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DEVELOPMENT OF INVERSE MODELING TECHNIQUES 

FOR GEOTHERMAL APPLICATIONS 

S. Finsterle and K. Pruess 

Lawrence Berkeley National Laboratory 
Earth Sciences Division 

Berkeley, CA 94 720 

ABSTRACT 

We have developed inverse modeling capabilities for 
the non-isothermal, multiphase, multicomponent 
numerical simulator TOUGH2 to facilitate automatic 
history matching and parameter estimation based on 
data obtained during testing and exploitation of 
geothermal fields. The ITOUGH2 code allows one to 
estimate TOUGH2 input parameters based on any 
type of observation for which a correspondino simula-

. 0 
t10n output can be calculated. In addition, a detailed 
residual and error analysis is performed, and the uncer
tainty of model predictions can be evaluated. One of 
the advantages of inverse modeling is that it over
comes the time and labor intensive tedium of trial
and-error model calibration. Furthermore, the 
estimated parameters refer directly to the numerical 
model used for the subsequent predictions and opti
mization studies. This paper describes the methodol
~gy of inverse modeling-and demonstrates an applica
tiOn of the method to data from a synthetic geother
mal reservoir. We also illustrate its use for the 
optimization of fluid reinjection into a partly depleted 
reservoir. 

INTRODUCTION 

Numerical modeling is an essential tool for the study 
of basic multiphase flow processes in geothermal 
reservoirs. Moreover, simulation of future field 
performance can be used to design, analyze, and 
optimize various operational scenarios. The latter 
requires that site-specific, model-related parameters are 
available on the scale of interest. Inverse modeling 
can be used to determine effective model parameters 
by using quantitative information from well tests and 
past field performance and minimizing the differences 
between model results and field observations. 

Inverse modeling greatly enhances the interpretative 
potential of numerical reservoir simulations. It can 
be applied in several modes, providing useful infor
mation for three different reservoir management prob
lems. First, it can be used to design and optimize a 
well testing program for reservoir characterization. 
The ability of a proposed design to identify 
hydrogeologic parameters such as the permeability of 
productive features can be assessed by performing 
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inversions of synthetically generated data. Such an 
approach is described in detail in Finsterle and Pruess 
(1996). 

The second mode of application is the analysis of the 
actual data from laboratory and field tests, or data 
obtained during field exploitation. An example that 
illustrates the analysis of laboratory data from a 
graywacke core plug from The Geysers Corino 
Project is given in Finsterle and Persoff (1996). Als~ 
a synthetic field example is discussed below. 

Thirdly, the minimization algorithms developed for 
automatic model calibration can also be used to 
~ptimize certain aspects of field operation, e.g., injec
tiOn rates can be determined such that the thermal 
output in adjacent production wells is maximized for 
minimal injection costs. An illustrative example is 
discussed below. It is important to realize that this 
type of analysis requires detailed knowledge about 
actual and hypothetical costs associated with field 
operations, and - more important - a model of the 
geothermal reservoir that is able to accurately predict 
the system behavior for a variety of injection and 
production scenarios. Optimizing reservoir 
operations requires conducting a thorough 
characterization of the geothermal field, which in turn 
must be based on a good test design. All aspects are 
supported by inverse modeling. 

In this paper we give a brief introduction to the main 
concepts of inverse modeling. A synthetic example 
is provided to demonstrate the main application of the 
method, i.e., automatic calibration of a numerical 
model of the geothermal reservoir to production data 
(history matching). We then discuss the possibilities 
and limitations of using inverse modeling techniques 
for the optimization of a field operation such as water 
injection into a partly depleted geothermal reservoir. 

INVERSE MODELING THEORY 

The core of an inverse modeling code is an accurate, 
efficient and robust simulation program which solves 
the forward problem. We use TOUGH2 (Pruess, 
1991) to simulate fluid and heat flow in a geothermal 
reservoir. A summary description of the TOUGH2 



version used in geothermal applications can be found 
in Finsterle et al. (1997). 

