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Abstract 

We present a numerical study of the axisymmetric Couette-Taylor problem using 
a finite difference scheme. The scheme is based on a staggered version of a second 
order central differencing method combined with a discrete Hodge projection. The 
use of central differencing operators obviates the need to trace the characteristic flow 
associated with the hyperbolic terms. The result is a simple and efficient scheme which 
is readily adaptable to other geometries and to more complicated flows. The scheme 
exhibits competitive performance in terms of accuracy, resolution, and robustness. 
The numerical results agree accurately with linear stability theory and with previous 
numerical studies. 
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1 Introduction 

Despite several decades of progress, the accurate computation of flow problems is still a 
challenging task. Sophisticated schemes have been designed to cope with a variety of physical 

problems. Sophisticated methods are inherently difficult to apply, especially if they require 
additional adaptation for a specific problem. This is an obstacle that often prevents the use 
of modern methods in practical applications, e.g., in mechanical or chemical engineering. 
It is the purpose of this paper to show the applicability of a simple, easy to implement, 
computationally efficient, and readily generalizable scheme for flow problems. Its realization 

and performance are demonstrated on the well-studied axisymmetric Couette-Taylor system. 

Many modern finite-difference methods used in flow computations are based on the Go
dunov paradigm, where the time-evolution of a piecewise-polynomial approximant of the flow 
field is sought. Typically, this piecewise-polynomial approximation is reconstructed from its 
cell averages. In this context, we distinguish between two main classes of methods: upwind 

and central methods. 

Upwind schemes evaluate averages over the same computational cells that were used to 
construct the initial piecewise-polynomial elements. The computation of the time evolution 

of the flow field requires the evaluation of fluxes along the cell interfaces, i.e., along the 
discontinuous breakpoints. Consequently, the characteristic speeds along such interfaces 

must be taken into account. Special attention is required at those interfaces in which there 
is a combination of forward- and backward-going waves, where it is necessary to decompose 
the "Riemann fan", and determine the separate contribution of each component by tracing 
the "direction of the wind':. It is the need to trace characteristic fans, using exact or 

approximate Riemann solvers, that greatly complicates the upwind algorithms. The first

order Godunov upwind scheme [9] is the forerunner for all the other Godunov-type schemes 
[15, 24, 11, 22, 7). For incompressible flow, the upwind-Godunov scheme was combined with 

. Chorin's projection technique [5) by Bell et al. [2), E. and Shu [8) and others. For a review, 

see [10, 16, 6) and the references therein. 

Central schemes differ from upwind schemes in their way of calculating averages. In 
central schemes averages are evaluated over cells on. a staggered grid so the breakpoints be
tween the piecewise-polynomial elements are now inside the computational cells. Averages 
are now integrated over the entire Riemann fan while the corresponding fluxes are evaluated 
at the smooth centers of the piecewise-polynomial elements. This method obviates the need 
for Riemann solvers resulting in simpler and faster schemes. The first-order Lax-Friedrichs 

(LxF) scheme [14) is the canonical example of such central schemes. Like Godunov's up
wind scheme, it is based on a piecewise-constant approximation. The LxF scheme however 

introduces excessive numerical viscosity resulting in relatively poor resolution. 

Modern high-resolution central schemes were introduced by Nessyahu and Tadmor (NT) 

[21] as a second-order- sequel to the LxF scheme in one-spatial dimension. The original 

NT scheme, which was based on a piecewise-linear approximation, yielded a considerable 

2 



improvement in terms of resolution; at the same time, it retained the relatively simple 

form of central schemes. The NT scheme was then extended to higher orders [20] and to 
several spatial dimensions [12]. This and related work [25, 27] convincingly demonstrated 
that central schemes offer a much simpler alternative to upwind schemes while retaining a 
comparable resolution. 

The central schemes mentioned above were introduced primarily for hyperbolic conser
vation laws, such as those governing compressible flow. The conservation laws for incom
pressible flow are additionally constrained by the incompressibility condition which makes 

the dynamics 'non-local. The two-dimensional Euler equations in their vorticity formulation 
were treated along these lines by Levy and Tadmor, both in second- 'and third-order versions 
[17, 18]. The resolution obtained by the latter is remarkable. However, there are two major 
shortcomings to using the vorticity formulation: boundary conditions are hard to formulate, 
and the method is not easily extended to three spatial dimensions. 

These problems were resolved by Kupferman and Tadmor (KT) [13] where incompressible 
flow was calculated in a velocity formulation based on the projection method. The new 
scheme was tested on the classical doubly-periodic shear layer and on longitudinal flow in a 

channel. The performance was compared to that of an upwind scheme. The two methods are 
comparable in accuracy and resolution. The new scheme was further found to be immune 

to the formation of spurious vortical structures [3]. 

