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Abstract 

We discuss how N = 1 dualities in four dimensions are geometrically realized by wrap

ping D-branes about 3-cycles of Calabi-Yau threefolds. In this setup the N = 1 dualities 

for SU, SO and USp gauge groups with fundamental fields get mapped to statements 

about the monodromy and relations among 3-cycles of Calabi-Yau threefolds. The con

nection between the theory and its dual requires passing through configurations which are 

T-dual to the well-known phenomenon of decay of BPS states in N = 2 field theories in 

four dimensions. We compare our approach to recent works based on configurations of 

D-branes in the presence of NS 5-branes and give simple classical geometric derivations of 

various exotic dynamics involving D-branes ending on NS-branes. 

February 1997 



1. Introduction 

Many of the field theory dualities have now been embedded into string theory. The 

basic idea is to construct a local description of the field theory in a stringy setup. This 
( 

local description can involve either purely geometric aspects of compactification manifold 

[1], a local geometry together with D-branes wrapped around cycles [2] or D-branes in 

the presence of NS 5-branes in a flat geometry [3], [4], [5]. In particular recently Elitzur, 

Giveon and Kutasov [5], following the approach of Hanany and Witten in constructing 

N = 4 theories in d = 3 [3], found a rather simple description of how Seiberg's N = 1 

duality in four dimensions arises. They also suggested that their approach is T-dual to that 

of [2]. However their configuration of D-branes is more transparent and it allowed them 

in particular to see the appearance of the fundamental magnetic meson field in a simple 

way. In this paper we provide a local geometric description with wrapped D-branes in the 

spirit of [2] but in a somewhat simpler way, for which one can also follow the D-brane 

configurations in detail and see a particularly simple geometric realization of Seiberg's 

duality. 

We will also discuss how the approach of [5] is related to the geometric description 

presented in this paper. The advantage of [3] and [5] is that the spacetime geometry is 

flat. On the other hand, the dilaton field is not constant in the presence of NS 5-branes, 

and in fact the string coupling constant blows up at cores of the branes. As noted in 

[3], this makes it difficult to analyse exactly what happens when D-branes end on NS 

5-branes, which is a typical situation in their cases. For example, in their construction 

it was assumed that an open string stretched between two D-branes ending on opposite 

sides of an NS 5-brane gives a matter multiplet. In such a situation, however, the open 

string has to go through the strong coupling region inside the core of the NS 5-brane and 

the derivation of this statement would be beyond the reach of perturbative string theory. 

In [3], it was also suggested that when D and NS-branes cross each other a third brane 

should be created. This conjecture was motivated by comparison with field theory results 

and on the conservation of the NS-NS charge. We will show that these and other exotic 

dynamics involving D-branes ending on NS-branes have somewhat simpler counterparts in 

our construction and can be explained in purely classical geometric terms. Moreover the 

geometrical approach we follow easily extends to S 0 and US p gauge theories similar to 

[2]. 
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2. Geometrical Setup 

Compactification of type II strings on Calabi-Yau threefolds leads toN= 2 theories in 

d = 4. We will be interested in a local model for such a compactification which corresponds 

to a non-compact Calabi-Yau threefold. A canonical class of BPS states corresponds to 

Dirichlet p-branes wrapped around p-cycles of the Calabi-Yau. They preserve 1/2 of the 

supersymmetry, i.e. on their worldline we obtain the reduction of an N = 1 system from 

four dimensions to (0 + !)-dimension. If we consider the spatial directions to be a T3 

and T-dualize (exchanging IIA and JIB strings) we end up with (p + 3)-branes partially 

wrapped around cycles of Calabi-Yau threefold, and at the same time filling the spacetime. 

The theory living on the (3+1)-part of the spacetime worldvolume of the (p + 3)-brane is 

an N = 1 theory in d = 4. In this way we have mapped BPS states of anN = 2 string 

theory to N = 1 field theories in four dimensions1 . 

We would now like to explore some aspects of the resulting field theory in connection 

with the D-brane configurations. Let us consider type liB on Calabi-Yau threefold, and 

consider some number of D3-branes wrapped around a set of three cycles Ci of Calabi-Yau 

threefold. Let w denote the holomorphic 3-form of the Calabi-Yau. For a set of 3-cycles 

such a configuration can correspond to a BPS state only if [6] 

(2.1) 

r.e. the vectors fc; w in the complex plane are all parallel. If we consider T-dualizing 

the 3-space, we end up with type IIA theory with D6-branes wrapping around 3-cycles 

Ci of Calabi-Yau and filling the spacetime. Again the condition (2.1) is the condition 

corresponding to having an N = 1 supersymmetric field theory in d = 4. There are two 

natural classes of 3-cycles that appear in Calabi-Yau threefolds: (A) S 2 x S 1 and (B) S 3 . 

