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We present some calculated structural and thermodynamic properties of homogeneous
dendritic-polymer solutions using computer-simulation methods, int~gral-equation theory, 
and lattice-cluster theory. 

Monte-Carlo methods are used to sample conformations of polymer molecules. From 
these conformations, we first compute two properties of the polymer: the distribution of 
segments within the molecule and the radius of gyration. Simulations for non-attracting 
polymer pairs give the potential of mean force an~ the second virial coefficient. Given 
the potential of mean force between polymer molecules, we use integral-equation theory to 
calculate the equation of state of an athermal solution at low polymer concentrations. 

We apply lattice-cluster theory to obtain solvent activities and liquid-liquid equilibria 
for homogeneous-dendritic polymers in a non-athermal concentrated solution. There is little 
difference between the vapor pressures of solutions of linear polymers and homogeneous
dendritic polymers. However, there is a modest difference between the liquid-liquid coexis
tence curve for linear-polymer solutions and homogeneous-dendrimer solutions. The critical 
temperatures of dendrimer solutions are lower than those of solutions containing c~rrespond
ing linear polymers. This difference rises with increasing generation number and decreasing 
separator length. 

*Author to whom correspondence should be addressed. 
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I. INTRODUCTION 

In recent years, chemists have been able to synthesize highly symmetric, hyperbranched 
macromolecules known as dendrimers.1 Possible applications2 of dendrimers include nanoscale 
catalysts,3 nanoscale reaction vessels, micelle mimics,4

-
6 magnetic resonance imaging agents,7 

immunodiagnostics, agents for delivering drugs or genes into cells, chemical sensors, information
processing materials, high-performance polymers, adhesives and coatings, separation media, 
and molecular antennae for absorbing light. Despite the wealth of possible applications, little 
work has been reported on the thermodynamic properties of solutions containing dendritic 
polymers. Here we present some results for solutions of homogeneous-dendritic polymers 
obtained from molecular simulation, integral-equation theory, and lattice-cluster theory. 

Most previous theoretical work for dendritic polymers has focused on determining the 
structure of isolated homogeneous dendrimers. One of the first attempts at modeling den
dritic polymers was by de Gennes and Hervet, who developed a self-consistent mean-field 
theory for the distribution of polymer segments within the dendrimer molecule.8 Biswas and 
Cherayil have performed9 renormalization-group calculations to determine how the aver
age center-to-end distance of a dendrimer depends on its generation number and separator 
length. However, both of these theories assume that the separator is extremely flexible; that 
assumption is not valid for the dendrimers that are now produced by synthetic chemists. 

In addition to these analytical studies, Boris and Rubinstein have performed10 numerical 
self-consistent mean-field calculations for individual dendrimers. 

Computer simulations have been performed to determine the structure of isolated ho
mogeneous dendritic polymers. Lescanec and Muthukumar have reported11 off-lattice sim
ulations for dendrimers composed of tangent hard spheres; they obtained the density dis
tribution of segments within the dendrimer, as well as the scaling of the radius of gyration 
with the molecular weight and spacer length of the dendrimer, but these simulations were 
for "randomly" grown dendrimers, and thus do not represent the structure of dendrimer 
molecules i:p. solution. Naylor and coworkers have reported12 Monte-Carlo simulations of 
sophisticated molecular models of dendritic polymers. Mansfield and Klushin performed13 

Monte-Carlo simulations for dendritic polymers on a diamond lattice and obtained vari
ous single-polymer structural properties .. Murat and Grest performed14 molecular-dynamics 
simulations for isolated dendrimers in solvents of varying qualities. Chen and Cui have 
performed15 Monte-Carlo simulations for athermal hard sphere dendrimers. 

Lattice theories, in particular the mean-field theories of Flory-Huggins16 and Guggen
heim,17 have contributed much to our understanding of polymer solutions. However, most 
of these lattice theories fail to yield any dependence of solution properties on polymer archi
tecture. In recent years, Freed and coworkers have developed a systematic expansion of the 
partition function oflattice polymers, known as lattice-cluster theory (LCT).18•19 This theory 
takes into account the effect of branching on the thermodynamic properties of concentrated 
polymer solutions. 

In this work we study the effect of polymer structure on the thermodynamic properties 
of homogeneous-dendritic-polymer solutions using Monte-Carlo simulations and integral-
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equation theory, at low polymer concentrations; for intermediate and high polymer concen
trations, we apply LCT. 

