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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
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assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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Abstract 

We discuss issues concerning M(atrix) theory compactifications on curved spaces. We 

argue from the form of the graviton propagator on curved space that excited string states 

do not decouple from the annulus DO-brane v4 amplitude, unlike the fiat space case. This 

argument shows that a large class of quantum mechanical systems with a finite number of 

degrees of freedom cannot reproduce supergravity answers. We discuss the specific example 

of an ALE space and suggest sources of possible higher derivative terms that might help 

· reproduce supergravity results. 
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1. Introduction 

The conjectured description of M theory as matrix quantum mechanics [1] implies a 

substantial reduction in the apparent degrees of freedom necessary to describe M theory. A 

first reduction occurs because various different p-branes emerge as composites of of the N 

DO-branes described by the U(N) quantum mechanics as N ~ oo. The second reduction 

occurs because all excitations of the stretched string states connecting the DO-branes de-
l 

couple from the leading low velocity dynamics, allowing classical supergravity interactions 

to emerge as the result of integrating out a finite number of quantum mechanical degrees 

of freedom. This phenomenon was found in the v4 ( v is the DO-brane velocity) leading 

weak coupling (annulus) amplitude in [2]. As explained very clearly in [3] it follows from 

the vanishing contribution of long (non-BPS) N = 4 supersymmetry multiplets to this 

amplitude. 

The scenario for proof outlined in [1] requires that i) all relevant velocities go to zero 

as N -+ oo and ii) that there are no corrections beyond one loop in string theory to 

the leading low velocity dynamics. With these two conditions the decoupling of excited 

string states would extend to arbitrarily strong coupling. So the DO-brane U(N) quantum 

mechanics which describes only the lowest unexcited stretched string state dynamics would 

provide an accurate strong coupling description. More generally, what is required is that 

the excited string states decouple from the full leading low velocity dynamics. 

A priori, the excited state decoupling would be expected only for maximal (e.g. N = 

4, d = 4) spacetime supersymmetry. More generally, the leading weak coupling O(v4 ) 

interaction crosses over from ,supergravity at distances l > > v;;! to a sum over exchanges 

of all closed strings, equivalent to a quantum mechanical open string amplitude where all 

excited open strings contribute. At distances l > > 1}1 (the eleven dimensional Planck 

length), this is essentially a one-loop amplitude. 

In section 2, we show that this crossover is non-trivial in string theory whenever there 

is non vanishing curvature in the compactified space. In other words, the form of the 0( v4 ) 

interaction predicted by supergravity never agrees with the truncation of the one-loop open 

string amplitude result to a finite number of quantum mechanical degrees of freedom. 

In section 3 we review the theory of DO-branes at weak string coupling on the orbifold 

C2 /7l.2 and its smooth resolution (Eguchi-Hanson space), developed in [4]. For present 

purposes, the main point is that this is a quantum mechanics with a finite number of 

degrees of freedom, to which the argument of section 2 applies. We compare the quantum 
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mechanics and supergravity results and point out another mismatch with supergravity -

the mass of stretched open strings is apparently not proportional to their length - which 

may be resolved by further computation within the framework of [4]. 

In section 4, we outline a version of this definition which is well motivated at strong 

coupling (extending results of [5]), and we explain ways in which it might evade the theorem 

of section 2. 

We discuss some implications of these results in section 5. 

\ 

2. Annulus 

We begin by computing the scattering of two DO-branes on R 6 x K3. We consider 

the case when they are fixed at poi>nts in K3, but move on R6 with relative velocity v 

and impact parameter b. By combining results of [6], [7], [8] and [2], we find that their 

scattering amplitude is given by 

A= J dt e-tb2 /2-rro:' _1_ ( e~1 (Ojt)) X Z(t, €) 
t ry(t)4 811 ( Etjt) 

(2.1) 

where 

Z(t ) =T ( Lo-1/4) Boo(Ojt)Boo(Etjt) _ T ((-1)F Lo-1;4) BIO(Ojt)BIO(djt) 
, € rNs q 2ry(t)2 rNs q 2ry(t)2 

_ Tr ( La) Bo1 (Ojt)Bo1 ( djt) 
R q 2ry(t)2 

(2.2) 