Moreover in a neighborhood of these cycles the Calabi-Yau threefold can be approximated 

by the cotangent space T* ( S2 
X S 1 ) = T* S2 

X S 1 X R and T* S 3 . In case (A)' the situation 

is locally the same as D-branes wrapped around S 2 x S 1 in K3 x T 2 compactification, 

where we view T* S2 as part of K3 and T* S 1 as part of T 2 . In this case the field theory in 

d = 4 will thus have N = 2 instead of N = 1. In fact if we consider N D-branes wrapped 

around such a cycle we end up getting an N = 2 system with U ( N) gauge symmetry and 

1 More generally this connection may provide an interesting link between black-hole dynamics 

in various dimensions and the T-dual field theories. 
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no matter [7]. InN = 1 terminology this is the same as an U(N) gauge system with an 

adjoint chiral multiplet. If we wrap N D-branes around cycles of type (B) we end up with 

a pure N = 1 gauge system with gauge group U(N). Note that in either case the bare 

gauge coupling constant is related to the volume of the three-cycle ci by 

1 
- "'Vc. g2 • 

which follows from the contribution to gauge coupling constant from 7 to 4 dimensions 

upon compactification on the 3-cycle. We have to note, however, this formula can get 

strong quantum corrections when Vci is small. 

If a pair of wrapped cycles Ci, Cj intersect one another, the corresponding wrapped 

D-branes will be intersecting, in which case we can obtain extra massless matter from 

open strings ending on the pair of D-branes. For the intersection to be supersymmetric 

(and in particular to be compatible with (2.1)) we need that the number oflocal Dirichlet 
' 

versus Neumann boundary conditions for the open string sector to be 0 mod 4, which in 

the present context means that the cycles Ci and Cj intersect on a circle. If we have Ni 

D-branes wrapped around Ci and Nj D-branes wrapped around Cj in such a situation the 

open string sector will give us a chiral matter of the type (Ni, Nj) (i.e. one N = 1 chiral 

multiplet in the fundamental representation in U(Ni) times the conjugate representation 

in U ( Ni)). We will refer to it as bifundamental. If Ci is of A type, we in addition will 

have a superpotential interaction of the form qM q where ( q, q) correspond to chiral matter 

matter and M is the adjoint matter of U(Ni) coming from the D-branes wrapped around 

Ci. This follows from the fact that the theory as seen from the D-branes wrapped around 

Ci has an N = 2 supersymmetry. 

We shall be interested in changing the complex moduli of Calabi-Yau threefold and 

following what happens to the wrapped cycles and discuss the corresponding field theory 

interpretation. In particular we shall consider a situation where cycles of both (A) and 

(B) type appear. Our local description of Calabi-Yau is that given in [8] which we now 

review. Consider local coordinates of the Calabi-Yau 3-fold given by (x, y; x', y'; z) subject 

to two relations: 

x'2 + y'2 = IJ(z- bj) 
j 
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This geometry can be viewed more abstractly as a C* x C* bundle over the z-plane, viewing 

(x, y) and (x', y') as coordinates of the C*'s; we can in turn view each C* as approximating 

the structure of an elliptic curve near its degeneration. Note that the total space is non

singular if all ai and bj are distinct; the local degeneration of the fibers is an artifact of 

how we are slicing the total space. The space becomes singular if any pair of the ai 's or 

bj 's coincide where we get some vanishing cycles. Let us see how these cycles arise: To 

any pair of ai's (and similarly bj's) we can associate a 3-cycle of type (A) and to any 

( ai, bj) pair we can associate a 3-cycle of type (B). To see this note that for a fixed z, away 

from ai and bi there is a non-trivial S 1 in each of the C*'s. For example the equation 

x 2 + y2 = const. defines a circle (note that if the constant is a positive real number this 

is realized by taking x and y r~al. Otherwise by an overall change of phase of x and y 

the situation reduces to the above case). Note that if we are at z = ai (or z = bj) the 

corresponding circle vanishes. We consider 3-cycles which are a product of S 1 :X S 1 cycles 

over each point on the z-plane, together with segments in the z-plane ending on the ai 

or bj. If we go between two ai 's without going through bj the corresponding three cycles 

sweep out an S 2 x S 1 (and similarly if we go between any two bj's ). However if we go 

between ai and bj the three cycle we obtain is an S 3 . To see this note that by continuous 

deformation the situation is the same as the case where ai is close to bj in which case 

locally the situation is the same as 

which implies that 

which clearly describes an S 3 (with no loss of generality take b and a to be real and take 

(x,y) and (x',y') also to be real). 