Section II describes our Monte-Carlo simulations for non-attracting dendritic polymers. 
For the isolated polymer, we compute the distribution of segments about the polymer center 
of mass and the polymer radius of gyration. We then report the potential of mean force for 
several non-attracting dendrimers and compare them to those of linear chains of the saine 
molecular weight. In addition, we calculate second virial coefficients for dendrimers of various 
generations and separator lengths. Also in this section, we apply integral-equation theory to 
obtain the variation of pressure with polymer concentration. In Section III, we report our 
calculations for dendrimers using non-athermallattice-cluster theory. First we present the 
formulae required for applying this theory to dendritic polymers. Then we present results for 
the vapor pressures of binary polymer-solvent solutions and their liquid-liquid coexistence 
curves. Finally in Section IV, we summarize and discuss our results. 

II. DILUTE POLYMER SOLUTIONS 

Description of Model 

The polymer molecule is constructed by tangent hard spheres as shown in Figure 1. The 
linear chain is characterized by the total number of sites, M. The dendrimer is characterized 
by two parameters: the generation number, g, and the separator length, n. It possesses 
a central core site which is attached to three arms. Each of these arms branches into two 
additional arms; both of these branch into two arms. The generation number, g, is the 
number of times this branching process occurs .. The separator length, n, is the number of 
bonds in each arm between branch points. At each branch site, the angle between sites is 
fixed at 120°. ~ 

Polymer Structure at Infinite Dilution 

. We begin with Monte Carlo simulations of an isolated polymer molecule. We sample 
various polymer conformations with the pivot algorithm. 20 .Beginning with an initial polymer 
configuration, a segment on the molecule is randomly chosen. We bend the molecule at the 
chosen segment by a random angle. If the new configuration generated by this process is 
allowed, that is, if it does not posess any overlapping spheres, then the configuration is 
accepted. Otherwise, the new configuration is discarded, and the initial configuration is 
retained. For each conformation, the property of interest (e.g., the radius of gyration) is 
computed, and its value is added to a running average. 

For each dendrimer, five separate runs were performed, each consisting of 106 conforma
tions. Reported properties are the averages of these five runs. 

These simulations yield structural properties of the polymer: the distribution of segments 
within the polymer and its mean radius of gyration, as a function of the chemical structure 
of the polymer and its molecular weight. 
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Figure 2 shows the density distribution of sites about the center of mass for a linear 
polymer with 91 segments (solid line) and a third-generation dendrimer with n = 2 (dashed 
line). The dendritic polymer has a more compact distribution of segments than the linear 
polymer, and the density of segments is much higher near its center of mass. The dendrimer 
exhibits a slight shoulder at about r = R9 , a result of the hyperbranched nature of the 
dendrimer. · · 

Figure 3 shows the segment-density distribution about the center of mass for second
generation dendrimers with n = 2 (solid line), n = 5 (dashed line), and n = 10 (dotted 
line). The shoulder at r = R9 becomes more pronounced and tlie density of sites near the 
dendrimer center of mass increases as the spacer length, n, del':reases. Unlike the predictions 
of Hervet and de Gennes,8 the dendrimers do not possess a hollow core, in agreement with 
the simulations of Mansfield and Klushin. 13-

15 

In Figure 4, we plot the distribution of sites for several dendrimers with n = 2. The solid. 
line is for a generation-two dendrimer; the dashed line is fora generation-three dendrimer; the 
dotted line is for a generation-four dendrimer; and the dashed-dotted line is for a generation
five dendrimer. The shoulder at r = R9 becomes more pronounced with increasing generation 
number and becomes a secondary peak at a high enough generation number. To perform 
simulations for dendrimers of generation six or higher, we need to employ a more sophis
ticated Monte-Carlo method, such as the extended continuum-configuration-bias method;21 

such simulations are not reported here. 
The self-consistent mean-field predictions of Boris and Rubinstein 10 for the segment den

sity profiles of dendrimers of various generations do not possess a secondary peak or a 
shoulder, in disagreement with simulation resultsP-15 This disagreement indicates that a 
mean-field theory is not applicable because it does not properly account for strong long-range 
correlations between segments on the dendrimer due to bonding constraints. It appears that 
the mean-field approximation may not capture even the qualitative structural aspects of a 
dendritic polymer. 

