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Abstract 

We show that the geometrical framework, in which color images are considered as 
surfaces, is meaningful and natural for multi channel image processing. The steepest 
descent flow associated with the first variation of the area functional is a significant 
selective smoothing procedure. Generally, the steepest descent flow for multi channel 
variational methods smoothes the different channels of the image. The functional, or 
"norm", should capture the way we want the smoothing process to act on the different 
channels while exploring the coupling between them. Here we justify the usage of the 
area norm obtained by the geometric framework, and the Beltrami steepest descent 
flow as its natural scale-space, in the multi-channel case. We list the requirements, 
compare to other recent norms, relate to line element methods in color, and present 
simulation results. 

1 Introduction 

Recently, [30, 14, 12, 13), a geometrical framework for image diffusion was introduced. The 
idea is simple for a gray level image I ( x, y) that is considered as the surface ( x, y, I ( x, y)) in 
the Euclidean space (x, y, I). Yet, it becomes less intuitive for multi channel images. A good 
example is a color image, which is viewed as a 2D surface (x, y, R(x, y), G(x, y), B(x, y)), in 
the. 5D (x, y, R, G, B) space. 

It was claimed that a natural norm for image processing is given by minimizing the area 
of these surfaces in a special way. This norm may serve for intermediate asymptotic analysis 
in low level vision, that is referred to as 'scale space' in the computer vision community [22). 
The norm may be coupled with variance constraints that are implemented via projection 
methods that were used for convergence based denoising [23) for image processing. Another 

*This work is supported in part by the Applied Mathematics Subprogram of the Office of Energy Research 
under DE-AC03-76SF00098, and ONR grant under N00014-96-1-0381. 
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popular option is to combine the norm with lower dimensional measures to create variational 
segmentation procedures, like the Mumford-Shah [18). In this note we justify the usage of 
the area norm obtained by the geometric framework and the Beltrami flow as its natural 
scale-space. In order to simplify the discussion, we will limit our comparisons to variational 
methods in non linear scale space image processing, and to Euclidean spaces. See, [21, 36) 
for non variational methods. That means that the given color space (multi channel space, or 
feature space) is considered to be Euclidean; the flow is invariant to any Euclidean change of 
the color coordinates, and is obviously invariant to Euclidean transformations in the spatial 
domain (translations and rotations of the xy coordinates). Note that given any significant 
group of transformations in color space, one could design the invariant flow with respect 
to that group based on the philosophy of images as surfaces: The question then is the 
meaningful definition of an invariant arclength in the (x, y, R, G, B) hybrid space. 

The structure of this note is as follows: Section 2 is a brief overview on the geometric 
framework for image processing and the Beltrami flow. In Section 3 we list the coupling 
requirements for the multi channel case. We show that for a simple 'color image formation' 
model, the natural order of events is captured by the area norm (after scaling different color 
channels). The relation to line element theory is given. We then present some experimental 
results of the Beltrami flow in color, and review previous norms. Section 4 summarizes the 
different norms and justifies the area norm as a natural selection. 

2 The Geometric Framework: Brief Overview 

A new geometrical framework for image processing was introduced in (30, 14, 12, 13). This 
framework finds a seamless link between the TV-L1 (J IV' II), [23), and the L 2 (J IV' Il2

) 

norms that are often used in image processing, based on the geometry of the image and its 
interpretation as a surface. It unifies most of the current 'scale space' models for images by a 
simple selection of one parameter, yet more important, it enables to introduce new methods 
to deal with images in a simple and natural way. 

A functional called "Polyakov action", borrowed from high energy physics, was shown 
to be useful for image enhancement in color, texture, volumetric medical data, movies, and 
more. The idea is to consider images as surfaces rather than functions. Then, minimize 
the area of the surface in a special way; e.g. a gray level image is considered to be a 2D 
surface given by the graph I(x, y) in the 3D space (x, y, I). Similarly, a color image is a 
2D surface that is given by the three graphs: R(x, y ), G(x, y ), and B(x, y ), in the 5D space 
(x, y, R, G, B). 