Connecting the pairs of ai and bj by paths in the z-plane we can associate 3-cycles to 

each path. Let us denote the 3-cycle connecting ai to bj by [ai,bj). An important aspect of 

the above geometry that we shall use later is that the three cycle [ai, bj] + [bj, ak] = [ai, ak]· 

This in particular means that the sum of two 3-cycles of type (B) cycles can be a cycle 

of type (A). This is actually T-dual to the statement that a vector multiplet can decay to 

hypermultiplets in the N = 2 situation, as is well known in field theory [9) and its stringy 

realization [10]. 
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Finally we wish to compute the integral of the holomorphic 3-form w over the 5 1 x 5 1 

fiber over each point on z-plane and obtain a 1-form. This is similar to the situation 

studied in [10] and one finds (by a suitable choice for w) we have 

r w = dz 
j 5 1 xSl 

This in particular means that if we wish to have the condition (2.1) satisfied, the beginning 

and end point cycles that we end upon must be in the same direction, i.e. ai - aj, ai -

bj, bi - bj must all be parallel if they correspond to the end points of the cycles which have 

D-branes wrapped around. Moreover to minimize the volume of the cycle we must take 

the image of D-branes on the z-plane to be straight lines. 

3. Geometric realization of N = 1 dualities 

Consider the geometric setup described in the previous section. Suppose we have 

two points a1 and a 2 along the real part of z-plane where the first C* degenerates and 

one point b, again on the real axis between a1 , a 2 where the second C* degenerates. In 

particular along the real axis we have three ordered special points a1 , b, a 2 . Suppose we 

wrap Nc D-branes around the 5 3 cycle [a1 , b] and Nt D-branes around the 5 3 cycle [b, a 2 ]. 

Note that [a1 , b] and [b, az] meet along the circle on the first C* at z = b: Thus from 

the considerations of the previous section it follows that the field theory we end up with 

is given by anN= 1 gauge theory U(Nc) x U(Nt) with chiral matter in (Nc, Nt) EB c.c. 

representation. We will assume Nt 2:: Nc. Note that the above system is the same as 

N = 1 supersymmetric QCD where we have also gauged the flavor group. 

We now wish to change the moduli of Calabi-Yau and come to a configuration where 

the degeneration points are still along the real z-axis but the orders have been changed 

from ( a1 , b, az) to ( b, a1 , az). To do this we first push the point b up along the imaginary 

direction. It is now energetically preferable for the D-branes to reconnect so that Nc of 

them go directly between ( a1 , az ), by combining Nc pairs of 5 3 cycles and converting them 

to Nc cycles of 5 2 x 5 1 type, and (Nt - Nc) of them go between (b, a2 ). Now we push 

b along the negative real axis so that it has passed the x-coordinate of a1 and then we 

bring it down to the real axis. At this point the (NJ - Nc) D-branes which were going 

between (b, az) will decompose to (NJ -Nc) branes between (b, ai) and (Nt- Nc) D-branes 

between ( a1 , a 2 ). The Nc branes we previously had along ( a1 , a 2 ) will recombine with the 
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new (NJ- Nc) D-branes giving a total of Nf D-branes along (a1,a2) cycle. Thus the 

final configuration we end up with is a configuration of points ordered as (b, a1 , az) with 

(NJ - Nc) D-branes wrapped around (b, ai) and Nf D-branes wrapped around (a1, az) 

cycle. The field theory we end up with is again easy to read off from the discussion of the 

previous section, namely 

with matter q, q in (NJ- Nc, Nf) EB c.c. representation and in addition, since the (a1 , a2 ) 

system is an N = 2 system we have an extra adjoint field M which interacts with the above 

quarks in the usual form dictated by N = 2 supersymmetry, i.e. with a superpotential 

qM ij. We have thus transformed the supersymmetric QCD with gauged flavor group to 

the Seiberg dual [11] where the flavor group continues to be gauged (note that on the 

magnetic dual side the flavor gauge system is anN= 2 system, as we have above). 

