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Abstract 

The fine tuning in models of low energy gauge mediated supersym­

metry breaking required to obtain the correct Z mass is quantified. To 

alleviate the fine tuning problem, a model with split ( 5 + 5) messenger 

fields is presented. This model has additional triplets in the low energy 

theory which get a mass of 0(.500) GeV from a coupling to a singlet. 

The improvement in fine tuning is quantified and the spectrum in this 

model is discussed. The same model with the above singlet coupled to 

the Higgs doublets to generate the 11 term is also discussed. A Grand 

Unified version of the model is constructed and a known doublet­

triplet splitting mechanism is used to split the messenger (5 + S)'s. A 

complete model is presented and some phenomenological constraints 

are discussed. 
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1 Introduction 

One of the outstanding problems of particle physics is the origin of elec­

troweak symmetry breaking (EWSB). In the Standard Model (SM), this is 

achieved by one Higgs doublet which acquires a vacuum expectation value 

(vev) due to a negative mass squared which is put in by hand. The SM has 

·the well known gauge hierarchy problem [1). It is known that supersymme­

try (SUSY) [2) stabili~es the hierachy between the weak scale and some other 

high scale without any fine tuning if the masses of the superpartners are less 

than few TeV [3, 4). The Minimal Supersymmetric Standard Model (MSSM) 

is considered as a low energy effective theory in which the soft SUSY breaking 

terms at the correct scale are put in by hand. This raises the question : what 

is the origin of these soft mass terms, i.e., how is SUSY broken ? If SUSY 

is broken spontaneously at tree level in the MSSM, then there is a colored 

scalar lighter than the up or down quarks [5). So, the superpartners have to 

acquire mass through radiktive corrections. Thus, we need a "hidden" sector 

where SUSY is broken spontaneously at tree level and then communicated 

to the MSSM by some "messengers". 

There are two problems here: how is SUSY broken in the hidden sec­

tor at the right scale and what are the messengers ? There are models in 

which a dynamical superpotential is generated by non-perturbative effects 

which breaks SUSY [6). The SUSY breaking scale is related to the Planck 

sc;:~.le by dimensional transmutation. Two possibilities have been discussed 

in the literature for the messengers. One is gravity which couples to both 

the sectors [7). In a supergravity theory, there are non-renormalizable cou­

plings between the two sectors which generate soft SUSY breaking operators 

in the MSSM once SUSY is broken in the "hidden" sector. In the absence 

of a flavor symmetry, this theory has to be fine tuned to give almost de­

generate squarks and sleptons of the first two generations which is required 

by Flavor Changing Neutral Current (FCNC) phenomenology [5, 8). The 

other messengers are the SM gauge interactions [9). In these models, the 

.. scalars of the first two generations are naturally degenerate since they have 

the same gauge quantum numbers. This is an attractive feature of these 

models, since the FCNC constraints are naturally avoided and no fine tuning 

between the masses of the fifst two generation scalars is required. If this 
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lack of fine tuning is a compelling argument in favour of these models, then 

it is important to investigate whether other sectors of these models <ue fine 

tuned. In fact, we will argue (and this is also discussed in [10, 11, 12]) that 

the minimal model (to be defined in section 2) of low energy gauge mediated 

SUSY breaking requires a minimum 7% fine tuning to generate a correct 

vacuum (Z mass). Further, if a gauge-singlet is introduced to generate the 

"11" and "B11" terms, then the minimal model of low energy gauge mediated 

SUSY breaking requires a minimum 1% fine tuning to correctly break the 

electroweak symmetry. These fine tunings makes'it difficult to understand, 

within the context of these models, how SUSY is to offer some understanding 

of the origin of electroweak symmetry breaking and the scale of the Z and 

W gauge· boson masses. 

Our paper is organized as follows. In section 2, we briefly review both the 

"messenger sector" in low energy gauge mediated SUSY breaking models that 

communicates SUSY breaking to the Standard Model and the pattern of the 

sfermion and gaugino masses that follow. Section 3 quantifies the fine tuning 

in the minimal model using the Barbieri-Giudice criterion [3]. We show that 

a fine tuning of~ 7% is required in the Higgs sector to obtain mz. Section 

4 describes a toy model with split (5 + 5) messenger representations that 

improves the fine tuning. To maintain gauge coupling unification, additional 

triplets are added to the low energy theory. They acquire a mass of 0(500) 
GeV by a coupling to a singlet. The fine tuning in this model is improved to 

"' 40%. The sparticle phenomenology of these models is also discussed. In 

section 5, we discuss a version of the toy model where the above mentioned 

singlet generates the 11 and 115 terms. This is identical to the Next-to-Minimal 

Supersymmetric Standard Model (NMSSM) [13] with a particular pattern for 

the soft SUSY breaking operators that follows from gauge mediated SDSY 

breaking and our solution to the fine tuning problem. We show that this 

model is tuned to "' 20%, even if LEP does not discover SUSY flight Higgs. 

We also show that the NMSSM with one complete messenger (5 + 5) is fine 

tuned to "' 1%. We discuss, in section 6, how it is possible to make our 

toy model compatible with a Grand Unified Theory (GUT) [14] based upon 

the gauge group SU(5) x SU(5). The doublet-triplet splitting mechanism of 

Barbieri, Dvali and Strumia [15] is used to split both the messenger represen­

tations and the Higgs multiplets. In section 7, we present a model in which 
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all operators consistent with symmetries are present and demonstrate that 

the low energy theory is the model of section 5. In this model R-parity (Rp) 

is the unbroken subgroup of a z4 global discrete symmetry that is required to 

solve the doublet-triplet splitting problem. Our model has some metastable 

particles which might cause a cosmological problem. In the appendix, we 

give the expressions for the Barbieri-Giudice parameters (for the fine tuning) 

for the MSSM and the NMSSM. 

2 Messenger Sector 

In the models of low energy gauge mediated SUSY breaking [10, 16] (hence­

forth called LEGM models), SUSY .breaking occurs dynamically in a "hid­

den" sector of the theory at a scale Adyn that is generated through dimen­

sional transmutation. SUSY breaking is communicated to the Standard 

Model fields in two stages. First, a non-anomalous U(1) global symmetry of 

the hidden sector is weakly gauged. This U(1)x gauge interaction communi­

cates SUSY breaking from the original SUSY breaking sector to a messenger 

sector at a scale A mess "' ax Adyn/ ( 47r) as follows. The particle content in the 

messenger sector consists of fields <I>+, </>- charged under this U ( 1 )x, a gauge 

singlet field S, and vector-like fields that carry Standard Model quantum 

numbers (henceforth called messenger quarks and leptons). In the minimal 

LEGM model, there is one set of vector-like fields, ij, l, and q, l that together 

form a (5+5) of SU(5). This is a suffucient condition to maintain unification 

of the SM gauge couplings. The superpotential in the minimal model is 

. 1 3 - -
Wmess = >..¢</>+<1>-S + ->..sS + >..qSqq + >..zSll. 

3 

The scalar potential is 

V = L IFil
2 + m!l</>+1

2 + m:_l</>-1
2

• 

• 

(1) 

(2) 

In the models of [10, 16], the</>+, <1>- fields communicate (at two loops) with 

the hidden sector fields through the U ( 1) gauge interactions. · Then, S USY 

breaking in the original sector generates a negative value"' - (ax Adyn)
2 

/ ( 47r )2 

. for the mass parameters m~, m:_ of the </>+ and <1>- fields. This drives vevs of 

0 ( Amess) for the scalar components of both <I>+ and </>-, and also for the scalar 
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and F-component of 5 if the couplings As, gx and A¢> satisfy the inequalities 

derived in [11, 17].4 Generating a vev for both the scalar and F-component 

of 5 is crucial, since this generates a non-supersymmetric spectrum for the 

vector-like fields q and l. The spectrum of each vector-like messenger field 

consists of two complex scalars with masses M 2 ± B and two Weyl fermions 

with mass M where M = A5, B = AFs and A is the coupling of the vector­

like fields to 5. Since we do not want the SM to be broken at this stage, 

M 2 
- B 2:0. In the second stage, the messenger fields are integrated out. 

As these messenger fields have SM gauge interactions, SM gauginos acquire 

masses at one loop and the sfermions and Higgs acquire soft scalar masses at 

two loops [9]. The gaugino masses at the scale at which the messenger fields 

are integrated out, Amess :::::::: M are [16] 

M = aa(Amess) A ""'NG( )! (__!!___) 
G 47r SU SY ~ R m 1 Am 52 · (3) 

The sum in equation 3 is over messenger fields ( m) with normalization 

-Tr(TaTb) = N~(m)8ab where the T's are the generators of the gauge group 

Gin the representation R, f 1 (x) = 1 + O(x), and Asusy = B/M = Fs/5 = 

xAmess with x = B / M 2
• 

5 Henceforth, we will set Asusy :::::::: Amess· The 

exact one loop calculation [18] of the gaugino mass shows that f 1 ( x) ::; 1.3 

for x ::; 1. The soft scalar masses at Amess are [16] 

2 .2A2 ""'NG( )CG( ) (aa(Amess))
2

f ( Fs ) (4) 
mi = su SY ;;:a R m . R 8 i 47r 2 Am 52 ' 

where c~ ( Si) is the Caismir of the representation of the scalar i in the gauge 

group G and f 2 (x) = 1 + O(x). The exact two loop calculation [18] which 

determines h shows that for x ::;0.8 (0.9), h differs from one by less than 

1%(5%). Henceforth we shall use JI(x) = 1 and h(x) = 1. In the minimal 

LEGM model 
aa(Amess) 

Ma(Amess) = 
4

7r Amess, (5) 

4 This point in field space is a local minimum. There is a deeper minimum where SM 

is broken [11, 17]. To avoid this problem, we can, for example, add another singlet to the 

messenger sector [11]. This does not change our conclusions about the fine tuning. 
5If all the dimensionless couplings in the superpotential are of 0(1), then x cannot be 

much smaller than 1. 
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where Q = T 3L + Y and a 1 is the SU(5) normalized hypercharge coupling. 