Consider a gray level image as a map from a two dimensional surface to a three dimen
sional space (JR.?). We have at each point of the xy coordinate plane an intensity I ( x, y). 
The lR3 has Cartesian coordinates (x, y, I) where x and y are the spatial coordinates and 
I is the feature coordinate. Now, assume the image is corrupted by an unknown noise and 
should be 'denoised', or a 'clean' image should be produced for further processing. The idea 
of geometric selective smoothing [2, 1) is extended to construct a scale space for images in 
color space, movies, and other multi dimensional images. The idea is to invent a flow that 
minimizes the area of the image as a surface in a way that preserves the edges. 
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An important question is how to treat multi channel images. A color image is a good 
example since one actually considers 3 images Red, Green, and Blue, that are composed into 
one. To answer this question, we view images as embedding maps, that flow towards minimal 
surfaces. 

Let us draw a rough sketch of the method: As a first step define an arc-length in the 
relevant space. For example, an arclength in the (x, y, I) Euclidean space is given by 

Next the induced metric of the image surface given by the graph surface (x,y,I(x,y)) is 
'pulled back' from the arclength equation. By applying the chain rule di = Ixdx + !ydy, 
the metric in this case is obtained by rearranging the terms at the arclength definition. The 
result is the bilinear structure that measures distance on the surface via the arclength 

where 911 = 1 + J'f:, 922 = 1 + 1;, and 912 = Ixly are the induced metric coefficients. In a 
similar way, the distance measure and the induced metric, are pulled back from the arclength 
definition for the 2D surface described by a color image in the 5D (x, y, R, G, B) space. Where 
now the arclength is given by 

See [38] for a non variational related effort. 
The induced metric 9JJ.v is plugged into an action which is the most general form for 

measuring area. This functional, for two dimensional surface, was first proposed by Polyakov 
[20] in the context of high energy physics. In the next section we will further elaborate on 
the selection of area as a proper measure for color images. 

Denote by (:E,9) the image manifold1 and its metric and by (M, h) the space-feature 
manifold and its metric2

, then the map X: :E -7 M has the following weight 3 

(1) 

where m is the dimension of :E, 9 is the determinant of the image metric, 911-v is the inverse 
of the image metric, the range of indices is f.L, v = 1, ... , dim :E, and i, j = 1, ... , dim M, and 
hii is the metric of the embedding space. We used the Einstein summation convention: The 

1 For 2D surfaces :E = ( u1, u2) is the parametrization, that we later identify with the image plane, i.e. 
u1 = x, u2 = y. (9JJ.v) here is the metric of the surface, and can be written as a 2 x 2 matrix: 

(9 v) = ( 911 912 ) . 
JJ 912 922 

2 M for our color case stands for the (x, y, R, G, B) space, and its metric (hJJv) is a 5 x 5 matrix that 
describes the way we measure distances in this space. We can consider the simple Euclidean color space in 
which hJJv = DJ.Lv, i.e. the identity matrix. However, other selections that describe different measures in the 
color space are possible. 

3For our color case X= (x(u1,u2),y(u1,u2),R(u1,D"2),G(u1,u2),B(u1,u2)). 
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summation is applied on each index that appears twice, once as a subscript and once as a 
superscript. 4 

Given the above functional, we have to choose the minimization. In [30] it was shown 
how different choices yield different flows. Some flows are recognized as existing methods 
like the heat flow, with passive coordinate transformation [9], the Perona-Malik flow [19], 
the minimal surface segmentation [4], the color flow [25, 5], the mean-curvature flow [17] 
and its variants [7]. The new result in [30, 13] is the steepest descent flow that results by 
minimizing with respect to the metric itself and the feature coordinates. 