One may ask what is the field theoretic meaning of the above operation. This rs 

simply turning on the FI D-term for the U(l) (common to the flavor and the color group). 

This breaks supersymmetry completely which is reflected by the fact that the intermediate 

D-brane configurations we were considering were not parallel. One may wonder if we can 

pass only through supersymmetric preserving configurations. This can be done in two 

ways. One way is to just pass the point b over a1 along the real axis, in which case 

the conservation of D-brane charge will tell us how many D-branes we will have wrapped 

around each cycle after we pass through the singular configuration. Another, and perhaps 

a more satisfactory description is to take the point a2 --+ oo, in which case the flavor gauge 

group coupling goes to zero and thus becomes just a global symmetry group throughout 

the above process. In this case the D-brane configurations will not break supersymmetry, 

because in this limit the lines on the z-plane are parallel, in accord with the fact that in 

this case the U(l) FI D-term does not break supersymmetry2 . 

2 There is yet another way to turn on the Fl D-term without breaking supersymmetry. To 

do this, we add one more point a3 on the real axis to the right of a2 and allow the first C* 

to degenerate there also. We then wrap additional Nc D-branes on the 5 2 x 5 1 cycle [a2 , a3 ]. 

In this case, we can lift the 5 3 cycle [b, a 2 ] off the real axis together with (Nt - Nc) D-branes 

on it while keeping ( a2 - b) parallel to the real axis. Note that we can now do this without 

sending a2 and a3 to oo. The field theory counterpart of this construction is to consider a theory 

with U(Nc) X U(NJ) X U(Nc) gauge group. It is easy to see that this contains a FI-parameter 

corresponding to the lifting of the D-branes which does not break supersymmetry. We can push 

this line of argument further and consider Nt ordered points a 2 , ... , aN 1 +I to the right of b, with 
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Note that the same manipulations as above would have also worked if we had con

sidered-theN= 2 configuration with (a 1 ,a2 ,a3 ) in which case, in the limit we freeze the 

flavor group we would have connected the N = 2 system 

each with N f fundamental hypermultiplets. 

4. Generalizations to SO and U Sp theories 

In this section we will generalize the above construction to the case of SO and U Sp 

gauge theories, very much in the spirit of the second reference in [2], and obtain the N = 1 

dual pairs proposed in [11], [12], [13]. 

We start with the same setup as in the SU case and 'consider the double fibration 

x 2 + y2 = -(z- a)(z- a') 

where we take a, a' as real numbers with a < 0 and a' > 0. We thus have two S 3 cycles 

[a, OJ and [0, a']. Note that the S 3 associated with [a, OJ is realized by considering real 

values for x, y, x', y', z (because for a < z < 0 both x 2 + y2 and x'2 + y'2 are positive), 

however the S 3 associated with [0, a'] is realized by purely imaginary values for x, y, x', y' 

but real value for z. 

We wrap Nc D6-branes around [a, 0] and Nf D6-branes around [0, a']. Now we orien

tifold the above configuration by combining the operation 

( I I ) ( * * I* '* *) x,y,x ,y ,z -+ x ,y ,x ,y ,z 

with exchange of left.., and right-movers on the worldsheet. This 1s a symmetry of the 

~hove equation for a and a' real. Note that the fixed point space, i.e. the orientifold 

6-space, is precisely the first S 3 associated with [a, 0] times the uncompactified spacetime. 

Under this orientifolding the groups we started with U(Nc) x U(NJ) now change either 

(NJ- n) D-brane wrapping on the cycle [an+l, an+2] (n = 1, ... , Nf -1). By taking all an+l --+ oo, 

we recover the U(Nc) gauge theory with N1 quarks, but this construction allows us to give a 

different mass parameter to each quark. 
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to SO(Nc) x USp(NJ) or USp(Nc) x SO(NJ), depending on the choice of the sign for 

the cross cap diagrams, with matter in bifundamentals as before. In the terminology of 

type I' theory it is natural to count the D-branes after orientifolding as ~Nc and ~Nf 

D6-branes respectively. Note that the reduction of the gauge factor associated with the 

~Nf D6-branes arise because of the action of the orientifolding on the D6-branes wrapped 

around [0, a'] cycle; even though this cycle is not fixed under this transformation pointwise 

it is still mapped to itself. 