Further, C3 = 4/3 and C2 = 3/4 for colored triplets and electroweak doublets 

respectively. 

The spectrum in the models is determined by only a few unknown param­

eters. As equations 3 and 4 indicate, the SUSY breaking mass parameters 

for the Higgs, sfermions and gauginos are 

(7) 

The scale of Amess is chosen to be'""" 100 TeV so that the lightest of these par­

ticles ~scapes detection. The phenomenology of the minimal LEGM model 

is discussed in detail in [19]. 

3 Fine Tuning.in the Minimal LEGM 

A desirable feature of gauge mediated SUSY breaking is the natural sup­

pression of FCNC processes since the scalars with the same gauge quantum 

numbers are degenerate [9]. But, the minimal LEGM model introduces a 

fine tuning in the Higgs sector unless the messenger scale is low. This has 

been previously discussed in [10, 11] and quantified more recently in [12]. We 

outline the discussion in order to introduce some notation. 

The superpotential for the MSSM is 

(8) 

The scalar potential is 

where VI-loop is the one loop effective potential. The vev of Hu (Hd), denoted 

by vu( vd), is responsible for giving mass to the up ( down)-type quarks, f.li = 
m'kd + f.L 2

, f.l~ = m'ku + f.l 2 and f.l5, 6 m'ku, m'kd are the SUSY breaking mass 

6 11~ is often written as B 11· 
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terms for the Higgs fields. 7 Extremizing this potential determines, with 

tan /3 = v1)vd, 
1 2 -mz 
2 

iii - jl~ tan 2 /3 
tan2 /3 - 1 

(10) 

2 

sin 2/3 = 2 _2
113 _2, (ll) 

111 + 112 

where jlf =liT+ 28~-loop/8v'f. For large tan /3, m~/2 ~ -(m'k .. + 112). This 

indicates that if lmJt. .. I is large relative to m~, the 112 term must cancel this 

large number to reproduce the correct value for m~. This introduces a fine 

tuning in the Higgs potential, that is naively of the order m~/(2lmk,.l). We 

shall show that this occurs in the minimal LEGM model. 

In the minimal LEGM model, a specification of the messenger particle 

content and the messenger scale Amess fixes the sfermion and gaugino spec­

trum at that scale. For example, the soft scalar masses for the Higgs fields are 
. I 

~ a2(Amess)Amess/(47!-). Renormalization Group (RG) evolution from Amess 

to the electroweak scale reduces lmJt. .. I due to the large top quark Yukawa cou­

pling, ..\~, and the squark soft masses. The one loop Renormalization Group 

Equation (RGE) for mJt. .. is (neglecting gaugino and the trilinear scalar term 

(HuQuc) contributions ) 

(12) 

which gives 

m1 (t ~ ln(Ami )) ~ m1 (0)-
3,\~ (mh (0) + m~c(O) + m~(O)) ln(Amess ). 

" mess · " 81r " mt 
(13) 

On the right-hand side of equation 13 the RG scaling of m~ and m~c has 

been negl~cted. Since the logarithm ltl ~ln(Amess/mi) is small, it is naively 

expected that mJt. ... will not be driven negative enough and will not trigger 

electroweak symmetry breaking. However since the squarks are ~ 500 Ge V 

(1 TeV) for a messenger scale Amess = 50 TeV (100 TeV), the radiative 

corrections from virtual top squarks are large since the squarks are heavy. 

A numerical solution of the one loop RGE (including gaugino and the tri­

linear scalar term (HuQuc) contributions) determines -mk,. =(275 GeV)2 

7The scale dependence of the parameters appearing in the potential is implicit.. 

6 



((550 GeV) 2
) for Amess =50 TeV (100 TeV) and setting At = 1. Therefore, 

m~/(2!mk j) "'0.06 (0.01), an indication of the fine tuning required. 

To reduce the fine tuning in the Higgs sector, it is necessary to reduce 

jmJ..,J; ideally so that mk ~ -0.5m~. The large value of jmJ..,J at the weak 

scale is a consequence of the large hierarchy in the soft scalar masses at the 

messenger scale: m~R < mk· ~ m~,uc· Models of sections 4,5, and 7 attempt 

to reduce the ratio m~/mk at the messenger scale and hence improve the 

fine tuning in the Higgs sector. 

The fine tuning may be quantified by applying one of the criteria of [3, 4]. 

The value 0* of a physical observable 0 will depend on the fundamental 

parameters ( Ai) of the theory. The fundamental parameters of the theory are 

to be distinguished from the free parameters of the theory which parameterize 

the solutions to O(Ai) = 0*. If the value 0* is unusually sensitive to the 

underlying parameters (Ai) of the theory then a small change in Ai produces 

a large change in the value of 0. The Barbieri-Giudice function 

(14) 

quantifies this sensitivity [3]. This particular value of 0 is fine tuned if the 

sensitivity to Ai is larger at 0 = 0* than at other values of 0 [4]. If there 

are values of 0 ·for which the sensitivity to Ai is small, then it is probably 

sufficient to use c( 0, Ai) as the measure of fine tuning. 

To determine c(m~, Ai), we performed the following. The sparticle spec­

trum in the minimal LEGM model is determined by the four parameters 

Amess, J.L5, Jl, and tan (3. 8 The scale Amess fixes the boundary condition 

for the soft scalar masses, and an implicit dependence on tan (3 from At, Ab 

and A,. arises in RG scaling9 from f.lRG = Amess to the weak scale, that is 

chosen to be f.lhc = m; + ~(m; + m;c). The extremization conditions of the 

scalar potential (equations 10 and 11) together with mz and mt leave two 

free parameters that we choose to be Amess and tan (3 (see appendix for 'the 

expressions for these functions). 

A numerical analysis yields the value of c( m~, f.l 2
) that is displayed in 

figure 1 in the (tan (3, Amess) plane. We note that c(m~, f.l 2
) is large through­

out most of the parameter space, except for the region where tan (3 ~ 5 and 

8 We allow for an arbitrary Jl5 at Ame". 
9The RG scaling of At ·was neglected. 

7 



the messenger scale is low. A strong constraint on a lower limit for Amess 

is from the right-handed selectron mass. Contours me.R = 75 GeV (,...., the 

LEP limit from the run at yiS ~ 170 Ge V [20]) and 85 Ge V (,...., the ultimate 

LEP2 limit [21)) are also plotted. The (approximate) limit on the neutralino 

masses from the LEP run at y8 ~ 170 GeV, mx~ + mx~ = 160 GeV and the 

ultimate LEP2 limit, mx~ + mx~ ,...., 180 Ge V are also shown in figures a and c 

for sgn(J.t) = -1 and figures b and d for sgn(J.t) = + 1. The constraints from 

the present and the ultimate LEP2 limits on the chargino mass are weaker 
I 

than or comparable to those from the selectron and the neutralino masses 

and are therefore not shown. If mz were much larger, then c ,...., 1. For ex­

ample, with mz = 275 GeV (550 GeV) and Amess= 50 (100) TeV, c(m~; J.t 2
) 

varies between 1 and 5 for 1.4 ;;; tan f3 ;;; 2, and is ~ 1 for tan f3 > 2. This 

suggests that the interpretation that a large value for c( m~; J.t2
) implies that 

mz is fine tuned is probably correct. 

From figure 1 we conclude that in the minimal LEGM model a fine tuning 

of approximately 7% in the Higgs potential is required to produce the correct 

value for mz. Further, for this fine tuning the parameters of the model are 

restricted to the region tan f3 ~ 5 and Amess ~ 45 Te V, corresponding to 

me.R ~ 85 GeV. We have ~lso checked that adding more complete (5 + 5)'s 

does not reduce the fine tuning. 

4 A Toy Model to Reduce Fine Tuning 

4.1 Model 

In this section the particle content and couplings in the messenger sector that 

are suffucient to reduce lmkJ is discussed. The aim is to reduce m~/mkv. 

at the scale Amess. 

The idea is to increase the number of messenger leptons (SU(2) doublets) 

relative to the number of messenger quarks (SU(3) triplets). This reduces 

both m~/mkv. and m~jm~R at the scale Amess (see equation 4). This leads 

to a smaller value of lmkJ in the RG scaling (see equation 13) and the scale 

Amess can be lowered since me.R is larger. For example, with three doublets 

and one triplet at a scale Amess = 30 Te V, so that me_R ~ 85 Ge V, we find 

lmkJmq)l ~ (100GeV) 2 for At = 1. This may be achieved by the following 
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superpotential in the messenger sector 

w = 

(15) 

where N is a gauge singlet. The two pairs of triplets q2 , ih and q3 , i'h are 

required at low energies to maintain' gauge coupling unification. In this model 

the additional leptons !2 , 12 and !3 , 13 couple to the singlet S, whereas the 

additional quarks couple to a different singlet N that does not couple to the 

messenger fields cP+, c/J_. This can be enforced by discrete symmetries (we 

discuss such a model in section 7). Further, we assume the discrete charges 

also forbid any couplings between N and S at the renorrnalizable level (this 

is true of the model in section 7) so that SUSY breaking is communicated 

first to S and to N only at a higher loop level. 