The parameter € is related to the velocity v as 7r€ = arctanh( v). The traces 

(2.3) 

are the partition function of the open string on K3. The CFT of closed string on K3 has 

two copies of the N = 4 superconformal symmetry on the worldsheet. Since the DO-brane 

boundary condition preserves 1/2 of them [9], at least one set of theN= 4 superconformal 

algebra acts on the open string Hilbert spaces. We can therefore expand the open string 

partition functions in terms ofthe characters of the N = 4 algebra with c = 2 studied 

in [10]. There are three types of representations of the N = 4 algebra. Two of them 

have non-zero values of Witten index and are called the massless representations. Their 
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conformal weights ai:e 0 and 1/2 and their characters xo and x1; 2 obey the following simple 

relation, 

(NS) + 2 (NS) _ q-l/
8 (8oo) 2 

Xo Xt/2 - T/ T/ (2.4) 

In particular, the Witten indices of the two representations cancel in this combination 

after performing the spectral flow to the R-sector. The third type is called a massive 

representation; it has no Witten index and it exists for any conformal weight h > 0. The 

character of massive representation is 

X(NS) = q uoo h-l/8 (ll )2 
h ., ., 

(2.5) 

Now it is easy to see that the open string Hilbert space in question has no Witten 

index. This is because the string stretched between the two points on ]{3 has a non-zero 

energy proportional to the geodesic distance between them. Although this is a semi­

classical statement valid for distances much larger than the string length ls rv H, the 

fact that the Witten index vanishes is rigorous. Therefore the partition functions (2.3) of 

the open string should be given by 

(t) -1/8 

T ( Lo-1/4) 9 q rNs q = ., (2.6) 

where g(t) encodes multiplicities of the N = 4 algebra representations, 

(2.7) 

Substituting this into (2.2), we find 

(2.8) 

When vis small, we can expand (2.1) in powers of c. rv vjrr. The v 2 term vanishes as 

in the case of the flat space [7] since 

Using the result of [2], the coefficient of the v 4 -term can be expressed as 

Av4 = J ~t e-tb2 /2rro' g(t) fi (1- qn)3. 
n=l 

(2.9) 
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The question is whether only the lightest stretched string state contributes to g(t). 

We now argue that this cannot be the case. To understand why, we observe that on general 

string theory grounds Av4 approaches the result of massless closed string (supergraviton) 

exchange when the distances between the DO-branes are much larger than l 8 • In this 

domain we have 

A.,-+ j ~t (~ )' e-tb'f2•n' (e-~' "n).,y (2.10) 

where t::.K3 is the Laplacian on K3 and x, y are points on K3 where the DO-branes are 

located. 

If (2.9) and (2.10) are to agree for all b >> l8 , we would require 

for all t < < 1. This is not possible. To see this, let us expand the right-hand side for 

large t (small q = e-t). It can be done by using the adiabatic expansion of the heat kernel 
a' 

e-T~, and we find 

(2.11) 

where <T(x,y) is the geodesic distance between x andy, and ak(x,y) can be expressed in 

terms of the curvature of K3, <T(x,y), and their derivatives. We know that some of these 

coefficients are non-zero; in fact the first term is the Euler density. This expansion is valid 

for t > > <T2 I Z2: where lc is the characteristic curvature length. So for z; < < <T2 < < Z2: 

there is a large region 1 >> t >> <T
2 fl'2: where (2.11) is valid. On the other hand, we 

know g(t) must have an expansion ofthe form (2.7). No finite number of states, or discrete 
1 -

infinity of states whose gaps are not string scale or smaller, can reproduce the form (2.11) 

in the required range oft. On other hand the excited open string states can produce such 

effects and therefore must contribute. The unexcited multiple winding states important 

for describing DO-brane dynamics in toroidal compactifications [1,11], or multiply wound 

extremal geodesic open strings, have gaps "'Z'2: and do not affect the above conclusions. 

A similar argument to the above demonstrates that excited open string states must 

contribute in Calabi-Yau compactifications with spacetime N = 1 supersymmetry as well. 