Let us note that for the net D6-brane charge on the [a, 0] cycle, in addition to the 

contribution from the physical D6 branes, there is a contribution from the orientifold plane. 

Since we have an orientifold 6-space this contribution is =F16/23 = =F2 (i.e. down from the 

case of orientifold 9-space by a factor of 23 arising from T -duality 3 times each of which 

splits it to two copies). The =F sign refers to the SO(Nc) versus USp(Nc) cases respectively. 

Thus the net D6-brane charge of the [a, OJ cycle is ~Nc =F 2.The D6-brane charge of the 

[0, a'] cycle is ~ N f as there is no additional orientifold contribution to it . 

. Now we try to repeat the same process as in the U(Nc) case. The main difference here 

is that we cannot lift the degeneration points off the real axis, as that is not consistent with 

the orientifolding operation. This is in accord with the field theory description where in 

this case we do not have the freedom to turn on a FI D-term. Instead we take a along the 

real axis from negative to positive values. After a > 0 the S3 represented by the [a, OJ for 

a< 0 now becomes an S3 representing [O,a] with purely imaginary values for x,y,x',y'. 

In particular the orientifolding operation has no fixed points anymore but the gauge group 

still continues to be SO or U Sp due to the action of the orientifold group on it. To find 

out how many D-branes we have wrapped around [0, a] and [a, a'] we simply use charge 

conservati'on; this is an assumption which strictly speaking we cannot prove because we 

have passed through a strong coupling region, however the experience of the U(Nc) case 

shows that it is reasonable. Taking into account the orientations of the D-branes we now 

should have ~Nf - aNc =F 2) D6-brane charge on [0, a] and ~Nf D6-branes on [a, a']. 

Noting that for a > 0 there is no orientifold plane all these charges should be accounted 

· for by physical D-branes, and thus we obtain the dual groups SO(NJ- Nc +4) x USp(NJ) 

or USp(Nj-Nc-4) x SO(NJ) again with bifundamentals. Moreover, just as in the U(Nc) 

case we will again obtain anN= 2 system in the flavor group, which implies that we have 

the fundamental magnetic meson with the right interactions. 
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5. Does this prove N = 1 duality? 

In the N = 1 context the above process connects the electric gauge system with its. 

magnetic dual. In what sense does this prove they are equivalent?3 Note for example, in 

the context of heterotic string compactifications on T 2 , the fact that we can continuously 

connect an SU(3) gauge system with an SU(2) x SU(2) gauge system does not imply their 

equivalence. In fact as discussed above in the context of N = 2 systems we have connected 

a U(Nc) system with an U(NJ- Nc) system which clearly are inequivalent (for Nf =J=. 2Nc) 

as they even have different dimensions for their Coulomb branch. 
f 

One hint of how one may try to understand in which cases we should expect an 

equivalence is that if in the process of exchange we had not pushed the middle point off 

the real axis and just gone along the negative real axis to the point where it would meet the 

first degeneration point, the original theory and the dual theory would meet and become 

the same theory at that point. This is the point where the gauge coupling constant in both 

theories are going to infinity. Now if we take into account the quantum corrections, and 

assuming both the original and the dual theories are asymptotically free (in the non-trivial 

SU part of the gauge group), taking the infrared limit on both theories will push both to 

the strong coupling regime where we can see how they can become equivalent. Of course 

this is a region where we should expect strong quantum corrections to the classical D

brane picture; however the above heuristic argument seems to at least give a conservative 

rationale to indicate in which cases the above interpolation between theories may imply 

infrared equivalence. Note that in the N = 2 case either the original or its dual are not 

in the asymptotically free regime, except for Nf = 2Nc ( in the SU case) where the above 

equivalence is the conjectured S-duality of N = 2 systems, the above connection would not 

necessarily imply their equivalence in the infrared, thus avoiding a contradiction. However 

in theN= 1 with SU(Nc) gauge group for ~Nc < Nf < 3Nc since both the original and 

the dual theory are asymptotically free the above interpolation between theories suggests 

their infrared equivalence. It does not seem clear to us why in the regime Nf < tNc or 

Nf > 3Nc where either the magnetic or the electric system is not in the asymptotically 

free region the above interpolation shows their infrared equivalence. 