The minimization of Polyakov action yields the steepest decent direction for area mini
mization. If we vary with respect to the metric and the feature coordinate (fixing the x and 
y coordinates for the gray level and color images), we obtain the area minimization direction 
given by Beltrami operator operating on the feature coordinate(s). Evolving the image using 
this result, yields the most efficient geometric flow for smoothing the image while preserving 
the edges. It is written as 

(2) 

where for the color case I (R, G, B). The operator that is acting on I is the natural 
generalization of the Laplacian from flat spaces to manifolds and is called the second order 
differential parameter of Beltrami, or for short Beltrami operator, and is denotes by /:!,.9 • It 
is defined by 

/:!,.9 I = ~811-( .J9911-v 8vi). 

Explicitly, for multi channel 2D surfaces, the flow is given by 

922I~ - 912I~, 
:-912I~ + 9ui~. 

(3) 

(4) 

(5) 

Geometrically, for the gray level case, the above evolution equation is the mean curvature 
flow of the image surface divided by the induced metric 9 = det(911-v ). Equivalently, it is 
the evolution via the I components of the mean curvature vector H. I.e. for the surface 
(x(o-bo-2 ),I(o-1 ,o-2 )) in the Euclidean space (x,I), the curvature vector is given by H = 
b,.9 (x(o-1 , o-2 ), I( o-1 , o-2 )). If we identify x with a- then /:!,.9 Ii(x) = H · fi, i.e. the fi component 
of the mean curvature vector. Obs~rve that this direct computation applies for co-dimensions 
> 1. The determinant of the induced metric matrix 9 =det(9ii)(= 1 +I;+ I; for the gray 
level case ) may be considered as a generalized form of an edge indicator. Therefore, the 

4 Let us consider the simple example of a gray level image X = (x(0"1 , <72), y(<71 , <72 ), 1(<71 , <72)). If we 
identify the x, y plane with the parametrization manifold E, and consider a Euclidean space hp.v = Op.v, we 

get the area element V9 = Jl + r; +I~, and the area measure is then given by S = I dxdyJl + r; +I~ ,or 

for short we will denote the area norm I Jg. 
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A different, yet very important demand for multi channel image processing is the align
ment requirement of the different channels in scale. That is, we want the different channels 
to align together as they become smoother in scale. Figure 1 shows one level set of each of 
the three color channels and the corresponding gradient V Ji at one point along the level set. 

Figure 1: One level set of each of the the channels (R, G, B) are displayed with their corre
sponding gradient vector at one point. 

The requirement that the different channels align together as they evolve, amounts to 
minimizing the cross products between their gradient vectors (\7 Ii, V lj) 2

, see Figure 2. 

Figure 2: The cross product between the \7 R and V G is a measure for the alignment between 
the tw:o channels: We denote it by (VG2VR), which is given by the area of the gray triangle. 

On inspection of Eq. (7), the minimization includes the gradient magnitudes of the 
channels and the cross products between the different channels, which is a desired norm. 
Next we consider an axiomatic approach for the above claims that will set the order of 
events and lead us to the area minimization via the Beltrami flow. 

3.1 An Axiomatic Approach 

Let us define a simple 'image formation' procedure for a color image and extract the order of 
events for the multi channel processing. One simplified model for color images is a result of 
viewing Lamberti an surface patches. Such a scene is known as a 'Mondrian world'. In this 
case, each channel may be considered as the projection of the real 3D world surface normal 
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flow (2) is a selective smoothing mechanism that preserves edges and can be generalized to 
any dimension. For gray level images I = I, the Beltrami flow is given explicitly by 

_ _ .]__ . ("VI) _ (1 + I;)Iyy- 2Iziyizy + (1 + I;)Ixx 
It - D..gi- rndtv rn - (1 I2 J2)2 . 

v9 v9 + z + Y 

(6) 

In (30, 13], methods for constraining the evolution and the construction of convergent 
schemes based on the knowledge of the noise variance, were reported. Extensions of the 
Beltrami flow for texture images in which orientation needs to be preserved were reported 
in (12]. 