The simplicity, accuracy and resolution of the KT scheme make it a promising candidate 
for tackling new and more complex problems, for example, in the domain of non-Newtonian 
fluids. For that, it has to be generalized in several aspects: (i) Treatment of more complex 
equations (e.g., coupling to constitutive equations); (ii) Adaptation to various geometries 

and coordinate systems; (iii) Systematic treatment of ~oundary conditions. The last point 

was addressed only in a partially satisfactory way in [13]. 

In this paper, we apply the KT method on the axisymmetric Couette-Taylor problem. 

This particular problem was chos.en for several reasons. First, it involves cylindrical coor
dinates and thus demonstrates how to implement the staggered central approach for non
Cartesian coordinates. Second, it- offers a challenge to the numerical treatment of boundary 
conditions because the centr".fugal forces constantly push the fluid towards the outer cylin
der. Finally, the availability of data and analytical results allows an extensive test of the 
numerical results. 

We find that the generalization to cylindrical coordinates fits very naturally into the 
staggered central-differencing methodology. It requires the formulation of the equations of 
motion in the appropriate conservative form; averages have to be- calculated with the radius

dependent weight associated with the cylindrical coordinates. 

The treatment of boundary conditions demands additional attention due to the alterna

tion between two different grids. It follows the same lines as in the basic scheme, ~xcept for 

adaptations resulting from the existence of half-cells and for the use of one-sided stencils to 
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calculate derivatives. 

We investigate the Couette-Taylor problem for the regime of parameters in which ax
isymmetric solutions are relevant: laminar flow and steady Taylor vortices. We compare 
our results with the predicti.:>ns of linear stability theory and find excellent agreement. The 
results are accurate even for a relatively coarse grid. 

This paper is organized as follows. In Section 2 we present the equations of motion, both 
in their advective and conservative form. The latter is the starting point for the central 
scheme approach. In Section 3 we describe the numerical scheme. For clarity, we divide the 
presentation between the treatment of interior and perimeter cells. The numerical results 
are described in Section 4. A short discussion, is presented in Section 5. 

2 The axisymmetric N avier-Stokes equations 

A circular Couette cell consists of a fluid confined between two concentrically rotating cylin
ders. The geometry imposes the natural choice of cylindrical coordinates; let x = (r·, 0, z) 
and u = (u, v, w) denote the radial, azimuthal, and axial components of the coordinates 
and the flow field respectively. We consider here axisymmetric flow; the flow field does not 
depend on the azimuthal coordinate 0. The Navier-Stokes equations which govern the flow 
of Newtonian fluids are 

ou ou ou v2 op _ [ a ( 1 a ) 82u] - = -u-- w-+--- + 11 - --(ru) +-
Ot Or· OZ I 01 Or r· Or Oz2 

ov = -u ov _ w fJv _ uv + i/ [i_ (~i_(rv)) + fJ2
vl 

ot or· oz. r fJr r fJr 8z2 
(1) 

ow = -u ow_ w fJw _ op + v [~i_ (r· ow) + fJ 2
w] 

ot or fJz oz r fJr fJr 8z2 

with the incompressibility condition, 

1 f) ow 
--(ru) +- = 0 
ror oz 

(2) 

where p(x, t) is the pressure field and i/ is the kinematic viscosity. 

As originally explained by Rayleigh [23], the Couette-Taylor instability results from a 
radial stratification of the angular momentum density .e = rv. The special role of angular 
momentum suggests a change of variables, replacing the equation for v by an equivalent 
equation for .e. The substitu.tion is straightforward. 

The central scheme approach is based on the dual nature of the equations of motion, 
which can be formulated both in advective form (1) and in (partially) conservative form. 
The equivalence of the two representations is guaranteed by the incompressibility condition 
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(2). Unlike in Cartesian coordinates, it is not possible to obtain a fully conservative system 

of equations in cylindrical coordinates. In the context of conservative systems there are 
additional terms which play the role of "sources" (e.g., the centrifugal force). 

A scalar field ,P(x, t) is said to satisfy a hyperbolic conservation law if its equation of 

motion is of the general form, ~~ = \7 · j( 'ljJ ), where j( 7/J) is the flux associated with the 
conserved quantity 7/J. In axisymmetric cylindrical coordinates, the representation of the 

divergence operator is (~ %rr, 0, %J so hyperbolic conservation laws assume the specific form, 

(3) 

It is now a matter of simple algebra to rewrite eq. (1) in the appropriate conservation· 
form, 

au 1 a [ 2 _au] a [ _au] [ ap .£
2 

_ u] - = --r -u + v- +- -wu + v- + -- +--:-- v-at r ar ar az az - ar r·3 r2 

a.e = ~~r [-uR. + ii a.e - 2ii~] + ~ [-wR. + ii a.e] at r ar ar r a z a z (4) 

~~ = ~ :r r [ -uw + ii ~~] + :z [ -w2 + ii ~:] + [- ~~] 
The purely conservative equation for R. reflects the fact that angular momentum is conserved 
inside the cell. 