3 We have benefited from discussions with N. Seiberg in preparation of this section. 
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6. Relation to other approaches 

As noted before our approach is similar in spirit to that of [2]. In particular in the 

N = 2 situation it is identical to it by T~duality: If we consider type liB compactified on 

K3 and consider Nc D7-branes wrapped around K3 and Nt D3-branes on it, the process 

considered in [2] consists of taking the volume of K3 to be small and using T-duality, 

exchanging 0- and 4-cycles on K3, to obtain the induced D-brane charges4 • This however 

can be simplified by noting that the S0(20,4; Z) T-duality on K3 [15] maps the above 

process into the classical monodromy of 2-cycles5 . This also maps 3-brane and 7-brane 

configuration to 5-brane configurations wrapped around two-cycles of K3. By T-duality 

around one extra circle, this is exactly the configuration we have considered in the previous 

section in the N = 2 case. 

However our construction of th~ N = 1 case seems more difficult to relate to [2], 

and in particular for the case of SU gauge groups it is more closely related to the recent 

construction of Elitzur, Giveon and Kutasov [5]. 

6.1. From Calabi- Yau to multiple brane configuration 

The connection of our approach to that of [5] becomes apparent when we note that 

the A-type singularity on K3, 

(6.1) 

is related, by T-duality, to a configuration of parallel NS 5-branes [16]. This can be shown 

by performing the T -duality on the elliptic fiber, along the natural S 1 action on C*. In the 

origin~l geometry ( 6.1), the elliptic fiber undergoes a monodromy transformation r -+ T + 1 

around each point z = ai. After the T-duality, exchanging type liA and type liB, this 

becomes aunit integral shift in the NS-NS B-field on the fiber. Therefore the integral of 

H = dB on a small circle around z = ai times the fiber gives 1, namely the region near 

ai carries the minimum unit of the NS-NS charge. Note that the dilaton gets turned on 

in this process since the radius of S 1 on the fiber depends on the position z on the base. 

This shows that the T-duality replaces the degeneration of the fiber at each ai by one NS 

5-brane. 

4 These aspects are studied further in [14]. 
5 To be more specific, the T-duality which exchanges the 0 and the 4-cycles is conjugate, by 

the mirror symmetry, to the classical monodromy of K3. 
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We can also perform the T -duality on each C* of the double elliptic fibration (which 

now takes type IIA or liB back to itself), 

x
2 + y2 = II ( z - ai) 

z (6.2) 
x'2 + '!/'2 = IT(z- bi), 

z 

giving rise to two types of NS 5-branes, oriented differently. Let us choose coordinates 

so that NS 5-branes of the first type are parallel to the x 0 , ... , x 3 , x 4 , x 5 plane, and NS 

5-branes of the second type are stretched in the x0
, ••• , x3

, x 8
, x 9 directions. Since x 6

, x 7 

are common transverse directions to both types of NS 5-branes, we may regard ( x 6
, x 7 ) 

as real and imaginary parts of z in (6.2). Therefore x 6 + ix7 = bi for a location of an 

NS 5-brane of the first type and x6 + ix7 = ai for the second type. The type II string on 

this geometry would give an N = 2 theory in four dimensions in the x 0
, .•• , x 3 directions. 

Following [5], we refer NS 5-branes of the first and second types as NS and NS'-branes 

respectively. 

Let us consider D6-branes wrapping on the S2 x S 1 cycles [ai, aj], [bi, bj] or on the 

S 3 cycles [ai, bj]· Since these D6-branes locally look like S1 X S 1 on the fiber times line 

segments on the base z-plane, the T -duality on the fiber squeezes the S 1 -X S 1 directions 

on the branes and leaves them stretched on the line segments on the base. Thus the 

D6-branes turn into D4-branes connecting the NS 5-branes. Earlier in this paper, we 

found ai- aj, bi- bj, ai- bj must all be parallel when there are D6-branes wrapping on the 

corresponding cycles. From the T-dual picture, the reason for this is that all the D4-branes 

have to be parallel in order to preserve the N = 1 supersymmetry. We choose coordinates 

so that this direction is parallel to the x 6 axis, i.e. ai - aj, bi - bj, ai - bj are constrained 

to be real. 

