tube mapped onto a graphite sheet. 
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r . 

Figure 4.5: Atomic structure of the (7,1) tube. 
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and n and m are both different from zero, then the hexagonal carbon rings spiral up 

the tube in a helical fashion. This is refered to as chirality, or helicity. If one of n or m 

= 0, or n = m, then the tube is said to be non-chiral. 

Since carbon nanotubes consist of rolled-up graphite sheets, it is natural to derive 

the electronic structure of single-walled nanotubes from the band structure of single-

sheet graphite [13, 14, 15). In chapter 1, we mentioned that the Fermi level states of an 

undoped graphite sheet have k-vectors that lie on the corners of the hexagonal BZ (the 

points labeled by Kin Fig. 1.6). To determine if the tube with circumference vector c = 

(n, m) (hereafter called the "(n, m) tube") is a metal, we must see if the circumferential 

periodic boundary conditions include these k-points. The sheet wavevector k will be 

included if it satisfies the condition of single-valuedness of the tube wavefunction: 

c. k = 271" J, J = 0, ±1' ±2, ... ( 4.1) 

Plugging in the K-point: 

1 .... 1 .... 1 .... 1 .... 271" 271" 
c · (3b1- 3b2) = (nai + ma2) · (3b1- 3b2) = 3n- 3m= 27TJ, (4.2) 

or, 

n- m = 3J, J = 0, ±1, ±2, ... (4.3) 

The ( n, m) carbon nanotube is metallic if n- m is a multiple of 3, and is semiconducting 

otherwise. An example of this is shown in Fig. 4.6, where the allowed k-vectors for (7,1), 

and (8,0) tubes are overlayed on the graphite sheet BZ. Each line represents a different 

value of J in the equations above. Lines intersect the corners for the (7,1) tube, but 

do not for (8,0). The gap of the (8,0) tube can be estimated by looking at the allowed 

k-points which are closest to the corners. The gap is approximately equal to the energy 

difference between graphite sheet 7T and 7r* (antibonding 7r) states at these k-points. 

The closer the allowed lines come to the corners, the smaller the gap. 

Of course, these arguments only hold for the large radius case. If the tube radius is 

small, then the underlying graphitic. surface is highly curved, and it is no longer correct 
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(7,1) (8,0) 

Figure 4.6: Allowed k-vectors of the (7,1) and (8,0) tubes mapped onto the graphite 

sheet BZ. Some lines intersect the corners for the (7,1) tube, while they do not for (8,0). 

to think of a tube as a sheet with periodic boundary conditions. We will explore some 

of the consequenses of this for tubes with radii < 3 A in the next chapter. For now, 

we note that curvature induces a - n hybridization, or admixture of sp3 into what is 

predominantly sp2• The lowest order effect of a - n hybridization on the above rules 

for metallicity is as follows [14]: (n, m) tubes with n- m = 31, J = ±1, ±2, ... are 

very small- gap semicondutors; only tubes with n = m are metallic. All others are 

semiconductors, as stated above. For example, the (7,1) tube is predicted to have a 

band-gap of "" 0.08 e V when a - n hybridization is taken into account [49]. 

The result of all this is that (n, m) carbon nanotubes with radii > 3 A come in 

three varieties: large-gap, small-gap, and no gap. The large-gap tubes are those with 

n- m :f. a multiple of 3. The small-gap tubes have n- m = a nonzero multiple of three. 

Metallic tubes are of the (n, n) variety, also known as arm-chair tubes. As the tube 

radius, R, increases, large-gap and small-gap varieties both tend towards the zero-gap 

graphite sheet. We can see this explicitly by looking at the periodic boundary condition 

argument. As R increases, lei increases, so the number of allowed J-values increases (see 

Eq. 4.1). Thus, the density of allowed lines increases and the smallest distance between 

a line and the K-point decreases. Since the n-bands disperse linearly away from K 
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(see Fig. 1.4), the tube band gap should be inversely proportional to R. Tight-binding 

calculations of Mintmire et al. [50] predict band-gaps that scale roughly as A/ R, where 

A = 4 eVA for the large-gap tubes, and 0.1 eVA for the small-gap tubes. Similar 

reasoning shows that for metallic tubes, N(EF) oc 1/ R. It should be noted that the 

same circumferential periodic boundary condition arguments can be applied to other 

elementary excitations. In particular, phonon modes of a graphite sheet may be used to 

predict the phonon band structure of carbon nanotubes [51 J. 

The following seven chapters deal with physical properties which are a direct conse

quence of the novel geometric and electronic structures of carbon nanotubes. First, we 

consider the effects of (]' - ?T hybridization on the band structure of very small radius 

tubes. Then we propose heterostructures made from nanotubes which could be used 

as electrical devices. The radius dependence of the low temperature behavior of the 

heat capacity of carbon nanotubes is studied, and we calculate the radius and band-gap 

dependence of the static polarizability tensor for single-walled tubes. This is followed 

by two chapters on carbon nanotube transport properties. The last chapter concerns 

the energetics of a flattened, or collapsed state of nanotubes. 
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Chapter 5 

Electronic structure of small-radius nanotubes 

In the last chapter, we focused on classifying carbon nanotubes as metals or semicon

ductors. Although early work [13, 14, 15] has noted that hybridization of the graphitic 

cr,1r,1r* and cr* states should occur because of the curvature of the tubes, the importance 

of these effects was not fully appreciated. , The tube states near the Fermi level were 

described as chiefly 1r and 1r* states. Recently [11], nanotubes with very small radii were 

experimentally produced, with diameters as small as 7 A. In this chapter, we show that 

sufficiently strong hybridization occurs in such tubes which dramatically changes the 

band structure proposed in previous works. 

We have carried out both ab initio pseudopotential local density functional (LDA) 

calculations and Slater-Koster [52] tight-binding (TB) calculations. We study the tubes 

(n, 0), with n ranging from 6 to 9. As illustrated in Fig. 5.1a, tube (n, 0) corresponds 

to wrapping a section of a graphitic sheet in the indicated orientation with n hexagons 

around the tube circumference. The diameter of these tubes ranges from 4.78 A for (6,0) 

to 7.20 A for (9,0). The LDA electronic structure calculations were performed using a 

planewave basis set. We generated first a semilocal pseudopotential following the scheme 

of Troullier and Martins [53] and made it fully nonlocal according to the Kleinman and 

Bylander procedure [54]. The energy cut-off for the electronic wave-functions was set 

at Ecu.t= 49 Ry leading to an 0.05 eV convergence of the band energies. The very large 

number of planewaves needed for this type of calculation (ranging from 13,500 for (6,0) 

to 19,000 for (9,0)) required the use of an efficient iterative diagonalization scheme [21]. 

The LDA calculations were carried out in a supercell geometry with a hexagonal array 

of tubes, with the closest distance between atoms on different tubes being 5.5 A. This 
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a) 

b) 

Figure 5.1: (a) Unit cell of the (6,0) tube mapped onto the graphite sheet. For the tube, 

point A is rolled onto point B. (b) Brillouin zone of the graphite sheet. The vertical 

lines mark the set of allowed k vectors for the tube 
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permitted the neglect of tube-tube interactions. For the TB calculations, we used the 

first and second nearest neighbor parameters proposed in Ref. [4] for graphite. 

Along the axes of the tubes, the length of the unit cell was set by assuming that the 

49 

tube was generated simply by rolling a graphite sheet segment. Using the Hellmann- ./ 

Feynman theorem, we found that the stresses imposed on each supercell were negligible 

in the axis direction. The most important structural change was the tendency of the tube 

to reduce its radius from that given by the above rolling. This effect was nonetheless 

small, ranging from 1.6 % reduction for (6,0) to nearly zero for (9,0). We found similar 

results within a tight-binding total energy minimization scheme [55]. The effect of this 

relaxation on the electronic band structure was negligible. We also relaxed the internal 

coordinates of the atoms using Hellmann-Feynman forces. The forces were very small, 

and all the atoms remained equivalent within the unit cell. 

Our results for the band gaps are given in Table 5.1, compared with those from 

previous TB work [14]. We find major differences between the results from LDA and 

the TB calculations. The most significant difference occurs for the tube (6,0) which 

has been previously predicted to be a small gap semiconductor [14]. We find in this 

work that, within LDA, tube (6,0) is a metal. In addition, we find that tubes (7,0) and 

(8,0) are semiconductors, consistent with previous calculations, but with a much smaller 

gap than those from TB works. This discrepancy is due to a singly degenerate state 

which is much lower in our LDA calculations than in the TB work. LDA is known to 

underestimate the value of the band gap of many materials, but the narrowing of the 

gap here is due primarily to curvature effects, as evidenced by the dependence on tube 

size. 

In Fig. 5.2 we show the band structure and density of states (DOS) for the tube 

(6,0). The singly degenerate state mentioned above is labeled by (a). At r, this state is 

0.83 eV below the doubly degenerate state that forms the top of the valence band in TB 

calculations. This band overlap makes the tube (6,0) a metal within LDA with a density 
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Table 5.1: Band gap (in eV) of selected tubes. All gaps given are direct and at the 

r-point. For the metallic case, the overlap of the bands is given as a negative gap. 

tube 

(6,0) 

(7,0) 

(8,0) 

(9,0) 

Tight Binding 

Ref. [14] 

""'0.2 

""'1 

1.22 

0.04 

Present calculations 

TB LDA 

0.05 metal (- 0.83) 

1.04 0.09 

1.19 0.62 

0.07 0.17 

of states at the Fermi level equal to D(Ep) = 0.07 statesfeV-atom. For this tube, we 

also performed an independent LDA calculation using a semilocal pseudopotential and 

another diagonalization scheme as described in Ref. [24]. The two LDA band structures 

were in excellent agreement. We also checked that this state is insensitive to the small 

structural relaxation effects described above. 

As we shall show, state (a) occurs in all (n, 0) tubes for symmetry reasons, but its 

energy at r varies with n. For the tubes (7,0) and (8,0), state (a) does not close the 

gap, but reduces significantly its value as compared to TB calculations. For these two 

tubes, the state (a) at r lies between the two doubly degenerate states that form the 

HOMO and LUMO states in TB calculations. This state reduces the TB gap by 1 eV 

for (7,0) and by 0.6 eV for (8,0). For the tube (9,0), the state (a) lies just above the TB 

LUMO state and therefore does not fall within the gap. 

The discrepancy between TB and LDA calculations decreases as the radius of the 

tube increases. This is consistent with the notion that in large tubes with small curva

tures, one obtains a good description of the nanotube band structure by "folding" the 

graphite sheet band structure. However, this idea implicitly relies on the assumption 

that states around the gap or Fermi level are essentially 1r or 1r* derived. This is not true 
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Figure 5.2: Band structure and density of states (statesjeV-atom) for the tube (6,0). 

The energies are in e V and the zero is at the Fermi level. We trace the new band (a) 

around the center of the Brillouin zone as a guide to the eye. 
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Figure 5.3: Contour plot of the charge density for state (a) at r for tube (6,0). The 

contours are in a plane perpendicular to the axis of the tube which contains six carbon 

atoms. The numbers quoted are in units of e/[a.u.]3 . The circle represents a cross section 

of the cylinder on which the atoms lie. 

for small tubes where the curvature is so strong that large hybridization effects occur. 

We show in Fig. 5.3 the charge density distribution for the state (a) at r for the tube 

(6,0). One can see that most of the wave-function is localized outside the tube. If this 

state is mostly 1r or 1r* derived, it should have equal weight inside and outside the tube. 

Detailed analysis of the a*-1r* hybridization in (n, 0) tubes also indicates that this state 

should be mostly outside of the tubes fork-vectors near the tube's zone center. We show 

below that it is crucial to accurately describe the a-* states and their interaction with 

the 1r* complex before one is able to reproduce within TB the behavior of the state (a) 
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in our LDA calculation. 

To study the effects of hybridization on the state (a) of tube (6,0), we begin with 

a planar sheet of graphite with the unit cell described in Fig. 5.1a. Because state (a) 

is singly degenerate, in the "band folding" language, it must be derived from the f-M 

line of the graphite sheet Brillouin zone (BZ), and must occur in all (n, 0) tubes. As 

a result of the boundary conditions of the tube, M is folded onto r. We plot in Fig. 

5.4a the corresponding TB bands along the f-X direction of the tube (see Ref. [14]). 

From the symmetry of the tube, singly degenerate states only mix with each other and 

not with states of higher degeneracy, so only these need be considered in the analysis 

of the behavior of state (a). The dashed lines are the singly degenerate bands coming 

from the folding of the 1r* and a* graphite bands along the f-M line of the hexagonal 

graphite BZ (Fig. 5.1b) onto the f-X line of the tube BZ. Next we bend this graphite 

sheet along the AB direction while imposing the proper periodic boundary conditions 

in order to mimic a continuous transformation of the graphite sheet onto the (6,0) tube. 

This procedure distinguishes the zone folding from the curvature. 

Fig. 5.4 illustrates the evolution of our TB band structure under this transformation 

for two of these "intermediate" structures. Their radii of curvature are between R = oo 

of planar graphite (Fig. 5.4a) and R =2.39 A of tube (6,0) (Fig. 5.4d). For a curved 

sheet of graphite, the 1r* and a* states mix and repel each other, resulting in a lowering 

in energy of the (originally) pure 1r* states. It is the lower hybridized 1r* band which 

gives rise to the singly degenerate state (a) near EF in the LDA calculation. Therefore, 

within the TB Hamiltonian of Ref. [4], this state does exist, but it is not low enough in 

energy to make the tube metallic as found in the LDA calculation. We note also that, 

with a localized basis set limited to 2s and 2p orbitals, TB calculations are unable to 

describe large charge transfer asymmetrically away from the atoms. However, in our 

LDA calculations, we find the total potential to be locally symmetric inside and outside 

the tube so that the localization of the state (a) outside the tube must be mainly due 
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R=oo R=7.2A R=3.6.A R=2.4A 
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Figure 5.4: Evolution of the graphite TB bands near the Fermi level for the (6,0) 

geometry under increasing curvature. Energies are in e V and the zero is set at the 

Fermi level. The dashed curves mix strongly with each other due to curvature. In an 

LDA calculation, the lower one would span the gap. The radii of curvature are indicated. 
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to hybridization and not electrostatic effects. Similar studies have been made for tubes 

(7,0), (8,0), and (9,0), yielding similar results. 

Some workers [56, 57] have recently suggested that very small radius tubes may not 

be energetically stable. It is argued that at some critical radius the elastic strain energy 

per atom stored in the rolled sheet would be larger than the dangling bond energy per 

atom for the fiat graphitic strip obtained by "cutting" the tube along its cylindrical axis. 

In order to address this question for the tubes of our study, we carried out LDA total 

energy calculations for our smallest tube (6,0) with radius 2.39 A, and its corresponding 

strip and found that the tube is energetically more stable than the strip. This implies 

that the critical radius below which tube energy exceeds strip energy for (n, 0) tubes is 

less than the (6,0) radius. The result is in agreement with the conclusion of a previous 

classical force-field calculation [56] which predicts the critical radius to be "' 2 A, in 

contradiction with the semi-empirical calculation of Ref. [57] which predicts "' 3.85 A. 

However, we stress that as long as the tube and strip energies are comparable, kinetic 

effects will still dominate the growth process. Thus, total energy comparisons may not 

be relevant to the question of tube formation. 

In conclusion, large tr*-u* hybridization can occur in small nanotubes which drasti

cally changes the electronic band. structure from that obtained by simply "folding" the 

graphite sheet band structure. These effects are demonstrated in our study of tubes 

(6,0) to (9,0), some of which are comparable in size to the smallest tube experimentally 

observed thus far. Our results show that, for this class of tubes, hybridization changes 

the energy and character of the lowest lying conduction band states with important 

consequences to the metallicity and transport properties of the tubes. An implication 

of this result is that hybridization could also play an important role in doped small 

nanotubes with metallic dopants either inside or on the tubes. 
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Chapter 6 

N anotube heterojunctions 

In the last two chapters, we have seen that helicity has a profound effect on the 

electronic structure of carbon nanotubes[13, 14, 15]. All non-chiral, armchair (n, n) tubes 

are metals. Excepting those of very small-radius[58], all moderate-radius (n, m) tubes 

with n- m a nonzero multiple of three are small gap semiconductors or semimetals[13]. 

The remaining tubes are semiconductors with band gaps roughly proportional to the 

reciprocal of the tube radius[50]. 

Instead of comparing the electronic structures of tubes with different helicities, we 

consider changes in helicity within a single tube. The chirality of a tube can be changed 

by introducting topological defects into the hexagonal bond network[59]. The defects 

must induce zero net curvature to prevent the tube from flaring or closing. Minimal 

local curvature is desirable to minimize the defect energy. The smallest topological 

defect with minimal local curvature and zero net curvature is a pentagon-heptagon 

pair. A pentagon-heptagon defect pair with symmetry axis nonparallel to the tube axis 

changes the chirality of a nanotube by one unit from (n, m) to (n ± 1, m =t= 1). Fig. 6.1 

shows an (8, 0) tube joined to a (7, 1) tube. The highlighted atoms comprise the defect. 

We denote this structure by (8, 0)/(7, 1), in analogy with interfaces of bulk materials. 

Within tight binding, far from the interface the (7, 1) half-tube is a semimetal and 

the (8, 0) half-tube is a moderate gap semiconductor. The full system forms a quasi-

1D semiconductor/metal junction. Unlike most semiconductor/metal junctions[60], the 

(8,0)/(7, 1) junction is composed of a single element. 

We use a tight-binding model with one 1r-orbital per atom along with the Surface 

Green Function Matching method (SGFM)[61] to calculate the local density of states 
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Figure 6.1: Atomic structure of an (8,0)/(7,1) tube. The large light-grey balls denote 

the atoms forming the heptagon-pentagon pair. 
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(LDOS) in different regions of two archetypal (n1, m1)/(n2, m2) systems. In particular, 

we examine the (8, 0)/(7, 1} semiconductor/metal junction and the (8, 0)/(5, 3) semi

conductor/semiconductor junction formed with three heptagon-pentagon pairs. In both 

cases the unit cells of the perfect tubes match at the interface without the addition of 

extra atoms. 

