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Abstract 

Weakly-coupled heterotic string is known to have problems of dilaton/moduli stabi­

lization, supersymmetry breaking (by hidden-sector gaugino condensation), gauge 

coupling unification, QCD axion, as well as cosmological problems involving dila­

ton/moduli and axion. We study these problems by adopting the point of view that 

they arise mostly due to our limited calculational power, little knowledge of the 

full vacuum structure, and an inappropriate treatment of gaugino condensation. It 

turns out that these problems can be solved or are much less severe after a more 

consistent and complete treatment. 

There are two kinds of non-perturbative ·effects in our construction of string 

effective field theory: the field-theoretical non-perturbative effects of gaugino con­

densation (with an important constraint ignored in the past) and the stringy non­

perturbative effects conjectured by S. Shenker, which are best described using the 

linear multiplet formalism. Stringy non-perturbative corrections to the Kahler po­

tential are invoked to stabilize the dilaton at a value compatible with a weak cou­

pling regime. Modular invariance is ensured through the Green-Schwarz countert­

erm and string threshold corrections which, together with hidden matter condensa­

tion, lead to moduli stabilization at the self-dual point where the vev's of moduli's 

F components vanish. In the vacuum, supersymmetry is broken at a realistic scale 

with vanishing cosmological constant. As for soft supersymmetry breaking, our 

model always leads to a dilaton-dominated scenario. For the strong CP problem, 

the model-independent axion has the right properties to be the QCD axion. Fur­

thermore, there is a natural hierarchy between the dilaton/moduli mass and the 

gravitino mass, which could ·Solve both the cosmological moduli problem and the 

cosmological problem of the model-independent axion. 
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Chapter 1 

Preamble 

1 



How the electroweak symmetry is broken is one of the fundamental questions 

of particle physics. In the standard model, the scalar Higgs doublet acquires a non­

vanishing vacuum expectation value ( vev), and therefore breaks the electroweak 

symmetry. However, the field-theoretical loop corrections to the masses of scalar 

particles are quadratically divergent. Therefore, the scale of electroweak symmetry 

breaking is in·fact unstable against radiative corrections, and how the very large hi­

erarchy between the Planck scale and the scale of electroweak symmetry breaking is 

generated remains a mystery. Currently, weak scale supersymmetry [1] is the most 

promising solution this hierarchy problem. Supersymmetric theories are free from· 

quadratic divergences due to delicate cancellations between boson and and fermion 

loop corrections, and therefore can stabilize the hierarchy between the Planck scale 

and the electroweak scale. However, supersymmetry itself does not explain the 

origin of the electroweak scale. Furthermore, supersymmetry introduces new par­

ticles (i.e., supersymmetric partners of the standard model particles.) Therefore, 

as a requirement of particle phenomenology, supersymmetry must be broken and 

the resulting theory is a supersymmetric extension of the standard model with su­

persymmetry softly broken at the electroweak scale. The experimental search for 

supersymmetric partners is very important to our understanding of electroweak 

symmetry breaking. It will also shed light on the mechanism of supersymmetry 

breaking as well as the physics at (and possibly above) the scale where supersym­

metry is broken. On the other hand, construGting a realistic scheme of supersyrnme­

try breaking remains one of the big challenges to supersymmetry phenomenology. 
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Although it is possible, without knowing the details of the supersymmetry breaking 

mechanism, to parametrize the effects of softly broken supersymmetry in an effective 

description, yet it involves a huge numbers of unknown parameters and thus makes 

phenomenological analyses highly intractable. It is therefore desirable to have a re-

alistic supersymmetry breaking scheme which predicts all the soft supersymmetry 

breaking parameters in terms of only a few parameters. 

It is well known that superstring theory offers, according to the above consider-

ation, the most powerful scheme of supersymmetry phenomenology. More precisely, 

all the parameters appearing in the effective description of the superstring are in 

principle determined by the dynamics of superstring alone, i.e., by the vev's of cer-

tain fields (e.g., the string dilaton and moduli.) Besides, the most compelling reason 

to study superstring theory is the fact that it is the only known candidate theory 

of quantum gravity. However, at the perturbative level the superstring has many 

vacua parametrized by flat directions (e.g., the string dilaton and moduli) which 

will be lifted only after non-perturbative effects are included1
. Even with the recent 

progress of string duality, there is still little knowledge of these non-perturbative 

effects and hence how the above powerful feature of superstring theory is realized. 

Earlier attempts to study the phenomenology of superstrings [2] have either ignored 

the non-perturbative effects responsible for stabilizing the string dilaton/moduli or 

relied on the racetrack modeP [3], and therefore their results may not be reliable. It 

1 It is very possible that the same non-perturbative effects are also responsible for supersym­

metry breaking. 
2 As will be discussed later, the racetrack model suffers from a negative cosmological constant 
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is believed and will be shown in the following chapters that it is possible to draw re­

liable predictions from superstrings only after the relevant non-perturbative effects 

are fully taken into account. 

Our study of superstring phenomenology contains two kinds of non-perturbative 

effects: the stringy non-perturbative effects generated above the string scale, and 

the field-theoretical non-perturbative effects of gaugino condensation generated by 

strongly-interacting gauge groups below the string scale. As for stringy non-perturbative 

effects, they have always been ignored in the past. The existence of significant 

stringy non-perturbative effects was first conjectured by S.H. Shenker [4]. The re­

cent development of string duality has provided further evidence (5, 6} for Shenker's 

conjecture. It was first noticed by T. Banks and M. Dine that significant stringy 

non-perturbative effects could have interesting implications [7]. Here we will study 

in detail the phenomenological implications of stringy non-perturbative effects using 

the linear multiplet formalism of superstring effective theory. It was first pointed 

out in [8} that the field-theoretical limit of weakly-coupled heterotic string theory 

should be described using the linear multiplet formalism rather than the chiral mul­

tiplet formalism. A similar point of view has also been emphasized by other authors . 