Figure 5 shows the variation of the mean radius of gyration with molecular weight for 
linear and dendritic polymers. The circles are for the linear polymers; the sq~ares are for 
generation-two dendrimers; the triangles are for generation-th~ee dendrimers; the diamonds 
are for generation-four dendrimers; and the crosses are for generation-five dendrimers. As 
the generation number rises, the polymer becomes more compact. For dendritic polymers, 
the slope of the line giving the mean-square radius of gyration as a function of polymer 
molecular weight appears to be similar to that for linear polymers. 

Polymer-Polymer Interactions 

At a center-to-center distance, r, the potential of mean force between two molecules, 
w( r), is the difference in the Helmholtz energy when the molecules are separated by r and 
that when they are infinitely far apart. 

w(r) = A(r)- A(oo) 
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= [U(r)- TS(r)]- [U(oo)- TS(oo)] 
D(r) 

= -kBTln D(oo) (1) 

The last relation follows because, for non-attracting polymers, U(r) = U(oo) = 0 and 
because S = kB ln n, where D( r) is the number of configurations available to the molecules 
when they are separated by distance r. Dautenhahn and Hall have used Eq. (1) to calculate 
the potential of mean force between linear chains. 20 -

Simulations performed for pairs of polymer molecules at various separations yield the 
intermolecular correlation functions between polymer segments, the potential of mean force 
between polymer molecules, and the second virial coefficient. These simulations provide 
information on the behavior of polymer solutions at low concentrations. 

Figure 6 shows the potential of mean force between linear chains with 91 segments (solid 
line) and that for third-generation dendrimers with n = 3 (dashed line). 

Figure 7 shows the potential of mean force for .second-generation dendrimers. The solid 
line is for n = 2; the dashed line is for n = 5; and the dotted line is for n = 10. 

At low polymer concentrations, the osmotic pressure of a solution can be written as a 
virial series in the polymer concentration, c2 , 

,BIT = c2 + B2c~ + · · · (2) 

where ,8 = (kBT)-t, where kB is the Boltzmann constant, and B 2 IS the second virial 
coefficient, given by 

(3) 

where w1 and w2 denote the conformation of polymer 1 and 2, respectively, r 12 denotes 
the separation between the center of masses of the two polymer molecules, and U is the 
interaction energy between the two molecules. 

Figure 8 shows how the second virial coefficient depends on the polymer molecular weight 
for linear and dendritic polymers. The circles are for linear polymers; the squares are for 
second-generation dendrimers; and the triangles are for third-generation dendrimers. 

Integral-Equation Theory for the Polymer Solution 

To obtain thermodynamic properties of dilute polymer solutions, we assume that the 
interaction between two polymer molecules is not affected by the presence of other polymer 
molecules. This approximation becomes exact at extremely low polymer concentrations. 
However, it becomes increasingly poor as the polymer concentration increases. 

We use our potentials of mean force in conjunction with integral-equation theory for 
simple fluids. 22

•
23 We solve the Ornstein-Zernike equation with the Percus-Yevick approxi

mation. The Ornstein-Zernike equation is 

h(q) = c(q) + c(q)ph(q) (4) 
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where h is the total correlation function, c is the direct correlation function, and p is the 
number density of molecules in the system. The A designates a function's Fourier transform. 

An approximate closure, appropriate for systems with only short-range repulsions, is the 
Percus-Yevick closure, given by 

1 + h(r) = exp[-,Bu(r))[l + h(r)- c(r)] (5) 

where u(r) is the interaction potential between two molecules. This approximation yields 
the exact second virial coefficient of the simple fluid. 22 To describe polymer molecules, we 
replace the interaction potential, u(r), with the potential of mean force between polymer 
molecules, w(r), which we described in the previous section. 

The Ornstein-Zernike equation with the Percus-Yevick closure was solved numerically 
using the Gillan method. 24 We use a grid with N = 2048 points, and a grid spacing of 
0.05R9 . The pressure of the polymer system was computed by integrating the compressibility 
equation. 

This calculation provides polymer-solution properties that are valid at high dilutions 
but become increasingly inaccurate as the polymer concentration increases. To estimate the 
range of applicability of this approximation, Figure 9 compares integral-equation calculations 
for a linear chain with M =51 spheres with results of Monte-Carlo simulations. The squares 

. indicate Monte-Carlo simulations25 and the line is from integral-equation theory. Figure 9 
shows that integral-equation theory is valid only for polymer concentrations less than about 
0.1 packing fraction. 