Again, the crucial point is that in general there is nonzero curvature in such compactifica­

tions, hence nontrivial power law corrections in (2.11) which cannot be reproduced by the 

unexcited open string states. 
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Although the result is generic for the quantum mechanics of weakly coupled open 

strings, there are a number of implicit assumptions which might be violated in more general 

contexts, such as a quantum mechanics of M theory compactification. Perhaps the most 

serious is the decoupling between R 6 and K3 world-sheet degrees of freedom. This led 

directly to the factorized nature of the amplitude (2.6), and the simple b dependence in 

(2.9). In terms of quantum mechanics, it restricts the masses of states to depend on the 

parameters in 1R 6 as 

m~'""" b2 + f(x,y) (2.12) 

with no explicit v dependence. On the other hand, if we allow general dependence on b 

and v, the supergravity result could be reproduced in many ways. 

3. Interactions of DO-branes on ALE space 

In [4) it was found that N DO-branes on (;2 /71.2 are described by the dimensional 

reduction of N = 1, d = 6 SU(N) x SU(N) x U(1) x U(1) gauge theory with two hyper­

multiplets in the (N, N)(z,o)· The parameters (which blow this up to the Eguchi-Hanson 

space Me; are simply the three Fayet-Iliopoulos terms for the non-trivial U(1). 

The strategy for defining DO-branes on an orbifold is identical in string theory and in 

M theory, but we briefly review it in the latter framework. We start with the maximally 

supersymmetric U(2N) quantum mechanics, and make a projection commuting with half 

of the supersymmetry, 
wX =1Xr-1 

w-lj( = ,x,-l 

A= ,A,-1 

(3.1) 

with w = -1 and 1 = u3 ®lN. Each boson has a partner fermion with the same projection. 

The bosonic matter is 

X= ( 0 boi) 
bw 0 

X- -- ( 0 
- boi 

bw) 0 . (3.2) 

The resulting Lagrangian is determined by the choice of gauge group and matter 

representation, if we assume the the matter Lagrangian is free before gauging. We will 

make this assumption, but discuss it further below. 

We next review the identification of the Higgs branch of the moduli space with M c;. 

The analysis can be done for N = 1; the complete Higgs branch for N > 1 is the obvious 
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symmetric product M r Is N 0 This is the hyperkahler quotient constructed by Kronheimer' 

defined by the three moment map (D-term) constraints 

2 2 - 2 - 2 
lboii - lb10 I - I boil + lb10l = (R 

(3.3) 

and the U(l) gauge quotient. In the ?l2 (Eguchi-Hanson) case, there is an SU(2) symmetry 

under rotations of the vector (, allowing us to take (c = 0 and (R > 0 without loss of 

generality. We do so below. 

The 1P1 produced by blowup is then 

b10 = boi = 0. (3.4) 

Taking 

(3.5) 

the remaining constraint and quotient become the usual Kahler quotient construction of 

theFubini-Study m~tric on 1P1
. Even more simply, we can generically gauge Imb01 to zero, 

and the constraint becomes the usual L xy = ( defining S2 E 1R3
. 

This quantum mechanics certainly falls under the hypotheses of the result in section 

two, and we conclude that the one-loop 0( v 4 ) interaction energy between the two DO­

branes cannot reproduce the subleading corrections in (2.11). 

In fact the situation is worse - it does not reproduce the leading term. To see this, 

we compute the masses of the W bosons. On the Higgs branch, U(2) x U(2) is broken 

to U(l) x U(l), and thus these fall into 6 massive multiplets (hyper+ vector) of N = 2. 

Each contains a massive vector boson whose mass matrix is Tr[Ai, (X)][Aj, (X)], as in any 

Yang-Mills theory; all states in the multiplet have this mass. 

This mass matrix is a truncation of that in the D-brane theory before applying the 

projection (3.1); furthermore gauge bosons with different eigenvalues under the projection 

operator 1A1-1 do not mix; therefore the mass of a stretched string is proportional to its 

length in the configuration space of the unprojected theory. Finally, since the vevs (X) 

are a linear subspace of those possible in the unprojected theory, this length is the same 

as the distance Jtr (X - X')2 in the configuration space of the projected theory. 