[9, 10, 11]. Furthermore, our study represents a concrete and elegant realization of 

this viewpoint. As we shall see in Chapter 2, in the linear multiplet formalism the 

string coupling is the linear multiplet L which is the natural parametrization of 

stringy physics. On the other hand, the coupling of string effective field theory 

problem as well as an un-naturalness problem. 
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is Lf (1 + f(L)) which is the natural parametrization of field-theoretical effects; it 

is modified in the presence of stringy effects f(L). Therefore; the linear multiplet 

formalism naturally distinguishes stringy effects from field-theoretical effects, and it 

is this feature that makes the incorporation of stringy effects with the effective field 

theory simple and transparent. This advantage of the linear multiplet formalism is 

very crucial·to our study where both stringy and field-theoretical non-perturbative 

effects are considered. As we will see, stringy non-perturbative effects do play 

an important role in stabilizing the string dilaton/moduli and in breaking super-

symmetry via the field-theoretical non-perturbative effects of gaugino condensation 

[12, 13, 14]. 

As for the field-theoretical non-perturbative effects, gaugino condensation has 

always played a uni9.ue role: at low energy, the strong dilaton-Yang-Mills interaction 

leads to gaugino condensation which not only breaks supersymmetry spontaneously 

but also generates a non-perturbative potential which may eventually stabilize the 

dilaton3 • In the scheme of gaugino condensation the stabilization of string dila-

ton/moduli and the breaking of supersymmetry are therefore unified in the sense 

that they are two aspects of a single non-perturbative phenomenon. Furthermore, 

gaugino condensation has its own important phenomenological motivations: gaug-

ino condensation occurs in the hidden sector of a generic string model [15, 16]; it 

can break supersymmetry at a sufficiently small scale and may induce viable soft 

3 In general there is also matter condensation which generates a non-perturbative potential for 

string moduli. 
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supersymmetry breaking effects in the observable sector through gravity and/or 

an anomalous U(1) gauge interaction [17]. However, although gaugino condensa­

tion has been studied since 1982, it still has several long-standing problems in the 

context of superstrings. Firstly, superstring phenomenology based on the scheme of 

gaugino condensation has been long plagued by the infamous dilaton runaway prob­

lem [7, 16]. That is, (assuming that the tree-level Kahler potential of the dilaton is 

a good approximation) one genera!ly finds that the supersymmetric vacuum with 

vanishing coupling constant and no gaugino condensation is the only stable mini­

mum in the weak-coupling regime. Secondly, modular invariance is a very important 

property of superstring. However, most of the studies of gaugino condensation had 

neither complete nor correct treatments of modular invariance. As we shall see, 

a fully modular invariant treatment of gaugino condensation has non-trivial phe­

nomenological implications. Thirdly, in the past the gaugino condensate has always 

been described by an unconstrained chiral superfield U which corresponds to the 

bound state of wawa in the underlying theory. It was pointed out recently that 

U should be a constrained chiral superfield [18, 19, 20, 21] due to the constrained 

superspace. geometry of the underlying Yang-Mills theory: 

U -(Va1fx - 8R)V, 

[J (1.1) 

where V is an unconstrained vector superfield. Fourthly, superstring phenomenol­

ogy based on gaugino condensation suffers from several cosmological problems such 
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as the cosmological moduli problem [22] and the cosmological bound on the invisible 

axion [23]. These cosmological problems either destroy the successful nucleosynthe-

sis or overdose the universe. 

These formidable problems might make one thinkthat the weakly-coupled het-

erotic string theory is in grave danger. On the other hand, these prOblems are 

not unrelated to one another because the superstring has a highly constrained and 

predictive framework. As we shall see, in fact these problems arise from our poor 

understanding of non-perturbative string dynamics as well as incorrect/incomplete 

treatments of superstring phenomenology in the past. ·Once we know how to proceed 

in the right direction, these problems turn out to be solved or much less serious. 

For the first problem, we emphasize the advantage of using the linear multiplet 

formalism and show that stringy· non-perturbativ~ effects may stabilize the dilaton 

at a value compatible with a weak coupling regime [12, 13]. For the second and 

the third problems, full modular invariance is ensured through the Green-Schwarz 

term and string threshold corrections, and the constraint on the gaugino conden-

sate U is explicitly solved using the linear multiplet formalism [12, 13, 14J. They do 

lead to unique predictions of superstring theory about supersymmetry breaking, the 

compactification scale, and axion physics4 • For example, string moduli are stabi-

lized at the self-dual point, and therefore they do not participate in supersymmetry 

breaking because the vev's of moduli's F terms vanish [14]. This is certainly a de-

4These unique predictions were unknown in the past due to the aforementioned first three 

problems. · 
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sirable feature in consideration of flavor changing neutral current (FCNC) because 

non-vanishing vev's of moduli's F terms generically lead to non-universal contribu­

tions to the soft supersymmetry breaking parameters. For the fourth problem, let's 

recall the standard lore of superstring phenomenology which tells us that, based 

on a very naive order-of-magnitude estimate, string dilaton and moduli gain from 

supersymmetry breaking masses of order of the gravitino mass. Since the gravitino 

mass is of order of the electroweak scale, these small masses of the dilaton and 

moduli lead to the cosmological moduli problem. On the other hand, our model is 

realistic enough for us to discuss these issues based on actual computations rather 

than educated guesses: it turns out that the string dilaton and moduli are in fact 

much heavier than the gravitino, which may be sufficient to solve the cosmological 

moduli problem [24]. Furthermore, the large -entropy produced by the decays of 

the heavy moduli in our model will dilute the axion density and therefore raise the 

cosmological bound on the a.xion decay constant. As we shall see, this could solve 

the cosmological problem of the invisible axion. 

Finally, let's make a brief comment on how the recent development of string 

duality might affect the status of weakly-coupled heterotic string theory. There 

have been claims in the literature in favor of the strongly-coupled heterotic string 

theory by arguing that it is unlikely that the weakly-coupled heterotic string theory 

can solve the dilaton runaway problem. However, the recent observation of string -

dualities actually implies that the strong coupling limit of heterotic string theory, 

which can be described by another weakly-coupled theory (i.e .. , M-theory compact-
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i:fied on R10 xS1 /Z2 [25]), is plagued by a similar runaway problem [26]. Therefore, 

there seem to be only two logical options for solving the runaway problem: either 

a truly non-perturbative heterotic string theory which does not allow a weakly-

coupled description, or a weakly-coupled theory (i.e., the weakly-coupled heterotic 

string theory or the strong coupling limit of heterotic string theory). So far the first 

option remains a remote possibility. 5 On the other hand, as for the second option 

both the weakly-coupled heterotic string theory and the strong coupling limit of 

heterotic string theory certainly deserve further study6 • As mentioned before, it 

is our purpose here to show that the weakly-coupled heterotic string theory could 

solve the dilaton runaway problem as well as lead to a satisfactory phenomenology · 

[24]. 