The determination of reservoir properties from 
performance data, such as pressures, temperatures, 
enthalpies, and flow rates, is referred to as the inverse 
problem. The indirect approach to inverse modeling 
consists of minimizing some norm of the differences 
between the observed and simulated field responses 
which are assembled in the residual vector r with 
elements 

r; == z; * -z;(P) (1) 

Here z; * is an observation (e.g., pressure; tempera
ture, flow rate, etc.) at a given point in space and 
time, and Zi is the corresponding simulator predic
tion, which depends on the vector p of all unknown 

. or uncertain model parameters, including initial and 
boundary conditions. Since the residual vector r 
comprises observations of different units and 
accuracy, we introduce a vector y with the residuaL 
weighted by the inverse of the standard deviation CJ;: 

(2) 

Depending on assumptions about the error structure 
of the residuals, different norms of y may be chosen: 

( )
1/{3 

IIYIIp = L IYl (3) 

If the error structure of the residuals is assumed 
Gaussian and described by a covariance matrix Czz, 
the L2-norm (/3 = 2) seems appropriate, and the 
objective function S to be minimized is the sum of 
the squared weighted residuals: 

T -1 r· m ( )2 S = r Czz r = I, -L 
i=l a; 

(4) 

where m is the total number of observations. In 
maximum likelihood theory, it is shown that 
minimizing S is equivalent to maximizing the proba
bility of reproducing the observed system state. 

For solving reservoir management problems, where a 
cost function is to be minimized, the L1-norm 
(/3 = 1) is chosen, in which the sum of the absolute 
residuals is minimized. In this case, the ''data" z;* to 
be matched are zero for expenses, and a large number 
for profits. 

Due to strong nonlinearities in the functions z;(p), 
an iterative procedure is required to minimize the 
objective function S. The Levenberg-Marquardt 
modification of the Gauss-Newton algorithm 
(Levenberg, 1944; Marquardt, 1963) has been found 
to be suitable for our purposes. The basic idea of this 
method is to move in the parameter space along the 
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steepest descent direction far from the minimum, 
switching continuously to the Gauss-Newton 
algorithm as the minimum is approached. This is 
achieved by decreasing a scalar J.k, known as the 
Levenberg parameter, after a successful iteration, but 
increasing it if an uphill step is taken. The following 
system of equations is solved for ~Pk at an iteration 
labeled k: · 

Here, J is the sensitivity matrix with elements 
l;j =- JrJ ()pj = Jz;j ()pj. It relates a change in an 
observabfe to a corresponding change in a 
hydrological parameter. D denotes a matrix of order 
n ( n being the number of parameters to be 
estimated) with element~eq_9ivalent to the diagonal 
elements of matrix (JkCzzJk). The improved 
parameter set at iteration level k + I is calculated: 

Pk+l = Pk + ~Pk (6) 

While the Levenberg-Marquardt algorithm is espe
cially efficient for solving non-linear least-squares 
problems, it can also be used for the minimization of 
L 1 -norms when using larger values for J.k. 

Under the assumpt!on of normality and linearity, a 
detailed error analysis of the final residuals and the 
estimated parameters can be conducted (for details see 
Finsterle and Pruess (1995)). For example, the 
covariance matrix of the estimated parameter set is 
given by: 

(7) 

where s~ is the estimated error variance given by: 

(8) 

As a byproduct of calculating the Jacobian matrix J, 
one can qualitatively examine the contribution of each 
data point to the solution of the inverse problem as 
well as the total parameter sensitivity. 

The inverse modeling formulation outlined above is 
implemented in a computer program named 
ITOUGH2 (Finsterle, 1997). 