The unit cells of the perfect (7, 1) and (8, 0) half-tubes may be matched uniquely 

with a single pentagon-heptagon pair. The interface between the unit cells of the (8, O) 

and (5, 3) half-tubes contains three heptagons, three pentagons, and two hexagons. Two 

different matching orientations are possible: one with the two hexagons adjacent, the 

other without. We choose to study the configuration in which the hexagons are separated 

from each other. The sequence of n-fold rings around the circumference is then 6-7-5-6-

7-5-7-5. 

In the 1r-electron approximation of tight binding[62) the (8, 0) tube has a 1.2 eV 

gap[13] and the (7, 1) tube is a semimetal. Within tight binding, these tubes form 

an archetypal semiconductor/metal junction. We note that curvature-induced u - 1r 

hybridization modifies these band gaps. In particular, within the local density approxi

mation (LDA) the gap of the (8, 0) tube is 0.62 eV[58] and the (7, 1) tube is a small-gap 

semiconductor[50]. For the purposes of examining the generic, qualitative features of 

carbon nanotube heterojunctions, we restrict ourselves to the 1r-electron tight binding 

treatment in which (8, 0)/(7, 1) is a semiconductor/metal junction. Within the same 

picture, the band gap of the perfect (5,3) tube is 1.4 eV[63], 0.2 eV larger than that of 

the (8, 0) tube. The (8, 0)/(5,3) junction therefore provides a prototypical example of a 

semiconductor heterojunction. 

We examine the local density of states in various regions on both sides of the 

(8, 0)/(7, 1) and (8, 0)/(5, 3) junctions. Our 1r-electron tight-binding Hamiltonian is of 
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the form 

H =- Vpp1T Lai+aj + c.c. (6.1) 
(ij) 

where i and j are restricted to nearest neighbors, and Vpp1r = 2.66 eV[64]. The on-

site energy is set equal to zero. Within this theory, graphite sheets and defect-free 

nanotubes have complete electron-hole symmetry with their Fermi levels at zero. All 

nearest-neighbor hoppings are taken to be equal, independent of the length, location 

and orientation of the bonds on the matched tubes. Deviations in bond lengths due to 

reconstruction near the interface are neglected. Hence, we study the changes in local 

electronic structure solely due to changes in the connectivity of the lattice. 

To determine the LDOS of two joined semi-infinite tubes, we calculate the Green 

function using the SGFM method. Details about this formalism can be found elsewhere 

[61]. The SGFM ,technique allows us to calculate the Green function of a composite 

system formed by joining two semi-infinite media from the Green functions of the two 

infinite constituent systems. Thus, knowing the Green functions of the pure ( n 1 , m 1 ) 

and ( n2, m2) tubes, we can easily construct the Green function of the system formed 

by joining two semi-infinite tubes, (n1, m1)/(n2, m2). Knowledge of the Green function 

allows us to extract the local density of states at any site on the matched structure. 

The results for the (8, 0)/(7, 1) matched tube are plotted in Figs. 6.2 and 6.3. Fig. 

6.2 shows the unit-cell averaged LDOS for three unit cells of the (8,0) half of the matched 

tube, and for comparison, the DOS of a perfect (8,0) tube. The unit cells are numbered 

beginning from the junction, so cell 1 of (8,0) is at the interface, in contact with cell 1 of 

(7,1). We average the LDOS over each cell because quantum interference effects distort 

the LDOS on individual atomic sites. The unit cell of the (8,0) tube is a circumferential 

ring of hexagons containing 32 atoms. As the unit cell of the (7,1) tube has 76 atoms, we 

choose in Fig. 6.3 to plot the LDOS for on the (7,1) side averaged over 32-atom rings. 

In this way the local densities of states on either side of the system can be directly 
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cell 1 
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Figure 6.2: Results for the (8,0)/(7,1) metal/semiconductor tube. From top to bottom, 

LDOS at cells 1, 2 and 3 of the (8,0) side, and DOS for a perfect semiconducting (8,0) 

tube. 
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Figure 6.3: Results for the (8,0)/(7,1) metal/semiconductor tube. From top to bottom, 

LDOS at rings 1, 2 and 3 of the (7,1) side, and DOS for a perfect metallic (7,1) tube. 
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compared as a function of distance from the interface. 

In Fig. 6.2 we see that the LDOS on the (8,0) semiconducting side of the junction is 

most distorted in cell 1, the region nearest the interface. For all the cells, the difference 

from the perfect-tube DOS is biggest for energies near the gap. In particular, cell 1 

shows allowed states in the energy range of the gap of the infinite (8,0) tube. These 

metal-induced gap states[65] are characteristic of a metal-semiconductor junction. These 

states swiftly disappear as we move into the semiconductor, as shown in the plots for cells 

2 and 3. Moving away from the interface, the perfect-tube DOS features are recovered: 

in cell 3, all the van Hove singularities of the infinite tube can be clearly identified. 

Unlike the semiconductor side of the system, the LDOS around the Fermi energy (0 

eV) in the (7,1) half-tube remains largely unchanged. In ring 1, most of the van Hove 

singularities present in the perfect (7,1) tube DOS are smeared out, with the exception 

of those at the highest and lowest energies. As expected, the features of the infinite 

(7,1) tube are gradually recovered when moving away from the defect region. All the 

features of the perfect (7,1) system are identifiable in ring 3. 

The results for (8, 0)/(5, 3) semiconductor/semiconductor heterojunction are plotted 

in Figs. 6.4 and 6.5. As for the previous case, we plot the LDOS at the (5,3) side 

averaged over 32-atom closed rings, instead of unit cells. Two defect states appear 

in the gap near the interface. The geometric distortions due to the three pentagon

heptagon pairs in the matching region create states in the gap in a manner similar to 

that seen in bulk semiconductor interfaces. As we have not changed the bond distances 

at the matching region, we attribute the appearance of these states to the changes in 

the lattice connectivity, that is, to the alteration of the network topology. We expect 

these interface states to pin the Fermi energy of the system[66]. 

The interface states have maximal local density of states in cell 1 of the (8,0) tube, 

the narrow-gap semiconductor of the junction. Their amplitudes are appreciable in 5 

consecutive 32-atom rings, a 12 A length along the tube axis. The amplitudes decay 
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cell 1 

cell 2 

cell 3 

perfect (8.0) lube 

8:-~t: WJ:::rw j 
-10 -5 0 5 10 

Energy(eV) 

Figure 6.4: Results for the (8,0)/(5,3) semiconductor/semiconductor tube. From top to 

bottom, LDOS at cells 1, 2 and 3 of the (8,0) side, and DOS for a perfect semiconducting 

(8,0) tube. 
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ring 1 
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Energy(eV) 
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Figure 6.5: Results for the (8,0)/(5,3) semiconductor/semiconductor tube. From top to 

bottom, LDOS at rings 1, 2 and 3 of the (5,3) side, and DOS for a perfect semiconducting 

(5,3) tube. 
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faster in the (5,3) side of the system. This behavior is to be expected, for (5,3) is the 

wide-gap semiconductor of the junction. As already seen in the previous system, the 

LDOS in the interface region is the most distorted; the pure (5,3) and (8,0) features 

appear when moving far from the defect region. 

Chirality-changing pentagon-heptagon defects provide a wide range of device pos

sibilities for doped and undoped carbon nanotubes. By arranging these defects along 

the length of a carbon nanotube one could modulate the electronic structure and gen

erate a variety of carbon-based quasi-lD quantum wells and superlattices with band 

offsets of "'0.1 eV. Assuming a suitable third terminal could be introduced adjacent to 

a semiconducting barrier within a metallic nanotube, one can easily envision a gated 

conductive channel. The Fermi level of a metallic pure carbon nanotube lies within the 

gap of a similar semiconducting tube. As such, either n-type or p-type doping of the 

semiconducting side of a metal/semiconductor interface should yield a device similar to 

a Schottky barrier. 

In summary, we have proposed a new type of metal/semiconductor or semiconduc

tor/semiconductor junction, made of a single element, and based solely on the introduc

tion of topological defects in the hexagonal graphite network. We have calculated the 

LDOS within the tight-binding approximation for two archetypical systems, showing 

the appearance of metal-induced gap states in a metal/semiconductor tube, and inter

face states in a semiconductor/semiconductor system. If produced, these could be the 

building blocks of nanoscale semiconductor devices. 
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Heat capacity 

It has been shown that tubes with radii R > 3A have excitation spectra which 

closely resemble those of a graphite sheet with the proper periodic boundary .conditions 

imposed. This has the interesting consequence that nanotube electronic band structures 

can have band gaps of anywhere between 0 and"' 1 eV, depending on tube radius and 

helicity. The phonon bands are also radius and helicity dependent, but the low frequency 

acoustic modes always have w- 0 ask- 0 (for a tube of infinite length). 

The heat capacity; Cv = Ef%, iv, is a quantity which directly reflects the details of 

the excitation spectrum. In particular, the low temperature behavior of Cv contains 

information regarding the type of excitations involved, and the dimensionality of the 

system. Because nanotubes are quasi-one dimensional (lD) systems consisting of rolled

up 2D sheets, they are expected to exhibit both lD and 2D behavior. This is in contrast 

to the 2-30 behavior of bulk planar graphite. 

In this chapter, we estimate the radius and helicity dependence of the low tempera

ture behavior of Cv for carbon nanotubes, and deduce the range of R and T in which 

we expect it to be measurably different from that of graphite. We first consider single 

graphite sheets and single-walled tubes. Then we briefly discuss the more complicated 

cases of bulk graphite and multi-walled tubes. For small-radius tubes, it is shown that 

significant deviations from graphitic behavior should appear for presently accessible val

ues of Rand T. 

For graphite and related systems, the heat capacity can be written as 

(7.1) 
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where Cph is the contribution due to phonons, and Gel is the contribution from electrons. 

If T < < 0 (De bye temperature), the phonon contribution for an isotropic D-dimensional 

system is 

D7rlfrv..kBD+ITD 1oo xD+lex 
C h = dx-:-----:-:::-

P (27r)D (-~)! n_DvD 0 (ex- 1)2 
. (7.2) 

where n is the D-dimensional system volume, >. is the number of acoustic phonon polar-

izations, vis the sound velocity (assumed to be isotropic and equal for all polarizations), 

and kB is Boltzmann's constant. For a 2D sheet of graphite with area A, this becomes 

3AkB3T 2 
Cph = 

2
1rh2v 2 x (7.212), T<<B (7.3) 

We will use v "' 106 em/ s and e"' 1000 K. These values are determined by estimating 

an average of the sound velocity over the different polarization branches calculated by 

an ab initio frozen phonon technique[67]. 

The electronic contribution to the heat capacity for a system with density of states 

N(E) is[68J 

(7.4) 

·where f is the Fermi-Dirac function. Near EF, the electronic states of an undoped 

graphite sheet are 1r-electron states with energies that disperse linearly away from a 

pointlike Fermi surface[69]. This gives rise to a density of states which goes to zero 

linearly as E approaches EF, 

1 
N(E) = -2-2 IE- EFI (7.5) 

1rn VF 

with the Fermi velocity, VF "' 108 em/ s[70]. The fact that N(EF) = 0 means that Get 

will not be proportional to T at low temperature; instead, the relation is 

2AkB3T21oo x3ex 2AkB3T2 
Get = 2 2 dx ( 1)2 = 2 2 X (5.409), 

1rn VF 0 ex+ 7rn VF 
(7.6) 

Thus, we see that both the phonon and electron contributions to C scale as T 2 at low 

temperature. Examination of Eqs. 7.3 and 7.6 shows that 

Cph '"'"' ( v F ) 2 "' 104' 
Get V 

(7.7) 

67 



CHAPTER 7. HEAT CAPACITY 

, , 
I 

I 
I 
I 
I 
I 
I 
\ 

\ 

' .. 

.... -, - .. 

.... ____ .,. 

... ... 

, , , 

I 
I 

I 

Figure 7.1: Lines of allowed k-vectors overlayed on the graphite sheet BZ. The solid dot 

indicates r (k = 0). If kBT = hvQ, most of the phonon modes with k-vectors inside 

the dashed circle will be occupied, while most outside will be unoccupied. 

so phonons dominate all the way down to T = 0. 

Now consider a single-walled carbon nanotube of radius R. As long as R is large 

enough, it can be thought of as·a graphite sheet with periodic boundary conditions im-

posed in the circumferential direction[13, 14, 15, 58]. This gives rise to a quantization of 

kx (component of sheet wavevector in the circumference direction), while kz (component 

in axis direction) is left continuous. The situation is depicted in Fig. 7.1, where lines 

of allowed k are overlayed on the graphite sheet first Brillouin Zone (BZ). It is easily 

shown that the perpendicular distance between adjacent lines is -k. 
The acoustic phonon bands of a graphite ·sheet are approximately isotropic in the 

plane, with frequencies that go to zero at the BZ center (k = 0). Imagine that the 

sheet is at a temperature T and we define Q(T) such that kBT = hvQ(T). Then states 

with k-vectors lying within the circle of radius Q(T) centered at k = 0 will be mostly 
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occupied, while states with k outside will be mostly unoccupied (see Fig. 7.1). Suppose 

that Q(T) > > 1i. A calculation of Gph for the tube requires us to sum over all partially 

occupied states originating from the allowed lines. Since many lines cross the circle, the 

result will resemble that of the 2D sheet given in Eq. 7.3. Now suppose that Q(T) < < 1i. 
Only one line traverses the circle. This is the line that goes through k = 0, so it contains 

the phonon bands for which w--+ 0. The calculation of Cph is now that of a 1D system. 

The result is then 

where L is the tube length. 

nv 
T << ksR (7.8) 

The situation is represented graphically in Fig. 7.2. If R and T are small enough, 

Gph <X T. Otherwise, Cph <X T 2 (for T << 8). There will be a crossover between 

T and T 2 behaviors when ksT "" ~. From our estimated value of v, it follows that 

this crossover occurs at 300 K for a tube with R = 2.5 A, and at 7.5 K for a tube 

with R = 100 A. Since nanotubes with R < 100 A are often seen experimentally and 

temperatures of several Kelvins are easily obtained, this regime is well within the reach of 

current experimental investigations. In particular, single-walled nanotubes synthesized 

using transition metal catalysts are invariably found to have diameters on the order of 

10 A.[ll]. 

The dependence of Gel on R is complicated by the fact that the band gap, E9 , of 

carbon nanotubes depends sensitively on Rand the tube helicity[13, 14, 15]. From Eq. 

7.4, it can be shown that Ge1 for semiconducting tubes is proportional to exp[-E9 /ksT] 

at low temperature. As long as ksT < < E9 , Gel will be negligibly small. For metallic 

tubes, 

(7.9) 

We may use arguments analogous to those presented above for Gph to show that a 
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Figure 7.2: Schematic illustration ofT-dependence of Cph for carbon nanotubes. For 

small tube radius, R, and temperature, T, Cph ex: T. Otherwise, Cph ex: T 2 , (forT < < 0). 

Dashed line is the curve kBT = ~. ~ 

metallic tube with one partially filled band will have 

(7.10) 

Comparing this with Eq. 7.8, we see that 

(7.11) 

Even for metallic tubes, phonons dominate all the way down to T = 0. 

Because Gel < < Cph for all tubes at sufficiently low temperature, we can approximate 

Cv by Cph if R and T are in the range for which Cph ex: T (see Fig. 7.2). An isolated 

- graphite sheet has Cv ex: T 2 at low temperature. Thus, we see that the temperature 

dependence of the heat capacity of single-walled tubes differs substantially from that of 

single graphite sheets as long as R and T are small enough. This lD behavior is roughly 

independent of tube helicity since the acoustic phonons dominate Cv. 

We now explore the differences between the heat capacities of noninteracting single-
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sheets and bulk graphite. For bulk graphite, the weak· coupling between sheets gives 

rise to a small but nonzero sound velocity along the c-axis. The dispersion relation for 

low-frequency acoustic phonon modes is anisotropic: 

2 2k 2 2k 2 
W = V sheet + Vc c , (7.12) 

where Vc is the c-axis sound velocity. This has been determined by ultrasonic 

techniques[71]. The resulting ratio of velocities is (~) ....., - 1- - .1.. We define a "c-v 100 10. 

axis Debye temperature" by 

(7.13) 

where (} is the single-sheet Debye temperature considered above. A simple analysis 

involving the above dispersion relation yields 

(7.14) 

This is just the anisotropic generalization ofEq. 7.2 forD= 3. If, howe"Ver, T >> (}c but 

is still considerably less than e, then the c-axis acoustic modes are completely occupied 

and we get Cph ex ( ~) 2 , as for a 2D sheet[72]. There will be a significant range of 

temperature for which Cph ex T 2- 3• 

Unlike a single graphite sheet, bulk graphite has a nonzero N(EF) due to c-axis 

dispersion of the electronic states. This gives rise to an electronic contribution, Gel ex 

N(EF)T. Since N(EF) is very small for undoped graphite, Get < Cph for all but the 

very lowest accesible temperatures. The result is that Cv ex T 2- 3 for typical samples in 

the temperature range 1 K < T < 80 K [73]. Thus, we see that the low temperature 

behavior of the heat capacity of single-walled carbon nanotubes ( Cv ex T for sufficiently 

small R) is expected to be different from that of bulk graphite (Cv ex T2- 3 ). 

The heat capacity of multi-walled carbon nanotubes is a much more complicated 

issue. First, it has been predicted that electronic bands of a multi-walled tube near the 

Fermi level may be altered from the bands of the individual constituent tubes[74]. In 
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particular, small gaps can appear which result in N(EF) = 0 even when the constituent 

tubes are metallic. This may change the small electronic contribution somewhat. More 

importantly, phonon spectra will now include modes which arise from inter-tube cou

pling, the analogue of c-axis modes in bulk graphite. A large radius multi-walled tube 

with N concentric walls can be approximated by an N-sbeeted slice of graphite with pe

riodic boundary conditions imposed in the c-direction[75]. From band-folding arguments 

similar to those given above, we find that Cph oc T 2 if T << k-rr:;rd' where d "'3.35A is 

the graphite intersbeet spacing. Otherwise, Cph oc T 2- 3 as in bulk graphite. A multi

walled tube with small inner radius R will exhibit anything from lD - 3D behavior, 

depending on the detailed values of Rand N. However, sufficiently robust lD behavior 

( Cv oc T) should be seen if R is small and N is not too large. 