In Chapter 2, a simple string orbifold model with a hidden E8 gauge group 

and no hidden matter is u~ed to illustrate the studies of the linear multiplet formal-

ism, the incorporation of stringy non-perturbative effects, static gaugino condensa-

tion, and the dilaton runaway problem. In Chapter 3, we give the motivations for 

· studying dynamical gaugino condensation, and then sho_:v that static gaugino con-

densation is indeed the appropriate low-energy effective description of dynamical 

5 Some recent attempts at a non-perturbative formulation of heterotic string theory can be 

found in [27]. 
6 Although recently there is an argument of coupling unification preferring the strong cou-

pling limit of heterotic string theory to the weakly-coupled heterotic string theory [28], it involves 

assumptions that are not true generically. For example, it is assumed in [28] that the compact­

ification volume Vcomp is of order MatT• where MGUT is the grand unification scale. However, in 

our model the moduli associated with compactification are stabilized at the self-dual point, and 

therefore the argument of [28] is not valid. 
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gaugino condensation. In Chapter 4, we extend our previous studies to a generic 

string orbifold model. The resulting model is generic and realistic enough, and we 

are therefore in a position to address several important phenomenological issues. 

In Chapter 5, we discuss phenomenological issues such as the dilaton and moduli 

masses, axion physics, soft supersymmetry breaking parameters, gauge coupling 

unification, as well as cosmological issues. 
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Chapter 2 

The Stringy Story of Gaugino 

Condensation 

11 



2.1 Introduction 

Constructing a realistic scheme of supersymmetry breaking is one of the big 

challenges to supersymmetry phenomenology. However, in the context of super­

string phenomenology, there are actually more challenges. As is well known, a very 

powerful feature of superstring phenomenology is that all the parameters of the 

model are in principle dynamically determined by the vev's of certain fields. One 

of these important fields is the string dilaton whose vev determines the gauge cou­

pling constants. On the other hand, how the dilaton is stabilized is outside the 

reach of perturbation theory since the dilaton's potential remains flat to all order in 

perturbation theory according to the non-renormalization theorem. Therefore, un­

derstanding how the dilaton is stabilized (i.e., how the gauge coupling constants are 

determined) is of no less significance than understanding how supersymmetry is bro­

ken. Gaugino condensation has been playing a unique role in these issues: Gaugino 

condensation not only breaks supersymmetry but also generates a non-perturbative 

dilaton potential which may eventually stabilize the dilaton. Furthermore, gaugino 

condensation has its own important phenomenological motivations [15, 16, 17]. Un­

fortunately, this beautiful scheme of gaugino condensation has been long plagued 

by the infamous dilaton runaway problem [7, 16]. (The recent observation of string 

dualities further implies that the strong-coupling regime is plagued by a similar run­

away problem [26].) Only a few solutions to the dilaton runaway problem have been 

proposed. Assuming the scenario of two or more gaugino condensates, the racetrack 
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model stabilizes the dilaton and breaks supersymmetry with a more complicated 

dilaton superpotential generated by multiple gaugino condensation [3). However, 

stabilization of the dilaton in the racetrack model requires a delicate cancellation 

between the contributions from different gaugino condensates, which is not very 

natural. Furthermore, it has a large and negative cosmological constant when su­

persymmetry is broken. The other solutions generically require the presence of an 

additional source of supersymmetry breaking (e.g., a constant term in the superpo­

tential) [16, 29). It is therefore fair to say that there is no satisfactory solution so 

far. 

Recently, there have been several new developments and insights in superstring 

phenomenology. It is our purpose to show that these new ingredients play impor­

tant roles in the above issues and can eventually lead to a promising solution. One 

of these new ingredients is the linear multiplet formalism of superstring effective 

theories [8, 9, 10): Among the massless string modes, a real scalar (dilaton), an 

antisymmetric tensor field (the Kalb-Ramond field) and their supersymmetric part­

ners can be described either by a chiral superfield S or by a linear multiplet L, 

which is known as the chiral-linear duality [30). By definition, the linear multiplet 

L is a vector superfield that satisfies the following constraints [30): 

-(De/If·' - BR)L - 0, 

-(DaDa- BRt)L - 0. (2.1) 

The lowest component of L is the. dilaton field £, and its vev is related to the gauge 

13 
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coupling constant as follows1
: g2 (Ms) = 2(l), where Ms is the string scale [31, 32}. 

Although the chiral-linear duality is obvious at tree level, it becomes obscure when 

quantum effects are included. Although scalar-2-form field strength duality, which 

is contained in chiral-linear duality, has been shown to be preserved in perturbation 

theory [33), the situation is less clear in the presence of non-perturbative effects, 

which are important in the study of gaugino condensation. It has recently been 

shown [18, 20) that gaugino condensation can be formulated directly using a linear 

multiplet for the dilaton. Although a formal equivalence between the chiral and 

linear multiplet formalisms has been shown [20), the content of the resulting chiral-

linear duality transformation is in general very complicated. If there is an elegant 

description of gaugino condensates in the context of superstring effective theories, 

it may be simple in only one of these formalisms, but not in both. Therefore, a 

pertinent issue is: which formalism is better? Here we will construct the effective 

theory of gaugino condensation directly in the linear multiplet formalism without 

referring to the chiral multiplet formalism. There is reason to believe that the linear 

multiplet formalism is in fact more appropriate. The stringy reason for choosing 

the linear multiplet formalism is that the precise field content of the linear multi-

plet appears in the massless string spectrum, and (L) plays the role of string loop 

expansion parameter. Therefore, string information is more naturally encoded in 

the linear multiplet formalism of string effective theory. Furthermore, as we will see 

1 However, as we shall see in Section 2.2.2, this identification of gauge coupling constant in 

terms of { £) will be modified in the presence ~f stringy non-perturbative effects [4]. 
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in Chapter 2, stringy effects are believed to be important in the stabilization of the 

dilaton and supersymmetry breaking by gaugino condensation; therefore, it is more 

appropriate to study these issues in the linear multiplet formalism. 