4.2 Mass Spectrum 

Before quantifying the fine tuning in this model, the mass spectrum of the ad­

ditional states is briefly discussed. While these fields form complete represen­

tations of SU(5), they are not degenerate in mass. The vev and F-component 

of the singlet S gives a mass Amess to the messenger lepton multiplets if the 

F-term splitting between the scalars is neglected. As the squarks in qi + ifi 
( i=2,3) do not couple to S, they acquire a soft scalar mass from the same 

two loop diagrams that are responsible for the masses of the MSSM squarks, 

yielding mg ~ a3(Amess) Asusy/(-J'fnr). The fermions in q + q also acquire 

mass at this SC?-le since, if either Aq2 or Aq~ . ......, 0(1), a negative value for 

m'Jv (the soft scalar mass squared of N) is generated from the AqN qq cou­

pling at one loop and thus a vev for N "' mq is generated. The result is 

mz/mq ~ .J61r /a3(Amess)(Amess/ Asusy) ~ 85. 

The mass splitting in the extra fields introduces a threshold correction 

to sin2 Ow if it is assumed that the gauge couplings unify at some high scale 

MauT ~1016 GeV. We estimate that the splitting shifts the prediction for 

sin2 0w by an amount~ -7x 10-4 ln(mz/mq)n, where n is the number of 

split (5 + 5). 10 In this case n =2 and mz/mq "' 85, so 8sin2 Ow ......, -6 x 

10 - . The complete (5 + 5), z.e., /1 ,/1 and q1 ,iit, that couples to Sis also split because 
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10-3 . If a 3 (Mz) and aem(Mz) are used as input, then using the two loop 

RG equations sin2 Bw(MS) = 0.233 ± 0(10-3
) is predicted in a minimal 

SUSY-GUT [22]. The error is a combination of weak scale SUSY and GUT 

threshold corrections[22]. The central value of the theoretical prediction is 

a few percent higher than the measured value of sin2 Ow(M S) = 0.231 ± 
0.0003[23]. The split extra fields shift the prediction of sin2 Ow to "'0.227 ± 
0(10-3 ) which is a few percent lower than the experimental value. In sections 

6,7 we show that this spectrum is derivable from a SU(5) x SU(5) GUT 

in which the GUT threshold corrections to sin2 Ow could be "' 0(10-3
) -

0(10-2 ) [24]. It is possible that the combination of these GUT threshold 

corrections and the split extra field threshold corrections make the prediction 

of sin2 Ow more consistent with the observed value. 

4.3 Fine Tuning 

To quantify the fine tuning in these class of models the analysis of section 3 

is applied. In our RG analysis the RG scaling of At, the effect of the extra 

vector-like triplets on the RG scaling of the gauge couplings, and weak scale 

SUSY threshold corrections were neglected. We have checked a postiori that 

this approximation is consistent. As in section 3, the two free parameters are 

chosen to be Amess and tan ,8. Contours of constant c( m~, jt2
) are presented 

iri figure 2. We show contours of mx~ + mxg = 160 GeV, and meR = 75 

Ge V in figure 2 a for sgn(Jt) = -1 and 2b for sgn(Jt) = + 1. These are 

roughly the present limits from LEP (including the run at Js ~ 170 GeV 

[20]). The (approximate) ultimate LEP2 reaches [21] mx~ + mxg = 180 GeV, 

and meR = 85 Ge V are shown in figure 2c for sgn(Jt) = -1 and figure 2d 

for sgn(Jt) = +1. Since Jt 2 (~ (100 GeV) 2
) is much smaller in these models 

than in the minimal LEGM model, the neutralinos (x~ and xg) are lighter 

so that the neutralino masses provide a stronger constraint on Amess than 

does the slepton mass limit. The chargino constraints are comparable to the 

neutralino constraints and are thus not shown. It is clear that there are areas 

of parameter space in which the fine tuning is improved to "' 40% (see figure 

2). 

>.1 ::/= >.q at the messenger scale due to RG scaling from M GUT to Amess. This splitting is 

small and neglected. 
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While this model improves the fine tuning required of the f.t parameter, it 

would be unsatisfactory if further fine tunings were required in other sectors 

of the model, for example, the sensitivity of m~ to ~.t5, Amess and At and the 

sensitivity of mt to ~-t 2 , ~.t5, Amess and At. We have checked that all these are 

less than or comparable to c( m~; ~-t 2 ). We now discuss the other fine tunings 

in detail. 

For large tan /3, the sensitivity of m~ to ~.t5, c(m~; ~.tD <X 1/ tan 2 /3, and 

is therefore smaller than c(m~; ~-t 2 ). Our numerical ~nalysis shows that 

c(m~;fJ,5);;:; c(m~;~-t2 ) for all tan/3. 

In the one loop approximation m'Jt... and m'i.Jd at the weak scale are pro­

portional to J\.~ess since all the soft masses scale with Amess and there is 

only a weak logarithmic dependence on Amess through the gauge couplings. 

We have checked numerically that (J\.~es.)m'i.JJ(am1)ai\.~ess)"" 1. Then, 

c(m~;J\.~ess) ~ c(m~;m1J + c(m~;m1J. We find that c(m~;J\.~ess) ~ 
c( m~; ~-t 2 )+ 1 over most of the parameter space. 

In the one loop approximation, m1...(t) is 

Then, using t ~ ln(Amess/m03 ) ~ ln(J67l"/a3) ~ 4.5 and At~ 1, c(m~;At) is 

(see appendix) 

(17) 

This result measures the sensitivity of m~ to the value of At at the electroweak 

scale. While this sensitivity is large, it does not reflect the fact that At(Mpz) 

is the fundamental parameter of the theory, rather than At(Mweak)· We 

find by both numerical and analytic computations that, for this model with 

three (5 + S)'s in addition to the MSSM particle content, bAt(Mweak) ~ 

0.1 x 8At(Mpz), and therefore .-

m2_ 

c(m~; At(Mpz)) ~ 5 (
600 

~:v)2 . (18) 

For a scale of Amess =50 TeV (m0 ~ 600 GeV), c(m~; At(Mpz)) is comparable 

to c(m~; ~-t 2 ) which is ~ 4 to 5. At a lower messenger scale, Amess ~ 35 
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TeV, corresponding to squark masses of~ 450 GeV, the sensitivity of m~ 

to At(Mpz) is ~ 2.8. This is comparable to c(m~; ~-t 2 ) evaluated at the same 

scale. 

We now discuss the sensitivity of mt to the fundamental parameters. 

Since m 2 = lv2 sin2 (3A 2 we get ' t 2 t' 

Numerically we find that the last term in c( m 1; Ai) is small compared to 

c(m~; Ai) and thus over most of parameter space c(mt; Ai) ~ ~c(m~; Ai)· As 

before, the sensitivity of mt to the value of At at the GUT /Planck scale is 

much small~r than the sensitivity to the value of At at the weak scale. 

4.4 Sparticle Spectrum 

The sparticle spectrum is now briefly discussed to highlight deviations from 

the mass relations predicted in the minimal LEGM model. For example, 

with three doublets and one triplet at a scale of A = 50 TeV, the soft scalar 

masses (in Ge V) at a renormalization scale f.t~G = mz + ~ ( m~3 + m~g) ~ ( 630 

GeV) 2
, for At = 1, are shown in table 1. 

Two observations that are generic to this type of model are: (i) By con­

struction, the spread in the soft scalar masses is less than in the minimal 

LEGM model. (ii) The gaugino masses do not satisfy the one-loop SUSY­

GUT relation Mdai =constant. In this case, for example, M3ja3 : M2/a2 ~ 

1:3 and M3j a3 : Md a1 ~ 5:11 to one-loop. 

We have also found that for tan (3 ;:G 3, the Next Lightest Supersymmetric 

Particle (NLSP) is one of the neutralinos, whereas for tan (3 ~ 3, the NLSP 

is the right-handed stau. Further, for these small values of tan (3, the three 

right-handed sleptons are degenerate within ~ 200 MeV. 

5 NMSSM 

In section 3, the f.t term and the SUSY breaking mass f.t~ were put in by 

hand. There it was found that these parameters had to be fine tuned in 

order to correctly reproduce the observed Z mass. The extent to which this 
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is a "problem" may only be evaluated within a. specific model that generates 

both the fJ and JJ5 terms. 

For this reason, in this section a. possible way to generate both the JJ term 

and JJ5 term in a. manner that requires a. minimal modification to the model 

of either section 2 or section 4 is discussed. The easiest way to generate these 

mass terms is to introduce a singlet N and add the interaction N HuHd to 

the superpotential (the NMSSM)[13]. The -vev of th~ scalar component of N 

generates JJ and the vev of the F-component of N generates JJ5. 