In summary, we have considered the low temperature behavior of the heat capacity 

for four related systems: 1) a single graphite sheet, 2) single-walled carbon nanotubes, 3) 

bulk graphite, ancf 4) multi-walled carbon nanotubes. It is shown that a graphite sheet 

. has Cv oc T 2 at low temperature, while all single-walled carbon nanotubes have Cv oc 

T. The temperature below which this should be observable decreases with increasing 

nanotube radius, but is accessible to current experimental investigations. Since bulk 

graphite bas Cv oc T 2- 3 , a sample of sufficiently small radius tubes should show a 

deviation from graphitic behavior. Of course, the deviation will only be appreciable if 

the mass fraction of small radius tubes is large enough to outway contributions from 

other graphite-like portions of the sample. Multi-walled tubes are expected to show a 

range of behavior intermediate between Cv oc T and Cv oc T 2- 3 , depending in detail 

on the tube radii and the number of concentric walls. 
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Static polarizability 

In this chapter we examine the response of single-wall carbon.nanotubes to a uniform 

external electric field E. The main response of the electrons is the formation of an 

induced dipole moment p. The quantity which relates the two is the polarizability 

tensor, a:, defined by p = a:E. Since the discovery of fullerenes, numerous investigations 

have been undertaken to determine a:(w) and a:(w = 0) for C6o both experimentally [76], 

and theoretically [77, 78, 79]. Recently, calculations of the static polarizability have been 

done for many of the other stable clusters in the fullerene family as well [80]. 

For the quasispherical fullerenes, there are two major contributions to a:(w). There 

are the noninteracting single particle excitations which give rise to the noninteracting, 

or unscreened polarizability, a:o. This is defined by 

p = a:oEtot (8.1) 

where Etot is the total electric field felt by the electrons. The polarizability a:o can be 

calculated by perturbation theory with a knowledge of the single particle energy levels 

and wavefunctions. The second contribution arises from the interaction between single 

particle excitations, making Etot different from the externally applied field E. It is the 

interacting, or screened polarizability defined by 

P = a:E (8.2) 

which is the experimentally accessible quantity. For C6o, a:o is roughly four times greater 

than a:. This reflects the fact that Eloc = Etot- E is large, due to the build-up of charge 

on the spherical surface containing the ions [77]. 
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The issue of the response of carbon nanotubes to electric fields is only beginning to 

be addressed. Random phase approximation (RPA) calculations of t:( q, w) have been 

done for electrons moving freely on a cylindrical surface [81]. Although these studies give 

qualitative insight into the positions of the zeros in t:{q, w), they are unable to take into 

account the effects arising from the nanotube electronic structure. The most important 

electronic feature is the existence of an energy gap in most tubes. The size of the gap 

can drastically affect the magnitude and overall behavior of response functions. This 

becomes particularly important when coupled with the fact that tubes with roughly the 

same radius can have very different band gaps. Cylindrical empty lattice calculations 

are unable to resolve these differences. 

We address these issues by performing calculations which include the atomic struc-

ture of the carbon nanotubes. For simplicity, we focus on the q = 0, w = 0 limit in an 

effort to understand the response to a static, uniform E-field. The polarizability per unit 

length of single nanotubes is calculated, instead of a dielectric constant, in order to' draw 

comparisons with the polarizabilities of fullerene clusters. The most obvious difference 

between nahotubes and spherical fullerenes is their cylindrical structure. This causes 

the a 0 and a: of Eqs. 8.1 and 8.2 to be highly anisotropic tensors with principle axes z 

(parallel to the cylindrical axis) and :X (perpendicular to the cylindrical axis). Using a 

tight-binding model, we will show that O:ozz is roughly proportional to ~' where E9 g 

is the minimum direct band gap and R is the tube radius, while ao:z::z: is independent of 

E9 and is just proportional to R2
• Arguments analogous to those used for C6o [77, 82] 

are then applied which relate a:o to a. We find that even for insulating tubes, Ozz is an 

order of magnitude larger than O:z::z:· This implies that an external field with equal z and 

x components will give rise to a dipole moment pointing mainly along the z direction. 

The structure of this chapter is as follows: We first describe the details of the models 

used. The tight-binding theory of a:o is presented, and then the classical electrostatic 

model relating a:0 to a:. Then we present the results of the calculations for all of the 
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tubes studied. We explain the findings, and conclude. 

8.1 Models 

Our tight-binding model for a:o is based on the Ehrenreich-Cohen formalism for the 

dielectric function of a crystalline solid [83]. In this approach, E( q, w) is calculated within 

the RP A using Bloch states as the basis. If we neglect local field effects, the real part 

of the dielectric function is given by 

where q is restricted to the first Brillouin zone (the factor of 2 is for spin). In order 

to invoke the tight-binding approximations, we express the Bloch states in terms of 

localized atomic-like orbitals. 

lk + q, nz) = ~ Cv(k + q, nz) ( Jw ~e;(k+q)·RI¢v(r- Tv- R))) (8.5) 

Here, ¢tJ.(r) and ¢v(r) are localized orbitals, Tf.l and Tv are vectors denoting the positions 

of the orbitals within a unit cell, and R' and Rare the lattice translation vectors. Cf.l 

and Cv are the coefficients in the expansion of the Bloch states in terms of the </>11- and 4>v 

Bloch sums. We may now form the matrix element which enters the Ehrenreich-Cohen 

formula. Setting R' = 0 and multiplying by N, we have 

(k, nlle-iq·rlk + q, n2) = L c;(k, nl)Cv(k + q, n2)ei[(k+q)·R-q·T,,](¢f.J.(r)ie-iq·rl4>v(r- d)) 
p.vR 

(8.6) 

where d =Tv- Tp. + R. 

Eventually, we will be interested in the q--+ 0 limit. Because c/Jp.(r) and ¢v(r) are 

localized, we may expand the matrix element in the RHS of Eq. 8.6 to first order in 
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q · r, obtaining 

Here we choose to work within orthogonal tight-binding; two localized orbitals have zero 

overlap unless they are equivalent, and are on the same site. Eq. 8.7 then becomes 

(8.8) 

RILv( d) is defined to be the matrix element of the operator r between ¢1L centered at 

the origin, and <Pv centered at the position d. We now have 

(k, nlle-iq·rlk + q, n2} ::::::: L c;(k, nl )Cv(k + q, n2)ei[(k+q)·R-q·TI,] ( OILvORo- iq. RIJ.V(d)) 
~J.VR 

(8.9) 

for ftil much greater than the characteristic unit cell length. Thus, we see that the 

matrix element is comprised of two terms. The first arises from the product of delta 

functions and will be referred to as the "delta term". It is equal to :ElL c;(k, n 1)CIL(k + 

q, n2)e-iq·T1•. If there is only one atom per unit cell, or if q · 7 IL = 0 for all J.L, this term 

is equal to zero. The second term depends on the dipole matrix elements R~J.v(d) and 

will be called the "dipole term". Note that although the dipole matrix elements are 

multiplied by q, both terms are the same order in q because of the q · 7 IL term. 

Unlike the quantities appearing in the delta term, the dipole matrix elements cannot 

be obtained as standard output from Slater-Koster tight-binding calculations. They 

must be input as external parameters. For the case of solids consisting solely of carbon, 

there are four localized orbitals in the tight-binding basis set used. They correspond to 

the carbon 2s, 2px, 2py, and 2pz states. At first sight, there are seven distinct dipole 

matrix elements, represented schematically in Fig. 8.1. One is on-site (d = 0), while the 

others are off-site ( d =1- 0), (more precisely, there is a set of off-site dipole matrix elements 

for each order of nearest neighbors included). These matrix elements are special because 
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{a) @ 
(b) G 0 
(c) De> 00 

(d) & 8 
(e) cb 8 
(f) C) 8 
(g) G 00 

Figure 8.1: Various dipole matrix elements between sand p atomic-like states. The first 

(a) is on-site, while the rest are off-site. The arrow indicates the direction of the vector 

r which gives a nonvanishing contribution to the matrix element. 

any R~v(d) can be written as a linear combination of them, in a manner analogous to 

the Slater-Koster two-center integral formulae for Hamiltonian matrix elements [52]. 

On closer inspection it is seen that the matrix elements denoted by d and e in Fig. 

8.1 are actually equal, for xpy = YPx· Also, the assumption of orthogonal tight-binding 

forces b,c, and d to be zero. This is because the origin may be translated to the point ~d, 

where the integrals are zero by parity. Thus, we are left with three special dipole matrix 

elements, one on-site (a), and two off-site (!, g). Their magnitudes will be denoted Rsp, 

Rsp7r' and Rspu respectively. 

The R~v(d) must now be related to the special matrix elements. For the d = 0 case, 

we have simply 

(8.10) 

The off-site case is a bit more complicated. The relations can be derived by rotating the 

p orbital so that the axis of quantization is along d. Let l, m, and n be the direction 
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cosines of d with respect to x, y, and z respectively. Then, 

Rsp,(d) = Rz,,s(d) = [(1 -l2)Rsp7r + 12 Rspu]x + [lm(Rspu- Rsp7r)Jy + (ln(Rspu- Rsp7r)]z 

(8.11) 

Rspy and Rsp. are obtained from Eqs. 8.10, 8.11 by the cyclic permutations x --+ y --+ 

z, 1 --+ m --+ n. All other dipole matrix elements are zero within the framework of 

orthogonal tight-binding. For simplicity, we limit the off-site matrix elements to include 

first nearest neighbors only. It is demonstrated below that this is not a serious restriction 

for the systems studied. 

We define the unscreened polarizability per unit cell of a crystal by the relation 

lim t:1(q,w) = 1 + 4: a:0 (w) 
q->0 H 

(8.12) 

where t: 1(q, w) is given in Eq. 8.3. If there is no interaction between·atoms in different 

unit cells, a:0 (w) is just equal to the unscreened polarizability of the single molecule con-

tained in each cell. Both t:1 and a:o are second rank tensors. The individual components 

may be calculated by first determining the principle axes by symmetry, and then letting 

q --+ 0 along these directions. This yields the diagonal elements corresponding to each 

axis. 

There are two sets of parameters which must be input into this model: Slater-Koster 

tight-binding parameters which determine the energy eigenvalues and eigenstates, and 

dipole matrix elements. All carbon nanotubes are sp2 bonded systems, so we use the first 

and second nearest neighbor Slater-Koster parameters of Tomanek and Louie [4]. These 

were originally designed to reproduce the band structure of graphite, and since have 

been applied successfully to the study of carbon nanotubes [58]. In order to determine 

the optimal values for Rsp, Rspu, and Rsp11 , we must choose a reference system for which 

either t:1 or a:0 is known. Because orthogonal tight-binding is used, it is desirable to 

choose a system which has a bonding configuration similar to that of the tubes. This 

will ensure the transferability of the parameters. C5o is a predominantly sp2 bonded 
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system with an experimentally determined screened polarizability. Unfortunately, our 

tight-binding model only has access to the unscreened polarizability. This has, however, 

been determined theoretically by Pederson and Quong [38] using ab initio local density 

functional theory. They obtained a result of 311 ... 43 per molecule for a:o(w = 0), roughly 

four times larger than the experimental value for the screened polarizability [76], as 

expected. We have calculated a:o(w = 0) of C6o using our model for a wide range of 

different Rsp, Rspu, and Rsp-rr· We find a sensitive dependence of a:o(w = 0) on Rsp, 

whereas the dependence on the off-site matrix elements is negligible. Therefore, Rspu 

and Rsp-rr may be set equal to zero. The local density functional result is then obtained if 

Rsp = 0.5..4. If Rspu and Rsp-rr are changed, the value of a:o(w = 0) is only slightly altered. 

For instance, if Rspr7 and Rsp-rr are both set equal to 0.5..4. while keeping Rsp = 0.5..4., 

a:o(w = 0) is changed by less than 5%. 

We have therefore constructed a tight-binding model of the q = 0 dielectric response 

function without local field effects for sp2 bonded carbon systems, in which the only 

external parameter is an on-site s - p dipole matrix element. Before the issue of local 

fields is addressed, two points must be made: 1) The value of Rsp = 0.5..4. is not to 

be understood as the dipole matrix element between true atomic carbon 2s and 2p 

wavefunctions. As stated above, the localized orbitals of this model are orthogonalized 

orbitals which may be very different from their atomic counterparts. 2) The parameters 

of the model have been chosen to describe sp2 bonded systems. If we wish to study 

systems with other bonding configurations, both the Slater-Koster parameters, and the 

dipole matrix elements may need to be changed. 

The difference between the unscreened polarizability, a:o, defined in Eq. 8.1, and 

the screened polarizability, a:, of Eq. 8.2 is due to the difference between the total and 

applied electric fields. This arises because the virtual single-particle excitations have 

electric charge, and produce a local field. Stated another way, a:0 only accounts for 

the polarization of the individual single particle wavefunctions, while a: includes their 
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mutual interaction as well. For most bulk crystals, local field effects change f by roughly 

10% [84]. For surfaces, however, the effect is much greater due to the build-up of bound 

surface charge. Since fullerenes are closed surfaces, local field effects are large. This is 

the reason for the factor of four difference between ao and a of C6o. 

Local fields can be taken into account within RPA by considering charge fluctuations 

inside a unit cell, i.e. q of Eq. 8.3 outside the first Brillouin zone. From the previous 

section, we see that our tight-binding model is only valid for q--+ 0. Thus, a straight-

forward application of RPA is not possible here. Instead we can take advantage of the 

simple geometries of fullerenes, and construct classical models that relate E to Etot· 

This determines the relationship between a 0 and a via Eqs. 8.1 and 8.2. The simplest 

possible model is one in which the local field, Eloc = Etot - E, is constant within the 

fullerene. This is reasonable if the fullerene is ellipsoidal [85]. 

As an example, consider C6o [77, 82]. If a spatially constant external field, E, 

is applied, bound charge will form at the surface of the sphere. This will create a 

depolarization field, E10 c, pointing opposite to E. If we assume that this field is constant 

within the sphere, then Etot will be constant inside as well. We can relate the magnitude 

of this field to the induced dipole moment, E1oc = -f.;. Eqs. 8.1 and 8.2 then give us the 

relationship between ao and a: 

a(w) = ao(w) 
1 + a~!J) 

(8.13) 

We see that a is less than ao,. as expected. However, the maximum value of a is 

R3 = 45..43 . This is inconsistent with the experimental result of 80..43 [76, 82]. The 

discrepancy can be understood by noting that the electrons which participate in the 

screening are not confined to the sphere containing the ions. This can be taken into 

account with a single parameter, oR, such that the "effective radius" is Ref! = R +oR 

[82], 

a(w) = · ao(w) 
1 + ao:l(w) 

R•ff 

(8.14) 
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If we take the local density functional theory value of 311A3 for a:0 , the experimental 

value of a: is reproduced when 8R = l.2A. 

The same arguments will now be applied to single-wall carbon nanotubes. Again, 

the goal will be to relate E to Etot in order to determine the relationship between a:0 

and a:. The crucial difference between nanotubes and C6o is their cylindrical structure. 

If E is in the x direction, bound charge will build up on the surface and create a local 

depolarization field. If E is along z, there will be no bound surface charge, so E1oc = 0 

within this model. This is, of course, only true in the ideal case of an infinitely long tube. 

For a tube of finite length, an external field in the z direction will induce bound charge 

at the ends. However, the resulting local field will be negligible as long as the length is 

much larger than the diameter. Thus, we will assume that E1oc has no z component. 

Since the principle axes of a:o and a: are z and x (see below), we need only consider 

the two cases of E along these directions. Let E be along x (.1. z). There will then 

be a local field in the x direction. Assume that it is constant inside the tube. The 

surface charge density per length which gives rise to a constant field along x is of the 

form u( ¢) = uocos¢, where ¢ is the azimuthal angle measured with respect to x. The 

resulting dipole moment per length is 

Px = R j d¢>xu( ¢) = 2R llr d¢Rcos¢>uocos¢> = 1r R2 uo (8.15) 

With this and Eq. 8.1, we have 

(A.) _ ..1!.=- A. _ O:oxxEtotx A. 
u '~" - 7r R2 cos'~" - 7r R2 cos'~" (8.16) 

where u, p, and a: are all defined per unit length. We can now calculate the local electric 

field due to u(¢). It can be shown to be constant within the tube and equal to 

E 2a:oxxEtotx A 

loc =- R2 X (8.17) 

Knowing that Etot = E + E10 c, we may use Eqs. 8.1, 8.2, and 8.17 to obtain 

(8.18) 
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If E is along z, then Etoc = 0. This means that Etot = E and we get simply 

azz = aozz (8.19) 

Note that all polarizabilities are defined per unit length. 

If we combine Eqs. 8.18 and 8.19 and restore the frequency dependance, we can 

write a(w) as a matrix 

a(w) = ( (8.20) 

0 

It should be pointed out that a is actually a 3 x 3 matrix, for :X can lie anywhere in the 

plane perpendicular to z. Since all x axes are equivalent, we supress one dimension. As 

for C6o, axx < aoxxi Eq. 8.18 is the two dimensional analogue of Eq. 8.13. Likewise, 

we anticipate that it will be necessary to replace R by Ref! = R + oR. The question 

of what is the appropriate oR is not a simple one. However, we expect the magnitude 

of oR to reflect the intrinsic features of 1r~electron systems, such as the extent of a p 

orbital, etc. Thus, we fix oR= 1.2A as for C60 . We show below that. the results are not 

sensitive to this choice. 

The most important feature of Eq. 8.20 is that azz remains unscreened. This has 

two interesting con·sequences: 1) Even if aoxx and aozz are comparable, azz will be 

significantly greater than axx· This means that an external electric field with equal z 

and x components will give rise to an electric dipole moment pointing primarily along 

z. 2) The response of the tubes to electric fields will be particularly sensitive to the 

details of the tube electronic structure. As we stated above, ao is determined from the 

single-particle energies and eigenstates (Eq. 8.3). If the energy gap is small, aozz may 

be quite large. Because of Eq. 8.19, azz will be large as well. This is not true for the 

caged fullerenes, in which all components of the polarizability tensor are governed by 

expressions like Eq. 8.14; as long as ao is large enough, a is completely determined by 
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Ref 1 ,...._, R. The absence of a large screening field along the axes of the tubes makes it 

necessary to consider band structure effects in these systems. 