The approximation used here should be more accurate for compact molecules such as 
dendrimers. Figure 10 shows the predicted pressure as a function of polymer concentration 
for polymers composed of M = 91 spheres. The solid line is for a third-generation dendrimer 
with separator length n = 2, and the dashed line is for a linear polymer. 

At very low polymer concentrations, we see that the pressure of the dendritic-polymer 
system is lower than that of the linear-polymer system. This is expected, since the dendrimer 
has a lower second virial coefficient. However, as the polymer concentration increases, more 
and more of the polymers begin to overlap. As overlappling becomes important, the pressure 
of the dendritic-polymer solution increases dramatically because the dendrimers are some
what impenetrable. This dramatic increase is not seen in the linear polymers because they 
can more easily interpenetrate. 

III. CONCENTRATED NON-ATHERMAL POLYMER SOLUTIONS 

For concentrated polymer solutions, we place the polymer solution on a lattice with N1 

total sites. Each site has z nearest neighbors. Each solvent molecule is assumed to occupy one 
lattice site, while each polymer molecule is assumed to occupy M lattice sites. In addition, 
the lattice is assumed to be fully occupied and, therefore, incompressible. 

The volume fraction of polymer in solution, </J2 , is given by 

(6) 
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where N2 is the number of polymer molecules in the system. 

Attractive interactions in the system are characterized by parameter e, given by 

(7) 

where e11 is the energy of a solvent-solvent contact, e22 is the energy of a nonbonded poly
mer segment-segment contact, and e12 is the energy of a polymer segment-solvent contact. 
Subscript 1 refers to the solvent and subscript_2 refers to the polymer. 

LATTICE-CLUSTER THEORY 

Freed and coworkers have developed a lattice-cluster theory (LCT), for homogeneous 
polymers. In this theory, the Helmholtz energy of the system is expanded in a double power 
series -in 1/ z and /3e. We truncate the series at fourth order in 1/ z and second order in /3e. 
Details of our calculations are given in the Appendix. 

Thermodynamic Properties 

We examine solutions of two homogeneous polymers: linear and dendritic. Figure 11 
presents a schematic of polymer structure. The linear polymers are characterized by a single 
parameter, n, the total number of bonds (M = n + 1), as indicated in part (a). The 
dendritic polymers consist of a central core with three arms; an example is given in part (b). 
The dendrimer is characterized by two parameters, g, the generation number and, n, the 
number of bonds between branch points. Table 1 gives the counting indices for these types 
of polymers. 

We first compute the vapor pressure of a homogeneous polymer-solvent mixture. The 
solvent chemical potential is related to the solution vapor pressure p by 

p 
- = exp[f3~tti] 
p* 

where p* is the vapor pressure of pure solvent at system temperature. 

(8) 

Figure 12 shows the solvent activity for solutions of polymers with M = 466 segments 
dissolved in a good solvent (i.e., e = 0). The solid line is from lattice-cluster theory (LCT) 
for a linear polymer (n = 465); the dashed line is from LCT for a dendritic polymer with 
g = 4 and n = 2; and the dotted line is from the Flory-Huggins theory. There is a large 
deviation between results from Flory-Huggins theory and those from LCT. However, results 
for the linear and dendritic polymer solutions are almost indistinguishable. 

Figure 13 shows solvent activity for solutions of polymers with M = 465 segements at 
kBT J € = 3. The legend is the same as that in Figure 12. At these conditions, the system 
shows liquid-liquid phase separation. Again, results from Flory-Huggins theory differ from 
those using LCT, and the results for linear and dendritic polymers are almost identical. 

Figure 14 shows the liquid-liquid coexistence curve for solutions of polymers with M = 
466 segments. The solid line is from LCT for the linear chain (n = 465); the dashed line is 
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from LCT for dendritic polymer (g = 4 and n = 2), and the dotted line is from Flory-Huggins 
theory. 

The Flory-Huggins theory gives a much higher critical temperature for the polymer
solvent system than LCT. However, it is well-known that the Flory-Huggins theory over
predicts the coexistence curve in the vicinity of the critical point. 26 LCT indicates that 
the dendritic-polymer solutions have a slightly lower critical point than those of the linear 
polymer solutions, i.e., the dendrimer is slightly more soluble than the corresponding linear 
polymer. At low temperatures, results from Flory-Huggins theory merge with those from 
LCT for linear and dendritic polymers. 