We note that for the "toy model" solution to the fine tuning problem 

(section 4), the introduction of the singlet occurs at no additional cost. Recall 

that in that model it was necessary to introduce a singlet N, distinct from 

S, such that the vev of N gives mass to the extra light vector-like triplets, 

qi, qi (i = 2, 3) (see equation 15). Further, discrete symmetries (see section 

7) are imposed to isolate N from SUSY breaking in the messenger sector. 

This last requirement is necessary to solve the fine tuning problem: if both 

the scalar and F-component of N acquireda vev at the same scale asS, then 

the extra triplets that couple to N would also act as messenger fields. In this 

case the messenger fields would form complete (5 + 5)'s and the fine tuning 

problem would be reintroduced. With N isolated from the messenger sector 

at tree level, a vev for N at the electroweak scale is naturally generated, as 

discussed in section 4. 

We also comment on the necessity and origin of these extra triplets. Re­

call that in the toy model of section 4 these triplets were required to maintain 

the SUSY-GUT prediction for sin2 Ow. Further, we shall also see that they 

are required in order to generate a large enough -m'Jv (the soft scalar mass 

squared of the singlet N). Finally, in the GUT model of section 7, the light­

ness of these triplets (as compared to the missing doublets) is the co~sequence 

of a doublet-triplet splitting mechanism. 

The superpotential in the electroweak symmetry breaking sector is 

AN 3 
W = -N + A9Nqq- AHN HuHd, 

3 
(20) 

which is similar to an NMSSM except for the coupling of N to the triplets. 

The superpotential in the messenger sector is given by equation 15 .. 
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The scalar potential is 11 

V = L jFij 2 + m~jNj 2 + m7t,.IHul 2 + m7t)Hdj 2 + D-terms 

-(AHN.HuHd + h.c.) +VI-loop· (21) 

The extremization conditions for the vevs of the real components of N, Hu 

and Hd, denoted by VN, Vu and vd respectively (with v = Jv~ + v~ :::::: 250 

GeV), are 

with 

1 2 
-mz 
2 

sin 2(3 

_ 2 2 2oVI-loop_ · ( dN) 
mi - mi + a 2 ' z = u, ' . vi 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

We now comment on the expected size of the Yukawa couplings Aq, AN 

and AH. We must use the RGE's to evolve these couplings from their val­

ues at MauT or Mpz to the weak scale. The quarks and the Higgs doublets 

receive wavefunction renormalization from SU(3) and SU(2) gauge interac­

tions respectively, whereas the singlet N does not receive any wavefunction 

renormalization from gauge interactions at one loop. So, the couplings at 

the weak scale are in the order: Aq ,...., 0( 1) > AH > AN if they all are 0( 1) 

at the GUT /Planck scale. 

We remark that without the N qij coupling, it is difficult to drive a vev 

for N as we now show below. The one loop RG E for m 'fv is 

dm'fv 6AJv 2 2A1I 2 2 2 3A~ 2 2 
-;]t:::::: 

8
1!"2 mN(t) + 

8
1!"2 (mHu (t) + mH)t) + mN(t)) + 

8
1!"2 (mq-(t) + mq(t)). 

(28) 
11 In models of gauge mediated SUSY breaking, AH=O at tree level and a non-zero value 

of AH is generated at one loop. The trilinear scalar term AN N 3 is generated at two loops 

and is neglected. 
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Since N is a gauge-singlet, m'fv = 0 at Amess· Further, if Aq = 0, an estimate 

for m'fv at the weak scale is then 

2 2). 7-I 2 2 ( Amess) mN;:::;::; --
2 

(mH (0) + mH (0)) In -- , 
87l" " d ,- mHd 

(29) 

i.e., AH drives m'fv negative. The extremization condition for VN, equation 

22, and using equations 24 and 26 (neglecting AH) shows that 

2 2 v2 
2 (v2 

2 · 2 2 . (Amess)) mN + >.H-;:::;::; >.H -- -. - 2 (mH (0) + mH (0)) In --
2 2 87l" " d mHd 

(30) 

has to be negative for N to acquire a vev. This implies that m7-I,. and m7-Id at 

Amess have to be greater than "' (350 GeV) 2 which implies that a fine tuning 

of a few percent is required in the electroweak symmetry breaking sector. 

With Aq "' 0( 1), however, there is an additional negative contribution to 

m'fv given approximately by 

- 3>.; (m2(0) + m~(O)) In (Amess) . 
87l" 2 q q m~ 

(31) 

This contribution dominates the one in equation 29 since Aq > ).H and the 

squarks q_, q have soft masses larger than the Higgs. Thus, with Aq =J 0, 

m'fv + >.7-Iv2 /2 is naturally negative. 

Fixing mz and mt, we have the following parameters: Amess, Aq, AH, AN, 

tan /3, and v N. Three of the parameters are fixed by the three extremization 

conditions, leaving three free parameters that for convienence are chosen to 

be Amess, tan /3 2:0, and AH. The signs of the vevs are fixed to be positive 

by requiring a stable vacuum and no spontaneous CP violation. The three 

extremization equations determine the following relations 

where 

15 

(32) 

(33) 

(34) 

(35) 

(36) 



The superpotential term N HuHd couples the RGE's for m'ku, m'kd and m'Jv. 

Thus the values of these masses at the electroweak scale are, in genera.!, 

complicated functions of the Yukawa parameters At, AH, AN and Aq. In our 

case, two of these Yukawa parameters ( Aq and AN) are determined by the 

extremization equations and a closed form expression for the derived quan­

tities cannot be found. To simplify the analysis, we neglect the dependence 

of m'ku and m'kd on AH induced in RG scaling from Amess to the weak scale. 

Then m'ku and m'kd depend only on Amess and tan {3 and thus closed form 

solutions for AN, v N and ih 'Jv can be obtained using the above equations. 

Once m'Jv at the weak scale is obtained, the value of Aq is obtained by using 

an approximate analytic solution. An exact numerical solution of the RGE's 

then shows that the above approximation is consist,ent. 

5.1 Fine Tuning and Phenomenology 

The fine tuning functions we consider below are c( 0; AH ), c( 0; AN), c( 0; At), 

c(O; Aq) and c(O; Amess) where 0 is either m~ or mt. The expressions for the 

fine tuning functions and other details are given in the appendix. In our RG 

analysis the approximations discussed in subsection 4.3 and above were used 

and found to be consistent. Fine tuning contours of c(m~; AH) are displayed 

in figures 3 a and 3 b for AH = 0.1 and figures 3 c and 3 d for AH = 0.5. We 

have found by numerical computations that the other fine tuning functions 

are either smaller or comparable to c(m~; AH ). 12 

We now discuss the existing phenomenological constraints on our model 

and also the ultimate constraints if LEP2 does not discover SUSY /light 

Higgs( h). These are shown in figures 3 a,3 c and figures 3 b, 3 d respec­

tively. We consider the processes e+e- -+ Zh, e+e--+ (h + pseudoscalar), 

e+e--+ x+x-, e+e--+ X~Xg, and e+e--+ eRe'R observable at LEP. Since 

this model also has a light pseudoscalar, we also consider upsilon decays 

1-+ ( 1 + pseudoscalar ). We find that the model is phenomenologically vi­

able and requires a ,...., 20% tuning even if no new particles are discovered at 

12In computing these functions the weak scale value of the couplings >.N and >.H 
has <been use'd. But since ).N and ).H do not have a fixed point behavior, we have 

found that ).H(MGuT)/>.H(mz) fj).H(mz)fo>.H(NiGuT) '"'"' 1 so that, for example, 

c(m~; >.H(MGuT )) ;:::;:; c(m~; >.H(mz)). 
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LEP2. 

We begin with the constraints on the scalar and pseudoscalar spectra of 

this model. There are three neutral scalars, two neutral pseudoscalars and 

one complex charged scalar. We first consider the mass spectrum of the 

pseudoscalars. At the boundary scale Amess, SUSY is softly broken in the 

visible sector only by the soft scalar masses and the gaugino masses. Further, 

the superpotential of equation 20 has an R-symmetry. Therefore, at the tree 

level, i.e. 1 with AH =0, the scalar potential of the visible sector (equation 

21) has a global symmetry. This symmetry is spontaneously broken by the 

vevs of NR, H!;, and H!} (the superscript R denotes the real component of 

fields), so that one physical pseudoscalar is massless at tree level. It is 

a= J 1 
(vNN1 + vsin2ficosfJH~ + vsin2fJsinfJHJ), (37) 

v'fv + v 2 sin2 2,8 

where the superscripts I denote the imaginary components of the fields. The 

second pseudoscalar, 

A 2 N 1 H! HJ ,....., __ + +-~ 

v N v sin ,8 v cos ,8' 
acqmres a mass 

m ~ = ~ AH ANv~( tan ,8 + cot ,8) + AH ANv 2 sin 2,8 

through the IFNI 2 term in the scalar potential. 