We are now in a position to calculate a:(w = 0) for a wide range of tubes. Our 

strategy is simple. First, a tight-binding calculation is performed to determine the 

En(k), and C~(k, n) appearing in Eqs. 8.3 and 8.9. Then a small q is chosen along z. 
fl(q, w = 0) without local fields is calculated using Eqs. 8.3, 8.9, and 8.10, and Rsp = 

0.5..4 (Rspu = Rsp1r = 0). Smaller and smaller q are chosen, and limq-.oE1 (q,w = 0) is 

obtained. We then choose q along x and repeat the procedure. The a:o(w = 0) tensor 

is calculated using Eq. 8.12. Finally, we use the electrostatic model of Eq. 8.20 with 

R replaced by Ret! = R + 1.2A to determine the a:(w = 0) tensor. Results of these 

calculations are presented for tubes having a variety of different radii and band gaps in 

the next section. 

8.2 Results 

Before results are presented, it is worth considering the criteria on n1 and n2 such 

, that the (n1 , n2) tube has the symmetry required by Eq. 8.20. We have assumed above 

that x and z are principle axes of the a:o and a: tensors. It can be shown that any second

rank symmetric tensor in three dimensions is "isotropic" in a plane perpendicular to a 

three or more-fold axis of rotation [85]; i.e. every direction perpendicular to the rotation 

axis is a principle axis. Thus, all tubes of the form (n, 0) and (n, n) with n 2: 3 have the 

required symmetry. The same statement is true for screw axes. Therefore all (n1 , n2) 

tubes with n1 # n2 are included as well. This set comprises all tubes of interest, for the 

ones not included are probably too small to ever be found. In what follows, we may refer 

to the direction x without specifying where it is pointing with respect to the individual 

atoms [86]. 

We have calculated the static unscreened and screened polarizabilities of the ( n, 0) 
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tubes for 9 :::; n :S 19. The metallic (n, n) tubes ( 4, 4), (5, 5) and (6, 6) have also been 

studied, as well as the chiral tubes (4, 2) and (5, 2). Table 8.1 contains a list of the 

results. Since a:ozz = O:zz, only O:zz is shown. In the cases where n1 - n2 is a multiple 

of three, the minimum band gap is very small (or zero), and O:zz is effectively infinite. 

Thus, we choose not to list it here. Note that this is not true for a:oxx· This will be 

discussed at length below. 

The first issue to be addressed is the overall magnitude of the polarizabilities. If 

we multiply each value by a length, and divide by the number of carbon atoms per 

that length, we obtain the polarizabilities per atom (A3 ). We may compare these to 

the polarizabilities per atom of fullerene clusters. Because tubes are cylinders and the 

clusters are quasispherical, their local field contributions are quite different. Therefore, 

it is only meaningful to compare the unscreened polarizabilities. The quantity which 

is most analogous to a:o of C6o is a:oxx· Its value increases monotonically with R. It 

is 3.8A3 jatom for the (4,2) tube, and 8.5A3 jatom for (19,0). This is consistent with 

the C6o value of roughly 5A3 /atom. The general increase with radius is also consistent 

with a similar trend in fullerene clusters [80] if we assume that a: is a monotonically 

increasing function of a:o, as in Eq. 8.14. We see that O:ozz is, considerably larger than 

a:oxx· This is a result of the anisotropy of the single particle wavefunctions (i.e., graphite 

is more polarizable along the sheet plane direction than in the perpendicular direction). 

It manifests itself in the matrix elements of Eq. 8.3. 

The increase of O:oxx with radius can be quantified by plotting a:oxx versus R2 , as 

shown in Fig. 8.2. We see that a:oxx is roughly proportional to R2 with a slope of 2.6, 

independent of the tube chirality and band gap. Even the zero gap (n, n) tubes have 

finite a:oxx' and obey this simple relation. The fact that a:oxx is completely independent 

of the minimum band gap is particularly striking. It suggests that there are selection 

rules which force the matrix elements of Eq. 8.3 to be zero in cases where the energy 

denominator is small. We will explore the origin of these selection rules in the next 
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Figure 8.2: Plot of o:oxx versus R2 for the tubes studied. The solid line is a linear least 

squares fit to the points. 

section. 

Unlike o:oxx' O::ozz ( = O::zz in the present theoretical framework) is highly dependent 

on the minimum gap. In cases where the gap is zero, O::Ozz is infinite. This means 

that the above selection rules for the matrix elements do not apply when q is in the z 

direction. There is also a dependence of this quantity on the tube radius. In fact, O::Ozz 

is approximately linear in -lr, as shown -in Fig. 8.3. An explanation of this behavior is 
9 

given in the following section. 

As can be seen from Table 8.1, O::xx "'io:oxx for each tube. This is a consequence of 

Eq. 8.18, with R replaced by R+ 8R = R+ 1.2A. These results are relatively insensitive 

to the choice of 8R; a factor of two increase or decrease in 8R changes O::xx by no more 

than 40%. The ratio ~ is > 11 for all tubes studied. For very small gap tubes, the ratio a.,., 

is extremely large. This, along with Eq. 8.2, justifies our prediction that an external 

electric field with equal z and x components will give rise to a dipole moment pointing 

mainly along z. Likewise, the magnitude of this dipole moment will depend mostly on 
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Figure 8.3: Plot of aozz (= CXzz) versus l2 for the (n1, nz) tubes studied where n1- nz 
9 

is not equal to an integer multiple of three. A linear least squares fit is also shown. 

CXzz and will therefore be roughly proportional to f.:. It should be understood that the 
' 9 

relationship implied by Eq. 8.18 is approximate. More sophisticated models for local 

field effects may yield results different from those presented here. However, we expect 

the general features to be correct. 

8.3 Discussion 

In this section, we explore the origins of the dependence of aoxx and aozz on R and 

E9 • First, we see why aoxx is independent of the minimum gap. Then its proportionality 

to R2 is explained using an empty lattice model. Finally, the linear variation of aozz 

with f.: is understood from the point of view of a simple model based on the oscillator 
9 . 

strength sum rule. 

In order for aoxx to be completely independent of the minimum gap, the matrix 

elements of Eq. 8.3 must be zero when the energy denominator has its smallest values. 

We can see that this is true by examining the quantity (k, n1le-iq·rlk + q, nz) when 
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q = qx. Since we are considering individual tubes, the states jk, n1) and lk + q, n2) 

are localized along the directions perpendicular to z. The matrix element may then be 

expanded to first order in q · r (= qx). Also, the absence of dispersion in the x direction 

allows us to write lk + q, n2) = jk, n2). This yields 

lim (k, n1le-iq·rlk + q, n2) = (k, n1lk, n2)- i(k, n1lq · rjk, n2) = -iq(k, n1!x · rjk, n2) 
q-+0 

(8.21) 

for n1 =I n2. As discussed by previous workers [13, 14], the Bloch states of nanotubes 

arise from lines of allowed k-vectors of the graphite sheet Brillouin zone which point 

along kz. In the Appendix at the end of this chapter, we use group theory to show that 

(k, n1lx · rjk, n2) = 0 if ln1) and ln2) arise from the same line, as long as it is not the 

line which is farthest from r in (n, 0) and (n, n) tubes with odd n. In the absence of 

strong u- 1r hybridization [58], the minimum direct gap is always between states coming 

from the same line. This line intersects r for the case of (n, n) tubes, and is not the line 

farthest from r in (n, 0) tubes unless n < 5. This means that (k, n1je-iqj(·r1k + qx, n2) 

is zero between HOMO and LUMO states of all chiral tubes, (n, n) tubes, and (n, 0) 

tubes with R > 2.0A. Thus, it follows that aoxx is independent of of the HOMO and 

LUMO states and hence E9 in these cases. 

The fact that aoxx is approximately proportional to R2 can be best understood 

by appealing to an empty lattice model of electrons moving freely on a cylinder of 

infinitesimal thickness. Such a model has been used by several authors to study collective 

modes of nanotubes [81 ]. In this approach, then-electron Bloch states of a tube of radius 

R may be written as (rjk, n) = 
2
1f)Reikzein¢ where n is an integer. Their energies are 

En ( k) = 2~. [ ( ~) 2 + k2]. The band index, n, now refers to the rotational sub-bands of 

the n-electron complex which arise from the lines of allowed k-vectors mentioned above. 

Each one of these bands will be folded back in a reduced zone scheme, and will acquire 

gaps at the Fermi energy with the addition of the crystalline potential. Therefore, every 
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free-electron band corresponds to many bands of the tight-binding calculation. We 

choose to use an extended-zone scheme to simplify the argument that follows. 

From the considerations outlined above, such as the absence of dispersion in the :X 

direction, we have: 

(8.22) 

The matrix elements of this expression can be shown to be independent of k and propor-

tional to R. They are only nonzero if n1 and n2 differ by one. The energy denominator 

is equal to 2::.
2
R2 (n1 2 - n2 2 ) independent of k. Thus, 

(8.23) 

kF is the Fermi wavevector, equal to ~· It is the wavevector where then= 0 band 

crosses EF. Let kn denote the k-point where the nth band crosses EF. We then have 

· · · < k2 < k1 < ko = kF. Because of the difference of zero temperature Fermi factors, 

we are forced to set n = j when k E [kj, kj_1]. The integral can then be evaluated in 

piecewise fashion over the intervals [kn, kn-1] 

(8.24) 

· h l h h h
2

n
2 

E Th l l h k j.. nF 1s t e argest n sue . t at ~ < F· e interva engt n-1 - "'n = 

J 2m~lE - ( nR1) 2 
- .J 2m~pr - ( ~) 2 ~ay be approximated by 

;, 
kn-1- kn ~ R 2 (2n -1) 

2...j2m*EF 
(8.25) 

for n ~ nF. These are the terms which contribute most to the sum. If we neglect the 

large n terms, Eqs. 8.24, and 8.25 yield the approximate relation 

(8.26) 

Since m* and EF are roughly independent of the tube size (for tubes large enough so 

that the zone-folding picture applies), o:oxx ex R2 as expected. Therefore, we see that 
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the behavior shown in Fig. 8.2 is due to three properties of the systems: 1) The matrix 

element of Eq. 8.21 is proportional to R, and is only nonzero when n 1 and n2 correspond 

to rotational sub-bands which are adjacent in energy. 2) The energy difference between 

rotational sub-bands is proportional to ~· 3) m* and EF are roughly independent of 

R. Although this discussion has involved a cylindrical shell empty lattice model, the 

conclusions are valid for nanotubes large enough so that hybridization effects do not 

play a dominant role. 

We now turn to a discussion of aozz· For this case, we consider Eq. 8.3 with q = qz. 

The relevant Bloch states are q-dependent, and the matrix elements are of the form 

(k,nllf(q,z)lk + q,n2). Therefore, the above selection rules do not apply; the matrix 

elements between HOMO and LUMO bands are nonzero. Because the minimum gap 

in most tubes is small, we expect O:ozz to be dominated by terms for which the energy 

denominator is roughly equal to E9 . This makes it reasonable to assume that the linear 

dielectric response will be adequately described by a model in which all virtual single 

particle transitions of a given tube have the same energy, E9 , which is of the order of 

E9 • A model of this type has been constructed for €( q = 0, w = 0) from a generalized 

Thomas-Rieche-Kuhn sum rule [87], 

(8.27) 

Wp is the plasma frequency, equal to J 41rn::!· . Ne is the number of electrons per cell 

which participate in the screening. For this we use 4/atom, because one carbon 2s and 

three 2p electrons were considered in the RPA calculation. E9 is the "average gap" of 

the system. The approximate linearity in the separation of the 7T-bands near the Fermi 

level suggests that E9 will vary linearly with E9 (since there is much less contribution 

from states far away from EF ). 
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If we use Eq. 8.12 to convert Eq. 8.27 into an expression involving aozz' we get 

(8.28) 

where A is the area per atom on the graphite sheet (again, aozz is defined per unit 

length). This establishes the linear dependence on b since we expect E9 ex: E9 • We 
9 

may use the plot of Fig. 8.3 to determine the precise relation between E9 and E9 • The 

least squares linear fit to the points has a slope of 17.8 eV2 A. This, along with Eq. 8.28, 

gives E9 ,...., 5.4E9 ; a reasonable result considering that the HOMO and LUMO bands of 

tubes have large dispersion. 

8.4 Conclusions 

We have used a tight-binding model and a classical electrostatic argument to cal-

culate the static polarizability of single-wall carbon nanotubes. It was shown that the 

polarizability tensor is highly anisotropic, a consequence of the inherent anisotropy of 

the tubes. The polarizability for external fields in the z direction is considerably larger 

than that for fields along the :X direction. From this we conclude that a randomly ori-

ented field will, on average, give rise to a dipole moment pointing mainly along the tube 

axis. The size of the moment is proportional to the tube radius divided by the square 

of the band gap. This may have significant consequences, for it suggests that tubes 

with different atomic arrangements respond very differently to external fields, even if 

the tube radii are similar. The issue of nonzero frequency, though not considered here, 

can be addressed easily within this model. One must only use a range of different w 

in the denominator of Eq. 8.3. In addition, the calculated matrix elements and their 

associated selection rules can be used to compute the frequency dependent transverse 

dielectric function. This could provide a key to understanding the results of subsequent 

absorption measurements. The exotic geometric and electronic structures of carbon 

nanotubes could provide some unique dielectric responses. 
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Appendix 

We wish to show that (n1lx · rln2) = 0 if ln1) and ln2) arise from the same line 

of allowed k-vectors pointing along kz. To do this, we must consider the symmetry 

groups of tubes. We first discuss the non-chiral (n, 0) and (n, n) tubes. They have 

symmorphic space groups, with the point subgroups Cnv [15]. Cnv consists of powers 

of Cn rotations, and reflections. For n even, Cnv has ~ + 3 irreducible representations 

has z as a basis function (the z direction is defined to be the C71 axis). For odd n, 

Cnv has the n2l + 2 irreducible representations A1, A2, E1, E2, ... , E!!=J.. Again, A1 is 
2 

the symmetric representation which has the symmetry of z. For both even and odd 

cases, E1 has x and y as basis functions. The states ln1) and ln2) are eigenstates of 

the Hamiltonian, so they transform according to irreducible representations of the point 

group. The operator x · r can also be classified according to symmetry. (n1I:X · rln2) will 

be zero if the combined symmetry does not contain the totally symmetric representation; 

i.e. 

(8.29) 

Because :X· r = x, r(x · r) = E 1 . Thus, 

(8.30) 

It can be shown that. states which arise from particular lines transform according 

to specific irreducible representations of the point group. As an example, consider 

the (4, 4) tube. Its corresponding allowed lines are shown in Fig. 8.4 along ·with the 

symmetrical Brillouin zone of the graphite sheet. The dashed lines mark the boundary of 

the Brillouin zone of the (1, 1) unit. Each line is associated with one or more irreducible 

representations of C411 • The center line intersects the f-point of the graphite sheet, and 

is associated with A1 and A2. The lines farthest from r are associated with B1 and 
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Figure 8.4: Allo~ed k-vectors of the ( 4, 4) tube mapped onto the graphite sheet Brillouin 

zone. The dashed lines enclose the Brillouin zone of a single (1, 1) unit. Each line is 

identified with irreducible representations of the point group C4v· A denotes A1, A2, 

and B denotes B1, B2. 
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B2. The two middle lines on either side of the center belong to E1. Similar assignments 

can be made for all even n (n, n) tubes. It is always true that A1, A 2 correspond to the 

center line, and B1, B2 to the lines farthest out. E1, E2, ... , Ej, ... are always between 

the two, with Ej being associated with the jth lines away from the center on both sides. 

The picture for odd n (n, n) tubes is the same, except that the lines farthest from r 

belong to E!!=J.. For (n, 0) tubes, we must only rotate the hexagon by 90 degrees, and 
2 

change the density of the lines [14]. Everything else remains the same. 

Assume that ln1) and ln2) arise from the same line. There are three cases: 1) 

f(ln2)) = B2 (or vice versa). In all Cnv groups, A1 x A2 and B1 x B2 do not contain 

E1 [88]. Thus, (n11x · rln2) = 0 for cases 2 and 3. If n is even, the direct product of an 

irreducible representation with itself never contains E1, so the matrix element is zero for 

case 1 as well. However, if n is odd, E!!=l. x E!!=l. 3 E1, while all other such products 
2 2 

do not contain E1. This means that (n1lx · rln2) can be nonzero only if ln1) and ln2) 

arise from the line farthest from r in odd-n tubes. 

We now turn to chiral tubes. The space groups of these tubes are nonsymmorphic. 

However, factor groups which are analogous to the above point groups can be constructed 

from powers of screw operations; i.e. rotations about z followed by translations along 

z. This was done recently by Jishi et al [89] for all chiral tubes. They showed that 

each chiral tube has a factor group consisting of powers of a single screw operation. The 

factor groups are all isomorphic to the point groups Cn with n even. The irreducible 

representations are A, B, E1, E2, ... , E-}-l· A is the symmetric representation, and x, y 

transform as E1. Again, we may use Eq. 8.30 to carry out the analysis. 

Just as for non-chiral tubes, states which arise from particular lines transform like 

particular irreducible representations of the factor group. The line intersecting the f-

point is associated with A, the farthest lines with B, and the others with E1, E2, ... etc. 

For these groups, the direct product of an irreducible representation with itself never 
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contains E1. Thus, (n1lx · rln2) is always zero if ln1) and ln2) arise from the same line. 

This is true for all chiral tubes. 
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Table 8.1: Static Polarizabilities per unit length (in A2 ) of various carbon nanotubes of 

radius R (A). In cases where n1 - n2 is a multiple of three, O:zz is extremely large and 

is not given. 

Tube (nil n2) R O:zz O:Oxx O:xx 

(9,0) 3.57 - 40.6 8.9 

(10,0) 3.94 174.7 48.5 10.3 

(11,0) 4.33 17i.6 57.8 12.1 

(12,0) 4.73 - 65.7 13.9 

(13,0) 5.12 292.4 76.1 15.8 

(14,0) 5.52 268.3 87.4 17.9 

(15,0) 5.91 - 97.4 20.1 

(16,0) 6.30 445.5 109.9 22.4 

(17,0) 6.70 401.4 123.6 24.9 

(18,0) 7.09 - 136.3 27.4 

(19,0) 7.49 651.1 150.6 30.2 

(4,4) 2.73 - 26.6 6.0 

(5,5) 3.41 - 37.4 8.3 

(6,6) 4.10 - 49.8 11.0 

(4,2) 2.09 49.1 18.8 4.2 

(5,2) 2.46 - 23.1 5.2 
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Chapter 9 

Room temperature static conductivity 

Since the discovery of carbon nanotubes, researchers have alluded to the possibility 

of their use as current carrying devices. We have seen that in the absence of the strong 

u- 1r hybridization present in the smallest tubes [58], only the zero-helicity "armchair" 

tubes have zero electronic band gap [14], the others being small gap semiconductors or 

insulators depending on their radius and helicity. The transport properties of carbon 

nanotubes are only beginning to be studied. It has recently been predicted that a bundle 

of single-walled 7 A diameter armchair nanotubes separated by the graphite interplanar 

distance will have a conductivity greater than an equivalent volume of copper at room 

temperature [90]. 