Denote the different channels by Ii, where i is an index indicating the channel number. 
E.g. for color images we have I 1 = R, I 2 = G and I 3 = B. Let us also add the oversimplified 
assumption that the R, G, B color space may be considered a Euclidean space. For the 
Euclidean multi channel case, the norm we consider is f .J9. Here 9 is the determinant of 
the metric matrix 9 = det(9ii) = 9n922 - 9i2 given by its components 9JJ.v = 8JJ., + Li I~ I~. 
This action functional is given explicitly by . 

s = J (7) 

where ('\1 R, '\lG) = RzGy- RyG:r: stand for the magnitude of the vector product (cross) of 
the vectors "\1 Rand '\lG. The action in Eq. (7) is simply the area of the image as a surface. 

Let us explore the effects of scaling the intensity axis. If we multiply the intensities by a 
constant {3, the above norm may be read as 

s = J (8) 

The steepest descent flow for this functional depends on the value of (3. For {3 ~ supi xi"VJil 
' 

it practically means mapping the intensity values that usually range between 0 and 255 to, 
let say, (0, 1000]. Roughly speaking, for this limit of {3, the order of events along the scale 
of the flow is as follows: First the channels are aligned together, and only then starts the 
selective smoothing geometric flow {similar to the single channel TV-LI). On the other limit, 
where {3 ~ supi,x IV Iii, the smoothing will tend to occur uniformly in all directions as a 
multi channel heat equation (L2 ). 

3 Coupling Requirements 

When considering multi channel images we need to define the way the channels are to be 
coupled. The question is how should we link between the different channels. Assume that 
each channel is 'equally important' and thus the measure that links between the different 
channels should be symmetric in this aspect. Within the scale space philosophy, we want . 
the different channels to get smoother in scale. This requirement leads to the minimization 
of the different channels gradient magnitudes I"V Iii combined in one why or another that 
yields coupling. 
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N(x) onto the light source direction ~ multiplied by the albedo p( X', y ). The albedo captures 
the characteristics of the 3D object's material, and is different for each spectral channel. 
That is, the 3 color channels may be written as 

PR(x)N(x) · f 
pa(x)N(x) · f 

- PB(x)N(x) · [ (9) 

This means that the different colors capture the change in material via Pi (where i stands 
for R, G, B) that multiplies the normalized shading image i(x) = N(x) · [ The above color 
image formation model (8] was used for color based segmentation (11] and shading extraction 
from color images [10]. Let us follow this model and assume that the material, and therefore 
the albedo, are the same within a given object in the image, e.g. Pi(x) = ci, where Ci is 
a given constant. Thus, V' Pi(x) = 0 within the interior of a given object. The intensity 
gradient for each channel within a given object is then given by 

V' Ji(x) i(x)\7 Pi(x) + Pi(x)\7 i(x) 
= i(x)V'ci + ci\7 i(x) 
= ci\7 i(x). (10) 

Observe that, under the above assumptions, all color channels should have the same gradient 
direction within a given object. 

Next we deal with the boundaries between objects. Since along the boundaries, both the 
normalized shading image J and the albedo Pi go through a sudden change. The gradient 
direction should be orthogonal to the boundary for each of the channels. 

Following the above claims, the first step in multi channel image processing is the align
ment of the channels so that their gradient directions agree. Next comes the diffusion of all 
the channels simultaneously, while verifying that the alignment property holds. For a large 
enough (3, Eq. (8) follows exactly these requirements. Note also that for a large enough (3, 
the area norm Eq. (8) is a regularization form of 

j ~IV' Jil2 + (32 L.:(\7 Ji, V' Ji)2dxdy, (ll) 
l lJ 

that captures the right order of events as described above. If we also add the demand that 
edges should be preserved and search for the simplest geometric parametrization for the flow, 
we end up with the Beltrami flow as a natural selection. In the next section we summarize 
[37] with a brief review on line element theories in color. 