Figure 15 shows the variation of the critical temperature of linear and dendritic-polymer 
solutions as a function of molecular weight. The difference between results for linear and 
dendritic polymers rises as the molecular weight of the polymer increases and as the spacer 
length of the dendrimer decreases. 

According to Flory, 16 the thermodynamic properties of concentrated polymers should 
depend only weakly on polymer architecture. Because the polymer solution is concentrated, 
each polymer segment is in close contact with several other polymer segments. The properties 
of the solution at these conditions are governed primarily by excluded-volume interactions 
between polymer segments, and therefore the connectivity of the polymer segments plays an 
insignificant role. 

This argument, however, assumes that the polymer molecules interpenetrate. This may 
not be the case for dendritic polymers of high generation number. If the dendrimers do 
not interpenetrate, each segement sees a different environment in the solution, depending on 
where it is located in the dendrimer. Thus, architecture plays a greater role in determining 
the solution's thermodynamic properties. 

Because the LCT used here is truncated after a finite number of terms, it only accounts 
for short range correlations between polymer segments. It is the long-range correlations of 
the dendritic polymer (i.e., interactions between segments located in distant parts on the 
same molecule) which cause it to be impenetrable. Therefore, the predictions of the LCT 
should be regarded with caution, especially for higher-generation dendrimers. 

IV. CONCLUSIONS 

From our simulations of single homogeneous dendritic polymers, we find that the center 
of a dendritic polymer is not hollow. For low-generation dendrimers, there is a shoulder 
in the segment density profile from about r = Rg/2 to r = Rg due to the architecture of 
the dendrimer. For higher-generation dendrimers, this shoulder is a local maximum. These 
results agree with previous simulations of other workers.13- 15 We find that the shoulder 
becomes more pronounced as the separator length of the dendrimer decreases. 

The qualitative difference between the segment density profiles obtained from computer 
simulations and those from self-consistent mean-field calculations suggests that the properties 
of dendritic polymers may not be amenable to a simple mean-field analysis. 
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Dendritic polymers are less penetrable than linear polymers, as indicated by their more 
repulsive potential of mean force. However, as the separator length increases, the dendrimers 
become more penetrable. 

LCT calculations indicate that the liquid-liquid coexistence curve for a homogeneous
dendritic-polymer solution is slightly lower than that for a linear-polymer solution. This 
difference in the critical solution temperature rises with increasing generation number and 
decreasing separator length. 

All the results given in this work are for homogeneous polymers, i.e. polymers with 
identical segments. However, dendrimers for interesting applications are not homogeneous; in 
a typical real dendrimer, segments at the periphery are chemically different from those inside. 
Therefore, while the results of this work provide a useful first step toward understanding 
solutions of dendrimers, they are not yet directly applicable to most dendrimers that are 
promising for technology. 
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APPENDIX. 

In lattice cluster theory (LCT), polymer architecture is characterized by a set of seven 
parameters, known as counting indicies: M, N(1), N(2), N(3 ), N(J..), N(1•1), and N(1•2). M is 
the number of segments in each molecule. N(1) is the number of bonds in each molecule. N(2) 

is the number of consecutive bonds. N(3) is the number of ways three consecutive bonds 
can be chosen. N(J..) is the number of ways in which three bonds intersect. N(1•1) is the 
number of nonconsecutive bonds. N(1•2) is the number of ways in which a single bond and a 
consecutive pair of bonds, which do not intersect the single bond, can be chosen. 

The Helmholtz energy of mixing is given by26 

(A1) 

where LlAath is the Helmholtz energy of mixing of an athermal solution, and L:lAint is the 
contribution of attractive interactions. 

f3.6.Aath </J2 
N

1 
= M ln </J2 + (1 - </J2) ln(1 - ¢2) 

+a(o)¢2(1- </J2) + a(l)¢~(1- ¢2) + a(2)¢~(1- </J2) (A2) 

where a(i) are parameters that depend only on the architecture of the polymer molecule. 

a(o) = ~(1{(1)]2 + ~(-41{(1) 1{(2) + ~(!{(1)]3 _ 21{(1) 1{(3) + (K(2)]2 
z z 2 3 

_ 2!{(1)(!{(1,2) _ !{(1) !{(2) M) + 2[!{(1)]4 

+ 2[K(1)]2(K(1,1) _ [K(1)]2 M) _ 61{(1) J{(J..)] 