HISTORY MATCHING 

The purpose of this section is to illustrate the use of 
the proposed methodology for the characterization of 
geothermal reservoirs. ITOUGH2 provides the flexi
bility to take advantage of almost any type of data 
collected during well testing or field exploitation. 
For the sake of simplicity and reproducibility, we 
will analyze a synthetic case. 
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Figure I. Five-spot well pattern with grid for 
modeling 118 symmetric domain. Observation points 
and type of data measured is also indicated. 

We consider a two-dimensional five-spot production
injection problem (Figure I) previously studied by 
Pruess (1991) and Pruess and Wu (1993). The prob
lem specifications correspond to conditions typically 
encountered in deeper zones of two-phase geothermal 
reservoirs. The medium is assumed to be fractured 
with embedded impermeable matrix blocks in the 
shape of cubes with side lengths of 50 m. The per
meable volume fraction is 2 % with an intrinsic 
porosity of 50%. Reservoir thickness is 305m. 
Water with an enthalpy of 500 kJ/kg is injected at a 
rate of 8 kg/s. Production occurs against a prescribed 
bottomhole pressure of 90 bars with a productivity 
index of 5xi0-12 m3. 

We assume that pressure measurements are taken in 
the injection well, temperature is measured in an 
observation well, and the vapor flux is recorded at the 
production well assuming a pressure of 8 bars and a 
temperature of 170 OC at the steam-liquid separator. 

TOUGH2 is run in forward mode to generate 
synthetic data for five years of field performance 
history, and random noise is added to simulate 
measurement errors. Subsequently, the model is 
automatically calibrated against these observations in 
order to determine certain input parameters considered 
unknown or uncertain. The parameters include the 
logarithm of the effective fracture permeability, 
fracture spacing and the initial reservoir temperature. 
The true, initial and estimated parameter sets are 
shown in Table I. The calculated pressures, 
temperatures, and steam flow rates are shown in 
Figure 2. The squares are the synthetically generated 
data, the dash-dotted lines represent the simulation 
result with the initial_parameter set, and the solid line 
is the automatically obtained match. The true 
parameter set is identified very accurately within 8 
ITOUGH2 iterations. 
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Table 1. Five-Spot Well Pattern: True, Initial, and 
Estimated Parameter Set 

Parameter True Initial Best 
Value Guess Estimate 

log (perm._ [m2]) -14.2 -13.5 -14.2 
fracture spacing [m] 50.0 20.0 48.1 
temperature [OC] 300.0 270.0 299.2 

In this system, steam generation and thus thermal 
power output declines after about 2.5 years of produc
tion, and is reduced to less than a third of the initial 
production after 5 years. Concurrently, temperature 
in the vicinity of the injection well start to decrease 
as a result of fluid injection and local boiling, leading 
to lower pressures. Increasing injection rates may 
help maintain steam production, provided that the 
enthalpy of the produced fluid does not decline signif
icantly, as will be discussed in the following section. 

100 ,...-----.-----.---...-----....-----, 

~ e ao 
e 
1il 60 

"' ,..e 
.... 40 

.g 
~ 20 
·a-

. . 

.. ------- .. -.':\--;--::-.--~:-:·.--:-:~_:_--::-.:=~:-

- 0~0--~r---~2----~3---74--~5 

Time [years] 
~o,-----.-----.---..----....----, 

e 2ao 

~ g_ 260 . 
---·- --------

: ....... :> ...... 

E 
~ 240 

--..... __ _ 

~00~--~--~2.---~3---74--~5 

Time [years] 
~ eo,----~---....---~--~-----, 

~ 
~ 60 

.g 
tJ .g 40 [k. 11-""--...-........ :::r:F.-i-!-.: 

£ 
~ 20. 

B 
tn °o~--~--~2----;-3---7-----l: 

Time [years] 

Figure 2. Five-spot well pattern: Automatic 
history matching of pressure data in the injection 
well, temperature data in the observation well, and 
steam flux data at the separator. Squares represent the 
synthetically generated data. Dash~dotted and solid 
lines are the calculated system response with the 
initial and final parameter set, respectively. 