The other new ingredient concerns the effective description of gaugino conden-

-sation. In the known models of gaugino condensation using the chiral superfield 

representation for the dilaton, the gaugino condensate has always been described 

by an unconstrained chiral superfield U which corresponds to the bound state of 

waw"' in the underlying theory. It was pointed out recently that u should be 

a constrained chiral superfield [18, 19, 20, 21] due to the constrained superspace 

geometry of the underlying Yang-Mills theory: 

U - -(Va1fx- 8R)V, 

(j (2.2) 

where Vis an unconstrained vector superfield. Furthermore, in the linear multiplet 

formalism the linear multiplet L and the constrained U, U nicely merge into an 

unconstrained vector superfield V [18], and therefore the effective Lagrangian can 

elegantly be described by V alone. 

The third new ingredient is the stringy non-perturbative effect conjectured by 

S.H. Shenker [4]. It is further argued in [7] that the Kahler potential can in principle 

receive significant stringy non-perturbative corrections although the superpotential 

cannot generically. Significant stringy non-perturbative corrections to the Kahler 

potential imply that the usual dilaton runaway picture is valid only in the weak-
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coupling regime; as pointed out in [7], these corrections may naturally stabilize the 

dilaton.2 

In the next section we describe the linear multiplet formalism of string ef-

fective Yang-Mills theory, whose effective theory below the condensation scale is 

constructed and analyzed in Section 2.3. It is then shown in Section 2.4 that su-

persymmetry is broken and the dilaton is stabilized in a large class of models of 

static gaugino condensation. Here we use the Kahler superspace formulation [34] of 

supergravity, suitably extended to incorporate the linear multiplet [35]. 

2.2 The Linear Multiplet Formalism 

2.2.1 Effective Yang-Mills Theory from Superstring 

In the realm of superstring effective Yang-Mills theory, there are two important 

ingredients, namely, the symmetry group of modular transformations and the linear 

multiplet. In order to make the discussion as explicit as possible in this chapter, we 

consider here orbifolds with gauge group3 E8 ® E6 ® U(l?, which have been studied 

most extensively in the context of modular symmetries [31, 32, 36]. They contain 

three untwisted (1,1) moduli T 1 , I = 1, 2, 3, which transform under SL(2,Z) as 

2Choosing a specific form for possible non-perturbative corrections to the Kahler potential, [48] 

has discu8sed the possibility of stabilizing the dilaton in a model of gaugino condensation using 

chiral superfield representation for the dilaton. However, neither the issue of modular anomaly 

cancellation nor the constraint (2.2) was taken into account. 
3 As for phenomenological consideration, it is more desirable to discuss a generic orbifold. Such 

a non-trivial generalization will be made in Chapter 4. 
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follows: 

aTI- ib 
TI-+ icTI +d' ad-be-: 1, a,b,c,d E Z. (2.3) 

The corresponding Kahler potential is 

G = 'Ll + l:exp(Lq~gi)I<I>AI2 + 0(1~14), (2.4) 
I A I 

where gi = -ln(TI + 'f'I), and the modular weights q~ depend on the particular 

matter field <J.>A as well as on the modulus TI. However, it is well known that the 

effective theory obtained from the massless truncation of superstring is not invariant 

under the modular transformations (2.3) at one loop [37, 38]. Counterterms, that 

correspond to the result of integrating out massive modes, have to be added to the 

effective theory in order to restore modular invariance since string theory is known 

to be modular invariant to all orders of the loop expansion [39). Two types of such 

counterterms have been discussed in the literature [31, 36, 38), the so-called f-type 

counterterms (i.e., stririg threshold corrections) and the ·creen-Schwarz· countert-

erm. The Gree~-Schwarz counterterm, whic~ is analogous to the Green-Schwarz 

anomaly cancellation mechanism in D=lO, is naturally implemented with the lin-

ear multiplet formalism [30). In Chapters 2 and 3 we consider only those orbifolds 

in which the full modular anomaly is cancelled by the Green-Schwarz countert-

· erm alone (i.e., orbifolds with universal modular anomaly cancellation), and more 

generic orbifolds with both types of counterterms present will be considered in 

Chapter 4. Indeed, an orbifold has universal modular anomaly cancellation unless 

its modulus T 1 corresponds to an internal plane which is left invariant under some 
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orbifold group transformations, which may happen only if an N =2 supersymmetric 

twisted sector is present [40]. Therefore, a large class of orbifolds, including the Z3 

and Z7 orbifolds, is under consideration in this chapter. 

The antisymmetric tensor field of superstring theories undergoes Yang-Mills 

gauge transformations. In the effective theory, it can be incorporated into a gauge 

invariant vector superfield L, the so-called modified linear multiplet, coupled to the 

Yang-Mills degrees of freedom as follows: 

a 

(2.5) 
a 

where n is the Yang-Mills Chern-Simons superform. The summation extends over 

the indices a numbering simple subgroups of the full gauge group. The modified lin-

ear multiplet L contains the linear multiplet as well as the Chern-Simons superform, 

and its gauge invariance is ensured by imposing appropriate transformation proper-

ties for the linear multiplet. The generic lagrangian describing the linear multiplet 

coupled to supergravity and matter in the presence of Yang-Mills Chern-Simons 

superform is [31]: 

I< lnL + g(L) + G, 

.c j d40E { -2 + f(L)} + j d40E{bL'2:/}, 
I 

(2.6) 

b 
c 2 

- -bo 
87r2 3 ' 

(2.7) 

where L is the modified linear multiplet and C - 30 is the Casimir operator in 
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the adjoint representation of E8 • b0 is the Es one-loop ,8-function coefficient. The 

first term of £ is the superspace integral which yields the kinetic actions for the 

linear multiplet, supergravity, matter and Yang-Mills fields. The second term in 

(2.6) is the Green-Schwarz counterterm, which is "minimal" in the sense of (31}. 

