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Abstract 

We propose that the Virasoro algebra controls quantum cohomolo­
gies of general Fano manifolds M ( c1 ( M) > 0) and determines their 
partition functions at all genera. We construct Virasoro operators in 
the case of complex projective spaces and show that they reproduce 
the results of Kontsevich-Manin, Getzler etc. on the genus-0,1 instan­
ton numbers. We also construct Virasoro operators for a wider class 
of Fano varieties. The central charge of the algebra is equal to x(M), 
the Euler characteristic of the manifold M. · 



As is well known, the quantum cohomology of a (symplectic) manifold 
M is described by the topological a-model with M being its target space 
[1]. The partition function of the topological a-model is given by the sum 
over holomorphic maps from a Riemann surface .E9 toM. When the degree 
d of the map is zero (constant map), correlation functions of the a-model 
reproduces the classical intersection numbers among homology cycles of M. 
When the degree is non-zero, however, the theory describes the quantum 
modification of the classical geometry due to the presence of the world-sheet 
instantons. In the following we consider the case where the topological a­
model is coupled to two-dimensional gravity so that we consider Riemann 
surfaces of an arbitrary genus and incorporate the gravitational descendants. 

Recently there have been extensive studies of topological a models cou­
pled to two-dimensional gravity ( Gromov-Witten invariants) [2, 3, 4, 6,- 7, 
8, 9, 10]. In ref.[ll] superpotentials for a large class of Fano manifolds M 
(complex projective spaces, Grassmannians, rational surfaces etc.) have been 
constructed so that they reproduce Gromov-Witten invariants by means of 
residue integrals (see [12] for a related analysis using oscillatory integrals). 
Existence of the superpotentials indicates the mirror phenomenon for Fano 
varieties analogous to the one in the case of Calabi-Yau manifolds. These 
results, however, have so far been limited to the genus-0 case and no general 
principle is known to control quantum cohomology at higher genera (recur­
sion relation for genus-1 instanton numbers has recently been obtained by 
Getzler [13]). 

In this article we would like to propose a new powerful algebraic machin­
ery for organizing the quantum cohomology theory at all genus: we propose 
that the Virasoro algebra controls the quantum cohomology and determines 
their partition functions at an arbitrary genus. We first discuss the Vira­
soro generators in the case of C pN manifolds and show that the Virasoro 
conditions eq.(l) correctly reproduce the results on instanton numbers of pro­
jective spaces obtained by [2, 3, 4, 5, 13] using the associativity of quantum 
cohomology ring. We then present the general form of the Virasoro operators 
for a wider class of Fano varieties. It turns out that the central charge of the 
Virasoro algebra equals the Euler characteristic of the manifold M. 

Our conditions take the form 

n = -1,0,1,2,··· (I) 

where Z is the partition function related to the free energy of the theory as 

Z = exp ( L .A 29
-

2 F9 ) (2) 
g=O 

A is the genus expansion parameter. Operators Ln form the Virasoro algebra 
[Ln, Lm] = (n- m)Ln+m· 
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Cohomology classes of the complex projective space M = C pN is given 
by {1,w,w2

, • • • ,wN} where w is the Kahler class. Corresponding fields are 
denoted as { Oa, o: = 0, 1, 2, · · ·, N} and their coupling parameters are given 
by { ta}. Gravitational descendants of Oa are denoted as O"n( Oa), n = 1, 2, · · · 
and their parameters by { t~}. Virasoro operators for C pN are then defined 
by 

N oo 1 N 
L-1 = L L mt~am-1,a + 2A2 L tata, (3) 

a=Om=1 a=O 

N oo N-1 oo 1 N-1 

Lo = L L (ba + m)t~am,a + (N + 1) L L mt~am-1,a+l + 2.A2 L (N + 1)tata+1 
a=O m=O a=O m=O a=O 

1 
-

48 
( N - 1) ( N + 1) ( N + 3), . ( 4) 

oo N N-a 
Ln = L L L (N + 1)iCi!)(m, n)t~am+n-j,a+j n~1 (5) 

m=Oa=O j=O 

_A2 N N-a n-j-1 1 N-n-1 
+2 L L L (N + 1)j D~)(m, n)a~an-m-j-1,a+j + 2.A2 L (N + 1t+ltata+n+b 

a=O J=O m=O · a=O 

where 

cU)( ) = (ba+m)(ba+m+l)···(ba+m+n) 
a m,n - (m+1)(m+2)···(m+n-j) 

. -

X m9•<:,F.<l;~m+n (ll, bo ~t;), (6) 

and 

(7) 

Here an,a = a I at~ and ba is related to the degree qa of the cohomology class 
Wa as 

1 
b = q - -(N- 1) a- a 2 ' 

The indices are raised and lowered by the metric 

a/3 £ 
'TJ = Va+{3,N 

as usual. Thus qa = N - qa, ba + ba = 1. 