A detailed analysis of inverse modeling results 
including a discussion of parameter sensitivities is 
g~ven for a similar, albeit more complex example in 
~mst~rle et al. (1_997). The purpose of this example 
IS Simply to Illustrate the history matchincr 
capabilities of ITOUGH2 and to introduce th~ 
simulation problem used for the subsequent 
optimization study. Recall, however, that calibration 
is an important step in any study that is based on 
predictive modeling. 

OPTIMIZATION OF FLUID INJECTION 

As mentioned above, Figure 2 shows the general 
characteristics of a partially depleted geothermal field 
with reservoir pressure decline and a gradual decrease 
in steam production. Fluid injection has been 
proposed as a means to extend the life of geothermal 
resources. 

In the example given, during the first five years water 
was injected at a constant rate of 8 kg/s. The 
question arises at which rate fluid should be injected 
in the future to maintain or even increase thermal 
energy output. Provided that liquid injection actually 
increases fluid production, there is obviously a 
tradeoff between higher returns from increased power 
generation versus the costs associated with the 
reinjection. This leads to an optimization problem 
that can be solved using the methodology outlined in 
the previous section. 

Evaluating and optimizing the economics of 
developing and managing a geothermal field involves 
~onsi~eration of a complex interplay of factors, 
mcludmg capital investments, operating expenses, 
and revenues. Not only the amount of expenses and 
revenues but also their timing can have large impacts 
on project economics. Matters are complicated by the 
fact that future reservoir performance and future 
economic factors are both subject to uncertainty. 
Analyses of geothermal project economics usually 
employ probabilistic concepts and sophisticated 
~odel_s ~f c~sh flo~ analysis, but tend to be highly 
Simplistic m their representation of reservoir 
processes which drive production behavior and 
injection performance (Sanyal et al., 1989; Martono 
1995). ' 

Inverse modeling by means of ITOUGH2 offers a 
capability to integrate financial analysis and 
optimization with detailed reservoir modeling. In 
what follows this is illustrated with a synthetic 
example which intentionally uses a very simplistic 
cost function. Our objective is to convey the concept 
of an "integrated" optimization, in which a detailed 
process model of reservoir performance is combined 
with a consideration of economic cost and revenue 
factors in a fully coupled manner. 
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The following simplistic cost function has been 
chosen to demonstrate the proposed approach: 

S = L { qinj · Cinj - qv · hv · f · Celec + ql · cl) · !1.t (9) 
l!.t 

Here, qinj is the injection rate [kg/s] to be determined 
which is multiplied by the specific costs c· . [$/kcr] 

• I~ b 

to yield the costs for the injected water. qv and f1v 
are th~ vapor production rate and enthalpy, 
respectively, the product of which is the thermal 
energy produced per time unit. 

In the model considered, the thermal output is 
multiplied by a factor f = 0.25 to yield the electric 
power output which then can be multiplied by the 
specific price for electric energy celec. Since the 
latter is a gain, it is subtracted from the injection 
costs. Finally, we add a penalty term to minimize 
liquid production q1• Assigning a relatively large 
value for the hypothetical costs c1 favors a mode of 
operation that would produce high-enthalpy fluid. 
The specific costs are time dependent, and are 
therefore integrated over the entire prediction period 
(e.g., 30 years) to yield a total cost estimate. 

Note that qinj is both the input parameter to be 
optimized and part of the cost function to be 
minimized. Production rates qv and q1 and steam 
enthalpy hv are the result of a TOUGH2 simulation 
i.e., they depend not_ only on qinj but also on all th~ 
~odel parameters either prescnbed or estimated by 
mverse modeling. It is this dependence that makes 
site characterization, model development, and 
calibration crucial steps in solving management 
problems by means of reservoir simulation. 

It should also be realized that Eq. (9) proposed here 
can be extended to include more sophisticated cost 
functions and additional costs and profits which may 
depend on both input parameters and output variables 
in a non-linear fashion. 