The geometric realization of the N = 1 U(Nc) x U(Nt) gauge theory with chiral 

matter in (Nc, Nt) EB c.c. in the previous section is then mapped to the configuration of 

D-branes in the presence of the NS 5-branes. By reading from the right to left along 

the x 6 axis, an NS'-brane located at a2 on the base is connected by Nt D4-branes to an 

NS-brane at b which is then connected by Nc D4-branes to another NS'-brane at a1. One 

recognizes that this configuration is similar to that of [5] except that, in their case, the role 
~" 

of the right-most NS '-brane is played by N f D6-brane stretched in the x0 , ... , x 3
, x 7 , x 8

, x 9 

directions. 
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Let us compare the two approaches. In [5], one has to make an assumption about a 

configuration which involves D4-branes ending on an NS-brane. For example, it is assumed 

that an open string stretched between two D4-branes attached on opposite sides (x 6 < b 

and b < x 6
) of the NS-brane gives the matter in ( Nc, N f). However, as noted in [3], such an 

open string has to go through the core of the NS-brane where the string coupling constant 

blows up, and it is difficult to see what exactly is happening there. This issue is avoided 

in our construction since the dilaton is constant. Moreover the total space of the elliptic 

fibration is non-singular even at z = b. 

There are other interesting dynamical effects associated to the presence of NS 5-

branes. It was suggested by Hanany and Witten [3] that, when the D6-brane crosses the 

NS-brane by cutting through it, an extra D4-brane should be created between the D6 and 

NS-branes. This conjecture was motivated by the consistency with field theory results 

and the conservation of the NS-NS charge. Similarly they argued that, if there are more 

than one D4-branes stretching between the D6 and NS-branes, the resulting configuration 

(called the s-configuration in [3]) should not have a supersymmetric ground state. We will 

show below that the corresponding statements in our setup can be explained by geometric 

terms. 

6.2. Geometric derivation of the Hanany- Witten effect 

What happens when a D6-brane stretched in the x0 , ••• , x3 , x 7 , x8 , x 9 directions crosses 

an NS-brane stretched in the x0
, ... , x3 , x 4

, x 5 directions? According to Hanany and Witten, 

there must appear a D4-brane parallel to the x0 , .•. , x3 , x 6 plane and connecting the D6 

and NS-branes6 . 

To understand its geometric meaning, let us perform the T -duality back to the double 

elliptic fibration of the Calabi-Yau manifold. Let us call the homology 1-cycles on the first 

elliptic fiber a 1 and /31 , and the cycles on the second fiber a2 and /32 . We choose the basis 
' ' 

of the cycles so that, after the T-duality, the a 2 -cycle vanishes at b = x6 + ix1 where the 

NS-brane was located. The D6-brane in question is localized in the x 4 , x 5 direction, i.e. on 

the first elliptic fiber, and is wrapping on the entire second fiber. It is also stretched along 

the x 1 direction. Therefore after the T-duality on a 1 and a 2 , this D6-brane transforms 

6 To simplify our notations, we ignore the common x 0
, ••• , x 3 directions in the following 

discussions. 
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itself into another D6-brane now wrapping on the a 1 and /3z cycles and stretched in the 

x 7 direction. 

Since the geometry is asymptotically locally Euclidean, we can impose boundary 

conditions for large x 7 so that the D6-brane configuration looks asymptotically like 

a 1 x /32 x (the x 7 direction). Let us move the D6-brane along the x 6 axis toward z = b 

and see what happens. We should note that the local degeneration of the fiber at z = b 

is an artifact of how we are slicing the total space, and there is no geometric singularity 

at z = b. Therefore we should be able to describe the passing of the D6-brane through 

z = b by purely geometric language and the change of its shape should be smooth. Now 

let us push x 6 to the other side of b while keeping these boundary conditions at x 7 -+ ±oo. 

Because of the monodromy /32 -+ /32 + a 2 around z = b, with an appropriate marking of the 

cycles on the fiber, a cross section of the D6-brane configuration for fixed x 7 right above 

x 7 = 0 is now [a1 x (fJz + a 2)] while a cross section right below x 7 = 0 remains [a1 x /32]. 