We next specify the boundary conditions. At the rigid walls, r = Rin and r = Rout, the 
no-slip conditions imply that the velocity of the fluid equals that of the rotating cylinders. If 
nin and nout denote the angular velocities of the inner and the outer cylinders, respectively, 
then the boundary conditions are 

u(Rn) = u(Rout) = w(Rin) = w(Rout) = 0 
(5) 

For the axial axis we will assume for convenience periodic boundary conditions. This has 
little effect on the solution provided that the height of the cylinder is large compared to the 
characteristic wavelength of the flow pattern. This condition is met in all our calculations. 

The number of independent parameters may be reduced by introducing dimensionless 
variables; we measure length in terms of inter-cylindrical gap units, Rout - Rir" and time 
in terms of the rotation period of the inner cylinder, 1/Din· The velocity field is then 

expressed in units of nin(Rmt- Rin) and viscosity in units of Din(Rout- Rin)2
• We will 

denote the dimensionless viscosity by v. In these units, the boundary conditions for the 
angular momentum read 

and (6) 
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where 
fJ 

rL = --, 
1-fJ 

and 
1 

rR=--
1-fJ 

(7) 

denote the cylindrical radii, fJ = ~n/ Rout, and w = f2out/f2in· Thus the model includes only 
three independent parameters: fJ, w and 11. 

Following [1], we further definethe Reynolds numbers associated with the inner and the 
outer cylinders, 

R· = ~n(Rout- ~n)Oin = fJ 
m- ii 11(1- fJ)' 

(8) 

and 
R · _ Rout(Rout- ~n)f2out _ W 

out= 11 - 11(1- fJ)' (9) 

For all values of the parameters, these equations have a laminar stationary solution, 
known as Couette flow, 

u(r) = w(r) = 0 f(r) = Ar·2 + B, (10) 

where the coefficients A and B are given by 

and (11) 

3 The numerical scheme 

We now turn to the presentation of the central scheme. We start by describing the scheme 
for interior cells in Section 3.1. We treat the boundary cells in Section 3.2. 

3.1 Interior cells 

The computational grid consists of rectangular cells of size .6.r and .6.z; at time level tn 
these cells Ci,j are centered at (ri = rL + i.6.r, Zj = j .6.z ), with i = 0, ... , M - 1 and 
j = 0, ... , N-'- 1. The velocity field ( u, f, w) is represente,d by the point values at the cells' 

centers, u~i = ( u~i' f~i' w~i). The pressure gradient '\lp is assumed to be given at the former 
1 1 

mid-time tn-t, and is also represented by its point values (Grp;:j 2 ,0,Gzp~j 2 ). 

3.1.1 Piecewise-linear reconstruction 

The first step is a piecewise-polynomial reconstruction of the velocity field to recover point 
values throughout the cell. Second-order accuracy is guaranteed by a piecewise-linear recon
struction, which takes the form, 

r, z E Ci,j, (12) 
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. where u~.i and u},j approximate the r-, and z-derivatives at the cells' centers (r;, zi) respec
tively. In general, the recipe for constructing such derivatives requires nonlinear limiters in 
order to prevent the formation of nonlinear oscillations [15, 26, 19]. As reported in [13], 
the central scheme proves to be quite robust against the formation and the propagation of 
spurious oscillations. We therefore calculate u~,j and ui,j using simple central differences, 

I no n 
ui,j = r u;,j, and I no n 

u;,j = z ui,j' (13) 

where n~ z denote the r- and z- central difference operators. 
I 

3.1.2 · Calculation of the provisional field 

The second step is to evolve the piecewise-linear approximant to the next time level tn+I. 

The time evolution of the flow field is given by eq. (4), subject to the incompressibility 
constraint imposed by eq. (2). The latter determines the pressure p(x, t), which could be 
viewed as a Lagrange multiplier. 

We follow the projection method [5]. Consider the following second order temporal dis
cretization of the equations of motion, 

(14) 

where the updated flow field satisfies the incompressibility condition 

(15) 

The Hodge decomposition theorem states that any vector field u can be uniquely decomposed 
into a divergence-free component which is tangential to the domain boundaries, and an 
irrotational component. Let lP' denote the operator which projects a vector field onto the 
space of divergence-free fields. Then eqs. (14) and (15) can be replaced by the equivalent 
set of equations, 

and 

where 

is a provisional flow field. 

un+I - lP'u* 
- ' 

I I 1 
Vpn+2 = Vpn-2 + -(ll-JP')u*, 

!:lt 

(16) 

(17) 

(18) 

In other words, lacking the knowledge of Vp at the mid-time tn+~, we approximate it by 
its value at the former mid-time tn-t_ The result is a provisional field u* which differs from 
the actual updated flow field un+I by the gradient of a scalar function, !:lt V(pn+~ - pn-t). 