. !~e e_xample discussed below is based on specific 
InJectiOn costs cinj of 200 $/acre-ft (which may 
include pumping and water treatment costs), an 
energy price of 0.05 $/kWh, and a hypothetical cost 
ofO.OI $/kg to penalize liquid production. 

In the first example we try to determine a constant 
injection rate which minimizes the total costs over a 
30-year production period. Since only one parameter 
is considered, the total costs can be evaluated for the 
entire range of reasonable injection rates, i.e., no 
minimization algorithm is needed. Figure 3 shows 
the individual cost contributions and the total cost as 
a function of injection rate. Since we are only 
~nt~rested ~n relative costs, no currency unit is 
mdicated m all plots showing costs. Steam 
production and thus energy return increases almost 



linearly with injection rate, and is about 3.5 times 
higher for qinj = 11.6 kg/s (the optimum injection 
rate) as compared to the scenario with no fluid 
injection, and 30 % higher as compared to the base 
case with an injection rate of 8 kg/s. If injection rate 
is further increased, however, liquid water enters the 
production well, and the enthalpy of the steam 
declines, reducing the thermal output of the well. It 
is obvious that the liquid produced from the reservoir 
can be replenished to the point at which thermal 
breakthrough occurs. The injection costs and penalty 
function are insignificant in this example, but make 
the minimum more pronounced. In conclusion, the 
solution to the optimization problem is almost 
completely governed by the hydrogeology of the 
reservoir. Only non-linear cost and penalty functions 
would greatly affect the optimum injection rate. 
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Figure 3. Injection optimization: Injection costs 
and energy return as a function of injection rate 
calculated for a 30-year period. The total costs to be 
minimized also contains a penalty cost for liquid 
pro«uction. 

In the second example we try to further reduce costs 
by allowing the injection rate to vary with time. We 
arbitrarily subdivide the 30~year production period 
into three 10-year intervals, and determine three 
injection rates, one for each period. This 
optimization problem is solved by using the 
minimization algorithm mentioned above. We 
discuss the result of this optimization by comparing 
it with a no-injection scenario, the base case scenario 
(injection at a constant rate of 8 kg/s), the previously 
obtained solution (constant rate of 11.6 kg/s), and a 
high injection rate of 32 kg/s which is not an 
optimum. Since the minimum of the total cost is 
almost identical with the maximum of steam 
production, we can take the predicted steam flux at the 
separator as an indication of total system 
performance, where the profit is the area under the 
curve multiplied by the steam enthalpy of 2769 kJ/kg 
and the steam price (i.e., f · Cetec). Recall that 
injection costs and the costs from producing low
enthalpy fluid, which are not directly seen in the plot 
of steam production, are taken into account when 
determining the optimum injection rate. 
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Figure 4 shows the five different injection scenarios 
and the resulting steam production as a function of 
time. If injection is stopped after five years, steam 
production ceases almost completely within another 
few years. Continuous injection at 8 kg/s supplies 
enough fluid that steam production is maintained at 
about 9 kg/s. The optimum constant injection rate of 
11.6 kg/s determined in the previous case increases 
the steam production by about 30 %, but is limited 
by thermal breakthrough at the end of the production 
period. To demonstrate the effect more clearly, 
injection at a higher than the optimum constant rate, 
e.g.; 32 kg/s, is considered, resulting in a higher 
production for about 7 years. However, this is 
followed by a sharp decline so that on a 30 year time 
frame significantly more energy can be produced with 
the smaller injection rate. The high injection rate is 
also associated with high injection costs and large 
quantities of liquid produced at the wellhead. Finally, 
if variable injection rates are specified as determined 
by the optimization algorithm, the overall energy 
production can be further increased with only 
moderately higher injection costs. The three injection 
rates are 18.4, 13.4, and 8.9 kg/s for the 5-15, 15-25, 
and 25-35 year injection period, respectively. The 
average injection rate is 13.6 kg/s, i.e., injection 
costs are increased by only about 17 % compared to 
the optimum value obtained with a constant rate of 
11.6 kg/s. Recall that injection costs are minor 
compared to the increase in revenue from steam 
production for the assumed specific costs. 
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Figure 4. Injection optimization: Steam 
production at separator as a function of time for five 
different fluid injection scenarios shown in the upper 
panel. 