We extend these ideas to consider single-wall tubes of any size. Using approximations 

which relate the electron-phonon matrix elements in tubes and planar graphite sheets, 

we derive an order-of-magnitude estimate of the resistance of a metallic tube of radius 

rand length£ at room temperature, namely R"" (1- 5) x U)ohms. The resistance of 

multi-wall nanotubes could be different, approaching that of the in-plane resistivity of 

turbostratic graphite. 

We first relate the conductivity of carbon nanotubes to the conductivity of a single 

graphite sheet. Consider O'sheet' the conductivity of a two dimensional graphite sheet, 

and O'tube, the conductivity of a one dimensional nanotube, where conductivity in dimen-

sion D has units of (conductance)(length) 2-D. From the linearized Boltzmann equation 

for a homogeneous medium[91] 

(9.1) 
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where Sk(E) is the k-space surface of constant energy E, f is the Fermi factor, vn,k is 

the band velocity of a Bloch state In, k) and ln,k is the scattering time of this state. We 

consider temperatures small enough so that (-*f) can be replaced by c(E- EF ). The 

diagonal components of conductivity in one and two dimensions are 

(9.2) 

and 

(9.3) 

Note that Eq. 9.2 contains no integral over k-space, while Eq. 9.3 has an integral over 

a one-dimensional k-space surface. 

We now estimate <Tsheet using Eq. 9.3. The electronic band structure of a single 

graphite sheet near the Fermi level (around the point "K" of the graphite Brillouin 

zone) is pictured schematically in Fig. 9.1. The lower cone repre,..;ents the energies of 

the occupied 1r states; the upper cone represents the 1r* band. In an undoped sheet 

EF corresponds to the point of intersection between the 1r and 1r* cones. For the sake 

of argument, we assume an arbitrarily small amount of n-type doping to produce the 

Fermi surface delineated by the dashed curve on the 1r* cone[92]. For simplicity, we 

approximate the Fermi surface as a circle of radius Q with uniform band velocity VF 

directed radially outward. We then assume that the scattering times of all these states 

are equal, obtaining 
2 _ e VFisheet ( 2 Q) 

(J sheet - 2n 7r • 
47r 

(9.4) 

At first sight, this would seem to give the dubious result that <Tsheet depends sensi-

tively on the doping and is equal to zero for no doping (Q = 0). However, the scattering 

rate for a given state is roughly proportional to the numper of final states available for 

scattering. As Q increases, the density of states at the Fermi level increases so that the 
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E(k) 

Figure 9.1: (a) Schematic illustration of the graphite sheet bands near the 1r-1r* crossing 

point (the point "K" of the graphite sheet Brillouin zone). The upper and lower cones 

are the 7r* and 1r bands respectively. For no doping, the Fermi level is at the crossing 

point. The dotted line marks the Fermi surface for n-type doping. 

product Qrsheet remains approximately constant. The behavior can best be captured 

by the relation[93] 

Nsheet(EF )Tsheet :::::: constant (9.5) 

where Nsheet(EF) is the number of states per unit energy per unit area at the Fermi 

level. This is appropriate at high temperatures when the scattering is dominated by 

phonons. We then rewrite Eq. · 9.4 as 

(9.6) 

an expression obtained by Pietronero et al.[94]. These authors also estimated the 

scattering time due to electron-phonon scattering at room temperature to obtain 

Usheet,"' 4 x 10-2fi. When many sheets are placed in parallel and separated by the 

Van der Waals distance d :::::: 3.4A the resulting 3D in-plane conductivity is "' 106 11~ if 
\ 

hopping between sheets is neglected. In real undoped graphite, the conductivity is more 
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than an order of magnitude smaller. The hopping between sheets induces variations in 

VF near the K point that result in a smaller VF for low doping than would be expected 

from Fig. 9.1 [95]. If bulk graphite is sufficiently doped, the Fermi surface becomes as 

in Fig. 9.1, and larger conductivities result [96]. 

The 1D conductivity, Utube, is now calculated and related to <7sheet· The band struc-

ture of single-walled armchair tubes near the Fermi level is shown schematically in Fig. 

9.2, the dotted line marking the Fermi level for a small amount of n-type doping[92]. In 

the absence of the strong hybridization present in extremely small-radius tubes [58], the 

magnitude of the band velocities for all states is VF, as for the sheet. Using Eq. 9.2, 

(9.7) 

where the extra factor of 2 comes from the sum over bands crossing EF. This expression 

can be rewritten in terms of the density of states of the tube, 

(9.8) 

Unlike the sheet case, Ntube(EF ), the number of states per unit energy per unit length, 

does not depend on the position of the Fermi level in the low-doping limit. 

We now relate Ttube to Tsheet by considering the individual scattering processes that 

determine the scattering times for sheets and tubes. In both cases, scattering is between 

electronic states at roughly the same energy. The total scattering rate for an initial state 

li) is a sum over individual scatterings to each final state. Assuming scattering due to 

phonons, Ti of the Boltzmann equation is given by[93], 

(9.9) 

where e is the angle between band velocities of states li) and If). (We identify li) and If) 

for the tube with the corresponding band-folded states of the sheet[13, 14]). For large 

enough tubes, it is a good approximation to assume that the electron-phonon matrix 
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E(k) 

k 

Figure 9.2: Schematic of the band structure of armchair carbon nanotubes near the 

Fermi level. The bands shown are the band-folded 1r and 7r* bands from Fig. 9.1. The 

Fermi level for no doping is at the crossing point. The dashed line indicates the Fermi 

level for n-type doping. 

elements are equal for tubes and sheets presuming that the total number of carbon atoms 

(which enters the matrix element normalization) is the same. This approximation should 

be accurate for tubes of diameter greater than"' lOA as will be discussed in the section 

on superconductivity. In the general case where the number of atoms is different, we 

have 

(JIHel-phii)tube _ ~ 
{JIHel-phii)sheet-~ 

(9.10) 

where nsheet and ntube are the numbers of atoms of the sheet and tube respectively. 

For the purpose of making order-of-magnitude estimates, we assume that the electron-

phonon matrix elements for tubes and sheets have characteristic values Mtube and Msheet, 

such that MtubeJntube = MsheetJnsheet, independent of li) and If). We obtain 

(9.11) 
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where £ is the length of the tube. We also have 

1 2 "" 2 -- = Msheet L (1 - cos8)8(Et - Ei) = MsheetANsheet(EF) 
Tsheet f 

(9.12) 

where A is the area of the sheet. In both cases the angular factors average to 1. Using 

Eqs. 9.6, 9.8, 9.11, and 9.12 along with the relation 

M'fheet ntube 2r.r£ 
2 =--=--

Mtube nsheet A 
(9.13) 

we obtain 

O"tube = 41l"TO"sheet = 2 · (27TTO"sheet) (9.14) 

Thus, the above assumptions regarding the electron-phonon matrix elements for sheets 

and tubes imply that an armchair nanotube has twice the conductance of an infinite 

graphite sheet per 27rr of width. The factor of two arises from the Fermi surface average 

of the x-component of the Fermi velocity. For an armchair tube with a single partially 

filled band the average of the squared x-component of the Fermi velocity is simply 

(vi) = v}, whereas for a graphite sheet with a circular Fermi surface (vi) = ~v}. For 

sufficiently large tubes, the Fermi level crosses many bands of differing Fermi velocities 

(assuming a small amount of doping). The resulting average Fermi velocity approaches 

that of (vi) for doped graphite. Alternatively, we may consider continuously changing 

the Fermi level for a tube of fixed radius. As each new band crosses EF, the density of 

states will peak, yielding a steplike dependence for O"tube as a function of doping which 

tends to the graphite sheet value[97]. It must be pointed out that the relation of Eq. 

9.14 is only approximate; the true 8-dependence of (JIHel-phli) may introduce factors 

of order unity into the expressions for the scattering times. 

A system with 1D conductivity O" has a resistance per length of ~- Using Eq. 9.14 

and the previously estimated value of O"sheet, we obtain an order-of-magnitude estimate 

of the resistance of an armchair carbon nanotube of radius r and length £ at room 
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temperature: 

(1- 5) x (~) n (9.15) 

Typical experimental parameters of r"' 10- 100A and £"' 1- lOJ.lm yield 102 - 105n. 

In small-gap non-armchair nanotubes, the 1r and 1r* bands have an avoided crossing at 

the Fermi level for the undoped case[14]. If they are sufficiently doped (or if kBT is much 

larger than the gap), their resistance will be the same as above. For a parallel array 

of noninteracting single-wall nanotubes, the 30 conductivity will be determined by the 

resistance of the individual tubes, and the packing-fraction of tubes within the array. For 

tubes packed in a 20 hexagonal arrangement at the graphite interplanar distance, the 

conductivity along the tube axes will be comparable to, or greater than that of copper if 

r "'2 -lOA [90] provided that the change in the Fermi surface due to inter-tube hopping 

is negligible. As was the case for bulk graphite as compared to noninteracting single 

sheets, the conductivity of an array of nanotubes at the equilibrium intertube distance 

may be smaller than that of a theoretical array of noninteracting tubes. The difference 

should be exacerbated for large single-walled tubes which are expected to deform in a 

manner which increases the contact area between tubes[98]. 

The resistance of multi-wall tubes is a complicated issue. The electronic properties of 

bulk graphite are strongly affected by the inter-sheet electron hopping [95], in particular 

the introduction of c-axis dispersion and the flattening of the 1r and 1r* bands near 

the K point. It has been predicted that similar band flattening occurs for multi-wall 

carbon nanotubes [74]. The static in-plane conductivity at 300 K of undoped ABAB

stacking graphite is ,...., 2.6 x 104 n~m [99], more than an order of magnitude lower than 

the "independent parallel sheet" result. Thus, we expect the conductivity of multi-wall 

tubes to be considerably below that of the sum of the constituent tubes. For large radius 

multi-wall tubes, the situation is probably most analogous to turbostratic graphite in 

which the parallel sheets are orientationally disordered [100]. 

102 . 



CHAPTER 9. ROOM TEMPERATURE STATIC CONDUCTIVITY 

We have explored the room-temperature static conductivity of carbon nanotubes 

by relating the properties of tubes to those of a graphite sheet. The character of the 

electronic states, gross features of the phonon spectra and overall magnitude of electron

phonon coupling are similar in tubes and sheets. This implies that single-wall carbon 

nanotubes are excellent conductors, with a collection of non-interacting armchair tubes 

conducting current roughly as well as a graphite sheet of equal length and area. We 

expect multi-wall tubes to have a reduced conductivity due to changes in the band 

structure analogous to those which occur in turbostratic graphite. 
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Quantum conductance of nanotubes with defects 

In chapter 6, we saw that the introduction of topological defects can change the 

chirality of nanotubes. In fact, it is possible to join two perfect nanotubes (n, m) and 

( n ± d, m =t= d) by forming d pentagon-heptagon pairs in the interface between them [59]. 

The resulting carbon nanotube heterojunction, (n, m)j(n±d, m=Fd), can have a different 

electronic structure on each side of the interface. The heterostructures formed by join

ing nanotubes of different chirality may show unique quasi-one-dimensional transport 

properties. 

There are theoretical and experimental studies on the quantum transport properties 

of carbon nanotubes in the literature. On the experimental side, the conductance of 

nanotube bundles has been measured [101], and a measurement of the conductance of 

an isolated multiwalled carbon nanotube has been recently reported [102]. From the the

oretical viewpoint, there are studies on the effect of magnetic fields and voltage bias in 

the ballistic conductance of perfect nanotubes[103] using the Landauer approach [104], 

but there have been no studies of changes in the conductance produced by defects. We 

address this issue by calculating the conductance of metallic carbon nanotubes with de

fects using the Landauer formula[104] in a tight-binding scheme. Within the Landauer 

formalism, the ballistic conductance of perfect systems is proportional to the number of 

conducting channels at the Fermi energy, that is, the number of bands at this energy 

[105]. The conductance of an imperfect system is lowered due to reflection of the electron 

waves off the defects. We first study the simplest possible defect, a single vacancy, and 

calculate the conductance as a function of tube radius. The increase of conductance with 

radius illustrates the crossover from one-dimensional to two-dimensional behavior. We 
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then calculate the conductance through nanotube heterojunctions, (n1 , m1)/(n2 , m2), 

when;! both (n1, m1) and (n2, m2) tubes are metallic. We show that certain configu-

rations of pentagon-heptagon pair defects completely stop the flow of electrons, while 

others permit the transmission of current through the interface. Such systems may be 

used as nanoscale electrical switches. 

10.1 Model and Method 

We are interested in studying infinitely long carbon nanotubes with localized defects. 

First we consider the problem of a vacancy in an otherwise perfect tube. We also study 

nanotubes with pentagon-heptagon pairs, which can be viewed as the result of matching 

two perfect semi-infinite tubes with different chiralities. This kind of problem is most 

conveniently treated with the Green function matching (GFM) method[61]. A nanotube 

with pentagon-heptagon pairs is depicted schematically in Fig. 10.1. The perfect tubes 

are media A and B. The last unit cell of medium A, labeled -1, together with the 

first of medium B, labeled 1, constitute the interface domain. We describe the carbon 

nanotubes by a tight-binding model with one 1r-electron per atom. Our tight-binding 

Hamiltonian is of the form 

H =-Vpp?r L:a!ai + c.c. 
(ij) 

(10.1) 

where the sum in i, j is restricted to nearest-neighbor atoms, and Vpp = 2.66 eV, as 

in Ref. [106]. On-site energies are set to zero. All the hopping parameters are equal, 

independent of the bond length, curvature or any rearrangement due to the presence 

" of defects. Therefore, our results show the changes induced solely by the alterations 

in the topology of the hexagonal rolled lattice. A vacancy is simulated by setting the 

hoppings to zero around the vacant site and its on-site energy equal to a large value, so 

the impurity peak does not appear in the energy range for which the density of states 

(DOS) of the tube is non-zero. We now describe the salient features of the GFM, and 
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Figure 10.1: Schematic view of a matched AlB system. 
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show how it is applied to calculate the conductance. 

In the GFM method, the single-particle Green function of the tube with pentagon-

heptagon pairs, G, is calculated from the bulk Green functions and Hamiltonians of 

the perfect, defect-free systems, GA, Gs, HA, and HB respectively, and the coupling 

interaction between media A and B. This method can be used with different one-electron 

Hamiltonian models [61] .. Within the tight-binding model we employ, the Hamiltonians 

and the Green functions are matrices whose dimensions are (Nc · Ne) x (Nc · Ne), where 

Nc is the number of unit cells and Ne is the number of ?r-electronsjcell. Since we are 

studying infinite systems, in principle these matrices are infinite. An element of G would 

be denoted by (i, a:IGij, a:'), where i, j are cell indices and a:, a:' denote orbitals. In what 

follows, we let HM i,j denote the block of the Hamiltonian matrix of the perfect system 

M (M = A, B) which contains matrix elements of HM between localized ?r-electron 

orbitals in cell i and orbitals in cell j. Thus, H M i,j is itself a matrix of dimension 

N Me x N Me (similarly for G M i,j ). Using the GFM we will only have to deal with block 

matrices whose dimensions are at most (NA e + Ns e) x (NA e + Ns e), NA e and Ns e 

being the number of orbitals per cell in materials A and B respectively. 

The coupling between media A and B is given by the block matrices HI -1,1 and 

HI 1,_1 . HI _1,1 contains matrix elements between orbitals in cells -1 and 1. Obvi

ously H11,-1 = HJ_1,1. The dimension of HI-1,1 is NAe x Nse, so in general it is a 

rectangular matrix. 

From G we can evaluate the local density of states Nn(E) at any energy E and nth 

cell of the system, 

1 
Nn(E) = --Im tr Gn n(E), 

7T , 
(10.2) 

where the trace is over the Ne orbitals in cell n. 

The total Green function, G, is calculated in the following way: Suppose that in our 

matched system, AlB, we have an incident amplitude from side A, and we want to know 
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the amplitude produced by the scattering at the interface. That is, given an excitation 

in cell n of medium A propagating toward the interface, we are interested in knowing 

the amplitude produced in cell n' of medium B (transmission) or medium A (reflection). 

In the first case, i.e., for transmission amplitudes, we have that 

(10.3) 

where calligraphic letters indicate interface objects, e.g., g is the Green function of the 

system projected onto the interface domain. For reflected amplitudes we have 

Gn,n' = G M n,n1 + G M n,-1 Y"A./(Q - Y M )(}/} G M -l,n1 ' (10.4) 

where we have written the Green function separating the incident and reflected part; 

the second term in Eq. (10.4) accounts for reflection at the interface. This will be useful 

for deriving an expression for the scattering matrix within the Green function scheme. 

For computational purposes it is convenient to introduce the transfer matrices of 

GMn+l,m = TMGMn,m, (n 2: m) (10.5) 

GMn-l,m = TMGMnm, (n ~ m) ,, (10.6) 

GMn,m+l = GMn,mSM, (m 2: n) (10.7) 

GMn,m-1 = GMn,mSM, (m ~ n). (10.8) 

We compute the transfer matrices using the algorithm of Lopez-Sancho et al. [107]. 

From Eqns. (10.5-10.8) it is easily seen that 

(10.9) 

(10.10) 

so we only need to calculate two of the four transfer matrices defined above. Nevertheless, 

we maintain all four to yield more compact expressions. Using the former definitions, it 

can be shown that [61] 



CHAPTER 10. QUANTUM CONDUCTANCE OF NANOTUBES WITH DEFECTS 

) = ( ) 

-1 

E - HA -1,-1 - HA -1,-2TA 

(10.11) 

The full Green function matrix, G, can then be constructed from Eqs. 10.3 and 10.4. 