Hence un+l is the projection of the provisional field while the irrotational residual can be 
used to update the pressure gradient at time tn+t. (The provisional field in Chorin's original 
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method did not include the "'Jp term, resulting in a first order scheme. This addition is. due 

to Bell et al. [2].) 

We now turn to the computation of the provisional field u*. Its time evolution can be 

cast in the general form, 

8
8
u* = ~aa rF(u*,r) + 

8
8 

G(u*,r) + S(u*,r) 
t r r z 

(19) 

where F( u*, r) and G( u*, r) denote the r-, and z-components of the fluxes, and S( u*, r) is the 
source term that includes all terms which do not fit into the conservation form. Specifically, . 

F(u*,r) = 

• 2 8u* 
-u + v--

8r 
81* l* 

-u*l* + v-- 2v-
8r r· 

· * * 8w* 
-u w + v--

8r 

S(u*,r)= 

G(u*,r·)= 

[* 2 u* 8p 
--v---
r3 r 2 8r 

0 
8p 
az 

* * 8u* -w u +v-

*l* Uf* -w + v-

aaz 
w* 

*2 + -w v--
8z (20) 

At time tn, the provisional field u* equals the actual flow field un. We evolve u* to 

time tn+t by first calculating its cell averages u* over the staggered grid cells Ci+t.j+t· Note 
that in axisymmetric cylindrical coordinates, spatial averages are weighted in proportion 
to the radius r. These cell averages can be expressed as integrals over the control box, 
C X [t n, tn+1], i+t.i+t 

_ j rdrdzu* 
Ic. l. . l. •+2.J+2 

. ltn+l j 8u* - t r dr dz u n + dt Jc r· dr- dz fit. 
ci+ t.i+ t tn ci+ t.i+ t 

(21) 

The computational grid and the control box are sketched in Fig. 1, with the vertical axis 

representing time. The notation fn = h fn is for normalized integrals, scaled by their area, 
length, etc; here, for example, the volume of the annulus whose cross section is the staggered 

cell ci+t.i+t is T'i+t~r~z. 
The first term in eq. (21) is a simple average of the piecewise-linear function un over 

the bottom of the integration box shown in Fig. 1. It involves contributions from the four 

intersecting cells, Ci,i, Ci+t,i, Ci,i+I, and Ci+I,j+I· A straightforward computation yields 

(22) 
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ij 

t 

ij+l._ -- --~ 

I ' 
I ' 

, , 

I I 

_____ .i+lj+l 
I 
I I 
I I 

·--------
II 
II 
,I -------· i+lj 

r 

Figure 1: The computational grid. At time tn, the data refers to the cells Ci,j centered at 
(i ~r,j ~z). At time tn+t, staggered cells Ci+t.i+t are used. 
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Jj+~_ ....... .... 

,· 

'i F(Ji ,z,t) 

.· .. ··· 

,..." 

t Ii+t/2 
~--·········································~ 

--------------, ,. 
• 

ii 
I I , ... 
'i 

r 

Figure 2: Integration over the flux F: the integral over the control box ci+t.i+t X [tn' tn+l], 
reduces to the flux difference /;:,.r D;(rF), integrated over the sides Ji+t X [tn, tn+Ij (shaded 
areas). 

The notation here is defined as follows. n:ui,. = (ui+l,. -Ui,.)/ !:::..r· and f..l:Ui,. = Hui+l,. +ui,.) 
denote forward differences and forward averages in the r· direction respectively. The meaning 

of the related operators D-;, f..l;:, D't, D-;, J.L't and f..l-; is self-evident. 

We now discuss the integration over the fluxes F and G. This is where the virtues of 
the conservation form enter. For example the integral J r dr over the flux F is simple to 
perform and equals the difference between the fluxes at T"i+I and ri. This flux difference is 
then integrated over the two interfaces of the control box (Fig. 2), 

(23) 

where J3+1 refers to the segment of length !:::..z centered at zj+l· 
2 ' 2 

So far, the procedure is exact. Approximations are required when one integrates (r·F) 
over the interfaces of the control box. For second-order accuracy, the integral over z is 
approximated by the second-order trapezoidal rule. The integral over time is approximated 
by the mid-point rule. For that, we need an approximation of the fields at time tn+t at the 

centers of the cells Ci,j. u~; ~ can be obtained by a first-order explicit predictor step. 

A slightly different procedure is adopted for the temporal integration of the viscosity 
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ter~, vur, etc. Stability considerations favor instead the implicit Crank-Nicholson scheme, 
which consists of an averaging between values at times tn and tn+l. 

The integration over the flux G follows the same lines. There remains the source term 
S(u, r) .for which the spatial integration can be approximated by a second-order averaging 
over the four corners, 

(24) 

The time integration is again approximated by the mid-point rule. 