a(1) = 2._[~[!{(1)]3 + 2[K1]4 + 2[!{(1)]2(1<(1,1) _ [K(1)]2 M)] 
z 2 3 

a(2) = ~2[!{(1)]4 (A3) 
z2 

(3.6.Aint 
Nl = A(1)¢2(1- ¢2) + (A(2) + B(3))¢~(1- ¢2)2 

+A(3)¢~(1- ¢2)2(1- 2¢2)2 

+A(4)¢~(1- ¢2)2[1- 6¢2(1- ¢2)(3¢~- 3¢2 + 2)] 
+(B(1) + B(2))</J2(1- ¢2)2 

+B(4)¢~(1- ¢2)2 

+C(1)</J2(1- </J2) 2(1- 2¢2)2 

+C(2)</J2(1- ¢2)3 

+C(3)¢~(1- </J2)3(1- 3¢2) 

+C(4) ¢2(1 - ¢2)4 ( A4) 
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A(l) = (3Ez 
2 

A(2) =- ((Jc)2z 
4 

A(3) =- ((Jc)3z 
12 

A(4) =- ((3c)4z 
48 

B(l) = -(JEKI 

B(2) = _:(2K(2) + J{(3) + 3!{(1.) + !{(1,2) _ K(l) !{(2) M) 
z 

B(3) = _ 2{3c K(ll(2K(1) + !{(1,1) _ [K(1)]2 M) 
z 

B(4) =- 4(3E[]{(l)f 
z 

c(l) =- ((Jc)2 ]{(1) 
2 . 

c(2) = -((Jc)2 J{(2) 

C(3) = -((Jc)2[K(1)]2 

C(4) =- ((Jc)2 (K(1,1)- [K(1)]2 M) 
2 . 

where ]{(i) = N(i) jM (i = 1, 2, 3, or 1.) and J{(i,j) = N(i,j) /M (i = 1, or 2). 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

(A10) 

(All) 

(A12) 

(A13) 

(A14) 

(A15) 

(A16) 

Upon mixing, the change in chemical·potential of the solvent, 6.f.lll can be determined 
from the Helmholtz energy, 

where 

and 

86.A 
6.f.l1 = 8N1 

= 6.A _ <ft
2 
86.AjN1 

Nt 8<P2 
= 6.f.l~th + 6.f.l~nt 

f36.f.l~th = ln(1- <P2) + (1- ~)<P2 

(A17) 

+a(o)<P~- a(1)<P~(1- 2<ft2)- a( 2)<ft~(2- 3<ft2) (A18) 

f36.f.l~nt = A(1 )<ft~- (A(2) + B(3))<ft~(1- <ft2)(1- 3<ft2) 

-A(3)<ft~(l- <ft2)(1- 2<ft2)(1- 9<ft2 + 10<ft~) 
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-A(4)</>~(1- ¢>2)(1- 27</>2 +138</>~- 294</>~ + 306</>~- 126</>~) 
+(B(I) + B(2))2</>~(1- </>2 ) 

-B(4)2</>~(1- </>2)(1- 2</>2) 
-C(1)2</>~(1- </>2)(1- 2</>2)(3- 4</>2) 
+C(2)3</>~(1- </>2)2 

-C(3)¢>~(1- </>2)2(1- 10</>2 + 15</>~) 
+C(4)4</>~(1 - </>2)3 (A19) 

Upon mixing, the change in chemical potential of the polymer, l:::.J-L 2 , can be determined 
from the Helmholtz energy, 

where 

and 

f3l:::.J-L~nt = A(1)(1- </>2) 2 + (A(2) + B(3))</>2(l- </>2) 2(2- 3¢>2) 

+A(3 )</>2(1- </>2) 2(1- 2</>2)(2- ll</>2 + 10</>~) 

+A(4 )</>2(1- </>2)2(2- 39</>2 + 168</>~- 330</>~ + 324</>~- 126</>~) 
+(B(I) + B(2))(1- </>2) 2(1- 2</>2) 

+B(4)</>~(1 - </>2) 2(3- 4</>2) 
+C(1)(1- </>2)2(1- 2</>2)(1- 8</>2 + 8</>~) 
+C(2)(1 - </>2)3(1 - 3¢>2) 

+C(3)</>2(1- </>2) 3 (1- 5</>2)(2- 3¢>2) 

(A20) 

+C(4)(1- </>2) 4 (1 - 4</>2) (A22) 
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TABLES 

TABLE I. Geometric parameters for linear and dendritic polymers. 