Furthermore, arbitrariness in the two functions g(L) and f(L) is reduced by there-

quirement that the Einstein term in .C be canonical. Under this constraint, g(L) and 

f(L) are related to each other by the following first-order differential equation [35}: 

L dg(L) = -L dj(L) f(L) 
dL dL + ' '(2.8) 

The complete component lagrangian of (2.6) with the tree-level Kahler potential 

(i.e., g( L) = 0 and f( L) = 0) has been presented in (9] based on the Kahler super-

space formulation. Similar studies have also been performed in the superconformal 

for:rp.ulation of supergravity [8, 10). In the following, we are interested in the effective 

lagrangian of (2.6) below the condensation scale. 

2.2.2 Stringy Effects versus Field-Theoretical Effects 

In this section we would like to illustrate how stringy effects are naturally 

incorporated with the superstring effective field theory using the linear multiplet 

formalism. Consider again the effective field the<?rY defined at the string scale M,. 
' 

The quantum corrections, g(L) and f(L), to the tree-level Kahler potential of (2.6) 

are naturally interpreted as stringy effects. Indeed, in the context of superstring 

L plays the role of string loop expansion parameter (i.e., the string coupling), and 

therefore stringy effects are naturally parametrized by L. Although perturbative 
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contributions to g(L) and f(L) are generically small, yet, as first pointed out by 

Shenker [4], there can be significant stringy non-perturbative contributions .. It is 

then interesting to ask how the. usual relation between the dilaton £ and the gauge 

coupling constant of the effective field theory, g2(Ms) = 2( £),might get modified in 

the presence of stringy effects? It is straightforward to compute the gauge coupling 

constant at the string scale, g(Ms), defined by the effective field theory (2.6) as 

follows: 

(2.9) 

Indeed, the presence of stringy effects do affect the usual interpretation of the gauge 

coupling constant of the effective field theory in terms of the string dilaton. More 

precisely, the linear multiplet formalism naturally distinguishes stringy effects from 

field-theoretical effects; that is, f. is the natural parametrization of stringy effects and 

( 2f./ ( 1 + J( f)) ) is on the other hand the natural parametrization of field-theoretical 

effects. Therefore, the linear multiplet formalism of superstring effective field theory 

has the advantage of incorporating stringy effects with the effective field theory in a 

simple and transparent manner. As mentioned before, this unique feature of linear 

multiplet formalism is crucial to our study here, since stringy non-perturbative 

effects do play an important role in the stringy story of gaugino condensation. 

On the other hand, in the chiral multiplet formalism where the string dilaton 

is described by a chiral superfield S chiral superfield (s = Sle=B·=0 ), S has to be 

re-defined order by order in perturbation, which is clear from the perturbative 

chiral-linear duality. Furthermore, in the chiral multiplet formalism there is no 
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clear distinction between stringy effects and field-theoretical effects; more precisely, 

we always have from the chiral multiplet formalism of the superstring effective field 

theory g2 (Ms) = ( 2/(s + s)) even when stringy effects are included. One may also 

derive this result by a duality transformation from the linear multiplet formalism 

(2.6) to the corresponding chiral multiplet formalism of (2.6). lt has been shown 

[31] that 1/(S + S) corresponds to L/(1 +f) through this duality transformation, 

and therefore the interpretations of g2(Ms) in both formalisms are consistent with 

each other. In c'?nclusion, we emphasize the advantage of using the linear multiplet 

formalism over the chiral multiplet formalism in telling the stringy story of gaugino 

condensation. More evidence of this advantage will be discovered in the following 

sections. 

2.2.3 Low-Energy Effective Degrees of Freedom 

Below the condensation scale at which the gauge interaction becomes strong, 

the effective lagrangian of the Yang-Mills sector can be described by a composite 

chiral superfield U, which corresponds tothe chiral super:field Tr(W0 Wa) of the· un­

derlying theory. (We consider here gaugino condensation of a simple gauge group.) 

The scalar component of U is naturally interpreted as the gaugino condensate. It 

was pointed out only recently that the composite field U is actually a constrained 

chiral superfield [19, 20, 21]. The constraint on U can be seen most clearly through 

the constrained superspace geometry of the underlying Yang-Mills theory. As a. 

consequence of this constrained geometry, the chiral superfield Tr(W0 Wa) and its 
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hermitian conjugate Tr(Wa. wa) satisfy the following constraint: 

(2.10) has a natural interpretation in the context of a 3-form supermultiplet, and 

indeed Tr(WaWa) can be interpreted as the degrees of freedom of the 3-form field 

strength [41]. The explicit solution to the constraint (2.10) has been presented in 

[21], and it allows us to identify the constrained chiral superfield Tr(WaWa) with 

the chiral projection of an unconstrained vector superfield L: 

(2.11) 

Below the condensation scale, the constraint (2.10) is replaced by the following 

constraint on U and [J: 

(VXVa - 24Rt)u - (Va.Va - 24R)U = total derivative. (2.12) 

Similarly, the solution to (2.12) allows us to identify the constrained chiral super:field 

U with the chiral projection of an unconstrained vector superfield V: 

U - -(Va.Va- 8R)V, 

[J = -(VC''Da- 8Rt)V. 

(2.13) is the explicit constraint on U and U. 

(2.13) 

In fact, the constraint on U and [J enters the linear multiplet formalism of gaug­

ino condensation very naturally. As described in Section 2.2.1, the linear multiplet 
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formalism of supersymmetric Yang-Mills theory is described by a gauge-invariant 

vector superfield L which satisfies 

(2.14) 

For the linear multiplet formalism of the superstring effective lagrangian below the 

condensation scale, (2.14) is replaced by 

-('Da'Da- 8R)V - U, 

-(V"'V"'- sRt)v - u, (2.15) 

where U is the gaugino condensate chiral superfield, and V contains the linear 

multiplet as well as the "fossil" Chern-Simons superform. In view of (2.15), it is clear 

that the constraint on U and [J arises naturally in the linear multiplet formalism 

of gaugino condensation. Furthermore, the low-energy degrees of freedom (i.e., the 

linear multiplet and the gaugino condensate) are nicely merged into 'a single vector 

superfield V, and therefore the linear multiplet formalism of gaugino condensation 

can elegantly be described by V alone in the context of superstring. The detailed 

construction of the effective lagrangian for the vector superfield V will be presented 

in the next section. 
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2.3 Gaugino Condensation in Superstring 