3.2 Line Element Theories in Color 

More than a hundred years ago, physicists started to describe the human color perception 
as simple geometric space. At the end of the last century [33] Helmholtz was the first to 
define a 'line element' (arclength) in color space. He used a Euclidean R, G, B defined by 
the arclength 

(12) 
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This model failed to represent empirical data of human color perception. Schrodinger (28, 27] 
fixed Helmholtz model by introducing the arclength 

(13) 

where ZR, la, ZB are constants. Schrodinger's model was later found to be inconsistent with 
findings on threshold data of color discrimination. Next, Stiles [32] introduced the arclength 

( 
9dR ) 

2 

( 9dG ) 
2 

( 9dB ) 
2 

ds2 = ZR 1 + 9R + la 1 + 9G + ZB 1 + 9B ' (14) 

where again, lR, la, lB are constants. Note that Stiles' color space can be smoothly mapped 
into a Euclidean space. The mapping to Euclidean space is R = lRln(1 + 9R) that yields 

- 9dR 
dR = lRl+gR· 

Half a generation later, Vos and Walraven [34] introduced the 'most elaborate' arclength 
according to [37]: 

(15) 

where Ji i = 1, 2, 3 stands for R, G, B, and the 9ii coefficients are functions of R, G, and B. 
Vos and Walraven have also incorporated other perception mechanisms within the definition 
of their arclength. Like Schrodinger's color space, Vos-Walraven's model is not Euclidean. 

If we summarize the available models for color space, we have two main cases: 

1. The first is the inductive line elements that derive the arclength by simple assumptions 
on the visual response mechanisms. For example, we can assume that the color space 
can be simplified and represented as a Riemannian space with zero Gaussian curvature, 
i.e. can be smoothly mapped into a Euclidean space. E.g. Helmholtz and Stiles models. 
Then, the arclength ('line element') in the Euclidean space is given by 

(16) 

Another possibility for inductive line elements, is to consider color arclengths like 
Schrodinger or Vos-Walraven. These models define color spaces with non zero curvature 
('effective' arclength). 

2. We can consider empirical line elements in which the metric coefficients are determined 
to fit empirical data. Some of these models describe a Euclidean space like the CIELAB 
(CIE 1976 (L*a*b*)) [37] that was recently used in [26]. Others, like MacAdam [15, 16], 
are based on an effective arclength. 

The proposed theory and the resulting technology is not limited to zero curvature spaces, 
and can incorporate any inductive or empirical color line element. See for example [31]. 

In case we want to perform any meaningful processing operation on a given image, we 
need to define a spatial relation between the points in the image plane x. As a first step 

8 



define the image plane to be Euclidean, which is a straightforward assumption for 2D images, 
that is: 

(17) 

Next step in the construction of any valuable geometric measure for color images is the 
combination of the spatial and color measures. The simplest combination for the construction 
of the hybrid spatial-color space is given by: 

(18) 

For a large (3 it defines the natural regularization of the color space. 
Given the above arclength for color images, we pose the following question: How should 

a given image be simplified? In other words: What is the measure/norm/functional that is 
meaningful? What kind of variational method should be applied in this case? 

The next geometrical measure after arclength is area. Minimization of area is a well 
known and studied physical phenomena. The area minimization idea also fits the color 
image formation model as shown in the previous subsection. 

Once the area is defined as a meaningful measure, one still needs to determine the 
parametrization for the steepest decent flow. The geometric flow for area minimization, 
that preserves edges the most is given by the Beltrami flow. 

In the next section we present some experimental results of this flow in color. 

3.3 Experimental Results 

The Beltrami flow I = .6.91 is used to selectively smooth the JPEG compression distortions 
of images that were extracted from the net. Figure 3 shows results for color image denoising 
via the Beltrami flow. Observe how the color perturbation along the edges are smoothed: 
The cross correlation between the channels holds the edge while selectively smoothing the 
non correlated data. Next, Figure 4 shows three snapshots for three examples of the Beltrami 
scale space in color. 