Thus the calculation of the cell-averages u;+t.i+t consists of a predictor step, 

n+- U I I ,(i j U ,(i j U ,(i j 1 At { .- Iii ( £:12/Jn £:12 lin ) } 

Ri,i 2 = .fi,i + 2 -ui,/i,i - wi,/i,i - v-;::- + v or; + az; 

(25) 

followed by a corrector step, 
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+ .6.t n+,,+ {r· [-u~·+~c~:-~ + ~t.- 2v (;~]} + 
r rz 1 t,J t,J 2 1,) r· 

~+l 1 
2 

f:lt + + { [ n+ ~ 0r;+ ~ ll 0, ] } + -- D ll ri -w. · .(.· · + -.(.·. r z r 1,] 1,] 2 t,J 
i+~ 

where for any staggered grid function fi+l 1·+1, the discrete Laplacian operator \7·2 fi+1 1·+1 
2' 2 . 2' 2 

is defined by 

(26) 

Once we obtain the cell averages of the provisional field ii': 1 . 1 , we need to convert this 
1+2.1+2 

result back into point values u\+~.i+~ at the staggered cells' centers. If the provisional field 
u * ( r, z) is approximated by a piecewise-linear function, 

u*(r, z) = u\+l J+!. +(u*Y+ 1 .+1 (r-ri+l)+(u*)\+ 1 .+1 (z-z1+1) 2' 2 • 2 ,J 2 2 1 2 ,J 2 2 

then its cell averages are given by. 

-* * .6.7'2 ( *)' u.+!. .+1 = u i+l j+l + u .+1 .+ 1 . ' z .J 2 2 · 2 12r. 1 ' 2 ,J 2 t+2 
(28) 

To second order accuracy, i ~ is sufficient to replace ( u * y 1 . 1 by ( ii * Y+ 1 .+ 1 where the 
t+2.J+2 t 2'J 2 

latter is estimated by central differencing. Therefore the point values are recovered from the 
average values by 

.6.r·2 
u*. 1 . 1 = ii~ 1 . 1 - D0ii~ 1 . 1. 

'+2·1+2 '+2.1+2 12r. 1 r '+2•1+2 t+2 . 
(29) 

This concludes the second step of the calculation of the provisional field. 
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3.1.3 Hodge projection 

The result obtained in the last section is a non-divergence-free provisional field u*. The third 
step accounts_ for incompressibility by extracting its divergence-free part. The remainder 
(irrotational) part is used to update the pressure gradient. 

In differential form, the new flow field un+I needs to satisfy the incompressibility condition 

~~(run+!)+ awn+! = 0. 
r 8r 8z -

(30) 

As the central differencing approach is based on cell averaging, we choose to impose the 
incompressibility condition in its integral form. Integrating the differential condition over 
the cell Ci,j we get 

!:::.r D:; f dz ri+1u":++f .+ 1 + !:::.z D:; f dz ri+,!.w~·++f .+ 1 = 0 J Ji 2 1 2 ,J 2 j I; 2 1 2 ,J 2 
(31) 

which is again approximated using the second order trapezoidal rule. Thus the discrete form 
of the incompressibility condition is 

(32) 

We now perform a discrete Hodge decomposition. We decompose the provisional field 
u\+l J·+l into the sum of the updated flow field un+1

1 . 1 and the gradient of a scalar grid 
2' 2 •+2.J+2 

function </>i,j, 

(33) 

Up to the specification of boundary conditions (which are discussed in the next section), 
the substitution of the decomposition (33) into the discrete incompressibility condition (32) 
dictates the scalar potential </>i,j. It is the solution of the Poisson equation, 

(34) 

where 
(35) 

The calculation of </>i,j allows the flow field to be updated !rom eq. (33), and the pressure 
gradient is updated by 

(36) 
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This concludes the calculation of the time step. 

The evolution of the flow field from time tn to time c•+1 induces a spatial shift from 
the cells C;,j to the staggered cells Ci+t.i+t· For successive steps, the method consists of 
alternations, every second step, between the two grids. Thus, the next step shifts back to 
the original grid. The calculations involved in the alternating steps are identical, up to 
a systematic interchange between forward and backward operators (e.g., n; f--7 D;), and 

between the cell centers (r;, Zj) and (r;+t' zj+t)· 

3.2 Boundary cells 

The numerical scheme presented in the previous section remains to be adapted for the radial 
boundary cells, (O,j) and (M -l,j). The alternation between the two grids requires special 
attention and, in particular, implies different treatments for odd and even time steps. As in 
the preceding section, we will describe the procedure only for time steps which start with 

the grid Ci,i and end with the staggered grid Ci+t.i+t. 

We adopt the following convention: in the initial state, the left edge of the system (r· = rL) 
intersects the left boundary cells (i.e., r0 = r-L), while the right edge of the system (r = r·R) 
coincides with the edge of the right boundary cells (i.e., r·M- 1 = rR- ~6:r). That is, the 
right boundary cells lie entirely inside the system whereas only half of the left boundary cells 
do so. This situation is reversed in the succeeding time steps (see Fig. 3). This sets the grid 
spacing D.r = (rR- rL)/(M ·- ~). 