(8) 

(9) 

Note that the factor N + 1 which appears in the right-hand-side of 
eqs.(4),(5) is the magnitude of the first Chern class of CPN,c1 (CPN) 
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(N + 1)w. Thus the terms j #- 0 represent the broken scale invariance of the 
a-model with the target manifold M which is a Fano variety. If one considers 
a fictitious manifold with a vanishing first Chern class with dimension k/ k+2, 
then it turns out that the above Virasoro operators reduce to the well-known 
expressions in the theory of two-dimensional gravity and KP hierarchy [14]. 
Thus eqs.(3-5) may be regarded as the generalization of Virasoro conditions 
of 2-dimensional gravity to the case of the topological a-model. We also note 
that when N = 1 the above expressions reduce to those already obtained in 
[15]. 

Virasoro algebra 

n,m ~ -1, (10) 

can be verified by making use of the identities 

z 

L Cii-j)(k, n)Cij2i-j(k + n- i + j, m) 
j=O , 

= (ba + k + n)Cii)(k, n + m) + Cii-I)(k, n + m), (11) 
z 

""D(i-j)(k n)CU). ·(n- k- i + y·- 1 m) 
L..,; a ' a+t-J ' 
j=O 

= (ba + n- k- 1)D~)(k, n + m) + D~-1 )(k, n + m) (12) 

We have made an extensive check of the Virasoro conditions eq.(1). For 
the sake of illustration we consider the case of C P 2 and L1Z = 0 equation. 
We denote the three primary fields corresponding to the cohomology classes 
1,w,w2 as P,Q,R and denote their couplings as tP,tQ,tR. Genus-0 free 
energy ·has an expansion 

' (13) 

(14) 

where NJ0
) is the number of genus-0. instantons of degree d (number of degree 

d rational curves passing through 3d - 1 points). 
In the small phase space with t~ = 0 for all a and n ~ 1 except for 

tf = -1, L 1 Z = 0 equation reads as 
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( · · · )o denotes the genus-0 correlation function. We take the second derivative 
of (15) in tQ and set tP = tQ = 0. We obtain 

3 15 R 3 
-8(0"2(P)QQ)o + 4t (O"I(R)QQ)o + 2(0"l(Q)Q)o- 6(0"l(Q)QQ)o (16) 

- 3 3 3 
+12(RQ)o- 9(RQQ)o- 4(PQQ)o(R)o- 2(PQ)o(RQ)o- 4(P)o(QQR)o 

1 1 
+4(QQ)o(QQ)o + 4(QQQ)o(Q)o = 0. 

In order to eliminate descendant fields in (16) we use the topological recursion 
relation (TRR) at genus-0 [16], 

(17) 

(X, Y are arbitrary fields) and also the "flow equations"· 

1 2 
(O"I(P)P)o = UW + 2V , (O"l(P)Q)o = VW- fv + ufuv + vfvv (18) 

( 
. 12 ) 1 2 

<7I(P)R)o = 2W + ufuu + vfuv- fu, (O"I(Q Q)o = vfuv + 2(w + fvv) 

where u, v, w are defined as 

u = (PP)o = tR, v = (PQ)o = tQ, w = (PR)o = tP (19) 

and fu = 8jj8u etc. Flow equations are derived using TRR. Then eq.(16) 
is rewritten as 

3tR(RR)o + 6(QR)o- 9(QQR)o + (Q)o(QQQ)o + 3tR(QR)o(QQQ)o 

-6(QQ)o(QQQ)o + ( (QQ)o? = 0. (20) 

By using the expansion of the free energy (14) we can convert (20) into a 
relation for the instanton numbers. After some algebra we find 

(0) (0) 
(o) _ _ 1 "" Ne Nk 2 [ _ ] 

Nd - (3d 4). L...- (3£ _ 1)!(3k _ 1)! k £ 3k£ + £ 2k (21) 

which is the well-known result of Kontsevich and Manin [2]. 
The above procedure may be made m·ore systematic as follows: it is 

possible to show that in the small phase space and at genus=O, the L1Z = 0 
condition may be rewritten as 

where 
(23) 
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C is the matrix representation of the first Chern class 

(24) 

Repeated indices (a,/3,!) are summed in (22). In this form the L 1 equation 
has the structure of the genus-0 associativity equation and it reproduces the 
results based on the associativity of quantum cohomology ring [2, 3, 4, 5]. 