In the last example, Figure 5 shows a snapshot from the Beltrami scale space in color. 
The left is the original picture. Observe that non natural color effects hardly occur even in 
this complicated situation at which every stroke of the artist's brush is a perceptual edge. 
See [35] for gray level orientation diffusion of van Gogh's pictures. 

3.4 Previous Norms for Multi Channel Images 

In this section we review the previous norms that were suggested for multi channel processing 
to further support the selection of the area norm. Let us start with two non-variational 
methods that will lead us to the variational norms: Chambolle [5], generalized the idea of 
smoothing a single valued function via a second directional derivative in the direction of 
minimal change. He suggested a flow by the second derivative in the direction of minimal 
change with respect to the channel with the largest gradient. Sapiro and Ringach [26], 
realized that this evolution may be computed via Di Zenzo multi valued function analysis 
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[6]. They named it 'color diffusion' and used the eigenvalues of the matrix (though not a 
metric!) 9J.Lv = I:i I~I~ as a generalized edge detector to preserve edges. 

These eigenvalues may be written as 

(19) 

Observe that the square root includes cross (vector products) and gradient magnitude in 
different signs. We have shown that this combination is not natural for non linear multi 
channel image processing. 

In [24] Sapiro suggested to consider the variational method of the general form f f( )._, >.+). 
As we have just argued, the terms that appear in the square root results in a 'weekly cou
pled definition' for the arclength in color space. This observation was made from a different 
perspective by Blomgren and Chan in [3]. They also claimed that from the class of all pos
sible norms of the form f( >.+, )._ ), the f( >.+ + )._) is the most natural one. This brings us 

to Shah's multi channel model [29], that is based on the norm f }L:i=l IV' Jij 2 as part of 
a generalized Mumford-Shah functional. Observe that this term is exactly f J >.+ + )._ of 
Sapiro's model, i.e. f(a, b)= Ja+'b which was latter analyzed in [3]. 

Blomgren and Chan [3] try to improve Sapiro's results and defined a different color TV 
norm: 

with a constraint. In this case the coupling between the channels is only by the constraint. 
Actually, without the constraint the minimization yields a channel by channel curvature 
flow. Moreover, in order to obtain an efficient numerical scheme, Blomgren and Chan [3] 
regularize the TV into what can be shown to be a channel by channel flow towards a minimal 
surface coupled via the constraint. They also compared all norms that fall within the L1 

and L2 Euclidean norms. 
Non of the previous norms included the cross-alignment terms in a proper way. 

4 Conclusion 

The geometric framework of images as surfaces lead us to the norm that resolves the twist 
(torsion) between the channels via the cross-alignment term. It is very important for im
age reconstruction after distortion of the different channels. This was demonstrated by our 
example in which color fluctuations occur along the edges as a result of JPEG lossy com-

, pression. In order to preserve the edge and resolve these fluctuations one needs to use the 
cross alignment within the definition of the norm. 

The geometric framework with the area (J y'g) norm, yields a natural coupling between 
the channels via the Beltrami flow that preserves edges in a geometrical way. The cross 
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alignment and the gradient magnitude terms appear as proper measures in the definition 
of the area norm. We have shown that the geometric framework yields the most natural 
norm with respect to all previous existing norms, and with respect to a list of objective 
requirements and considerations of the color image formation, and color perception process. 

5 Acknowledgments 

I thank Nir Sochen, Ravi Malladi, and Freddy Bruckstein for interesting discussions on the 
importance of a natural geometric norm in scale space theory, and line element theories in 
color. 

References 

[1] L Alvarez, F Guichard, P L Lions, and J M Morel. Axioms and fundamental equations 
of image processing. Arch. Rational Mechanics, 123, 1993. · 

[2] L Alvarez, P L Lions, and J M Morel. Image selective smoothing and edge detection by 
nonlinear diffusion. SIAM J. Numer. Anal, 29:845-866, 1992. 