In the Landauer formalism, the conductance of a system is related to its scattering 

properties[104f, which are described using the Green function scheme presented in the 

previous subsection. The multi-channel generalization of the Landauer conductance 

formula is [105]: 

2e2 2e2 

r = TTr(ttt) = T I: it,aal 2
, 

,Bet 

(10.12) 

where t is the transmission matrix from either the left or the right as defined by Fisher 

and Lee. Let us choose transmission from left to right, i.e., from medium A to B. 

Suppose that at the energy E there are MA channels in medium A and Ms channels 

in medium B. Then t is a rectangular Ms x MA matrix. The squared modulus of 

a component oft, lt,aal 2 , is the transmission coefficient from channel a in medium A 

to channel (3 in medium B. If we have an incident eigenstate from medium A, <{)a, 

the corresponding transmitted amplitude in side B, '1/Ja sc, can be written as a linear 

combination of the eigenstates of medium B, <p,a, provided that we are far from the 

interface. So it,aal 2 = ~l(cp,ai?Pasc)l 2 , where vp, Va are the group velocities of the 

corresponding eigenstates. 

The scattered wave, ?Pa sc, is calculated from the scattering matrix, S(E), which is 

defined by 

( 

WB,out ) = S(E) ( WB,in ) ' 

W A,out W A,in 

(10.13) 

where Win, Wout denote the ingoing and outgoing wavefunction amplitudes respectively. 

The transmitted amplitude is obtained by setting Win equal to an incident eigenstate. 

Using the relation between the wavefunction amplitudes and the Green function [61], 
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we can write the scattering matrix in terms of 9: For example, the reflected amplitude 

in medium B is 

(10.14) 

where 'PB is an incident eigenstate in medium B. Similarly, for the amplitude transmit-

ted from side A to B, 

(10.15) 

and so on. Using (5-8) we can write the scattering matrix S(E) as 

S(E) _ 

(10.16) 

If we take n, n' far from the interface, we can choose the incident amplitudes as eigen-

states of the unperturbed Hamiltonian HA, and decompose the scattered wavefunctions 

in terms of the eigenstates of the unperturbed Hamiltonian HB· Thus, in terms of the 

scattering matrix, equation (10.12) reads 

(10.17) 

where the indices a:, /3 run over all eigenstates with energy E of media A and B respec-

tively. 

10.2 Carbon nanotubes with vacancies 

In this section we study the conductance of several (n, n) carbon nanotubes in which 

an atom has been removed to produce a vacancy. In Fig. 10.2 we plot the conductance 
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of the (4,4) nanotube with one vacancy (full line) and the perfect (4,4) tube (dashed 

line) as a function of the energy. For most energies, and particularly at the Fermi energy 

of the undoped system (E = 0), the value of the conductance is reduced by almost one 

unit, 2~2 , when the impurity is present. This amounts to the removal of one conducting 

channel, and for the undoped case, a reduction of 50 % with respect to the conductance 

of the perfect ( 4, 4) nanotube. This is to be expected, for the presence of a vacancy in a 

monatomic chain completely suppresses the conductance by removing the only existing 

channel. Since a nanotube is a quasi-one-dimensional system, the conductance is not 

totally suppressed; the extent to which it is depleted reflects the dimensionality of the 

system. 

Fig.10.3 shows the difference between the conductance (for EF = 0) of a perfect (n, n) 

tube· and that of the same tube with a vacancy as a function of n. The circumference of an 

(n, n) tube is given by C = 3nl, where lis the carbon-carbon nearest-neighbor distance, 

so this is equivalent to plotting the change in conductance versus nanotube radius. All 

perfect (n, n) tubes have two bands at EF, giving rise to a conductance of 4e~. When the 

impurity is introduced, the conductance decreases, this decrease being greater for the 

smaller tubes. Note that for the (4,4) tube the conductance is reduced by one channel, 

and this difference diminishes smoothly when the radius increases. An increase in radius 

corresponds to a change from quasi-one-dimensional to two-dimensional behavior. In a 

perfect two-dimensional graphite sheet the change in conductance due to the presence 

of a single vacancy is negligible. 

10.3 Pentagon-heptagon matched tubes: Nanotube heterojunctions 

We now come to the main focus of this chapter, the conductance of matched metallic 

carbon tubes with pentagon-heptagon pair defects. First we study the (12,0)/(6,6) tube. 

There is a unique way to match these two tubes by joining their perfect unit cells, which 
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Figure 10.2: Conductance of a (4,4) nanotube with a vacancy (full line) and a perfect 

( 4,4) nanotube (dashed line) as a function of the Fermi energy. 
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Figure 10.3: Difference in the co;nductance of an (n, n) nanotube with and without a 

vacancy as a function of n. 
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produces a ring of six pentagon-heptagon pairs around the circumference. In Fig. 10.4 

(top) we show the conductance of the matched tube together with the conductances of 

the (12,0) and (6,6) perfect tubes as a function of energy. We see that, whereas the 

perfect tubes are metallic and have non-zero conductance at the Fermi energy of the 

undoped tube (EF = 0), there is a gap in the conductance for the matched system. The 

conductance of the matched tube is always smaller than the conductance of the perfect 

tubes that form it, as expected: any defect degrades the conductance, and in a matched 

system AlB medium B can be considered as a perturbation to medium A and viceversa. 

This effect is similar to what Todorov et al. [108] noted studying the conductance of 

wires with width fluctuations. In Figs. 10.4 (center) and 10.4 (bottom) we present the 

local density of states (LDOS) of the unit cells which contain the pentagon-heptagon 

pairs (fulllines)[109]. In our notation these are cells with n = -1 (for the (12,0) tube, 

Fig. 10.4, center) and n = 1 (for the (6,6) tube, Fig. 10.4, bottom). For comparison we 

also plot the LDOS of the perfect tubes (dotted line in Fig. 10.4 (center) and dashed line 

in Fig. 10.4 (bottom) respectively). The LDOS is non-zero in the defect region for the 

energy interval in which the conductance is zero, as it is for the perfect tubes. Therefore 

the conductance is not suppressed due to the appearance of a gap in the LDOS in the 

defect region. This points to a symmetry origin of the suppression of the conductance 

in this system. We discuss this at length in the following section. One may wonder 

whether .the presence of a full ring of pentagon-heptagon pairs around the circumference 

of the tube could be related to this effect. 

To clarify this point we have studied a tube for which the matching is achieved 

by a mixture of hexagons and pentagon-heptagon pairs, the (9,0)/(6,3) tube. In this 

case three pentagon-heptagon pairs are needed, so the matching region contains three 

hexagons as well. There are several inequivalent ways of joining the perfect unit cells: 

all the hexagons adjacent to each other, only two of the hexagons adjacent, and all 

the hexagons separated. Here we study two of these possible matching orientations: 1) 
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Figure 10.4: Results for the (12,0)/(6,6) matched tube. Top: conductances of the 

matched system (solid line), perfect (12,0) tube (dashed line), and perfect (6,6) tube 

(dotted line). Center: atom-averaged LDOS of the interface unit cell of the (12,0) tube 

(full line) and the perfect (12,0) tube (dotted line), plotted for co,mparison. Bottom: 

atom-averaged LDOS of the interface unit cell of the (6,6) tube (full line) and the perfect 

(6,6) tube (dashed line), plotted for comparison. 
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symmetric: all the hexagons separated by defects, and 2) asymmetric: two hexagons 

adjacent to each other. The first is so-named because the sequence of n-fold atom 

rings around the circumference (6-7-5-6-7-5-6-7-5) has three-fold rotational symmetry 

about the cylindrical axis of the tube. The asymmetric case has no rotational symmetry 

(sequence of n-fold rings is 6-7-5-6-6-7-5-7-5). 

In Fig. 10.5 we present the results for the (9, 0)/(6, 3) symmetric tube. Fig. 10.5 

(top) shows the conductance along with the conductance of its perfect components, i.e. 

the (9,0) (dashed line) and the (6,3) (dotted line). Again we find that there is a gap in 

the conductance around the Fermi energy of the undoped system, so the appearance of a 

conductance gap is not exclusive to tubes with a full circumference of pentagon-heptagon 

pairs. As before, the conductance of the matched tube is lower at every energy than that 

of its perfect constituents. In Figs. 10.5 (center) and 10.5 (bottom) we show the LDOS 

of the matched unit cells which form the interface (full lines) along with the LDOS of 

the corresponding perfect (9, 0) and (6, 3) tubes (dashed and dotted lines, respectively). 

Again the LDOS is non-zero in the energy interval in which the conductance is zero. 

The results for the asymmetric (9, 0)/(6, 3) tube are shown in Fig. 10.6. For this tube 

we find that there is not a total suppression of the conductance at any energy at which 

the LDOS is non-zero (Fig. 10.6, top, full line): the matched system behaves as a metal. 

Nevertheless, since the interface between the tubes acts as a defect, the conductance 

is reduced by approximately one channel relative to that of the perfect tubes. As in 

the previous cases, we plot the conductances of the (9,0) and (6,3) perfect tubes for 

comparison. The LDOS at the interface (Figs. 10.6, center and bottom, full lines) is 

practically equal to the one found for the symmetric case (see Fig. 10.5). The rest of the 

features are very similar to the symmetric case. The metallic nature of the asymmetric 

(9, 0)/(6, 3) tube provides further evidence that the presence of a conductance gap is 

related to the symmetry of the defects at the interface. In what follows, we explain 

this effect and derive general rules that predict the occurence of conductance gaps in 
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Figure 10.5: Results for the (9,0)/(6,3) symmetric matched tube. Top: conductances 

of the matched system (solid line), perfect (6,3) tube (dotted line), and perfect (9,0) 

tube (dashed line). Center: atom-averaged LDOS of the interface unit cell of the (9,0) 

tube (full line) and the perfect (9,0) tube (dashed line), plotted for comparison. Bottom: 

atom-averaged LDOS of the interface unit cell of the (6,3) tube (full line) and the perfect 

(6,3) tube (dotted line), plotted for comparison. 
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Figure 10.6: Results for the (9,0)/(6,3) asymmetric matched tube. Top: conductances 
/ 

of the matched system (solid line), perfect (6,3) tube (dotted line), and perfect (9,0) 

tube (dashed line). Center: atom-averaged LDOS of the interface unit cell of the (9,0) 

tube (full line) and the perfect (9,0) tube (dashed line), plotted for comparison. Bottom: 

atom-averaged LDOS of the interface unit cell of the (6,3) tube (full line) and the perfect 

(6,3) tube (dotted line), plotted for comparison. 

118 



CHAPTER 10. QUANTUM CONDUCTANCE OF NANOTUBES WITH DEFECTS 

10.4 Discussion 

We first explain the conductance gap in the {12, 0)/(6, 6) tube. A discussion of 

the (9, 0)/(6, 3) system and the general rules for all (n1 , m1)f(n2 , m2) tubes follow. If 

curvature-induced hybridization is neglected[58J, carbon nanotubes can be thought of 

as graphite sheets with periodic boundary conditions applied in the circumferential 

direction. This results in a quantization of allowed k-vectors of the graphite sheet which 

forms the tube. Fig. 10.7 shows the lines of allowed k-vectors overlayed on the graphite 

sheet first Brillouin zone (BZ) for the perfect (6, 6) and {12, 0) tubes. Both tubes have 

six-fold rotational symmetry about their cylindrical axes. Thus, electronic states of the 

tubes may be classified according to discrete angular momenta L[llO]. States that arise 

from different lines of allowed k-vectors have different rotational symmetries. The lines 

which intersect k = 0 give rise to rotationally invariant (L=O) tube states. Other lines 

give rise to states of higher L. 

The states with energies near EF (for the undoped case) are those with k-vectors 

close to the vertices of the hexagonal BZ. This is because the Fermi surface of the 

undoped graphite sheet is located at these points. Thus, the states at EF for the (6, 6) 

tube originate from the center line, and are L = 0 states, invariant under rotations by 2; 

about the tube axis. The Fermi level states of the (12, 0) tube come from the fourth lines 

away from the center, and are L = 2 states (defined with respect to six-fold rotational 

symmetry). So we see that the Fermi level states of the two perfect tubes have different 

rotational symmetries. 

When the two tubes are matched to form the junction, (12, 0)/(6, 6), six pentagon

heptagon pairs are introduced at the interface. The interface itself has six-fold rotational 

symmetry. Therefore, the matched tube is invariant under rotations by 2
;. Now consider 
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Figure 10.7: Lines of allowed k-vectors of the (6,6) and (12,0) carbon nanotubes over

layed on the graphite sheet Brillouin zone. Dashed lines enclose Brillouin zones of the 

(1, 1) and (1, 0) units. Solid dots indicate k = 0, and open dots mark points where the 

lines touch the graphite sheet Fermi surface. 

the conduction process. Scattering due to rigid defects is elastic as long as the defects 

have no internal excitations. Thus, an electron which begins in the (12, 0) tube must 

scatter to a state with the same energy in the (6, 6) tube. But since the states at EF 

of the two half-tubes have different L, the electron wave is totally reflected, and the 

conductance equals zero. Stated another way, the perfectly symmetric interface cannot 

impart any extra angular momentum to the electron, so the conditions of energy and 

angular momentum conservation cannot be satisfied simultaneously[111]. If the system 

is doped with either electrons or holes, such that EF is pushed away from 0 to energies 

at which states of equal L coexist on both halves of the junction, the conductance is 

nonzero. The conductance gap marks the energy window in which states of the two 

sides have no £-values in common. 

It should be pointed out that the L = 0 states of the (6, 6) side of the junction do 

extend into the (12, 0) side, but they decay away from the interface, as is typical of 

interface states. Likewise, the L = 2 states of the (12, 0) side extend into the (6, 0) side, 
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but are damped. Since evanescent waves carry no current, the resulting conductance is 

zero. This is similar to total reflection in wave optics: even when the reflectance equals 

unity, some nonzero amplitude penetrates. However, far from the reflecting surface (on 

the opposite side from the source), no light flux is measured. 

The above arguments may also be applied to the (9, 0)/(6, 3) system. Consider the 

symmetric matching case. The interface (6-7-5-6-7-5-6-7-5) has three-fold rotational 

symmetry about the tube axis, as do the individual (9, 0) and (6, 3) tubes. From the 

graphite sheet band-folding analysis, it can be shown that the states at EF for the (6, 3) 

tube have L = 1 (defined with respect to three-fold rotational symmetry). The Fermi 

level states of the (9, 0) tube have L = 0. Again, states on opposite sides of the interface 

have different rotational symmetries. The symmetric interface does not impart extra 

angular momentum to the conductipg electrons, so there is a conductance gap near 

EF=O. 

Now consider the asymmetric matching case. The interface (6-7-5-6-6-7-5-7-5) has 

no rotational symmetry whatsoever, and in particular, it lacks three-fold symmetry. 

Therefore, transitions between the L = 1 states of the (6, 3) side, and the L = 0 states 

of the (9, 0) side are permitted; the interface can impart angular momentum to the 

electron. This results in a conductance which is nonzero over the whole energy range 

where the DOS is nonzero . 

. A general rule can n~w be abstracted: Carbon nanotube heterojunctions may have 

conductance gaps if the defects that form the interface are arranged symmetrically. 

They will not have conductance gaps if the interface does not preserve the rotational 

symmetry of the two constituent tubes. Of course, it is possible to match two tubes with 

different rotational symmetries[112]. In this case, no symmetric matching is possible, 

and conductance gaps will never appear. It is also possible f9r symmetrically matched 

tubes to avoid having a conductance gap. This will happen when the states of the two 

sides have some £-values in common at every energy. 
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We can easily derive the necessary condition on n1, m1, n2, and m 2 such that the 

(n1, m1)j(n2, m2) matched tube is a candidate for a conductance gap: An (n, m) tube 

bas J-fold rotational symmetry if n and m are both divisible by J. Thus, if n1, m 1 , 

n2, and m2 all have a common divisor, it will be possible to form the (n1, m1)/(n2, m2) 

junction with a rotationally symmetric interface. A conductance gap may result. Oth

erwise the conductance will, in general, be nonzero in the energy range for which the 

DOS is nonzero. Note that even if the two constituent tubes share a common rotational 

symmetry, it is usually possible to choose an asymmetric matching (see the asymmetric 

(9, 0)/(6, 3) above). A conductance gap can then be avoided (it cannot be avoided in 

the (12, 0)/(6, 6) system with ideal unit cell matching). It should be mentioned that the 

above argument holds for all types of defects at the interface. Only the symmetry of 

the interface is relevant. 

One point of interest is the variation in geometrical structure of carbon nanotube 

heterojunctions with different matching configurations. Nanotubes with pentagon

heptagon pair defects may exibit localized kinks and bends. Bend angles of up to 

15 degrees have been predicted[59, 106], and tubes with these signatures have been seen 

experimentally[59]. A nanotube heterojunction with a bend is the result of an asym

metric matching at the interface; rotational invariance is destroyed. If two tubes are 

matched symmetrically, the junction will have no bend, for the axis of rotational sym

metry is preserved. Thus, there is a relationship between the geometry of nanotube 

heterojunctions and the appearance of conductance gaps. Bent junctions will, in gen

eral, have nonzero conductance if the constituent tubes are metallic. Straight junctions 

may have conductance gaps. So we have the somewhat counterintuitive result that bent 

junctions conduct better than straight junctions on average. 

The presence of conductance gaps in some carbon nanotube heterojunctions opens 

up new possibilities for their potential applications. Since conductance gaps arise from· 

rotational symmetry, any perturbation which destroys this symmetry will allow the 
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tube to conduct. Three sources of symmetry-breaking are thermally excited phonons, 

externally applied electromagnetic (EM) radiation, and mechanical deformation. If a 

nanotube heterojunction with a conductance gap is at very low temperature, only acous

tic phonon modes with q ,...., 0 will be excited. From the above band-folding analysis, 

these modes will be symmetric (L = 0), and will not change the rotational symmetry 

of the interface. If the junction is at slightly higher temperature, asymmetric phonon 

modes (L > 0) will be excited which break the rotational symmetry, and destroy the 

conductance gap. The conductance should then show a sharp increase as temperature is 

increased. Therefore, heterojunctions with conductance gaps may be used as nanoscale 

thermistors which operate in the 10-100 K range. Heterojunctions kept at low tem

perature may loose their conductance gaps when bathed with appropriately polarized 

EM radiation. Circularly polarized photons with E-fields rotating about the tube axis 

can impart angular momentum to the conduction electrons. This allows the electrons 

to cross the interface and conduct current. Thus, these systems could also be used as 

nanoscale photoconductive switches which operate over a wide range of frequencies ( un

like typical photoconductive materials, it is the exchange of angular momentum rather 

than energy that excites the electrons into conducting states). Finally, mechanical stress 

can be used to destroy the rotational symmetry of a junction. If a nanotube heterojunc

tion is anchored at both ends, a nanoscale piezoelectric particle positioned along side 

the interface may deform the tube wall enough to allow the flow of current. In this way, 

heterojunctions could be used as nanoscale voltage-activated electrical switches. 