We may also consider the genus-1 instanton numbers and check against 
the recent results of ref. [13, 17]. Genus-1 free energy of CP2 has an expan-
SlOn 

(25) 

We again consider the equation L1 Z = 0 for simplicity. This time we use the 
TRR at genus-1 [16] 

(O"n(Oa)h = 
2
: (O"n-l(Oa)OpOP)o + n(O"n-l(Oa)Op)o(OP)I (26) 

and the flow equation eq.(18). After some algebra we find 

(Q)o(Q)I + 3tR(QR)o(Qh + ~tR(QQR)o- ~(QQQ)o 
1 

-6(QQ)o(Q)I + S(QQ)o- 9(R)I = 0 (27) 

where (- · ·h denotes genus-1 correlators. Using the free-energy expansion 
(25) we find 

The above equation has a form somewhat different. from the one of [13], 
however, predicts the same instanton numbers. We can also check that the 
genus-1 instanton numbers of C P3 are correctly reproduced by Virasoro con­
ditions. 

Let us next describe the derivation of the Virasoro conditions eqs. ( 1 )­
(5). L_1 is the well-known string equation which has a universal form for 
all manifolds M [18]. L 0 operators has been obtained in [19] by using the 
intersection theory on the moduli space of Riemann surfaces. Its general 
form is given by 

Lo = 

(29) 
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where x(M) denotes the Euler characteristic of M and the C is the matrix 
of the first Chern class eq.(24). In the case of CPN, (C)a,e = 8a+.B+1,N and 
(29) reduces to (4). 

We also recall the recursion relation· for descendant two-point functions 
obtained in our previous work [11] 

(ba+b,e+n)(o-n( Oa)O,e)o = n (M,e 'Y (o-n-1 ( Oa)O-y)o- (o-n-1 ( c1(M)/\Oa)O,e)o) 
(30) 

where 
(31) 

Let us now derive L 1 • We first take the t'Y-derivative of the equation 
L0 Z = 0 and keep the genus-0 terms 

N oo 

L L (m + ba)t~ (o-m( Oa)O-y)o + b-y(O-y)o 
a=Om=O 

N oo 

+(N + 1) L L mt~(O"m-1(0a+1)0-y)o + (N + 1)i-y+I = 0. (32) 
a=Om=1 

Then multiply (32) by M,e "~and use the recursion relation eq.(30). We obtain 

O,e [ :;fo (m + ba)(: :b; + b,e + 1)t~(O"m+1(0a))o 
N oo 

+(N + 1) L L (2m+ 2ba + b,e + 1)t~ (o-m( Oa+I))o 
a=Om=O 

N oo 1 N 

+(N + 1)2 L L mt~(O"m-1(0a+2))o + 2 L baba(Oa)o(Oa)o 
a=Om=1 a=O 

+~(N + 1)2:; tata+2] - b,e(2b,e + 1)(o-1(0,e))o 

N 

-2(N + 1)b,e(O,e+I)o + L bab,e(OaO,e)o(Oa)o = 0. 
a=O 

Note that (3 is not summed in (33). We introduce an auxiliary equation 

N oo 

fo : L L t~ (o-m( Oa))o = 2F. 
a=Om=O 

The above equation follows from the dilaton equation 

(33) 

(34) 

(o-1(P)o-n1 (OI) · · · O"ns(Os))9 = (2g- 2 + s)(O"n1 (01) · · · O"ns(Os))9 . (35) 

In fact by taking derivatives of £0 and putting all the variables t~ = 0 except 
tf = -1 we find 

-(o-1(P)O"n1 (01) · · · O"ns(Os))o+s(O"n1 (01) · · · O"n.(Os))o = 2(0"n1 (01) · · · O"n,(Os))o. 
(36) 
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(36) agrees with (35) at g = 0. We now take the t"~-derivative of [ 0 and 
multiply Mf3 "'· We obtain 

[ 
~ ~ ( m + ba + b{3 .f- 1) a ( ( )) ( ) ~ ~ a ( ( )) l 

8!3 f;:o ~o m + 1 tm am+t Oa o + N + 1 f;:o ~o tm am Oa+t 0 

N 

. -2(N + 1)(0{3+I)o- (2b(3 + 1)(at(Of3))o- L(ba + bf3)(0o:0{3)o(Oa)o = 0. (37) 
a=O 

Next consider the linear combination (33) - bf3 x (37) 