[3] P Blomgren and T F Chan. Color TV: Total variation methods for restoration of vector 
valued images. cam TR, UCLA, 1996. 

[4] V Caselles, R Kimmel, G Sapiro, and C Sbert. Minimal surfaces: A geometric three 
dimensional segmentation approach . . Numerische Mathematik, to appear; 1996. 

[5] A Chambolle. Partial differential equations and image processing. In Proceedings IEEE 
ICIP, Austin, Texas, November 1994. 

[6] S Di Zenzo. A note on the gradient of a multi image. Computer Vision, Graphics, and 
Image Processing, 33:116-125, 1986. 

[7] A I El-Fallah, G E Ford, V R Algazi, and R R Estes. The invariance of edges and corners 
under mean curvature diffusions of images. In Processing III SPIE, volume 2421, pages 
2-14, 1994. 

[8] P T Eliason, L A Soderblom, and P S Chavez. Extraction of topographic and spec
tral albedo information from multi spectral images. Photogrommetric Engineering and 
Remote Sensing, 48:1571-1579, 1981. 

[9] L M J Florack, A H Salden,, B M ter Haar Romeny, J J Koendrink, and M A Viergever. 
Nonlinear scale-space. In B M ter Haar Romeny, editor, Geometric-Driven Diffusion 
in Computer Vision. Kluwer Academic Publishers, The Netherlands, 1994. 

[10] B V Funt, M S Drew, and M Brockington. Recovering shading from color images. 
In G Sandini, editor, Lecture Notes in Computer Science, 588, Computer Vision: 
ECCV'92, pages 124-132. Springer-Verlag, 1992. 

11 



[11] G Healey. Using color for geometry-insensitive segmentation. J. Opt. Soc. Am. A, 
6:920-937, 1989. 

[12] R Kimmel, N Sochen, and R Malladi. On the geometry of texture. Report LBNL-39640, 
UC-405, Berkeley Labs. UC, CA 94720, November 1996. 

[13] R Kimmel, N Sochen, and R Malladi. From high energy physics to low level vision. 
In Lecture Notes In Computer Science: First International Conference on Scale-Space 
Theory in Computer Vision. Springer-Verlag, 1997. 

[14] R Kimmel, N Sochen, and R Malladi. Images as embedding maps and minimal surfaces: 
Movies, color, and volumetric medical images. In Proc. of IEEE CVPR '91, Puerto Rico, 
June 1997. 

[15] D L MacAdam. Visual sensitivity to color differences in daylight. J. Opt. Soc. Am., 
32:247, 1942. 

[16] D L MacAdam. Specification of small chromaticity differences. J. Opt. Soc. Am., 33:18, 
1943. 

[17] R Malladi and J A Sethian. Image processing: Flows under min/max curvature and 
mean curvature. Graphical Models and Image Processing, 58(2):127-141, March 1996. 

[18] D Mumford and J Shah. Boundary detection by minimizing functionals. In Proceedings 
of CVPR; Computer Vision and Pattern Recognition, San Francisco, 1985. 

[19] P Perona and J Malik. Scale-space and edge detection using anisotropic diffusion. 
IEEE-PAM!, 12:629-639, 1990. 

[20] A M Polyakov. Physics Letters, 103B:207, 1981. 

[21] M Proesmans, E Pauwels, and L van Gool. Coupled geometry-driven diffusion equations 
for low level vision. In B M ter Haar Romeny, editor, Geometric-Driven Diffusion in 
Computer Vision. Kluwer Academic Publishers, The Netherlands, 1994. 

[22] In B M ter Haar Romeny, editor, Geometric-Driven Diffusion in Computer Vision. 
Kluwer Academic Publishers, The Netherlands, 1994. 

[23] L Rudin, S Osher, and E Fatemi. Nonlinear total variation based noise removal algo
rithms. Physica D, 60:259-268, 1992. 

[24] G Sapiro. Vector-valued active contours. In Proceedings IEEE CVPR '96, pages 680-685, 
1996. 