Effective Theory 

2.3.1 A Simple Model 

Constructing the linear multiplet formalism of gaugino condensation requires 

th~ specification of two functions of the vector superfield V, namely, the super-

potential and the Kahler potential. In the linear multiplet formalism, there is no 

classical superpotential [19), and the quantum superpotential originates from the 

non-perturbative effects of gaugino condensation. This non-perturbative superp<r 

tential, whose form was dictated by the anomaly structure of the underlying theory, 

was first obtained by Veneziano and Yankielowicz [42, 43, 44, 45). The details of 

its generalization to the case of matter coupled to N=l supergravity in the Ka.hler 

superspace formulation has been presented in [46), and the superpotential term in 

the Lagrangian reads: 

j d40 ~ ~bU In( e-Kf2U f p 3
), 

j d40! ~bti In( e-Kf2[i j p3
), (2.16) 

where U = -('DaTf" -8R)V is the constrained gaugino condensate chiral superfield 

with Kahler weight 2, and J.t is a constant with dimension of mass that is left 

undetermined by the method of anomaly matching. 

As for the Kahler potential for V, there is little knowledge beyond tree level. 

The best we can do at present is to treat all physically reasonable Kahler potentials 
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on the same footing and to look for possible general features and/or interesting 

special cases. In particular, we are interested in a specific class of Kahler pot~ntials 

where there are significant stringy non-perturbative corrections as pointed out in 

[4, 7]. Before discussing this general analysis, it is instructive to examine a simple 

yet un-realistic linear multiplet model for gaugino condensation defined as follows 

[19]: 

I< In V + G, 

G (2.17) 

This simple model describes the effective theory for (2.6) below the condensation 

scale, where the Kahler potential of V assumes its tree-level form. It is a "static" 

model of gaugino condensation in the sense that no kinetic term for U is included. 

From the viewpoint of the anomaly structure, static as well as dynamical models 

of gaugino condensation are interesting in their own right. However, as will be 

discussed in Chapter 3, dynamical models rather than static models generically 

occur in the context of superstrings. Dynamical models of gaugino condensation 

in the linear multiplet formalism [18, 20] have been studied less extensively. On 

the other hand, as will also be shown in Chapter 3, after integrating out the heavy 

modes the static model of gaugino condensation is proven to be the appropriate 

effective description for the dynamical model4 • Therefore, in Chapter 2 we will 

4 Unlike studies using the chiral multiplet formalism in the past, proving such a connection 
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concentrate on static models of gaugino condensation, and there will be no loss of 

generality. 

With U = -('DaVix- 8R)V and V = -('DaVa- 8Rt)V, we can rewrite the 

superpotential terms of Lef 1 as a single D term by superspace partial integration. 

For example, for any chiral superfield X of zero Kahler weight: 

~ j d40 ~Ua lnX + h.c. = j d40 EVa1n(XX) 

-Om (J d4B E~~X Va VaEam + h.c.) , (2.18) 

where Eam is an element of the supervielbein, and the total derivative on the right 

hand side contains the chiral anomaly (ex OmBm ~ F:,_nfi';:n) of the F term on the 

left hand side. Therefore, up to a total derivative, the simple model (2.17) can be 

rewritten as follows: 

K - In V + G, 

(2.19) 

In (2.19), the modular anomaly cancellation by the Green-Schwarz counterterm is 

transparent [19]. The Green-Schwarz counterterm bVG and the superpotential D 

term bV In( e-K[JU / p.6 ) are not modular invariant separately, but their sum is mod-

ular invariant, which ensures the modular invariance of the full theory. In fact, the 

Green-Schwarz counterterm cancels the T 1 moduli-dependence of the superpoten-

tial completely. This is a unique feature of the linear multiplet formalism, and, as 

between static and dynamical gaugino condensation is much more non-trivial in the linear multiplet 

formalism with the constraint on U incorporated consistently. 
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we will see later, has interesting implications for the moduli-dependence of physical 

quantities. 

Throughout this paper only the bosonic and gravitino parts of the compo-

nent lagrangian are presented, since we are interested in the vacuum configuration 

and the gravitino mass. In the following, we enumerate the definitions of bosonic 

component fields of the vector superfield V. 

D 1 f3 -2 S V (V - 8R)V13 V lli=B=o 

1 2 t) iJ I SV13(V - 8R V V li=B=o' (2.20) 

where 

(2.21) 

are the auxiliary components of supergravity multiplet. It is convenient to write 

the lowest components of V 2U and V2U as follows: .. 

2 - -2 -, 
- 4Fu = V Ul8=e=0 , -4Fo = V U li=B=o· (2.22) 

(Fu- Po) can be explicitly expresse.d as follows: 

(2.23) 
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The expression for ( Fu+ Fv) contains the auxiliary field D. The bosonic components 

of T 1 and '1'1 are 

(2.24) 

We leave the details of constructing the component lagrangian for this simple model 

(in the Kahler superspace formulation) to Section 2.3.2, and present here only the 

scalar potential obtained from eliminating the auxiliary fields in the boson La-

grangian given in (2.46) below: 

V. = -
1
-(1 + 2bi- 2b2P)~~6e-lfbl 

pot 16e2£ r- . (2.25) 

Eq. (2.25) agrees with the result obtainea in [IE], where tlie moaeraefinea-oy (2~17) 

was studied for the case of a single modulus using the superconformal formulation 

of supergravity. 

However, this simple model is not viable. As expected, the weak-coupling limit 

i = 0 is always a minimum. As shown in Fig. 2.1, the scalar potential starts with 

'V;,ot = 0 at i = 0, first rises and then falls without limit as i increases. Therefore, 

'V;,ot. is unbounded from below, and this simple model has no well-defined vacuum. 

This may be somewhat surprising because the model defined by (2.17) superficially 

appears to be of the no-scale type: the Green-Schwarz counterterm, that destroys 

the no-scale property of chiral models and destabilizes the potential, is cancelled 

here by quantum effects that induce a potential for the condensate. However the 

resulting quantum contribution to the Lagrangian (2.19), bVIn(UU fV), has an 
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Figure 2.1: The scalar potential Vpot (in reduced Planck units) is plotted versus the 

dilaton e. J.l=l. 

implicit T 1-dependence through the superfield U due to its nonvanishing Kahler 

weight: w( U) = 2. This implicit moduli-dependence is a consequence of the anom­

aly matching condition, and parallels the construction of the effective theory in the 

chiral multiplet formalism [41? 42, 43, 44] which is also not of the no-scale forrri once 

the Green-Schwarz counterterm is inCluded. 