(38) 

(39) 

The pseudoscalar a acquires a mass once an AH-term is generated, at 

one loop, through interactions with the gauginos. Including only the wino 

contribution in the one loop RGE, AH is given by 

AH ,....., 6 a2(Amess) M ,\ l (Amess) 
,....., 471" 2 H n M2 ' 

~ 20 AH ( 28:;eV) GeV, ( 40) 

where M2 is the wino mass at the weak scale. Neglecting the mass mixing 

between the two pseudoscalars, the mass of the pseudo-Nambu-Goldstone 

boson is computed to be 

2 9 /( 2 2 . 2 ) ma J2AVNVuVd v!Y + v sm 2,8 

~ (40? (-'H) Mz sin2,8 ( 250GeV 2 ) (GeV?(41) 
0.1 280GeV sin2 2a + ( VG ) 

fJ 250 eV 
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If the mass of a is less than 7.2 Ge V, it could be detected in the decay 

T ~ a+ 1[23]. Comparing the ratio of_decay width for T ~ a+ 1 to 

T ~ J-L- + p+ [23, 25], the limit 

sin 2/3 tan /3 
0 3 -r====;~===~= < .4. 

V(25;GeV )2 + sin
2 2/3 

( 42) 

is found. 

Further constraints on the spectra are obtained from collider searches. 

The non-detection of Z ~ scalar + a at LEP implies that the combined 

mass of the lightest Higgs scalar and a must exceed "' 92 GeV. Also, the 

process e+e- ~zh may be observable at LEP2. For AH = 0.1, the constraint 

mh + ma :<. 92 Ge V is stronger than mh :<. 70 Ge V which is the limit from 

LEP at y'S ~ 170 GeV [20]. The contour of mh + ma = 92 GeV is shown in 

figure 3 a. In figure 3 b, we show the contour of mh = 92 Ge V ("' the ultimate 

LEP2 reach [26]). For AH = 0.5, we find that the constraint mh :<. 70 GeV 

is stronger than mh +' ma :<. 92 Ge V and restricts tan /3 ~ 5 independent of 

Amess· The contour mh = 92 GeV is shown in figure 3 d. We note that the 

allowed parameter space is not significantly constrained. We find that these 

limits make the constraint of equation 42 redundant. The left-right mixing 

between the two top squarks was neglected in comp~ting the top squark 

radiative corrections to the Higgs masses. 

The pseudo-Nambu-Goldstone boson a might be produced along with the 

lightest scalar h at LEP. The (tree-level) cross section in units of R = 87/ s 

nb is 
2 ( 2 2)3 + - s 2 mh ma 

ll(e e ~ha)~0.15( 2)2).. v 1,-,- , 
s- mz s s 

( 43) 

where g)..j cos Ow is the Z(aoh- hoa) coupling, and 

v(x, y, z) = J(x- y- z)2- 4yz. If h = cNNR + cuH!} + cdH/i, then 

, . 
213 

cos f3cu - sin /3cd 
A= Sill . 

V(25;GeV )2 + sin2 2/3 
( 44) 

We have numerically checked the parameter space allowed by mh :<. 70 Ge V 

and AH :::;0.5 and have found the production cross section for ha to be less 

than both the current limit set by DELPHI [27] and a (possible) exclusion 

limit of 30 fb [26] at y'S ~ 192 GeV. The production cross-section for hA is 
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larger than for ha and A is therefore in principle easier to detect. However, for 

the parameter space allowed by mh :::G 70 Ge V, numerical calculations show 

that mA :::G 125 GeV, so that this channel is not kinematically accessible. 

The charged Higgs mass is 

( 45) 

which is greater than about 200 GeV in this model since m'Jid :::G (200GeV) 2 

for A mess :::G 35 Te V and as f.i 2 
'"" - m 'JI u • 

The neutralinos and charginos may be observable at LEP2 at .JS ~ 192 

GeV if mx+ ~ 95 GeV and mx~ + mxg ~ 180 GeV. These two constraints are 

comparable, and thus only one of these is displayed in figures 3 b and 3 d, 

for AH = 0.1 and AH = 0.5 repectively. Also, contours of mx~ + mxg = 160 

Ge V ('"" the LEP kinematic limit at· .JS ~ 170 Ge V) are shown in figures 3 

a and 3 c. Contours of 85 Ge V ('"" the ultimate LEP2 limit) and 75 Ge V 

('"" the LEP limit from .JS ~ 170 GeV) for the right-handed selectron mass 

further constrain the parameter space. 

The results presented in all the figures are for a central value of mt=175 

GeV. We have varied the top quark mas~ by 10 GeV about the central value 

of mt= 175 GeV and have found that both the fine tuning measures and the 

LEP2 constraints (the Higgs mass and the neutralino masses) vary by ~ 30 
' 

%, but the qualitative features are unchanged. 

We see from figure 3 that there is parameter space allowed by the present 

limits in which the tuning is ~ 30 %. Even if rro new particles are discovered 

at LEP2, the tuning required for some region is ~ 20%. 

It is also interesting to compare the fine tuning measures with those found 

in the minimal LEGM model (one messenger (5 + 5)) with an extra singlet 

N to generate the 1-L and /-i~ terms.13 In figure 4 the fine tuning contours 

for c(m~; AH) are presented for AH=O.l. Contours of meR = 75 GeV and 

mx~ + mxg = 160 GeV are also shown in figure 4 a. For AH = 0.1, the 

constraint mh + ma :::G 92 Ge V is stronger than the limit mh ;<:; 70 Ge V and 

is shown in the figure 4 a. In figure 4 b, we show the (approximate) ultimate 

LEP2limits, i.e., mh = 92 GeV, mx~+mxg = 180 GeV and meR= 85 GeV. Of 

these constraints, the bound on the lightest Higgs mass (either mh + ma :::G 92 

13We assume that the model contains some mechanism to generate -m'Jv '"'"' (100GeV)2 -

(200GeV) 2 ; for example, the singlet is coupled to an extra (5 + 5). 
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Ge V or mh ::<; 92 Ge V) provides a strong lower limit on the messenger scale. 

We see that in the parameter space allowed by present limits the fine tuning 

is ~ 2% and if LEP2 does not discover new particles, the fine tuning will be 

~ 1%. The coupling AH is constrained to be not significantly larger than 0.1 

if the constraint mh + ma ::<; 92 Ge V (or mh ::<; 92 Ge V) is imposed and if the 

fine tuning is required to be no wors~ than 1%. 

6 Models Derived from a GUT 

In this section, we discuss how the toy model of section 4 could be derived 

from a GUT model. 

In the toy model of section 4, the singlets N and S do not separately 

couple to complete SU(5) representations (see equation 15). If the extra 

fields introduced to solve the fine tuning problem wer~ originally part of 

(5 + 5) multiplets, then the missing triplets (missing doublets) necessarily 

couple to the singlet S(N). The triplets must be heavy in order to suppress 

their contribution to the soft SUSY breaking mass parameters. If we assume 

the only other mass scale is MauT., they must acquire a mass at MauT· This 

is just the usual problem of splitting a (5 + 5) [14]. For example, if the 

superpotential in the messenger sector contains four (5 + 5)'s, 

then the SU(3) triplets in the (5z + 5z)'s and the SU(2) doublet in (5q + 5q) 
must be heavy at MauT so that in the low energy theory there are three 

doublets and one triplet coupling to S. This problem can be solved using 

the method of Barbieri, Dvali and Strumia [15] th?-t solves the usual Higgs 

doublet-triplet splitting problem. The mechanism in this model is attractive 

since it is possible to make either the doublets or triplets of a quintet heavy 

at the GUT scale. We next describe their model. 

The gauge group is SU(5) x SU(5)', with the particle content E(24, 1), 

E'(1, 24), ~(5, 5) and <!>(5, 5) and the superpotential can be written as 

W __ li,./3 (M s:a' s:a \~a s:a' \ f~fC<
1 

>:Ct)if../3' 
'.i' o:' 4>V{3'V{3 + ALJ{3V{3t + A LJ {3'V{3 'J.' Ct + 

1 2 1 f2 
+2M~Tr(E ) + 2M~,Tr(E ) + 
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( 47) 

A supersymmetric minimum of the scalar potentia.! satisfies the F - flatness 

conditions 

0 Fcp = ( M~8~:8~ + >.2:'j38~; + >.'2:~~~ 8~)<I>~', 
1 j3 1 ( -13 I 1 j3 - ) 2 1 2 

0 - F.E = 2M.E2:a + 2 >.<I>a,<I>~ - >.58aTr(<I><I>) + A.E(2: - 5Tr2: ), 

0 F~, = ~M~,2:'~' + ~ (>-'~a,<I>/3'- >.'~813:Tr(~<I>)) + ).'<',(2:'2 - ~Tr2:'2 ) • .., 2'""'a 2 aa 5a . .., 5. 

( 48) 

With the ansatz 14 

2: = V,E diag(2, 2, 2, -3, -3), 2:' = V.E' diag(2, 2, 2, -3, -3), (49) 

the Fcp = 0 condition is 

where M3 = M~+2>.v.E+2>.'v.E' and M 2 = M~-3AV.E-3A'v.E' and the second 

matrix is the vev of <I>. To satisfy this condition, there is a discrete choice 

for the pattern of vev of <I> : i) v3 =f. 0 and M 3 = 0 or ii) v2 =f. 0 and M 2 = 0. 

Substituting either i) or ii) in the F.E and F.E' conditions then determines V3 

(or v2). With two sets of fields, <I>1, ~1 with v3 =f. 0 and <I> 2 , ~2 with v 2 =f. 0 , 

we have the following pattern of symmetry breaking 

SU(5) X SU(5)' (SU(3) X SU(2) X U(l)) X (SU(3) X SU(2) X U(l))' 

SM (the diagonal subgroup). (51) 

If the scales of the two stages of symmetry breaking are about equal, z. e. 