They do not match at x 7 = 0. The only thing that can happen is that the x 7 > 0 and 

x 7 < 0 portions of the D6-brane combine to create another D6-brane wrapping on [a1 x a 2 ] 

at x7 = 0 through a pants-diagram. The new D6-brane then can go from x 6 to b where 

az is annihilated. This new portion of the D6-brane has topology of a solid torus whose 

boundary is [a1 x a 2 ] at x 6 and the a 2 -cycle is contractible inside of the solid torus. The 

boundary of this solid torus fills the mismatch of the x 7 > 0 and x 7 < 0 portions of the 

D6-brane, and the resulting configuration is supersymmetric and of minimal volume with 

respect to the boundary conditions at x 7 -+ ±oo given in the above. After performing 

the T-duality on a 1 and a 2 , a portion of the D6-brane wrapping on the solid torus turns 

into a D4-brane on the line segment [x 6
, b]. We see that this is exactly the configuration 

conjectured in [3], i.e. the D6-brane is now connected by a D4-brane to the NS-brane. 

From this discussion, it is also clear why the configuration with more than one D4-

branes going between the D6 and NS-branes (called the s-.configuration in [3]) is not su

persymmetric. The corresponding configuration in our setup would involve two portions of 

D6-branes whose cross sections for fixed x 7 are [a1 x /32 ] at x 7 < 0 and [a1 x (/32 + na2 )] at 

x7 > 0 with n > 1. To tie them together at x7 = 0, we need a solid torus whose boundary 

is [a 1 x na2 ]. However we cannot set it in between x6 and b without creating a curvature 

singularity at z = b. 

Thus the entire construction of (3] and [5] is mapped into geometrical language we 

have been considering. 
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7. Comment on the instanton moduli space on the ALE space 

We would like to comment on Kronheimer-Nakajima's construction [17] of the in

stanton moduli space on the ALE space since a geometric construction similar to those 

discussed in the above gives a natural D-brane interpretation oftheir result1. According to 

Kronheimer and Nakajima, the moduli space Mk(V) ofinstantons of degree k on a vector 

bundle8 V = ffi'R.rv; with gauge group U(V) is the largest Higgs branch of the N = 4 

gauge theory in three dimensions with gauge group TI7= 1 U(k)i with Vi hypermultiplets in 

k of U ( k) i and one bifundamental with respect to of U ( k) i ® U ( k) i+ 1 . 

This N = 4 gauge theory can be obtained by compactifying the type II string on 

K3 x T 3 and wrapping D4 branes on 2-cycles on K3 localized at points on T 3 . The relevant 

local model is again the elliptic fibration over the z-plane, but in ~rder to reproduce the 

field content we compactify the real part of z on 5 1 and pick n-points a 1 , ... ,an on 5 1 where 

the fiber degenerates. There are n 5 2-cycles on this space, [a1, a2 ], [a2 , a3], ... , [an, a1 ], and 

we wrap k D4-branes on each of the cycles. This gives the TI7= 1 U(k)i gauge group and the 

bifundamentals. To reproduce the Vi hypermultiplets, we wrap Vi D4-branes on a 2-cycle 

dual to [ai, ai+ll· The configuration space of the D4-branes wrapping the 5 2 -cycles gives 

the moduli space of the theory. In particular, their configuration on K3 parametrizes the 

hypermultiplet moduli space while their positions on T 3 span part of the vector multiplet 

moduli space. 

We can now see that the largest Higgs branch of this theory is the instanton moduli 

space. To go to this Higgs branch, we move all the D4-brane to the same location on T 3 

(this corresponds to moving to the origin of the Coulomb branch and turning off masses of 

the hypermultiplet fields.). We can then move then x k D4-branes wrapping on then 5 2-

cycles off toward the imaginary direction in z. The n x k D4-branes are then reconnected 

into k D4-branes wrapping on a cylinder 5 1 x 5 1 , where the first 5 1 is on the fiber and 

the second 5 1 is the real part of z. By the T-duality on this 5 1 x Sl, these D4-branes 

becomes D2-branes localized on K3. On the other hand, the Vi D4-branes wrapping on 

the dual 2-cycles becqme D6-brane wrapping on the entire K3. Since the configuration 

of the D2-branes parametrizes the hypermultiplet moduli space (the last sentence in the 

previous paragraph) and the D2-branes on the D6-branes are the same as instantons on the 

7 We would like to thank M. Douglas and N. Seiberg for discussion on this subject. 
8 R; (i = 1, ... , n) are particular line bundles over an ALE space of the An-I type associated 

to the different representation of Zn 
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D6-branes, it is clear that the largest Higgs branch of this theory is the instanton moduli 

space of degree k of rank m = ,L:i Vi vector bundle. With some more work, one can show 

that the vector bundle is exactly V = ffi'R~v;. 
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