II 
M 
N(l) 
N(2) 
N(3) 
N(J.) 

N(l,l) 

N(1,2) 

linear 

n+1 
n 
n-1 
n-2 
0 
(n- 1)(n- 2)/2 

(n- 2)(n- 3) 

dendrimer 

3(29 -
1 - 1)n + 1 

3(29 - 1 - 1)n 
3(29 - 1 - 1)(n- 1) + 3N(J.) 
3(29 - 1 - 1)(n- 2) + 6N(l.) 

3(29-
2

- 1) + 1 
3(29 -

1 - 1)(n- 1)(n- 2)/2 
+3(2g-l - 1)[3(2g-l - 1)- 1]n2 /2- 3N(l.) 

3(29 - 1 - 1)(n- 2)(n- 3) + 3N(l.)(N(1)- 5) 
+3(2g-l 7"" 1)[3(2g-l - 1)- 1]n(n- 1) - 6N(l.) 
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FIGURE CAPTIONS 

Figure 1: Schematic drawing of simulated polymer molecules: (a) linear, (b) dendritic. 

Figure 2: Distribution of polymer segments from center of mass for: (i) linear polymer with 
91 segments (solid line), (ii) third-generation dendrimer with n = 2 (dashed line). 

Figure 3: Distribution of polymer segments from center of mass for second-generation den
drimers: (i) n = 2 (solid line), (ii) n = 3 (dashed line), (iii) n = 4 (dotted line), (iv) 
n = 5 (dashed-dotted line). 

Figure 4: Distribution of polymer segments from center of mass for dendritic polymers 
with n=2: (i) second-generation dendrimer (solid line), (ii) third-generation dendrimer 
(dashed line), (iii) fourth-generation dendrimer (dotted line), (iv) fifth-generation den
drimer (dashed-dotted line). 

Figure 5: Mean-square radius of gyration as a function of number of hard spheres: (i) 
linear chains (circles), (ii) second-generation dendrimers (squares), (iii) third-generation 
dendrimers (triangles), (iv) fourth-generation dendrimers (diamonds), (v) fifth-generation 
dendrimers (cross). 

Figure 6: Potential of mean force for: (i) linear polymer with 91 segments (solid line), (ii) 
third-generation dendrimer with n = 2 (dashed line). 

Figure 7: Potential of mean force for second-generation dendrimers: (i) n = 2, (solid line), 
(ii) n = 5 (dashed line), (iii) n = 10 (dotted line). 

Figure 8: Second virial coefficient as a function of number of hard spheres in the polymer 
for: (i) linear chains (circles), (ii) second-generation dendrimers (squares), (iii) third
generation dendrimers (triangles), (iv) fourth-generation dendrimers (diamonds), (iv) 
fifth-generation dendrimers (cross). 

Figure 9: Compressibility factor, Z, for tangent hard-sphere chains with M = 51: (i) 
Monte-Carlo simulations (circles), (ii) Percus-Yevick equation (line). 

Figure 10: Pressure of tangent, hard-sphere polymers: (i) linear chain with M = 91 (solid 
line), (ii) third-generation dendrimer with an= 2 (dashed line). 

Figure 11: Schematic drawing for: (i) linear polymer, (ii) dendrimer. 

Figure 12: Solvent activity in a good solvent: (i) linear polymer with n = 465 with LCT 
(solid line), (ii) dendritic polymer with g = 4 and n = 2 with LCT (dashed line), (iii) 
Flory-Huggins theory (dotted line). 

Figure 13: Solvent activity at kBT j E = 3: (i) linear polymer with n = 465 with LCT 
(solid line), ( ii) dendritic polymer with g = 4 and n = 2 with LCT (dashed line), (iii) 
Flory-Huggins theory (dotted line). 

16 



Figure 14: Predicted liquid-liquid coexistence curve for: (i) linear polymer with n = 465 
with LCT (solid line), (ii) dendritic polymer with g = 4 and n = 2 with LCT (dashed 
line), (iii) Flory-Huggins theory (dotted line). 

Figure 15: Critical temperature as a function of polymer molecular weight for: (i) linear 
chains (open circles), (ii) dendrimers with n = 2 (squares), (iii) dendrimers with n = 5. 
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