[25] G Sapiro and D Ringach. Anisotropic diffusion of multivalued images. In 12th Int. 
Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE'S, Paris, 
June 1996. Springer Verlag. 

[26] G Sapiro and D L Ringach. Anisotropic diffusion of multi valued images with applications 
to color filtering. IEEE Trans. Image Proc., 5:1582-1586, 1996. 

12 



[27] E Schrodinger. Grundlinien einer theorie der farbenmetrik in tagessehen. Ann. Physik, 
63:481, 1920. 

[28] E Schrodinger. Theorie der pigmente von grosster leuchtkraft. Ann. Physik, 62:603, 
1920. 

[29] J Shah. Curve evolution and segmentation functionals: Application to color images. In 
Proceedings IEEE ICIP'96, pages 461-464, 1996. 

[30] N Sochen, R Kimmel, and R Malladi. From high energy physics to low level vi
sion. Report LBNL 39243, LBNL, UC Berkeley, CA 94720, August 1996. http : 
j jwww.lbl.gov /"'ron/belt- html.html. 

[31] N Sochen andY Y Zeevi. Using Vos-Walraven line element for Beltrami flow in color 
Images. BE-Technion and TAU REP report, Technion and Tel-Aviv University, March 
1997. 

[32] W S Stiles. A modified Helmholtz line element in brightness-colour space. Proc. Phys. 
Soc. (London), 58:41, 1946. 

[33] H Helmholtz von. Handbuch der Psychologishen Optik. Voss, Hamburg, 1896. 

[34] J J Vos and P L Walraven. An analytical desription of the line element in the zone
fluctuation model of colour vision II. The derivative of the line element. Vision Research, 
12:1345-1365, 1972. 

[35] J Weickert. Anisotropic diffusion in image processing. Ph.D. thesis, Kaiserslautern 
Univ., Kaiserslautern, Germany, November 1995. 

[36] R Whitaker and G Gerig. Vector-valued diffusion. In B M ter Haar Romeny, editor, 
Geometric-Driven Diffusion in Computer Vision. Kluwer Academic Publishers, The 
Netherlands, 1994. 

[37] G Wyszecki and W S Stiles. Color Science: Concepts and Methods, Qualitative Data 
and Formulae, (2nd edition). Jhon Wiley & Sons, 1982. 

[38] A. Yezzi. Modified curvature motion for image smoothing and enhancement. IEEE 
Trans. IP, page This issue, 1997 . 

.... 

13 



Fi!;;Ul'e :3: Denoi-in~ .J EPC: lo".1· com pre"ion perturl_~a ti on-. Ro11' l c\::3: The or i ~ina li ll l 

a~•o and the tbn:·e cllallilt'l, I R.C.Bi. Ru11- :!,\.1: The re-u lt of thl' Rellritllli co lur Hu11 1:-U 
llllllle ri ca l iteration- . .::,1 = U.2l..::,,. = l ). [T!Jj, j, il color hgure] 

l i 



Figure -t: Row, 1.:2 .\.::3: Three >lliljJ>hot;. along the ;ca le >jJiiCt' fur il color imilge of three color 
image, !left 11llh l i;. the or igi na l image}. Bott om rO\\·: The L·lue channel and a ,oft thre,lw lcl 
of the originil l and the la,t image. demon,trat.ing the edge pre;etT ing p ropert~· uf the tlu\Y. 

[Thi , i, a co lor hgure] 

1-'i 



F igure.): _-\ ;na p.; lw t from the color >ra le >pace fo r ,-an Cogh ', L aut" ill"h r Cyprc;..;.u }jf/011' 

tilt .)'fu rry Sk y. and Slurry l!i!Jhl. Left i; the or igina l image. [Ihi; i; a co lor tgme] 

16 



~ ~ ~~;@~1!1$ @)#(l;oJ:-iii!!J~ ~ ~~ 0 

~~~I ~o~@.e'1J~ 

® 

I 