The optimum injection rates are declining with time. 
High injection rates seem acceptable at early times 
when reservoir temperatures are high. At later time, 
it is not only the shortage of fluid but also of thermal 
energy that limits steam production. Note the short 
period of temperature decline and enhanced liquid 
production near t= 25 years, which leads to a 
reduction of the proposed injection rate for the final 
period. 

From this last observation and the system behavior as 
seen with the high injection rate it becomes obvious 
that the solution depends on the time frame used for 
optimization. Short-term solutions tend to favor 
large injection rates whereas lower injection rates are 
considered optimal if energy production has to be 
sustained over longer time periods. 

We want to point out that the oscillations seen in 
Figure 4 are due to finite space discretization 
employed in the numerical simulations. These effects 
are particularly severe in problems with coupled 
thermal and phase fronts as in our case. For a detailed 
discussion of this problem the reader is referred to 
Pruess et al. (1987). 

CALIBRATION AND OPTIMIZATION 

We have mentioned in the previous section that the 
optimum injection rate is strongly dependent on the 
production rate and steam enthalpy, and for the case 
studied here, is only mildly influenced by the costs 
associated with fluid injection, liquid production and 
energy prices as long as they are in realistic 
proportions to each other. While the actual profit 
obviously depends on the details of the economic 
model, the optimum at which the total costs are 
minimized is virtually governed by the time at which 
unwanted thermal interference occurs in the 
production well. In other words, the accuracy of the 
simulation model is essential for the outcome of the 
optimization study. 

To clarify this point, we define and evaluate a 
measure of the uncertainty associated with the cost 
prediction. Errors in the calculated cost result from 
(i) simplifications and systematic errors. in the 
conceptual model of the geothermal reservoir, (ii) 
uncertainties in the model parameters, (iii) variations 
in the injection rates, and (iv) simplifications in the 
cost function and uncertainties in the cost factors. 
Issue (i) is by far the most important one because 
errors in the conceptual model usually have a strong 
impact on predictions, resulting in systematic errors 
much larger in magnitude than errors from the other 
sources. 

Note that accurate simulation of water injection into 
geothermal reservoirs is a challenging task. Complex 
coupled processes of fluid and heat flow in 
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heterogeneous, fractured formations must be modeled, 
and the flow problem has to be solved in a stable and 
efficient manner. The issues arising when modeling 
water injection into vapor-dominated reservoirs are 
discussed in a companion paper (Pruess et al., 1997). 

The second largest source of prediction errors is the 
uncertainty associated with the hydrogeologic input 
parameters used in the model. Recall that model
related parameters may be estimated using inverse 
modeling, and that estimates of their uncertainties are 
calculated based on Eq. (7). We have studied the 
impact of parameter uncertainties on the calculated 
total cost by means of Monte Carlo simulations. A 
standard deviation of 0.3, 10 m, and 5 ·c was 
assigned to the three parameters log(k), fracture 
spacing and initial reservoir temperature, respectively, 
and 300 TOUGH2 simulations have been performed 
based on randomly generated parameter sets. As a 
result of these simulations, a probability distribution 
(histogram) of the total costs can be drawn. This 
distribution is compared to the result of a similar 
Monte Carlo simulation, where the injection rate is 
considered variable with a standard deviation of 1 
kg/s. A comparison of the two histograms is an 
indication of the relative importance of parameter 
uncertainty versus the uncertainty in the optimum 
injection rate. Note that a more rigorous study would 
imply solving the optimization problem for each 
Monte Carlo realization of the hydrogeologic 
parameters, giving the actual range of injection rates 
as a result of parameter uncertainty. 