If we take a closer look at (2.25), it is clear that the unboundedness of '~ot in the 

strong-coupling limit e -+ oo is caused by a term of two-loop order: -2b2£2
. This 

· observation strongly suggests that the underlying reason for unboundedness is our 

poor control over the model in the strong-coupling regime. The form of the superpo­

. tential Wvy is completely fixed by the underlying anomaly structure. However the 

Kahler potential is much less constrained, and the choice (2.17) cannot be expected 
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to be valid in the strong-coupling regime where the non-perturbative contributions 

should not be ignored. We conclude that the unboundedness shown in Fig. 2.1 

simply reflects the importance of non-perturbative contributions to the Kahler po-

tential. In particular, it is natural to expect that the stringy non-perturbative effects 

conjectured by Shenker (4, 7] are the non-perturbative contributions to the Kahler 

potential ignored in this simple model. In the absence of a better knowledge of the 

exact Kahler potential, we will consider models with generic Kahler potentials in 

the following sections. 

2.3.2 General Static Model 

In this section, we show how to construct the component lagrangian for generic 

linear multiplet models of static gaugino condensation in the Kahler superspace 

formulation. Further computational details can be found in [9, 34]. Although our 

results can probably be rephrased in the chiral multiplet formalism; the equivalent 

chiral multiplet formalism are expected to be rather complicated because of the 

constraint on the gaugino condensate chiral superfield U. Quite generally we do 

not expect a simple ansatz in one formalism to appear simple in the other. 

As suggested in Section 2.3.1, we extend the simple model in (2.17) to lin-

·ear multiplet models of static gaugino condensation with generic Kahler potentials 

defined as follows: 

I< ln V + g(V) + G, 
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£eff = j d4BE{(-2 + f(V)) + bVG + bVln(e-KVUjp.6
)}. (2.26) 

For convenience, we also write In V + g(V) = k(V). g(V) and f(V) ·represent 

quantum corrections to the tree-level Kahler potential. Here we have chosen to keep 

the Kahler potential under discussion as generic as possible. However, as suggested 

by [7], stringy non-perturbative corrections to the Kahler potential are probably the 

most important non-perturbative corrections. And, as we have discussed in detail in 

·Section 2.2.2, such stringy non-perturbative corrections can be nicely parametrized 

by g(V) and f(V) using the linear multiplet formalism. According to (2.8), g(V) and 

J(V) are unambiguously related to each other by the following first-order differential 

equation: 

vdg(V) = _ vdf(V) 1 dV dV + ' (2.27) 

g(V = 0) = 0 and J(V = 0) = 0. (2.28) 

The boundary condition of g(V) and f(V) at V = 0 (the weak-coupling limit) is 

fixed by the tree-ievel Kahler potential. Before trying to specify g(V) and f(V), 

it is reasonable to assume for the present that g(V) and f(V) are arbitrary but 

bounded. 

In the construction of the component field lagrangian, we use the chiral density 

multiplet method [34], which provides us with the locally supersymmetric general-

ization of the F term construction in global supersymmetry. The chiral density 

multiplet rand its hermitian conjugate r for the generic model in (2.26) are: 
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(2.29) 

In order to obtain the component lagrangian Cef 1, we need to work out the following 

expression 

1 
-Ceff 
e 

1 '1""12 I i (·!. -m)av I 
- 4v r 8=0=0 + 2 'f'm(j or 8=0=0 

(2.30) 

An important point in the computation of (2.30) is the evaluation of the component 

field content of the Kahler supercovariant derivatives, a rather tricky process. The 

details of this computation have by now become general wisdom and we can to a 

large extent rely on the existing literature (47]. In particular, the Lorentz transfer-

mation and the Kahler transformation are incorporated in a. very similar way in the 

Kahler superspace formulation, and the Lorentz connection as well as the so-called 

Kahler connection AM are incorporated into the Kahler supercovaria.nt derivatives 

in a. concise and constructive way. The Kahler connection AM is not an independent 

field but rather expressed in terms of the Kahler potential K as follows: 

A a (2.31) 

(2.32) 

In order to extract the explicit form of the various couplings, we choose to write 

out explicitly the vectorial part of the Kahler connection and keep only the Lorentz 

connection in the definition of covariant derivatives when we present the component 
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expressions. In the following, we give the lowest component of the vectorial part of 

the Kahler connection Am le=B=O for our generic static model. 

A aA . 1 ~1. erA 1 nT. A& 
m = em a: + 2'f'm a + 2'f'm& • (2.33) 

0 0 

- ;gCigt + 1)Bm + i(igt- 2)emaba 

"" 1 -I I + L..J ( I l) (\lmt - \lmt ). 
I 4 t + t (2.34) 

9t 
dg(V) 

dV le=9=o' 9u = 
d2g(V) 

dV2 le=B=O' 

ft 
df(V) 

fu 
d2 f(V) 

(2.35) - dV. le=B=O' - dV2 le=B=O· 

Another hallmark of the Kahler superspace formulation are the chiral superfield 

X a and the antichiral superfield X6 • They arise in complete analogy with usual 

supersymmetric abelian gauge theory except that now the corresponding vector 

superfield is replaced by the Kahler potential: 

1 ° 

- - S(Da'Da - BR)DaK, 

- !cvava- sRt)v&K. 
8 

(2.36) 

In the computation of (2.30), we need to decompose the lowest components of the 

into component fields. This is done by solving the following six simple algebraic 
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equations: 

{2.37) 

(2.38) 

(2.39) 

{2.40) 

(2.41) 

+96RRt. (2.42) 

The identities (2.38), (2.40) and (2.42) arise solely from the structure of Kahler 

superspace. (2.38) and (2.40) involve the torsion superfields Tcb cp and TclxP, which 

in their lowest components contain the curl of the Rarita-Schwinger field. The 

identities (2.37), (2.39) and (2.41) arise directly from the definitions of X 0 , X6 , 

(V"'Xcx + 'D0 X 6 ), and therefore they depend on the Kahler potential explicitly. 