The conclusion is that the mass of a stretched string is proportional to its length 

in the larger configuration space. For the special case of two DO-branes located on the 

two-sphere (3.4), we can use symmetry to set z2 = z~ = 0 leaving two positions z1 and z~ 
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with lz1l2 = lz~ 12 = (R· Then there are two massive multiplets with mass lz1 - z~ I (the 

distance between the two branes), two with mass 2y'(R (the distance between a brane and 
\ 

its image), and two with mass lz1 +z~ I (a brane and the other's image). In other words, the 

strings take the shortest path between D-br'anes (and their images), which passes inside 

the two-sphere, not on it. A shortest geodesic distance would of course be (} = Im log z~ I z1 . 

Thus we find the leading short distance behavior exp -lz1 - z~ l2 t I o/ for the function 

g(t) in (2.9), in contradiction with the leading term exp -0'2t in (2.11). Now this result 

is not in obvious contradiction with physical expectations for sub-stringy physics at weak 

string coupling. In principle, exchange of massive closed strings could combine to this 

answer. However, it is suspicious. 

In fact, the result depends on an assumption which has not been proven: that the 

kinetic term in the world-volume gauge theory is the trivial I: lbd2 . This is the simplest 

guess at a metric which on grounds of supersymmetry must be hyperkahler and admit 

a SU(N) x SU(N) x U(l) isometry, but it has not been proven that it is the unique 

candidate. From world-sheet considerations along the lines of [4], the metric will be fiat 

at ( = 0 with corrections computable in weak string coupling. This computation and the 

question of whether it will modify this result are presently under study. 

4. DO-branes on ALE space at strong coupling 

In studying the same system at strong string coupling, we are forced to rely more on 

consistency arguments. 

One natural idea is to start with gauge theory with a curved target space ~nd dimen­

sionally reduce it. This is interesting but will almost certainly produce a singular theory 

in the orbifold limit and as such is not likely to be the correct definition for small blow-up 

parameter. 

Another natural approach which works well in the case of toroidal compactification 

is to introduce images under the space group. In the case of ALE this is exactly what we 

did above in defining C2 /7l.2 • Clearly the correct supergravity interactions are obtained at 

one loop - they are the sum of image contributions. 

The second step of adding the FI terms to produce the blowup (as proposed in [5]) is 

motivated by the observation that with this amount of supersymmetry there is nothing else 

we can do that changes the topology of moduli space. However, higher order corrections 

7 



to the Lagrangian are less restricted. 1 In the orbifold limit, the lack of any scale (other 

than the overall coupling 1~1 ) makes it very plausible that such corrections vanish. 

To work around the better controlled orbifold limit, we can consider the blow-up to 

be accomplished by adding a condensate of particles in the multiplet associated with the 

blow-up mode. 2 These can be identified with bound states of DO-branes, as discussed in 

[5]. Although in the IMF it is not possible to make a spatially independent condensate this 

way, the minimal accessible longitudinal momentum P- goes to zero (as 1/ N) in the large 

· N limit of [1], and the result is effectively a constant blow-up for our purposes. For (C 2 /71.2 , 

the minimal bound state which respects the U(1) manifest in the geometric description is 

a bound state in the N = 1 model. 

The condensate is most simply described by introducing second quantized operators 

which relate Hilbert spaces of different N. A creation operator B+ for the bound state 

we mentioned would act on the N particle Hilbert space and produce a state in the N + 1 

particle Hilbert space. In the limit where the N preexisting particles are far from the fixed 

point, the operation is simply tensor product. We will not attempt a general definition here 

(which probably requires knowing the bound. state wave function) but make the assumption 

that correlations between different bound state (and other) particles can be neglected for 

our purposes. Then the wave function can be taken as a tensor product, and expectation 

values will add in a simple way. We then define an annihilation operator B as its adjoint. 

The condensate is then 

( 4.1) 

Given this definition, the bound state wave function, and the assumption that cor­

relations can be neglected, it is straightforward in principle to deduce the Lagrangian 

describing DO-branes on the blown-up orbifold. The Fayet-Iliopoulos term must come 

from evaluating the potential Li<j tr [Xi, X i]2, with a vacuum expectation value for the 

off-diagonal components [Xi, Xi]. It would be interesting to verify this and it may be 

possible to find a topological quantity containing this expectation value by writing a trace 

projected to the BPS states, something like Tr( -1tF[Xi, Xj]JR_ where JR_ is the SU(2)R 

generator. 