10.5 Conclusion 

We have studied the conductance of metallic carbon nanotubes with defects using 

the Landauer approach and a tight-binding Green function technique. We find that a 

single vacancy produces a dramatic decrease in the conductance of small-radius tubes, 
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while tubes with large radii are less affected. This is indicative of the crossover from 

one-dimensional to two-dimensional behavior. We have shown that carbon nanotube 

heterojunctions formed from two metallic tubes conduct if the defects at the interface 

are arranged asymmetrically. If the defects preserve the rotational symmetries of the 

two tubes, conductance gaps appear. Consequently, bent junctions conduct better than 

straight junctions on average. Owing to their novel properties, carbon nanotube het

erojunctions with conductance gaps may be used as nanoscale thermistors, as well as· 

optically-activated and voltage-activated electrical switches. 
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Collapsed carbon nanotubes 

11.1 Introduction. 

The strength of the carbon-carbon bond implies that perfect carbon nanotubes 

should have extremely high tensile strength[113, 10, 12]. However, large resistance to 

an increase in axial length does not guarantee resistance to radial deformation. The 

component graphitic sheets of a nanotube, though difficult to stretch, are easy to bend. 

For example, arrays of parallel single-walled nanotubes flatten at the lines of contact 

between tubes so as to maximize the intertube attractive interaction[114], a distortion 

consistent with energetic models of such structures[114, 98]. 

More dramatic deformations can be stabilized by the intersheet attraction[115] be

tween opposing walls of the same tube[116]. A tube may collapse into a fiat strip of 

thickness (2N -1)d where N is the number of graphitic walls and dis the graphitic inter

wall spacing of""' 3.35A. The collapsed tube differs in total energy from the correspond

ing circular tube for two reasons. First, any departure from the circular cross-section 

increases the curvature contribution to the energy. High curvature admixes sp3-bonding 

into the sp2 network, imposing an energetic cost. Second, circular tubes with diameters 

much larger than d have an insignificant attrative interaction between atoms on opposite 

sides of the circular perimeter. If the tube flattens so that the opposite sides are fiat 

sheets a distance ""' d apart, the intersheet attraction lowers the energy. 

We illustrate the essential physics with a simple model based on the schematic cross

section of Fig. 11.1. The collapsed tube is a two-sheeted strip of thickness d with bulbs 

on the edges of radii r and arclength a. Denoting the radius of the corresponding circular 
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Figure 11.1: Simplified schematic cross-section of a flattened nanotube. The bulbs are 

approximated as circular arcs. 

tube by R, the width of the flat strip is nR- a+ 2r ....., 1r R for a, r < < R. The difference 

in curvature energy between collapsed and circular tubes per axial length is 

AEcurv = k (~ - ~) (11.1) 

where k is the mean curvature modulus of a graphite sheet. The additional intersheet 

attraction per unit axial length in the collapsed tube is 

AEattr = -€attr(7rR- a) (11.2) 

where €attr is absolute value of the interaction energy per unit area between two graphite 

sheets separated by d. Since the competition between curvature and intersheet attraction 

is played out locally at the bulbs, we take a and r to be functions of d, k and €attn 

independent of R for R >> a, r. As the radius R of the circular tube increases, the 

energetic cost of collapse AEcurv approaches a constant while the energetic gain AEattr 

increases linearly. Above a critical radius, Rent, flat tubes are favored. The value of 

Rcrit depends on the ratio ( ~) and the intersheet spacing d. 

We use a variational model to estimate Rcrit as a function of the number of walls 

for a flattened multiwalled tube with realistic cross-section. The inputs are k, €attr, and 

d, which we obtain from a combination of experiments and ab initio calculations. We 

then compare the theoretical results for bulb cross-sections to TEM images of collapsed 

nanotubes, and extract an estimate of the graphite intersheet attractive energy. 
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Figure 11.2: Cross-section of a flattened nanotube. The cross-section is described by the 

width L of the central flat portion, the interwall spacing d, the radius r of the semicircle, 

and the radius R of the corresponding circular tube. 

11.2 Elastic Model 

A two-parameter family of trial shapes is used to model the geometry of an N -walled 

collapsed nanotube. After describing the trial shapes, we outline the variational calcu-

lation for first single-walled and then multi~walled tubes. We show that the bulb size 

decreases as ( ~) increases. The critical radius for stability of an N -walled collapsed 

tube, Rcnt(N), is determined. 

Opposing walls of a flattened single-walled nanotube collapse to a distance d apart. 

Assuming that the graphite sheet does not tear, the two flat sections must join at the 

edges. If Eattrd2 ,....., k, the edges bulge smoothly to decrease the local curvature energy, 

yielding the cross-section shown in Fig. 11.2. We model the edges as semicircles joined 

to the flat region by the curve a sin (f3x + -y) + 6. The constants a, /3, 'Y and 6 are chosen 

by imposing continuity in value and slope at the boundaries of the sin curves. 

Four parameters determine the shape of the collapsed tube: the distance d between 

the flattened walls, the radius r of the semicircle in the bulb, the length L of the fiat 

region and the perimeter 21r R of the collapsed tube, written as the circumference of the 

corresponding circular tube. The length of the sin-portion is determined by these four 

parameters. As long as R is much larger than a typical graphite intersheet spacing, the 

distance d between flat walls is always nearly ,....., 3.35 A. Thus, we fix d = 3.35 A for all 
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tubes. 

The variational calculation minimizes the sum of the curvature and intersheet at-

traction energies as a function of (r, L) for each circular tube radius R. All energies are 

defined per unit axial length (out of the page in Fig. 2), with the zero of energy taken 

as the energy per unit length of a 27T R-wide strip on an isolated flat graphite sheet. A 

circular tube with radius R > > d will have a negligible contribution from intersheet 

attraction, but will have the curvature energy 

. k (27T R) nk 
Ecircular = 2----w-- = R' (11.3) 

with k the mean curvature modulus of a graphite sheet[117]. This expression accurately 

fits ab initio calculations of the total energies of circular carbon tubes[118] when k = 1.4 

eV. As long as R is large, k is independent of the helicity of the tube because the in-plane 

elastic properties of a graphite sheet are isotropic. 

A surface with one-dimensional translational symmetry and a cross-section defined 

by y = f(x) has a curvature energy 

kj dl kjd [j"(x)F · 
2 [R(x)J2 = 2 x {1 + [j' (x)]2}%' 

(11.4) 

We use this expression to calculate the curvature energy of the sin-portions of the col-

lapsed tube. Adding the contribution from the semi-circular regions, we obtain the 

curvature energy of a collapsed tube, Ecollapsed, as a function of the perimeter 27T R, and 

the structural parameters (r, L). 

The energy of intersheet attraction in a single-walled collapsed tube is calculated 

by partitioning the cylindrical surface into axial strips and summing the Leonard-Jones 

interaction over pairs of strips. Each strip has an infinitesimal width w perpendicular 

to the axis. The Leonard-Jones interaction between two parallel, infinitely long strips 

is of the form 

s t 
VLJ(D) =- Ds + Dll' (11.5) 
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Figure 11.3: VLJ is only calculated between points i and j if the angle, a, between 

inward normals is 2: 7r - e. 

where D is the distance between strips and s, t > 0. The coefficients s and t are deter-

mined by two constraints: the interaction energy between infinite sheets is a minimum 

at D = d and the interaction energy per area at this distance is -Eattr· We obtain 

{11.6) 

t = 0.8204w2 
Eattrd

10
. (11.7) 

Eqn. 11.5 contains an inconvenient divergence from neighboring points in the same 

layer. The divergence is inconsequential since it can be eliminated by referencing all 

energies to the (equally divergent) single graphite sheet Lennard-J ones energy per 21r R 

of width. We avoid divergent terms by excluding contributions between portions of the 

surface whose normals point in nearly the same direction. Consider two strips at points i 

and j on the surface (see Fig. 11.3) with fti and ftj the inward unit normals. We include 

VLJ ( i, j) in the intersheet energy only if fti . D.j ::::; -cos e' with e between 0 and 7r. If 

0 = 0, then VLJ only includes interaction between the two straight portions of the tube. 
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Figure 11.4: Energy of interlayer attraction (per length) vs. 0 for a collapsed tube with 

21f R = 167.5 A, L = 40.g A, T = 4. 7 A. Between e = 40° and e = goo' Eattr is roughly 

independent of e. E is given in units of Eattrd. 

If(} is greater than 0, contributions from the curved portions are considered as well. As 

long as e is significantly less than 1f' the divergent contributions from neighboring points 
J 

are excluded. 

This method of excluding divergent terms is justified if the calculated energy is 

independent of 0 for a wide range of intermediate angles. Fig. 11.4 shows the intersheet 

attractive energy as a function of 0 for the single-walled tube whose cross-section is 

depicted in Fig. 11.2 (structural parameters 21rR = 167.5A, L = 40.g A, and r = 4.7 

A). The energy asymptotes between e = 40° and e =goo before diverging near e = 145° 

due to the inclusion of nearby pairs. For 0 between 40° and goo contributions from the 

curved regions are included, but divergent terms in the Lennard-Jones self-energy are 

excluded. We find that 0 = 50° is suitable for all tubes studied. 

The prescription for calculating the equilibrium cross-section of a single-walled col-

lapsed tube with circumference 21rR is simple: values for L and r are chosen. The 
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curvature energy, Ecurv 1 is calculated using Eqn. 11.4. Then the interlayer energy, 

Eattn is calculated by summing the Lennard-Jones interaction of Eqns. 11.5-11.7 be

tween pairs of strips, subject to the normal vector condition with e = 50°. This yields 

Ecollapsed(2·n-R; L, r) = Ecurv + Eattr 1 the energy per length of the collapsed tube relative 

to a flat graphite sheet per 21r R of width. The energy is minimized with respect to L 

and r to obtain Ecollapsed(27rR). 

Additional complications arise in calculating the equilibrium cross-sections of N

walled collapsed tubes. Consider a two-walled circular tube with inner radius R. If 

R > > d, the distance between the walls of the two concentric tubes is nearly d. We take 

the radius of the outer tube to be exactly R +d. The circumference of the outer wall is 

then 21r(R +d) = 21r R + 2?Td. The increase in circumference between inner and outer 

walls is 21rd, independent of R. 

Now imagine the collapsed version of the same tube. We assume that the walls have 

cross-sections described by trial shapes with parameters {r(1), L(1)} and {r(2), L(2)}. 

It is reasonable to assume that the perpendicular distance between flat portions of inner 

and outer walls remains d. The curved portions, however, present a problem. In order 

for the circumference of the outer wall to be exactly 21rd greater than the circumference 

of the inner wall, the distance between inner and outer walls in the curved region must 

be less than d somewhere[119]. This reduction in interlayer spacing is energetically 

disfavored since VLJ(D) increases rapidly as D falls below d. The best cross-section can 

be determined by minimizing the total energy (which includes the interlayer attraction 

between inner and outer walls) with respect to the parameters r(1), L(1), r(2), and 

L(2). This is rather tedious, especially for large numbers of walls. 

Instead, we make an ansatz which reduces the number of parameters to two: let 

r(2) = r(1) + d and L(2) = L(1). This supposition is illustrated in Fig. 11.5. The 

lengths of the straight and sin-portions are now the same for inner and outer walls, 

while the excess length of the outer semicircular regions is 2?T(r +d) - 21rr = 2?Td. The 
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Figure 11.5: Cross-section of a 2-walled collapsed tube. We take r(2) = r(1) + d, and 

L(1) = L(2). 

ansatz forces the circumference of the outer wall to be precisely 2~r(R +d), as required. 

Furthermore, the only place where the closest distance between walls is less than d is 

in the sin-portions. The deviation from d will be small as long as r(1) is not too much 

larger than ~, an assumption that will be justified by the results for the dimensions of 

the bulbs. 

The ansatz is easily generalized to any number of walls: Let 

r(j) = r(j - 1) + d 

L(j) = L(1) 

1<j$;N 

1 < j $: N. 
(11.8) 

With these assumptions, the jth wall has a circumference of 2nR + 21r(j- 1)d and the 

small decrease in distance between adjacent walls in the sin-portions incurs only a minor 

energetic cost. Furthermore, there are just two variational parameters, {r(1), L(1)}, 

as for the single-walled case. The general prescription for calculating the equilibrium 

cross-section of an N-walled collapsed tube is the same as outlined above, with Ecurv 

calculated for all walls and Eattr including interactions between walls. The zero of 

energy is now taken to be the energy per length of an N -sheeted slab of graphite per 

1r(2R + (N - 1)d) of width (the average circumference of the N walls). It should be 

noted that the parameters {r(1), L(l)} which minimize the total energy for anN-walled 

collapsed tube may depend on N, i.e. the shape of the curved regions may change as 

the number of walls increases. 

Before presenting results for Rcrit(N), we discuss the value of Eattr to be used. Al

though the mean curvature modulus k = 1.4 eV and the graphitic interwall spacing 
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_) 

d = 3.35 A are well known, the intersheet attraction is a subject of controversy. At

tempts to determine Eattr have yielded disparate values. 

Local density approximation calculations can have difficulty with the correlation

born Van der Waals energy. Bearing in mind this weakness, two different local den

sity approximation calculations yield €attr ~ 0.02 eV /atom[120] and €attr ~ 0.03 

eV fatom[121] for the intersheet attraction between graphitic layers. One calculation 

yields €attr ~ 0.02 eV /atom[122] for the intersheet attraction between layers of a small 

two-walled nanotube. 

The most direct experimental measurement is heat of wetting, which yields €attr ~ 

0.04 eV /atom[123]. Although this value is in reasonable agreement with the difference 

between an sp2 bond-energy sum and the graphite heat of vaporization[124], the bond 

energy sum minus the heat of vaporization is the difference of large, imprecisely known 

numbers. Comparable values also obtain from theoretical calculations of interatomic 

(e.g. Lennard-Jones) force laws[123, 125]. 

Several alternative approaches yield widely dispersed values. Fits of empirical in

teratomic interactions to a large database of sp3 hydrocarbon binding energies yield 

a carbon-carbon van der Waals interaction which implies €attr ~ 0.002 eV /atom[126]. 

This value is corroborated by fits of a two-parameter interatomic potential to the c-axis 

compressibility and interlayer spacing of sp2 graphite[127]. Applying fits of intermolec

ular N2 interactions to carbon atoms yields a similar value, Eattr ~ 0.003 eV /atom[128]. 

Alternative theoretical calculations and semiempirical estimates yield a clutch of larger 

values, €attr ~ 0.1 eV jatom[129], €attr ~ 0.17 eV /atom[130], €attr ~ 0.2 eV /atom[131]. 

In our opinion, the groupings of values around 0.002 and 0.2 are suspect since they are 

sensitive to the choice of empirical force law and/or do not address the idiosyncratic 

qualities of graphite. 

The wide dispersion in estimates for €attr may seem discouraging, but our TEM 

images will in fact allow us to directly measure the bulb radius. Combining these direct 
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a) 

I 
b) 

Figure 11.6: Calculated equilibrium cross-section of an 8-walled bulb using a) Eattr = 0.05 

eV /atom, and b) Eattr = 0.005 eV /atom. 

measurements with our elastic theory then yields the first direct microscopic measure 

of the interlayer attraction in graphite. Anticipating these results, we will focus on 

intermediate values of Eattr near 0.05 eV /atom. 

Fig. 11.6 shows calculated bulb cross-sections of an eight-walled collapsed tube for 

two choices of the intersheet attraction, Eattr = 0.05 e V /atom and Eattr = 0.005 e V /atom, 

taking k = 1.4 e V in both cases. The bulb size increases ~s ( ~) decreases. The radius 

of the innermost wall of the bulb is 3.6 A for Eattr = 0.05 eV /atom, and 8.0 A for 

Eattr = 0.005 e V /atom. Bulbs are larger for weaker intersheet attraction since the loss 

of attraction between opposite sides of the inner wall is proportional to Eattrr while the 
1 

curvature energy goes like~- Thus, r,...., (~)-2. 

Our models for the curvature and inter-sheet attractive energies determine the energy 

(per length) of an N-walled circular tube of inner radius R. This energy can then be 

compared to the energy of the corresponding collapsed tube with inner circumference 

2nR. The collapsed tube is favored for large R. Define Rent so that a collapsed tube 
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Figure 11.7: Calculated equilibrium cross-sections for 1-walled, 3-walled, and 8-walled 

collapsed tubes with inner-wall circumferences 27rR.:rit(1), 27rR.:rit(3), and 27rR.:rit(8) 

respectively. Their widths (distances between outer-wall bulb tips) are 77 A, 121 A, and 

201 A. 

with inner circumference 27rRcrit(N) has the same energy as the circular tube with 

inner radius R.:rit·(N). Because the attractive energy lowering in collapse is roughly 

independent of N, and the curvature energy gain increases with N, R.:nt(N) is an 

increasing function of N. 

Fig. 11.7 shows the calculated equilibrium cross-sections of one, three, and" eight

walled collapsed tubes with inner circumferences of27rRcrit(1), 27rRcrit(3), and 27rR.:rit(8) 

respectively. The inner circumference of the collapsed tubes increases with the number 

of walls. Fig. 11.8 shows a plot of Rent as a function of N for 1 ~ N ~ 8. The inner 

wall bulb radius r(1) decreases from 4. 7 A to 3.6 A as the number of walls increases 

from 1 to 8[132]. 