V.E, V.E', "' v3, v2 "' McuT, then the SM gauge couplings unify at the scale 

McuT· 15 

The particular structure of the vevs of <I> 1 and <I> 2 can be used to split 

representations as follows. 

14The two possible solutions to the F-flai.ness conditions are :E =VI; diag(2, 2, 2, -3, -3) 

and :E = vr; diag(l, 1, 1, 1, -4). 
15See [15] and [24] for models which give this.structure of vevs for the ~ fields without 

using the adjoint.s. 
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Consider the Higgs doublet-triplet splitting problem. With the particle 

content 5h(5, 1), 5h(5,1) and X(1,5), X(1,5) and the superpotential 

(52) 

the SU(3) triplets in 5h, 5h and X, X acquire a mass of order MauT whereas 

the doublets in 5h, 5h and X, X are massless. We want only one pair of 

doublets in the low energy theory (in addition to the usual matter fields). 

The doublets in X, X can be made heavy by a bare mass term M GUT X X. 
Then the doublets in 5h, 5h are the standard Higgs doublets. But if all terms 

consistent with symmetries are allowed in the superpotential, then allowing' 

MauT~l<Ph MauTXX, 5hX~1 and 5hX<P1 implies that a bare mass term 

for 5h5h is allowed. Of course, we can by hand put in a f1 term f15h5h of 

the order of the weak scale as in section 4. However, it is theoretically more 

desirable to relate all electroweak mass scales to the original SUSY breaking 

scale. So, we would like to relate the f1 term to the SUSY breaking scale. 

·we showed in section 5 that the NMSSM is phenomenologically viable and 

"un-fine tuned" in these models. 

The vev structure of ~2 , <P2 can be used to make the doublets in a 5 + 5 
heavy. Again, we get two pairs of light triplets and one of these pairs can be 

given a mass at the GUT scale. 

We can use this mechanism of making either doublets or triplets in a 

(5 + 5) heavy to show how the model of section 4 is derivable from a GUT. 

The model with three messenger doublets and one triplet is obtained from a 

GUT with the following superpotential 

W = 555 + S5z5z + SXzXz + 
5zXz~1 + SzX1~1 + 
59Xq<Pz + 59X9 ~z + 
MauTXhXh + 5hXh<P1 + 5hXh~1 + f15h5h 

3 - -
+N + N5q5 9 + N XqX9 • (53) 

Here, some of the "extra" triplets and doublets resulting from splitting (5 + 
5)'s are massless at the GUT scale. For example, the "extra" light doublets 

are used as the additional messenger leptons. After inserting the vevs and 

integrating out the heavy states, this corresponds to the superpotential in 
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equation 15 with the transcription: 

5,5 -t Q1, q1 + 11, rl 

5t, 5t -t 12,!2 

Xt,Xt -t b, 13 

5q,5q -t Q2, q2 

Xq,Xq -t Q3, q3. (54) 

We conclude this section with a remark about light singlets in SUSY­

GUT's with low energy gauge mediated SUSY breaking.16 In a SUSY GUT 

with a singlet N coupled to the Higgs multiplets, there is a potential problem 

of destabilising the mweak/ MauT hierarchy, if the singl~t is light and if the 

Higgs triplets have a SUSY invariant mass of O(MauT) [28]. In the LEGM 

models, a B-type mass for the Higgs triplets and doublets is generated at 

one loop with gaug!nos and Higgsinos in the loop, and with SUSY breaking 

coming from the gaugino mass. Since SUSY breaking (the gaugino mass and 

the soft scalar masses) becomes soft above the messenger scale, Amess ""' 100 

TeV, the B-type mass term generated for the Higgs triplets is suppressed, i.e., 

it is O((aj47r)M2A;,.ess/MauT)· Similarly the soft mass squared for the Higgs 

triplets are 0( m~eakA;,.ess/ M'&uT ). Since the triplets couple to the singlet N, 
the soft' scalar mass and B-term generates at one loop a linear term for 

the scalar and F-component of N respectively. These tadpoles are harmless 

since the SUSY breaking masses for the triplets are so small. This is to be 

contrasted with supergravity theories, where the B-termrv O(mweakMauT) 

and the soft mass ""'O(mweak) for the triplet Higgs generate a mass for the 

Higgs doublet that is at least rv O(JmweakMGuT/(47r)). 

7 One complete Model 

The model is based on the gauge group Gtoc = SU(5) x SU(5)' and the 

global symmetry group Ggto = z3 X z~ X z4. -The global symmetry acts 

universally on the three generations of the SM. The particle content and 

their Gtoc x G9 to quantum numbers are given in table 2. The most general 

16The authors thank H. Murayama for bringing this to their attention. 
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renorma.lizable superpotential that is consistent with these symmetries is 

where, 

1 2 1 3 1 12 1 13 
-M:ETrl: + --\:ETr:E + -M:E'Trl: + -,.\:E,Trl: 
2 3 2 3 
+<P2(M~2 + ,.\~2z= + A~2 l: 1 )ch 

+<Pt(M~l + ,.\~ll: + ,.\~ 1 l: 1 )~t, 

MtXzX, 

AtSh<PtXh + .Xt5h~tXh + -\2Szcf>tXz + .X25t<lJtXz, 

-\35qci>2Xq + .X35q~2Xq, 
- - - - 1 3 

-\6S5z5z + -\7S5q5q + -\sSXhXt + -\gSX Xh + 3-\sS , 

- 1 3 - -
- --\H5h5hN + 3,.\NN + -\qNXX 

+-\10N1XXq + -\nN1XqX + ~,.\N,N13 , 
3 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

The origin of each of the W/s appearing in the superpotential is easy to 

understand. In computing the F=O equations at the GUT scale, the only 

non-trivial contributions come from fields appearing in W1 , since all other Wis 

are bilinear in fields that do not acquire vevs at the GUT scale. The function 

of W1 is to generate the vevs :E, :E1 
rv diag [2, 2, 2, -3, -3], ~f = cf> 2 rv diag 

[0,0,0,1,1) and ~f = cf>1 rv diag [1,1,1,0,0). These vevs are necessary to 

break Gzoc -+SU(3)c x SU(2) x U(1)y (this was explained in section 6). The 

role of W3 and W4 is to generate the necessary splitting within the many 

(5 + S)'s of Gzoc that is necessary to solve the usual doublet-triplet splitting 

problem, as well as to solve the fine tuning problem that is discussed in 

sections 3,4 and 5. The messenger sector is given by W 5 . It will shortly 

be demonstrated that at low energies this sector contains three vector-like 

doublets and one vector-like triplet. The couplings in W6 and W1 at low 

energies contain the electroweak symmetry breaking sector of the NMSSM, 

the Yukawa couplings of the SM fields, and the two light vector-like triplets 

necessary to maintain the few percent prediction for sin2 Ow as well as to 

generate a vev for N. 
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We now show that the low energy theory of this model is the model that 

is discussed in section 5. 

Inserting the vevs for <I> 1 and ~1 _into W3 , the following mass matrix for 

the colored triplet chiral multiplets is obtained: 

0 ).1 V4>1 0 0 0 
5h 

).1 V4>1 0 0 0 0 
xh 

(5h, Xh, 51, XI) 
0 0 0 ).2v<l>t 0 

5z (63) 

0 0 ).2VcP1 0 M1 
Xz 
X 

and all other masses are zero. There are a total of four vector-like colored 

triplet fields that are massive at MauT· These are the triplet components of 

(5h, X h), (5h, X h), (51, XI) and (Xz, TH ), where TH is that linear combination 

of tripletsin 5z and X that marries the triplet component of X1• The orthog­

onal combination to TH, TL, is massless at this scale. The massless triplets 

at MauT are (5q, Sq), (Xq, Xq) and (X, TL), for a total of three vector-like 

triplets. By inspection, the only light triplets that couple to S at a renor­

malizable level ·are 5q and 5q, which was desirable in order to solve the fine 

tuning problem. Further, since X contains a component of TL, the couplings 

of the other light triplets to the singlets N and IN' are 

(64) 

where Aq = ).q cos a', ).11 = ).11 cos a' and a' is the mixing angle between the 

triplet's in 51 and X, i.e., TL = cos a' X- sin a'S1. The AqNTLX coupling is 

also desirable to generate acceptable J.l and J.L~ terms (see sectjon 5). 

In section 4,5 it was also demonstrated that with a total of three mes­

senger doublet_s the fine tuning required in electroweak symmetry breaking 

could be alleviated. By inserting the vev for <I> 2 into W4 , the doublet mass 

matrix is given as 

0 

)(f) (65) 

and all other masses are zero. At MauT the heavy doublets are (Xz, X), 

(5q, Xq) and (5q, Xq), leaving the four vector-like doublets in (5h, 5h), (5z, Sz), 
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(X, X1) and (Xh, X h) massless at this scale. Of these four pairs, (5h, 5h) are 

the usual Higgs doublets and the other three pairs couple to S. 