3.2.1 Piecewise-linear reconstruction 

The piecewise-linear approximant un(r, z) assumes the same form (12) inside the boundary 
cells. The only modification is to the r·-derivatives which have to be calculated using second
order one-sided expressions, 

1 
u' = -- (3un - 4un + u" ) 0,. 2h 0,. 1,. 2,. 

(37) 
1 

u' = - (3un - 4un - un . ) M-1,. 2h M-1,. M-2,. M-3,. 

3.2.2 Calculation of the provisional field 

As described in Section 3.1.2, the calculation of the provisional field consists of three steps: (i) 
1 

a predictor to estimate u~+ 2 ; (ii) a corrector to calculate the cell averages of the provisional 
1,] 

field u:+.!. "+.!.; and (iii) an interpolation which recovers point values of the provisional field 
* • 2 ,J 2 

u i+t.i+t· 

The predictor field u~~t is calculated at the centers of the cells C; 1·. The right boundary 
t,} I 

cells ( i == M - 1) lie entirely inside the system and can follow exactly the same treatment 
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Figure 3: The computational grid and the physical domain. The solid (dotted) grid corresponds 
to the initial state for odd (even) time steps. 
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as the interior cells (25), with the derivative operators replaced by one-sided stencils, The 

centers of the left boundary cells ( i = 0) are on the boundaries and fields' values at those 

points are determined by the boundary conditions u~+t = u(rL)· This situation is reversed ,. 

in the corrector step where the provisional field is calculated at the centers of the cells 

ci+~,j+~· Then left boundary cells are treated as interior cells while u*M-1,. = u(rR)· 

3.2.3 Hodge projection 

The Hodge projection decomposes the provisional field u* into a divergence-free field un+l 

and an irrotational field (33). In the continuum case only the normal component of the 
divergence-free part can be specified, un+l(rL) = un+l(rR) = 0. In the discrete formulation 
it is possible within second-order accuracy to impose constraints also on the tangential 
component wn+I. 

The flow fields u* and un+l are given at the centers of the staggered cells C;+~.i+t while 
the scalar field cPi,j is given at the centers of the original cells Ci,j. At the left boundary 
( i = 0) the gradient of qy can be calculated using the same differencing stencil as in the 
interior cells. As the flow field itself is not calculated at the boundary, we will require that 
the extrapolated value of un+l vanishes at r· = rL, i.e., 

~JL; (15u~+l - 10u~+l + 3u~+l) = 0. 8 2 ,. 2 ,. 2 ,. 
(38) 

On the right side ( i = M - 1) the flow field is calculated at the boundary. The fact that 

both ur:++{ .+ 1 and wr:++l . 1 vanish at those points determines the form of the incompress-
' 2•3 2 I 2o3+2 

ibility condition with respect to the boundary cells Ci,j, 

Eqs. (38) and (39) complete the specification of the boundary conditions for cPi,j· 

We notethat the Poisson equation defined by eqs. (34), (38) and (39) has a two dimen
sional null space which corresponds to two additive constants, one for each of two decoupled 
stencils ("checkerboard" pattern). These two degrees of freedom do not affect the values of 
the updated fields and therefore can be set arbitrarily. 

4 Numerical results 

We implemented the above central scheme. The implicit diffusion and Laplace equations 

were solved using the fast Fourier transform for the periodic z-axis. The time step was 

limited through the CFL stability condition, max(lul/llr·, lwl/llz) llt < C where Cis a 
constant. The CFL condition is a bound on the maximum distance along which information 

can propagate during a single time step. In our staggered central scheme it is essential that 
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II M = 16, N = 64 I rate I M = 32, N = 128 I 
lluM,N- U2M,2NII2 2.50. 10 3 1.98 6.45. 10 4 

lllM,N- f2M,2Ni12 0.23 1.95 6.10 . 10-2 

llwM,N - W2M,2Nib 2.40. 10-3 1.93 6.20. 10-4 

Table 1: L2-error and extrapolated convergence rates estimated from the comparison of 16 x 64, 
32 x 128, and 64 x 256 grids. The parameters are 'fJ = 0.883, H = 6, w = 0, v = 0.04, and the 
total time is t = 10. 

the characteristics emanating from the discontinuities between the piecewise-linear elements 
remain within the staggered cell, i.e., that the characteristics are not allowed to propagate 
by more than half a cell. This imposes the condition C < !· On the other hand, the constant 
C should be taken as large as possible in order to reduce the undesired numerical viscosity 
of the scheme. All our computations were carried out with C = 0.45. In cases where both 
lui and lwl are everywhere small (i.e., when the flow is almost azimuthal) the time step has 
to be limited by the viscous terms. In view ofthe implicit Crank-Nicholson scheme used for 
the latter, this is more a matter of accuracy than stability. The code was implemented on a 
Sun Spare Ultra-1 workstation. About 25% of the computing time was spent on the linear 
solvers required by the implicit diffusion scheme and by the projection. For a 32 x 1024 grid, 
each time step takes about 5 seconds. A typical run up to t = 40 takes less than two hours. 