The plot of Fig. 11.8 can be thought of as a phase diagram. Each tube with 

dimensions R, N can be represented by a point in the (R, N)-plane. In equilibrium, 
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Figure 11.8: Critical radius for tube stability Rent, as a function of the number of walls 

N, calculated with fattr = 0.05 eV /atom (solid line). For large Nand small R, circular 

tubes are favored, while for small N and large R, collapsed tubes are favored. The upper 

and lower dashed curves correspond to fattr = 0.025 eV /atom and fattr = 0.1 eV /atom 

respectively. This shows the sensitivity to the choice of fattr· 
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tubes represented by points lying above the Rc:rit vs. N line are collapsed, while tubes 

below are have circular cross-sections. Of course, the equilibrium situation is probably 

not realized, for the energy barrier towards collapse is much larger than ksT. Tube 

geometries are most likely dominated by kinetics. We then ask the question: How large 

must R be for the collapsed configuration to be metastable? The critical radius for 

metastability, Rrneta(N), is defined so that an N-walled tube with inner circumference 

27rRmeta(N) has no energy barrier between collapsed and circular states. Although we 

do not calculate this precisely, it can be approximated by considering a collapsed tube 

with its straight portion removed. A collapsed tube with a straight section will have an 

attractive interaction between opposing walls which maintains its structure. Without 

it, the tube will return to a circular cross-section to release the curvature energy. This 

suggests the following relationship: 

1 
Rmeta(N):::::: Rcnt(N)- -Lcrit(1), 

7r 
(11.9) 

where Lc:rit (1) is the length of the straight portion of the inner wall for a collapsed tube 

with R = Rcrit· Again, Rmeta(N) increases as N increases. In particular, Rmeta(1) :::::: 

13.6 A and Rmeta(8) :::::: 14.6 A, a relatively weak dependence on N. 

11.3 Analysis of TEM images 

Although we expect our model to predict reasonable cross-sections for collapsed 

tubes, it neglects one important aspect of their morphology. Experimentally observed 

collapsed tubes are often twisted along their length (like party streamers). Figure 11.9 

displays a TEM image of a twisted, collapsed carbon nanotube. The place where the 

apparent width is smallest indicates the point at which the plane of the flattened tube 

is parallel to the viewing direction. Examination of the fringes far from this point shows 

that this tube has eight concentric walls. However, a count performed in the small-width 

area yields more than 2x8 fringes. These extra fringes come from portions of the walls 
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which are in the bulb regions. 

Bulb-derived fringes can also be seen elsewhere in the image. When the fiat tube is 

tilted toward the viewer, different portions of the bulb walls are parallel to the electron 

beam. These regions provide heightened contrast which appear on the left side of the 

twist, both above and below the small-width area. It is possible to obtain an estimate of 

the bulb size by measuring the distance between these bulb-derived fringes and "normal" 

wall fringes [133], a fact we shall exploit below. Note that these bulb-derived fringes 

appear on only one side of the image. 

The appearance of the bulbs on just the left side suggests that they do not bulge 

symmetrically on either side of the fiat region, but instead bulge to just one side, as 

shown in Fig. 11.10. This unusual structure can be understood as a symmetry-breaking 

cupping deformation of a twisted ribbon. To wit, it is impossible to twist a strip of 

paper while maintaining a straight cross-section without introducing either cupping or 

kinks. We now explain this using elasticity theory. 

For simplicity we consider the elastic deformations of a twisted sheet as opposed to 

a twisted flattened tube. The simplest model of a twisted sheet would have a straight 

cross-section. However, a twisted sheet with a straight cross-section has Gaussian curva-

ture. Therefore, a material with large Gaussian curvature modulus is unstable towards 

cupping. In the cupped state the sheet cross-section, although curved, yields a surface 

of zero Gaussian curvature. 

A twisted ribbon with a straight cross-section has a Gaussian curvature given by 

(11.10) 

where >. is the length of the twist along the screw axis, and xis the cartesian coordinate 

pointing parallel to the_ straight line in Fig. 11.10. The screw axis goes through x = 0. 

If the cross-section of the twisted ribbon is described by f ( x), then the condition of zero 
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Figure 11.9: TEM image of a twisted, collapsed carbon nanotube taken by N.G. Chopra. 

Beside it is an interperative line drawing. 
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-----
Figure 11.10: Schematic cross-section showing the cupping of a twisted nanotube, in 

analogy to the cupping of a twisted single-layered ribbon. For clarity only a single layer 

of the tube is shown. The curved line is a numerical solution of Eqn. 11.11. 

Gaussian curvature yields a nonlinear differential equation for f, 

f" (xf'- f)= (1 + (!')2
)

2
. (11.11) 

Since the right-hand side is always positive, the curvature f" has constant sign, con

sistent with a cupped geometry. The additional constraint that f"(xf'- f) is positive 

guarantees that the solution does not curve away from the origin when f' = 0. A sample 

numerical solution yields the cross-section shown on the righthand side of Fig. 11.10. 

For the actual multilayered flattened tube we suspect that the cupping concentrates 

in the already-bent bulbs, flattening one side and accentuating the other with a lesser 

curvature introduced into the previously flat region between the bulbs. 

This symmetry-breaking cupping instability explains the visibility of bulbs on just 

one side of the image. The large angle at which the bulbs are seen is also attributed to 

the cupping instability, which concentrates the bulb on one side of the tube. 

The minimum spacing between the bulb-derived walls and the primary walls is not 

the graphitic interwall spacing but instead the diameter of the bulb. The TEM image of 

Fig. 11.9 shows this gap for the bulb-derived walls below the crossover. The minimum 

spacing, 7 ± 1 A, is a good approximation to the diameter of the inner bulb. The bulb 

diameter is a function of the ratio of the graphite intersheet attraction to the mean 

curvature modulus; since the curvature modulus is well known, the elastic modelling 

allows an estimate of the intersheet interaction in graphite, a difficult quantity to access 
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Table 11.1: Experimentally observed collapsed tube parameters, along with the Eattr 

that would yield these results in our model. N is the number of walls, and R is the 

inner radius of the corresponding circular tube (in nm). The inner-wall bulb diameter 

is in A, and Eattr is in e V /atom. 

N R Bulb diameter Eattr 

8 5.2 7 ± 1 0.05 ± 0.02 

6 7.4 8 ± 2 0.04 + 0.04 - 0.02 

8 5.2 9 ± 1.5 0.02 + 0.02 - 0.01 

Average 

either experimentally or theoretically. Using our elastic model, a bulb diameter of 7 ± 1 

A for an eight walled tube implies Eattr = 0.05 ± 0.02 eV /atom. Similar analyses of 

other twists yield the values quoted in Table 11.1. 

Returning to the controversy surrounding the strength of Eattn our direct measure

ments of bulb size rule out both the lower and upper sets of estimates for the intersheet 

attraction (Eattr = 0.002-0.003 and 0.1-0.2). Instead, they support the heat of wetting 

experiments and/or the LDA results. 

11.4 Conclusion 

Continuum elasticity theory with a Lennard-Jones description of intersheet attrac

tion yields the equilibrium cross-sections of collapsed carbon nanotubes. Tubes with few 

walls and large radii favor collapse over the more familiar circular cross-section. The size 

of the bulbs on the edges of collapsed tubes depends sensitively on the ratio of the in

tersheet attraction to the mean curvature modulus. Analysis of TEM images of twisted 

collapsed tubes allows us to extract information about their geometry. Comparison of 

theory and experiment affords an estimate of the graphite intersheet attractive energy, 
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0.035:!:~:8i5 eV /atom. 



Chapter 12 

Planar carbon pentaheptite 

The discovery of fullerenes[6] and nanotubes[10] has induced a rennaisance in the 

study of novel carbon-based materials. Fullerenes, nanotubes, graphite, and diamond 

provide quasi-zero, one, two, and three dimensional insulators, semiconductors and/or 

semimetals. The utility of pure-carbon materials would be enhanced if a higher density 

of states metallic allotrope could be found. We propose an ordered planar arrangement of 

pentagons and heptagons as a good metal. A single sheet of planar carbon pentaheptite 

is a mechanically strong covalently-bonded conductor. 

An isolated graphite sheet is a semimetal with 1r and tr* bands touching at a pointlike 

Fermi surface. A reduction in symmetry below hexagonal can remove this degeneracy 

and eliminate semimetallic behavior. In this situation the strong carbon potential might 

be expected to open significant gaps near the Fermi level. However, a structure with a 

large number of atoms in a low-symmetry unit cell would favor a band-overlap metal. 

We provide an example of a pure-carbon planar metal composed of a periodic array of 

pentagons and heptagons. 

Any structure with an equal number of pentagons and heptagons and threefold ver

tices has zero net curvature. If the pentagons and heptagons are nearly uniformly dis

tributed, one might expect local flatness as well. Although there are an infinite number 

of ways of tiling a plane with equal numbers of heptagons and pentagons, a large subset 

of physically reasonable tilings can be generated by taking a graphite sheet, dividing it 

into diamonds of four adjacent hexagons, and rotating certain bonds by ~ as shown in 

Fig. 12.1[134]. Each bond rotation of the interior bond on the diamond generates two 

pentagons and two heptagons. Additional tilings outside the bond rotation algorithm 
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Figure 12.1: The bond rotation algorithm which converts graphite to a sheet of inter

linked pentagons and heptagons. 

can be generated by clustering pentagons or heptagons. However, bond rotation can 

produce patterns with minimal local curvature, or equivalently, minimal variation in 

bond length in a planar structure. 

We choose to examine the simplest possible way of tiling a plane with pentagons 

and heptagons, namely a periodic network with one bond rotation per primitive cell. 

Although there are two distinct ways of decorating a graphite sheet with diamond-shaped 

primitive cells of four hexagons and then rotating the interior bonds of each diamond, 

both methods yield topologically equivalent structures with eight atoms per unit cell. 

As shown in Fig. 12.2, each pentagon is adjacent to one pentagon and four heptagons. 

Each heptagon is adjacent to four pentagons and three heptagons. Two carbon atoms 

are shared by two pentagons and a heptagon, the other six carbon atoms being shared 

by one pentagon and two heptagons. 

Nearest-neighbor curvature effects of pentagonal and heptagonal rings limit the num-
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Figure 12.2: The annealed equilibrium structure of single-sheet planar carbon penta

heptite, with unit cell, lattice vectors, and bond parameters marked. 
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ber of plausible two-dimensional carbon networks. If a pentagon has only heptagonal 

neighbors, the incipient local negative curvature imposes a large energetic cost. If a 

pentagon has two or more pentagonal neighbors, the incipient local positive curvature 

imposes a similar large energetic cost. Bond length and bond angle variation in the 

planar structure is minimized when each pentagon has one pentagonal neighbor. The 

requirement of a small unit cell then leads uniquely to the structure chosen for study. 

Initial atomic coordinates were obtained from a crude bond rotation construction 

and subsequently annealed within tight-binding total energy molecular dynamics[55]. 

The anneal was performed on a finite 141 atom sheet. After initial local relaxation, the 

atomic positions were perturbed randomly by ""'0.1 A from equilibrium and the structure 

was annealed from 2500 K for 2.7 picoseconds. Upon cool~ng the atoms returned to the 

essentially 'planar equilibrium positions. Unit cell coordinates were extracted from the 

atoms in the center of the sheet. Comparison across the interior atoms indicated that 

finite size effects perturbed atomic positions by less than 0.01 A. Bond lengths and 

angles are shown in Fig. 12.2. 

It is instructive to compare bond lengths in planar carbon pentaheptite with those 

in pentalene, the molecule formed by terminating with hydrogens the dangling bonds 

of the pentaheptite unit cell highlighted in Fig. 12.1. The major difference is a length

ening of bonds to the apical carbons, from ""'1.4 A in D2h pentalene[135] to 1.50 A 

in pentaheptite. The carbon atoms making up these bonds in pentaheptite share 1.39 

A carbon-carbon bonds with atoms in the neighboring unit cells, in contrast with the 

weaker, but analogous, C-H bonds in pentalene. In pentaheptite, the increase in effec

tive bond number for the intercell bonds is accompanied by a decrease in the effective 

bond number and consequent dilation of the intracell bonds to the apical carbons. We 

note that the dilation of the pentaheptite C-C bonds from graphitic bond lengths and 

the more open nature of the planar carbon pentaheptite structure yield an areal atomic 

density of one carbon atom per 2. 77 A 2 , 5% less than the graphitic density. 
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Electronic structure and total energy calculations were performed on the single-sheet 

periodic structure extracted from the finite sheet simulation. Within the tight-binding 

total energy scheme, the energy of a single infinite sheet of carbon pentaheptite is I"V0.32 

eV per atom above that of single-sheet graphite. By comparison, within the same 

scheme C6o is ..... 0.4 e V per atom above single-sheet graphite. A local density approxi

mation ab initio pseudopotential calculation using the same atomic coordinates yields a 

0.33 e V per atom energy difference between isolated sheets of pentaheptite and graphite. 

The bond rotation which generated the topology of pentaheptite also provides a kinetic 

pathway to graphite. Fixing the absolute angle of a single rotated bond in the center 

of the 141 atom sheet and annealing and relaxing atomic coordinates up to third near

est neighbors (including the bond length of the rotated bond) yields an energy barrier 

within tight-binding total energy of ...... 7 eV for the"'~ rotation of a single non-symmetry 

axis interheptagonal bond and local conversion of pentaheptite into graphite[136]. The 

breaking of two C-C bonds along this pathway explains the large energy barrier. Global 

conversion of single-sheet pentaheptite to graphite by simultaneous rotation of all rele

vant bonds is expected to have a comparable energetic barrier. More complex kinetic 

paths can be envisioned, but all require the breaking and reformation of two G-C bonds 

per bond rotation so that a large energetic barrier is likely for the isolated sheet. The 

rigidity of the nearly sp2 carbon framework argues against the possibility of soft modes, 

a supposition supported by the stability of the pentaheptite framework under a 2500 K 

anneal. All evidence available suggests that an isolated sheet of carbon pentaheptite is 

metastable towards conversion to lower energy carbon allotropes. 

The tight-binding band structure[137] and density of states of a single sheet of carbon 

pentaheptite are shown in Fig. 12.3. The deviation from perfect sp2 bond angles raises 

the cr bands. The lack of hexagonal symmetry then fills in the 1r-1r* pseudogap present 

at the Fermi level of single-sheet graphite, yielding a density of states at the Fermi level 

of ..... 0.1 states per e V per atom. In comparison, the density of states for the smallest 
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Figure 12.3: Band structure and density of states for an infinite single sheet of planar 

carbon pentaheptite. The dashed line marks the Fermi energy, EF· Bands are plotted 

along high symmetry lines of the Brillouin zone, shown above. The reflection symmetry 

of the bands along the YW-line is due to time-reversal invariance, E(k) = E( -k). The 

states nearest EF have 1r-character, and those farthest away are a states. 
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plausible metallic nanotube, the 5.3 A diameter ( 4,4) tube, is 0.07 states per eV per 

atom. For larger (n,n) metallic nanotubes the densities of states per atom drop inversely 

proportional to the tube radius, indicating that planar carbon pentaheptite is the largest 

density of states pure-carbon crystalline allotrope. 

The planar pentaheptite stucture can be rolled into tubes indexed in a manner similar 

to graphite, wherein tubes are labelled (n,m) with nand m defining the circumferenital 

periodicity in lattice coordinates. In contrast to graphite, the rhomboid structure of 

pentaheptite implies that we must consider tubes with 0 ::; lml ::; n instead of simply 

0 ::; m ::; n. Unlike the graphite sheet, carbon pentaheptite has a large Fermi surface 

which surrounds the f-point (k = 0). Band-folding arguments[14] then predict all tubes 

to be metallic, independent of radius and helicity. 

The nonzero Fermi level density of states of planar carbon pentaheptite motivates 

a brief discussion of superconductivity. Unlike curved C6o and the nanotubes[138], we 

expect no enhancement in the electron-phonon coupling due to curvature-induced u- 1r 

mixing. However, the deviation froin perfect sp2 bond angles in-plane may increase the 

electron-phonon matrix elements above the values in graphite. T c of undoped penta

heptite is likely to be small or moderate. Alkali doping to a stochiometry of "'AC4 , 

corresponding to one alkali atom per heptagon, should increase the density of states at 

the Fermi level and increase the superconducting T c substantially. 

Synthesis of planar carbon pentaheptite may be challenging. Formation of C6o, a 

carbon allotrope of comparable binding energy, is driven by the dangling bond energy 

of small carbon polymers in a carbon/helium plasma. Synthesis of planar pentahep

tite requires a more subtle strategy since heptagons are strongly disfavored in a regime 

kinetically dominated by dangling bond energy. We entertain three possible synthetic 

strategies. First, it may be possible to form planar pentaheptite directly from graphite. 

Although the areal density of planar pentaheptite is 5% below that of graphite, the 

metallic nature of single-sheet pentaheptite suggests that the interplanar distance in the 
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bulk material will be smaller than the interplanar distance in bulk graphite. Should 

the equilibrium atomic density of bulk pentahaptite exceed that of graphite, exter

nal pressure may favor planar carbon pentaheptite. A photochemical strategy using 

high-pressure graphite may induce the transformation to pentaheptite. Suitable use of 

intercalated catalysts may also increase the stability of pentaheptite relative to graphite. 

Polymer chemistry may provide another avenue for synthesis. Several different cyclic 

hydrocarbons containing a multiple of eight carbon atoms provide candidates for the 

monomer. Halogenated pentalene and the pentalene dian ion are an obvious precursors 

on geometrical grounds, as are various cyclic structures with side branches. The base 

unit of the bond rotation algorithm of figure 1 provides a 16-atom precursor that may be 

arranged in two inequivalent orientations to produce the planar pentaheptite structure 

studied in this work. Azulene itself cannot tile a plane without introducing vacancies or 

hexagons. Chemically selective intermolecular bonding should be aided by local curva

ture since heptagons will tend to form preferentially near pentagons and vice versa (of 

course hexagon formation must be avoided for the structure studied here). Epitaxial 

growth on a suitable substrate provides a third strategy. Although carbon-substrate 

interactions may be weak in the completed structure, the interaction between dangling 

bonds and the substrate in the growing material may modify the kinetic pathways 

enough to encourage epitaxial growth of the first layer. As regards synthesis, we note 

that "' I grain· boundaries in pentaheptite involve little lattice distortion and should 

impose at most a minor energetic cost. 

The incorporation of equal numbers of pentagons and heptagons into previously 

hexagonal planar carbon materials opens a new class of metallic carbon allotropes. The 

simplest form of planar carbon pentaheptite is a relatively good all-carbon covalently 

bonded planar metal. More complex structures with larger planar unit cells or tubular 

geometries can easily be envisioned. 
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