Figure 5 shows the two histograms. The one in bold 
represents the distribution as a result of uncertainty in 
the hydrogeologic parameters, and the thin line 
columns show the distribution due to uncertainties in 
the injection rates. The minimum cost as determined 
above is indicated at -174. Reservoir conditions more 
favorable than the ones used during the optimization 
may actually lower the total costs. On the other 
hand, many parameter combinations lead to 
significantly higher costs if injection occurs at the 
presumably optimum rate. These parameter sets 
usually have a lower permeability and/or reservoir 
temperature than expected. There is a considerable 
risk that the reinjection rate is sub-optimal, and that 
the operation is less profitable than expected, as 
indicated by the 90 % percentile which indicates that 
10 % of the 300 Monte Carlo simulations realized 
costs above -26 monetary units. 

The distribution discussed above is compared to the 
one that results from uncertainty in the injection rate. 
Since the mean of the injection rate is taken to be the 
optimum one for the best estimate parameter set, 
costs are always higher when perturbing the optimum 
pumping schedule (both increasing and decreasing the 
injection. rate leads to higher costs). Nevertheless, the 
uncertainty in the cost estimate is bounded with a 



90% percentile at -147 which is relatively close to 
the minimum cost. 

The analysis presented here is qualitative in nature. It 
was performed to illustrate the significance of 
reservoir characterization. Model calibration is 
important because errors in the parameters are a major 
source of prediction uncertainty. Again, test design 
and data analysis using inverse modeling can reduce 
the uncertainty in the estimated parameters, leading to 
more reliable model predictions which justify the use 
of automatic minimization routines for the 
determination of optimum reinjection schedules. 

75,-~--~------------~-.---T-----, 

Figure 5. Uncertainty analysis: Cost distributions 
determined by Monte Carlo simulations reflecting 
prediction uncertainty as a result of uncertainty in the 
hydrogeologic parameters (bold line columns) and due 
to uncertainty in the injection rate (thin line 
columns). 

CONCLUDING REMARKS 

The purpose of this paper was to show the flexibility 
of an inverse modeling approach for automatic history 
matching and the estimation of model parameters by 
performing a joint inversion of all available data. In 
addition to automatic model calibration, the 
ITOUGH2 code provides a number of semi
quantitative measures to study parameter sensitivities, 
correlations between parameters and observations, 
prediction uncertainties, total parameter sensitivities, 
and the potential benefit from taking measurements of 
a certain kind and in a certain location. This 
information is useful for the design and optimization 
of reservoir characterization and monitoring programs. 

The advantage of inverse modeling procedures is that 
they overcome the time and labor-intensive tedium of 
trial-and-error model calibration. Effective, model
related parameters are automatically determined on the 
scale of interest. This ensures that the reliability of 
subsequent predictions can be improved if they are 
based on the same or a consistent conceptual model of 
the geothermal reservoir. 
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We also demonstrated the use of inverse modeling 
techniques for the optimization of a reinjection 
operation. Injection rates have been automatically 
determined to maximize energy production while 
avoiding potential drawbacks from thermal 
degradation and liquid breakthrough at the production 
well. It was shown that such an optimization study 
requires an accurate simulation model, i.e., 
sophisticated process modeling and calibration are the 
key issues that need to be addressed when using 
numerical simulations to support reservoir 
management. 

This study was performed using a generic model of 
the geothermal reservoir, and a very simplistic 
economic model for calculating the cost function. 
However, the sophisticated process description of the 
TOUGH2 simulator along with automatic model 
calibration capabilities provide the basis for a reliable 
prediction of the geothermal reservoir behavior. The 
output of a site-specific process model can and should 
be linked to a detailed economic model for a combined 
optimization which takes into account the interaction 
between field operations and fluid and heat flow in the 
reservoir. 
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