The parameters were chosen following the experimental study of [1). The gap ratio 
'fJ = Rin/ Rout was taken to be 0.883. The aspect ratio between the height of the cylinders 
and the gap width was taken to be H = 32, close to the experimental value of 30. Such 
aspect ratio is a reasonable approximation of infinite cylinders. The parameter space was 
then explored by varying the two remaining parameters, w and v. The initial condition was 
the laminar Couette flow (10), added to a small random perturbation to allow the instability 
to develop. In most calculation we used M = 32 points in the radial direction and N = 1024 
points in the axial direction. 

To estimate the convergence rate we compared the solution with a solution obtained 
using twice as many grid points in each axis. The two calculations were then interpolated 
to a common grid using a third-order interpolation scheme. The L2-norm of the difference 
was taken as an error estimate. Such error estimates are shown in Table 1 for a regime 
of parameters in which the initial Couette solution is unstable. The con,~ergence rate was 
evaluated by Richardson extrapolation. The numbers indicate the the scheme is second-order 
accurate as claimed. 

We first focus on flows where the outer cylinder does not rotate, w = 0 (and RotLt = 0). For 
large enough values of the viscosity v (or low enough values of Rin) the initial perturbation 
decays and the solution tends back to the laminar Couette flow. Below a critical value of 
v ~ 0.0617 the Couette solution is unstable and the perturbation grows until a new stationary 
state is eventually reached. This state is the well-known Taylor vortices, a cellular structure 
of superimposed azimuthal vortices. A color scale image of the three velocity components 
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for the stationary Taylor vortices is shown in Fig. 4. An arrow representation of the ( u, w) 
vector field is shown in Fig. 5. The axial segment corresponds to one wavelength which 

equals approximately two gap units. 

For even lower values of v ;S 0.04 Taylor vortices are unstable and the resulting long time 
behavior is no longer stationary. A transition to a new state of wavy vortices is observed in 
experiments. Such flow is not axisymmetric and therefore can not be resolved by the present 
calculation. 

The primary quantitative test of our results is a comparison of the instability growth rate 
with the prediction of linear stability theory. The linear stability calculation refers to the 

early evolution of a small perturbation about the steady Couette flow which is of the form, 

8u(r, z, t) = 8u(r-) eikz e(Tt, ( 40) 

where k is the axial wave number and u is the amplification rate. The dispersion relation 
u( k) is a solution of the following eigenvalue problem [4] 

(~~~r- k2
- ~) (~~~r- k2

) 8u =_ 2k
2 (A+ B) ov orr or ll orr or ll r·2 

(41) 

(~!~r- k2 - ~) 5v-
2
A ou or r or v - - v ' 

where 8u, 8v, and 5u' vanish at the boundaries. 

A perturbation mode k is unstable if u(k) > 0. For low enough values of 'R;n, all modes 
are stable. Above the transition point, there exists a continuum of unstable modes, which 
is reduced to a discrete spectrum in a finite periodic system. 

To obtain a quantitative comparison between the simulation results and the linear sta
bility equation, we recorded the time evolution of a specific axial Fourier mode k of the flow 

field at a fixed radial location (i.e., we fixed the radial index i and Fourier transformed u;,j 

with respect to the axial index j). Except for the early stages, t ;S 1, all such Fourier modes 
grow nearly exponentially before saturating. Nonlinear effects become noticeable only close 

to saturation. This procedure allowed us to compute the amplification rate associated with 
a wave number k. 

In parallel, we discretized and solved the eigenvalue equation ( 41 ). Both procedures 
give amplification rates which depend on the grid sizes used in their calculations. We then 
performed successive grid refinements along with a Richardson extrapolation to estimate 

the amplification rates in the limit of an infinitely fine grid. A comparison between the 
two calculations is shown in Table 2. These results refer to the wavenumber k = 1r. The 

extrapolated values of the amplification rates u are in excellent agreement to almost four 
significant digits. 

We next considered the more general case where both cylinders rotate. The instability 

threshold, or the neutral stability curve, can be drawn on the 'R;n-'Rout plane. This curve is 
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Figure 4: Color level image of the flow components , u (left) , .e (center) , and w (right) . ·The 
axes are the radial and the axial coordinates, and includ e a part of the cy lindrical section . The 
pa rameters are w = 0 and v = 0.03 
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Figure 5: The ( u, w) vector field: one wavelength showing a pair ·of counter rotating vortices. 