[){3 [f. t (m + ba- bf3)(m + ba + b{3 + 1)t~(am+I(Oa))o 
a=Om=O m + 1 

N-1 oo 

+(N + 1) L L (2m+ 2ba + 1)t~(am(Oa+I))o 
a=O m=O 

(38) 

Thus the equation becomes a total derivative and we can integrate it in t!3 (we 
ignore integration constants). Since the choice of (3 is arbitrary in eq.(38), 
We obtain two equations: one of them comes from the /3-independent terms 
and the other one from the terms linear in bf3 (terms quadratic in bf3 give the 
same equation as the latter), 

L . ~ ~ (m + ba)(m + ba + 1) ta ( · (O )) 
1 . L....J L....J m + 1 . m O"m+l a 0 

a=Om=O 
N-1 oo 

+(N + 1) L L (2m+ 2ba + 1)t~(am(Oa+I))o (39) 
a=O m=O 
N-2 oo 1 N 

+(N + 1)2 L z=· mt~(am-l(Oa+2))o + 2 L baba(Oa)o(Oa)o 
a=O m=l a=O 

1 N-2 

2(N + 1Y L tata+2 = 0, 
a=O 

_ N oo 1 1 N 

L1 : - L L m 1 t~(am+l(Oa)o + 2 L(Oa)o(Oa)o = 0. ~40) 
.a=O m=O + a=O 

Derivation of L 2 is silllilar. We take the derivative of L 1 and multiply 
the M -matrix and then integrate it with the help of equations derived from 
[ 0 , [ 1 • We find L 2 and an additional equation f 2 

~ ~ (m + ba)(m + bo: + 1)(m + ba + 2) a ( (O )) 
L2 : ;;:a,;;-

0 
! (m +l)(m + 2) tm O"m+2 a o 
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+(N + 1) E t (m + bc.)(m +be.+ 1)(m +be.+ 2) ct 1 )t~(O"m+I(Oc.+1))o 
c.=O m=O m + 1 £=o m + be. + I! 
N-2 oo 2 N-3 oo 

+(N + 1? L L (L(m +be.+ l!))t~(o-m(Oc.+2))o + (N + 1? L L mt~(O"m-1(0c.+3))o 
c.=O m=O £=0 c.=O m=1 

N N + 1 N-1 1 1 
+ L b"bc.(bc. + 1)(o-1(0c.))o(O")o + 

2 
L b"bc.(bc. + 1)( L b .e)(Oc.+I)o(O")o 

c.=O c.=O l=-1 " + 
1 N-3 

+2(N + 1)3 L t"tc.+3 = 0, (41) 
c.=O 

f2 : 
N oo b + m + 1 N-1 oo 1 
~l=o (m: 1)(m + 2) t~(O"m+2(0c.))o + (N + 1) ~ fo (m + 1) t~(o-m+I(Oc.+ 1 ))o 

N N + 1 N-1 - L bc.(O")o(a-1(0c.))o-
2 

L (O")o(Oc.+I)o = 0. (42) 
c.=O c.=O 

Higher equations Ln, n 2:: 2 and their associated ones in will be derived 
in a similar manner. We postpone our discussions on Ln and concentrate 
on Ln equations. The last step is to convert them into differential operators 
and we find exactly the form of Virasoro operators given in eq.(5). We 
postulate the validity of the Virasoro conditions at all genera. Note that 
the quadratic terms of the correlators of the form ( · · ·) ( · · ·) are promoted to 
second derivative terms in the Virasoro operator which relate amplitudes of 
different genera. 

It is interesting to see if we can construct the negative branch L_n, n 2:: 2 
of Virasoro operators and compute the central charge of the algebra. It turns 
out that in the case of CPN with N =even it is possible to construct {L-n}· 
They are given by 

00 

L_n = L L(N + 1)j A~)(m, n)t~+n+jOm,c.+j 
m=O c.,j 

).2 n+j-1 . . 
+2 L L (N + 1)1 B~)(m,n)t~-m+j-1 tm,c.+j, n 2:: 1 (43) 

c.,J m=O 

The coefficients are defined by 

A (j) ( ) = ( _ 1 )j ( m + 1) ( m + 2) · · · ( m + n + j) 
"m,n- (bc.+m+j+1)(bc.+m+j+2)··· 

and 
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. ( j 1 ) 
X(b01 + j)(b01 + 1 + j) · · · (ba + n- m- 2 + j) o<C <£ f<c <n-2 !1 b01+ j- m + £; .. 