The (renormalizable) superpotential at scales below Maur is then 

1 
W = AqNijzqz + 3)..NN3 + >-.10N'q3ijz 

+>-.uN'qzij3- )..HNHuHd + ~)..N,N'3 

+>-.6Sl1l1 + >-.1Sij1q1 + >-.BSlzlz 
- 1 3 

+>-.9Sl3l3 + ->-.sS + W1, 
3 

(66) 

where the fields have been relabeled to make, in an obvious notation, their 

SU(:3) x SU(2) x U(I) quantum numbers apparent. 

We conclude this section with comments about both the choice of Z4 as 

a discrete symmetry and about non-renormalizable operators in our model. 

The usual R-parity violating operators 10sM5sM5sM are not allowed by 

the discrete symmetries, even at the non-renormalizable level. In fact, R­

parity is a good symmetry of the effective theory below Maur. By inspection, 

the fields that acquire vevs a.t Maur are either invariant under Z4 or have 

a Z4 charge of 2 (for example, ll>1), so that a Z2 symmetry is left unbroken. 

In fact, the vevs of the other fields S, N, N' and the Higgs doublets do not 

break this Z2 either. By inspecting the Z4 charges of the SM fields, we see 

that the unbroken Z2 is none other than the usual R-parity. So at Maur, the 

discrete symmetry Z4 is broken to Rp. We also note that the Z4 symmetry is 

suffucient to maintain, to all orders in 1/ Mp1 operators, the vev structure of 

ll>1 and lf>z, i.e., to forbid unwanted couplings between ll>1 and ll>2 that might 

destabilize the vev structure[24]. This pattern of vevs was essential to solve 

the doublet-triplet splitting problem. It is interesting that both R-parity 

and requiring a viable solution to the doublet-triplet splitting problem can 

be accommodated by the same Z4 symmetry. 

The non-SM matter fields (i.e., the messenger 5's and X's and the light 

triplets ) have the opposite charge to the SM matter fields under the unbroken 

Z2 . Thus, there is no mass mixing between the SM and the non-SM matter 

fields. 

Dangerous proton decay operators are forbidden in this model by the 

discrete symmetries. Some higher dimension operators that lead to proton 

decay are allowed, but are suffuciently suppressed. We discuss these below. 
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Renormalizable operators such as 10sM 10sM5q and lOsM5sM5q are for­

bidden by the Z3 symmetries. This is necessary to avoid a large proton decay 

rate. A dimension-6 proton decay operator is obtained by integrating out the 

colored triplet scalar components of 5q or Sq. Since the colored scalars in 5q 

and 5q have a'mass "'0(50 TeV), the presence of these operators would have 

led to an unacceptably large proton decay rate. 

The operators 10sM 10sM 10sM5sM / Mpz and 10sM 10sM 10sM5sM 
(<I>~/ Mj,1 t / Mpz, which give dimension-5 proton decay operators, are also 

forbidden by the two Z3 symmetries. The allowed non-renormalizable op­

erators that generate dimension-5 proton decay operators are suffuciently 

suppressed. The operator l0sM10sMlOsM5sMN'f(Mpz) 2
, for example, is al­

lowed by the discrete symmetries, but the proton decay rate is safe since 

VN' "' 1 TeV. 
, The operators 10i5j~ 1 (X or Xq)fMpz could, i'n principle, also lead to a 

large proton decay rate. Setting ~1 to its vev, the superpotential couplings, 

for example, Aij(Uic DjX(3) + QiLjX(3)) are generated with Aij suppressed 

only by v~tf M PI· In this model' the colored triplet (scalar) components of X 
and Xq have a mass mii"' 500 GeV, giving a potentially large proton decay 

rate. But, in this model these operators are forbidden by the discrete sym­

metries. The operator 10i5i~hX Sf Mj,1 is allowed giving a four SM fermion 

proton decay operator with coefficient"' (v~1 v5jM],1 ) 2 /m~"' 10-34 GeV-2
• 

This is smaller than the coefficient generated by exchange of the heavy gauge 

bosons of mass Maur, which is"' 9bur/M'8ur"' 1/2 10-32 GeV- 2 and so this 

operator leads to proton decay at a tolerable rate. 

With our set of discrete symmetries, some of the messenger states and the 

light color triplets are stable at therenormalizable level. Non-renormalizable 

operators lead to decay lifetime for some of these particles of more than 

about 100 seconds. This is a problem from the viewpoint of cosmology, since 

these particles decay after Big-Bang Nucleosynthesis (BBN). vVith a non­

universal choice of discrete symmetries, it might be possible to make these 

particles decay before BBN through either small renormalizable couplings to 

the third generation (so that the constraints from proton decay and FCNC 

are avoided) or non-renormalizable operators. This is, however, beyond the 

scope of this paper. 

27 



8 Conclusions 

We have quantified the fine tuning required in models of low energy gauge­

mediated SUSY breaking to obtain the correct Z mass. We showed that 

the minimal model requires a fine tuning of order ""' 7% if LEP2 does not 

discover a right-handed slepton. We discussed how models with more mes­

senger doublets than triplets can improve the fine tuning. In particular, a 

model with a messenger field particle content of three (l + l)'s and only one 

( q + ij) was tuned to ""' 40%. We found that it was necessary to introduce 

an extra singlet to give mass to some color triplets (close to the weak scale) 

which are required to maintain gauge coupling unification. We also discussed 

how the vev and F-component of this singlet could be used to generate the 

J.l and B J.l terms. We found that for some region of the parameter ;pace this 

model requires ""' 25% tuning and have shown that limits from LEP do not 

constrain the parameter space. This is in contrast to an NMSSM with one 

( 5 + 5) messenger fields, for which we found that a fine tuning of ""' 1% is 

required and that limits from LEP do significantly constrain the parameter 

space. 

We further discussed how the model with split messenger field represen­

tations could be the low energy theory of a SU(5) x SU(5) GUT. A mecha­

nism similar to the one used to solve the usual Higgs doublet-triplet splitting 

problem was used to split the messenger field representations. All operators 

consistent with gauge and discrete symmetries were allowed. In this model 

R-parity is the unbroken subgroup of one of the discrete symmetry groups. 

Non-renormalizable operators involving non-SM fields lead to proton decay, 

but at a safe level. 
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10 Appendix 

In this section the Barbieri-Giudice parameters for both the MSSM and 

NMSSM in a gauge mediated SUSY breaking scenario are presented. 

In an MSSM with gauge mediated SUSY breaking, the fundamental pa­

rameters of the theory (in the visible sector) are: Amess; >.t; 11; and 11~· Once 

electroweak symmetry breaking occurs, the extremization conditions deter­

mine both m~ and tan /3 as a function of these parameters. To measure the 

sensitivity of m~ to one of the fundamental parameters Ai, we compute the 

variation in m~ induced by a small change in one of the ).i· The quantity 

8m~ _ 2 . 8).i 
- 2 = c(mz, >.i)--;-, (67) 
mz Ai 

where 
2 ).i om~ 

c(mz; ).i) = - 2 ;;}\. , (68) 
mz uA~ 

measures this sensitivity [3). In the case of gauge mediated SUSY breaking 

models, there are four functions c(m~; Ai) to be computed. They are: 

c m2. 2 _ 1 1 2 2112 ( tan2 /3 + 1 4 tan 2 /3(j12 - j12) ) 
( z, 11 ) - m~ + (tan2 f3- 1)2 (fli- jl~)(tan2 f3 + 1)- m~(tan2 f3- 1)) ' 

- (69) 

2 /3 tan2 /3 + 1 f1i - jl~ 4tan 
(tan2 /3- 1)3 m~ 

4 -2 -2 
f-l1 - f-l2 

~ --=-- for large tan /3, 
tan2 /3 m~ 
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This measures the sensitivity of m~ to the electroweak scale value of At, 

At(Mweak). The Yukawa coupling At(Mweak) is not, however, a fundamental 

parameter of the theory. The fundamental parameter is the value of the 

coupling at the cutoff A0 = Maur or Mpz of the theory. We really should be 

computing the sensitivity of m~ to this value of At. The measure of sensitivity 

is then correctly given by 

(72) 

(73) 

We remark that for the model discussed in the text with three l+l and one q+ 
q messenger fields, the numerical value of (At(A 0 )/ At ( Mweak) )8>.t( Mweak)/ 8At(A 0 ) 

is typically ,......, 0.1 because At(Mweak) is attracted to its infra-red fixed point. 

This results in a smaller value for c( m~; At) than is obtained in the absence 

of these considerations. 