Simulation Linear Stability 
v 32x128 64x256 extrapolation 32 48 extrapolation 

0.050 0.3134 0.3154 0.3161 0.3054 0.3113 0.3160 
0.055 0.1795 0.1813 0.1819 0.1716 0.1773 0.1818 
0.058 0.0998 0.1015 0.1021 0.0916 0.0974 0.1020 

Table 2: Amplification rates associated with the axial Fourier mode k = 1r as function of the 
viscosity v. The fixed parameters are 'fJ = 0.883, H = 6, and w = 0. The set of results on the 
left refers to our numerical simulations using 32x128 and 64x256 grids; the third column is the 
extrapolated value. The set of results on the right refers to the linear stability calculation usmg 
32 and 48 discretization points; the third column gives again the extrapolated value. 
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Figure 6: The neutral stability curve on the 'Rin-'Ro,.t plane. The circles are the simulation 
results and the solid line is the linear stability calculation. 

plotted in Fig. 6. The dots are the simulation results and the solid line is the linear stability 
calculation. The agreement is again good. 

The instability threshold and the amplification rate of the perturbation both reflect 
properties of the flow in the linear regime where the velocity is almost azimuthal. The 

numerical scheme was also tested in a nonlinear regime by measuring the torque that the 
fluid exerts on one of the cylinders. The torque applied on the inner cylinder is given by 

T = 27rvrfn J dz (2_£- ~Of) .. 
r 2 r· or· 

(42) 

We recorded the torque as function of time. Results are shown in Fig. 7. Fig. 7 a corresponds 
to the regime of steady Taylor cells. The torque monotonically increases from its Couette 
flow value towards its new steady value. Fig. 7b refers to a lower value of viscosity for which 
there is no steady flow. In this regime the torque overshoots and oscillates before decaying 
to a constant value. We remind the reader that our simulations are unable to properly 
describe this regime. Nonetheless oscillations in the torque evolution seems to coincide with 
the breakdown of the Taylor cells. 
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Figure 7: The torque exerted on the inner cylinder versus time. The parameters are ''7 = 0.883, 
H = 32, w = 0, v = 0.05 (left), and v = 0.015 (right). 

The torque is easily calculated for the laminar Couette flow and is given by 

(43) 

The torque is proportional to the viscosity of the fluid (the Couette cell was originally 
designed as an apparatus for measuring viscosity). This motivates the following definition 

of an effective viscosity, 

(44) 

In Fig. 8 we plot the effective viscosity v.ff versus the actual viscosity v. The solid line is 
the Couette flow solution. For viscosity smaller than the instability threshold v ~ 0.0617, 

the effective viscosity is larger than the actual one. The effective viscosity increases as the 
viscosity is further reduced and reaches a maximum for 11 ~ 0.044. 

5 Conclusions 

We presented a numerical study of the axisymmetric Couette-Taylor problem, using a scheme 
based on the KT scheme [13]. The new scheme is a second-order central scheme combined 

with the projection method. While almost as accurate as modern upwind schemes, the new 
scheme proved to be more robust against the formation of spurious vortical structures and 

above all it is very simple. In particular, it is Riemann-solver-free and does not require any 

of the flux limiter methodology. 

The simplicity of the KT scheme makes it easy to generalize and adapt for tackling new 

problems. This is demonstrated in this paper where we apply the method on a cylindrical 
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geometry. The crucial step in the adaptation to a new coordinate system is to formulate the 

equations of motion in the appropriate conservative form; the coordinate system imposes 
the representation of the divergence operator and thus the form of the corresponding fluxes. 

Once the equations have been written in conservative form, the derivation of the three steps 

- the piecewise-linear reconstruction, the calculation of the provisional field, and the Hodge 
projection - is just a matter of simple and straightforward algebra. 

The treatment of boundary conditions fits naturally into this framework. The alternation 
between two computational grids implies that each perimeter cell is alternately entirely inside 
the system or intersected by the interface. In the first case, perimeter cells follow the same 
treatment as interior cells except for the use of one-sided stencils to calculate derivatives. 
In the second case, the center of the perimeter cells is at the interface and the boundary 
conditions are imposed directly. 

In the Taylor cell regime, the early stages of the instability were compared to the predic
tions of linear stability theory. The agreement was excellent, and when properly extrapolated 

the results agree to the fourth significant digit. Nonlinear properties were also tested by per
forming torque measurements. 

This study shows that the new central scheme makes possible the computation of flow 
problems with significantly less effort than with a comparable upwind scheme. Simplicity 
and adaptivity are the virtues that make this approach potentially adequate for solving more 

complex problems such as the flow of non-Newtonian fluids. A study of such systems is in 
progress. 

I have benefited from fruitful discussions with A. Chorin, M. Denn, A. Kast, D. Levy, P. 

Marcus, S. Muller, D. Nolan, H. Swinney, and E. Tadmor. I thank A. Chorin and A. Kast 
for a critical reading of the manuscript. This work was supported by the U.S. Department 
of Energy under contract DE-AC03-76SF-00098 
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