1 The explicit claims of [5] did not depend on these. 
2 This idea and the related idea discussed in the conclusions arose in conversation with Tom 

Banks. 
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This procedure can generate fairly general higher order corrections to the Lagrangian, 

with coefficients analytic in (. As at weak string coupling, the first question of interest 

is whether corrections to the metric on moduli space can produce an effective Lagrangian 

for which stretched strings have mass proportional to geodesic length. In the present case, 

we have strong physical reasons to expect this, and the computation we have outlined will 

provide a significant test of this proposal. 

Let us assume that this works, and ask whether the resulting theory can evade the 

result of section 2. Since the condensate is constant in the transverse dimensions, we 

expect a weaker version of the condition (2.12) to hold, 

(4.2) 

Ho\\7ever there is no reason for the theory to satisfy the stronger world-sheet decoupling 

condition described there. 

One can imagine one loop diagrams which could reproduce higher order terms in the 

expansion (2.11). A term ak/tk must contain k fewer propagators for the states of mass 

squared m 2 = b2 + u2 , to make it less singular. Another necessary ingredient is that any 

singularities of the coefficients ak in the orbifold limit must come from integrating out 

states (since the orbifold limit is non-singular). This suggests that states of mass squared 

m 2 = b2 + (must be present in the model, and indeed they are. 

The tentative conclusion is that this model might reproduce the supergravity interac­

tion, and work on testing this continues. 

5. Discussion 

In section 2 we have argued that no truncation to a finite number of open string degrees 

of freedom can reproduce graviton exchange in the annulus when the compactification has 

nonzero curvature. This means that the quantum mechanics obtained by truncating to 

the unexcited open string state will also fail to reproduce gravity at one loop. The "mild" 

infinity of wrapped open strings introduced in toroidal compactification [1,11] also do not 

affect the result. In principle, they might bring in the need for a cutoff and renormalization, 

which could complicate the discussion. It is interesting that the explicit example in section 

3, regarded as a 3-brane theory, is a finite quantum theory (as was noted in [4]). By the 

general connection between open string UV and closed string IR limits, this might be 
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expected as a general feature of theories with no closed string IR divergences, e.g. with 

more than four non-compact dimensions. 

Higher order loop corrections in the string coupling 9s are, by the scaling discussed in 

[12,13,2], an expansion in (l}l /r) 3 where l}l is the eleven dimensional planck length and 

r is a characteristic separation length ("' b, u) of the DO-branes. As long as the curvature 

length lc is large compared to l}} these effects will not affect the arguments in section 2. 

The argument clearly applies to the quantum mechanical model discussed in section 3 

and in fact to a wide class of quantum mechanical models. The main assumptions are that 

there be a finite number of degrees of freedom, and restrictions on the higher derivative 

terms, particularly couplings to the velocity. 

What kind of matrix model description might work for such compactifications? If the 

relevant velocities remain low one could recover the correct supergravity by adding explicit 

higher derivative terms to the quantum mechanics. A rather simplistic example would be 

to include the explicit v4 term resulting from integrating out the excited open string states 

in the annulus. By itself this is probably not suitable (it would be singular in the orbifold 

limit), but some combination of explicit and induced interactions may well work, and the 

expansion in the blowup ( described in section 4 might provide a theory of this type. 

Large N effects might provide another way for quantum mechanics to reproduce su­

pergravity. If the matrix model description is correct in flat space it describes gravitons as 

bound states of DO-branes, so we expect a compactification could be represented as some 

kind of condensate of DO-branes. In section 4 we discussed such a condensate, and sug­

gested that its effects could be summarized in an effective Lagrangian for a finite degree of 

freedom system. This is not logically necessary and it is also possible that the only probes 

which have correct M theory physics are bound states of large numbers of DO-branes in 

the large N limit. Perhaps the extended nature of the bound states enters crucially in this 

physics. 

In any event it does seem that any matrix model description of M theory on curved 

spaces will be rather more intricate than the flat space description of [1]. 
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