With the assumption that m'iJu and m'iJd scale with A;,ess, we get 

(74) 

The Barbieri-Giudice functions for mt are similarly computed. They are 

(75) 

(76) 

(77) 

(78) 

Since mz and mt are measured, two of the four fundamental parameters 

may be eliminated. This leaves two free parameters, which for conveinence 

are chosen to be Amess and tan /3. 
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In a NMSSM with gauge mediated SUSY breaking, the scalar potential for 

N, Hu and Hd at the weak scale is specified by the following six parameters: 

Ai = mJy, m'hu, mt, the N HuHd coupling AH, the scalar N HuHd coupling 

AH, and the N 3 coupling, AN. In minimal gauge mediated SUSY breaking, 

the trilinear soft SUSY breaking term N HuHd is zero at tree level and is 

generated at one loop by wino and bino exchange. In this case, AH(Ai) = 

AHA(Ai)· Since the trilinear scalar term N 3 is generated at two loops, it 

is small and is neglected. The. extremization conditions which determine 

mz = g~v2 /4 ( v = Jv~ + vJ), tan j3 = vu/vd and VN as a function of these 

parameters are given in section 5. Equation 22 can, be written, using f.l = 

AHVN/V2 as 

2 AJv 2 1 2 · 1 2 2 1 2 . ) mN+2, 2 f.l -AHAN-v sm2f3+-AHV --. AHv AHsm2/3=0. (79 
/\H 2 2 4f.L 

Equation- 23 is 

1 2 2 2 2 tan2 j3 2 1 
Bgzv + f.l - mHu 1 - tan2 j3 + mHd 1 - tan2 j3 = 0. (80) 

Substituting VJv from equation 22 in equation 26 and then using this expres­

sion for f.l5 in equation 24 gives 
I 

2 2 2). AH( 2 _ 1 2 2 2f.l 1v2A'hsin2j3 
(mHu +mHd+2f.l sm2/3+~ mN+-

2
AHV )+AH(-~- A ) = 0. 

AN AH 4 f.l N 
(81) 

The quantity c = (Ai/m~)(8m~j8Ai) measures the sensitivity of mz to these 

parameters. This can be computed by differentiating equations 79, 80 and 81 

with respect to these parameters to obtain, after some algebra, the· following . 

set of linear equations: 

where 

A 

1 

1 
sin 2{3v2 

J.Li+J.L~ 
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J.Li-J.L~ 2ta.n,6 
v2 (1-ta.n2 ,6)2 

_l~ 1-ta.n2 ,6 
2 AN (I+tan2 ,6)2 

1-tan2 {3 
(I+ta.n2 {3)2 

(82) 

(83) 

(84) 



( 
0 0 0 

)· >.k sin 21) >.ksin21) v2 tan2 I)-I >.3 
..:.:.JL 

- 2g2 >.2 I6>.2 1-'2 (1+tan2 1))2 4>.2 
2 Z N 2 N 2 N 

-~v2 sin2(3 _L( >.If sin21) v2 __ I_) tan2 (3-1 ~-v_2 _ 

2gpN 1-'i+l-'~ 1-'i+l-'~ 16..\N J-L2 2AH (1+tan2 1))2 4..\N 1-'i+l-'~ 

( 
I 8m2 

) 
_:::..:::z.. 
v2 a>. 

x>.H,>.N 1 a) (85) v2 '8'>:; 
a tan!) 
~ 

) , ( i = u, d, N), (86) 

( 
0 

Bm2 Bm~ 1 A' ) (87) N + AH -- ::Ji._ 
2>.~ 

~ v2 
-AN 2(1-'f+J-L~) 

( 
tan2 !) 

) 2 m 2 1-tan2 !) 

BmHu + BA::u 0 (88) 
-7)2 sin2,6 

2(1-'i+l-'~) 

( 
1 

)· 2 m 2 tan2 1)-1 

BmHd + BA:d 0 (89) 
-7)2 sin 2(3 

2(1-'i+J-L~) 

( 
0 

j, BAH -~ + ~ AJtsin2,6 _ *~ (90) - >.N 4 AN >.N v2 

1 (I m
2 

3 2 A
2 

) 
- (1-'f+l-'~) 2~ + 47) :¢ 

0 
BAH AH ( '}•in2P ) (91) AH -- 2>.2 ' 

f..l ~~ J~in21) 
8 AN J-Lf+J-L~ 

( 
0 

)· BAN _I >.ksin21) + ~~ + !~ (92) 4 >.~ >.:;_, v2 2 >.:;_, 

I ~( 2 + 1 2 ).2 ) 
2(1-'i+J-L~) >.~ mN 27J H 
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:H ( 
0 

) BAN 
>.t sin 2{3 

(93) . - - 4>.~ AH 
2 N 
~ v 2 sin2{3 

- s>.]v JLi+JL~ 

In deriving these equations AH(Ai) = AH A(Ai) was assumed anp oAjoAH was 

neglected. Inverting these set of equations gives the c functions. We note 

that these expressions for the various c functions are valid for any NMSSM 

in which the N 3 scalar term is negligible and the N Hulfd scalar term is 

proportional to AH. In general, these 6 parameters might, in turn, depend on 

some fundamental parameters, 5.i. Then, the sensitivity to these fundamental 

parameters is: 

(94) 

For example, in the NMSSM of section 5, the fundamental parameters are 

Amess, AH, AN, At and Aq (AH is a function of AH and Amess)· Fixing mz and 

mt leaves 3 free parameters, which we choose to be Amess, AH and tan (3. As 

explained in that section, the effect of AH in the RG scaling of mJt.u and mJt.d 
was neglected, whereas the sensitivity of m'Jv to AH could be non~negligible. 

Thus, we have 

(95) 

We find, in our model, that c( m~; m'Jv) is smaller than c( m~; AH) by a factor 

of "' 2. Also, using approximate analytic and also numerical solqtions to the 

RG equation for m'Jv, we find that (AH /m'Jv )(om'Jvjo>..H) is ~ 0.1. Conse­

quently, in the analysis of section 5 the additional contribution to c( m~; AH) 

due to the dependence of m'Jv on AH was neglected. A similar conclusion is 

true for AN. Also, 

(96) 
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We find that ().qfm'h)(8m'hf8)..q) is~ 1 so that c(m~; )..q) is smaller than 

c(m~; AH) by a factor of 2. 
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Captions: 

Figure 1: Contours of c(m~; p 2
) =(10, 15, 20, 25, 40, 60) for a MSSM with a 

messenger particle content of one (5+ 5). In figures (a) and (c) sgn(p) = -1 

and in figures (b) and (d) sgn(p) = + 1. The constraints considered are: (I) 

meR =75 GeV , (II) mx? + m;:g = 160 GeV, (III) meR =85 GeV, and (IV) 

m;:~ + m;:g = 180 GeV. A central value of mtop =175 GeV is assumed. 

Figure 2: Contours of c(m~; p 2
) =(1, 2, 3, 5, 7, 10) for a MSSM with a 

messenger particle content of three ( l + l) 's and one ( q + q). In figures (a) and 

(c) sgn(p) = -1 and in figures (b) and (d) sgn(p) = +1. The constraints 

considered are: (I) meR =75 GeV, (II) m;:~ +m;:g = 160 GeV, (III) meR =85 

GeV, and (IV) m;:~ + m;:g = 180 GeV. A central value of mtop =175 GeV is 

assumed. 

Figure 3: Contours of c(m~; AH) for the NMSSM of Section 5 and a 

messenger particle content of three (l + Z) 's and one ( q + q). In figures (a) 
and (b), c(m~; AH)=(4, 5, 6, 10, 15) and AH =0.1. In figures (c) and (d), 
c(m~; AH) =(3, 4, 5, 10, 15, 20) and AH=0.5. The constraints considered 

are: (I) mh + ma = mz, (II) meR =75 GeV, (III) m;:~ + m;:g = 160 GeV, 

(IV) mh = 92 GeV, (V) meR =85 GeV, and (VI) m;:~ + m;:g = 180 GeV. For 

AH =0.5, the limit mh<, 70 GeV constrains tan ,.8~ 5 (independent of Amess) 

and is thus not shown. A central value of mtop =175 GeV is assumed. 

Figure 4: Contours of c(m~; AH) =(50, 80, 100, 150, 200) for the NMSSM 

of Section 5 with AH =0.1 and a messenger particle content of one (5 + 5). 

The constraints considered are: (I) mh + ma = mz, (II) meR =75 GeV, (III) 

m;:~ + m;:g = 160 GeV, (IV) mh =92 GeV, (V) meR =85 GeV, and (VI) 

m;:~ + m;:g = 180 GeV. A central value of mtop =175 GeV is assumed. 
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687 616 612 319 125 

m- m-e Q3 · u3 

656 546 

j 

Table 1: Soft scalar masses in Ge V for messenger particle content of three 

(l +I)'s and one q + ij and a scale Amess =50 TeV. 
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IJ1 5; 10; 5h 5h 

Gloc (5, 1) (10, 1) (5,1) (5, 1) 

z3 1 a a a2 

Z' 3 b 1 1 b2 

z4 c c c2 c2 

IJ1 L: L:' <I>2 <I>2 <I>l <I>l 

Gloc (24, 1) (1,24) (5,5) (5, 5) (5,5) (5,5) 

z3 1 1 1 1 1 1 

Z' 3 1 1 1 1 1 1 

z4 1 1 1 1 c2 c2 

IJ1 51 5z Xz Xz 5q 5q 

Gzoc (5,1) (5, 1) (1,5) (1,5) (5, 1) (5, 1) 

z3 a2 1 1 a 1 a2. 

Z' 3 1 1 1 1 b2 b 

z4 c2 c2 1 1 1 1 

w Xq Xq xh xh X X 

Gzoc (1,5) (1, 5) (1, 5) (1,5) (1, 5) (1' 5) 

z3 a 1 a a2 a2 a 

Z' 3 
b2 b b 1 1 b2 

z4 1 1 1 1 1 1 

w s N N' <P+ <P-
z3 a 1 a a a 

Z' 3 1 b b2 1 1 

z4 1 1 1 1 1 

Table 2: SU(5) X SU(5)' X z3 X z~ X z4 quantum numbers for the fields of 

the model discussed in section 7. (a, b, C) are the generators of Z3 X Z~ X Z4. 
The three SM generations are labeled by the index i. 
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