- 1_ 2_ - )_ 

We can check the entire algebra and find that the central charge is given by 

c=N+l. ( 46) 

This suggests that there exists a realization of our algebra by means of N + 1 
free scalar fields. In fact it is possible to express Virasoro operators in terms of 
N + 1 free scalars and the system resembles that of a logarithmic conformal 
field theory. Details will be discussed elsewhere. In the case of N =odd 
some factors in the denominators of A~l(m,n),BJj)(m,n) vanish and the 
above expressions become singular. We do not understand the origin of this 
disparity between even and odd values of N. 

Let us now consider.the possible form of Virasoro operators for a general 
. Farro manifold M. A natural conjecture is 

00 

Ln = L LLC~l(m,n)(Ci)/t~Om+n-j,~ ( 47) 
m=O 01,~ j 

>.2 "'"'"'nUl( )(Ci) /3>la>l . + _1 "'(cn+I) ~tOit . + 2 L... L... L... Q m, n 01 UmYn-m-J-1,~ 2).2 L... 01 ~' 
a,~ j m=O 01~ 

00 

L_n = L L L A~l(m, n)(C i)/t~+n+jOm,~, n>1 
-"' 

( 48) 
m=O 01,~ j 

+ ~
2 

Ll;: L B~l(m,n)(Ci)/t~-m+j-ltm,~' 
01,~ J m=O 

b 
_ (dim M- 1) 

01 - qOi- 2 

where C i is the j-th power of the matrix C. (47), (48) reduces to (5), (43) in 
the case of CPN. The operators (47), (48) (together with L0 (eq.(29))) form 
a Virasoro algebra with a central charge 

c = I:1 = x(M), ( 49) 
01 

if the following condition is satisfied 

(50) 

(50) follows from [L1 , L_1] = 2L0 . (Note that we are considering the case 
where there are no odd-dimensional cohomologies, dimHodd(M) = 0 and 
hence L.dimHeven = x(M).) 

9 
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Eq. (50) is a curious formula depending only on the geometrical data of 
M. It in fact holds in the case of projective spaces, 

LHS =~~(a 1- N)(N _ 1- N) = _ (N
2 
-l)(N + 3) 

4 L..t + 2 a + 2 48 ' 
a=O 

RH S = __!__ ( 3 - N ( N + 1) - ( N + 1) 2 N) = - ( N2 - 1) ( N + 3) . (51) 
24 2 2 . 48 

However, it is possible to show that (50) also holds in other classes of Fano 
varieties, i.e. Grassmannians, rational surfaces (point blow-ups of C P 2 and 
P 1 x P 1 ), etc. Thus for these classes of Fano manifolds our Virasoro condi­
tions may also correctly determine their quantum cohomology. 

We have tested the operators ( 4 7) in the case of Grassmannian manifold 
Gr(2, 4) for which genus-0 instanton data exist [5]. We found that Virasoro 
conditions in fact reproduce correct instanton numbers of Gr(2, 4). Thus 
we conjecture that our Virasoro conditions are also valid for the Grassman­
nian manifolds. It is a very interesting problem to find exactly the class of 
manifolds for which our construction works. 

In the above we have concentrated on the discussions of the Virasoro 
conditions. How about the additional constraints Ln = 0? It is easy to check 
that they are in fact satisfied by the genus-0 correlation functions of the 
C pN model. It seems that these are the analogues of theW-constraints in 
the theory of two-dimensional gravity coupled to minimal models. There are, 
however, higher genus corrections to these equations which we do not know 
how to control at present. We would like to have a better understanding of 
these equations in the near future. 

It is quite encouraging for us that the problem of world-sheet instantons 
seem to possess a simple organizing principle and the theory has a structure 
which is a natural generalization of the 2-dimensional gravity. yYe note that 
in the case of general target manifold M the central charge of the Virasoro 
algebra is equal to its Euler number ( 49) which is the number of supersym­
metric vacua of the non-linear a-model. Thus the theory appears to be a 
free field theory of x(M) scalar fields each of which describes the fluctua­
tion around a supersymmetric vacuum. The presence of the mass gap in 
the system may explain the decoupling of different vacua and the free field 
behavior of the theory (private communication by Witten). It will be very 
interesting to see if the free field or Virasoro structure persists in the case of 
Fano varieties which have no mass gap. 

It will also be quite interesting to construct solutions to the Virasoro 
conditions possibly by some matrix integrals. In the simplest case of C P 1 we 
already have a matrix model with a logarithmic action which reproduces the 
quantum cohomologies at all ge~era [20, 15]. Similar construction for more 
general Fano varieties will be extremely valuable. 
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