Computing Xcx, xa and ('D"'Xa + 'DaXa) according to (2.36) defines the contents 

of 3a, 3a and ..6. respectively. In the following, we present the component field 

expressions of the lowest components of 3 0 , 3° and ..6.. 
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~ ;gU~91 ·+ 1)( u + ~RM )('lj;mamn'lj;n) 

1 4 - -
-

8
/fg1 + 1)( u + 3£M )('lj;ma-mn'lj;n) 

+ i(fg1 + 1)Emnpq({;man'1f;p)etba 

- ;f(fgl + 1)tmnpq({;man'1f;p)Bq 

The way 3alo=B=O and Salo=D=O are presented in (2.43) will be useful for the com-

putation of (2.30). 

It is unnecessary to decompose the last two terms in (2.43) and in (2.44) because 

they eventually cancel with one another. 

Eqs.(2.31-44) describe the key steps involved in the computation of (2.30}. 
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The rest of it is standard and will not be detailed here. In the following, we present 

the component field expression of Cef f as the sum of the bosonic part £B and the 

gravitino part £ 0 as follows. 5 

- .!.n - -1 
(1 + lg )'\lm£'\JJ 2 4£2 t 

+ 4~2 (fgt + 1)BmBm - (1 + b£) 2t (ti ~ tl)2 vm[I "Vmti 

1 - 1 + -g(fgt - 2)MM - -g(fgt- 2)baba 

"'""' 1 -I I + (1 + bi) L..J ( I l)2F F 
I t + t 

+ 8~{ 1 + f + biln(e-kuujp.6
) + 2bf}(Fu +Fa) 

(2.45) 

1 k 6 2 -
-

8
£{ 1 + f + biln(e- uujp. ) + 3bt(£gt + 1) }( u~ + uM) 

1 
-

16
£2 (1 + 2b£)(1 + lgt)uu 

__ 2ibln(~)"VmBm- i.bl:( I 
1 

l)("VmF- vmti)Bm. (2.46) 
U 2 I t +t 

50nly the bosonic and gravitino parts of the component field expressions are presented here. 
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z ' --4bf(1]mn1]pg- 1]mg7]np)(¢mun¢p)"Vgln(uu) 

+ lbf f.mnpg(i/Jmun'l/Jp) V'g In(~). (2.4 7) 

For completeness, we also give the definitions of covariant derivatives: 

(2.48) 

To proceed further, we need to eliminate the auxiliary fields from Cef f through 

their equations of motion. The equation of motion of the auxiliary field (Pu + Fv) 

IS 

(2.49) 

Eq. (2.49) implies that in static models of gaugino condensation the auxiliary field. 

uu is expressed in terms of dilaton f. The equations of motion of P1 , F1 and the 

auxiliary fields ba, M, M of the supergravity multiplet are (if lgt- 2 =/= 0) 

pi 0, -r - F = 0, 

ba - 0, 

M !bu - 3 
(2.50) - M =-bU. 

4 ' 4 

Now we are left with only one auxiliary field to eliminate, where this auxiliary field 

can be either iln(ufu) or Bm. This corresponds to the fact that the:r:e are two ways 
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to perform duality transformation. If we take i ln(ufu) to be auxiliary, its equation 

of motion is 

(2.51) 

which ensures that {B9 - fi €mnpq('l,bman~p)} is dual to the field strength of an 

antisymmetric tensor [18]. The term BmBm in the lagrangian Ceff thus generates a 

kinetic term of this antisymmetric tensor field and its coupling to the gravitino. The 

other way to perform the duality transformation is to treat Bm as an auxiliary field 

by rewriting the term - fbln(ufu)V'mBm in .Ceff as fbBmY'mln(ii/u), and then to 

eliminate Bm from Cef 1 through its equation of motion as follows: 

(2.52) 

The terms BmBm and fbBmY'mln(ufu) in Ceff will generate a kinetic term for 

iln(ufu). It is clear that iln(ii/u) plays the role of the pseudoscalar dual to Bm 

in the lagrangian obtained from the above after a duality transformation. With 

(2.49-52), it is then trivial to eliminate the auxiliary fields from Ceff· The physics 

of Cef 1 will be investigated in the following sections. 

2.3.3 Gaugino Condensate and the Gravitino Mass 

Hidden-sector gaugino condensation has been a very attractive scheme [15, 16] 

for supersymmetry ·breaking in the context of superstring. However, before we can 

make any progress in superstring phenomenology, two important questions must 
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be answered: is the dilaton stabilized, and is supersymmetry broken? Past analy-

ses have generally found that, in the absence of a second source of supersymmetry 

·breaking, the dilaton is destabilized in the direction of vanishing gauge coupling 

constant (the so-called runaway dilaton problem) and supersymmetry is unbroken. 

To address the above questions in generic linear multiplet models of gaugino con-

densation, we first show how the three issues of supersymmetry breaking, gaugino 

condensation and dilaton stabilization are reformulated, and how they are interre-

lated, by examining the explicit expressions for the gravitino mass and the gaugino 

condensate. A detailed investigation of the vacuum will be presented in Section 2.4. 

The explicit expression for the gaugino condensate in terms of the dilaton f is 

determined by (2.49): 

(2.53) 

With g(£)=0 and f(£)=0, we recover the result of the simple model (2.17) [18]. For 

generic models, the dilaton dependence of the gaugino condensate involves g(l) and 

f(l) which represent stringy non-perturbative corrections to the tree-level Kahler 

potential. Recall that in the linear multiplet formalism the gauge coupling of the 

superstring effective field theory is g2(Ms) = ( 2£/ (1 + f(l)) ). Therefore, it is easy 

to see that the dependence on the gauge coupling constant g(Ms) of the gaugino 

condensate is indeed consistent with the usual results obtained by the renormal-

ization group equation arguments. According to our assumption of boundedness 

for g(l) and f(l) (especially at f =0 where following (2.28) we have the boundary 

conditions g(l = 0)=0 and f(l = 0)=0), f=O is the only pole of g - (f + 1)/bf.. 
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Therefore, we can draw a simple and clear relation between ( uu) and { .l): gauginos . 

condense (i.e., (uu) # 0) if and only if the dilaton is stabilized (i.e., (.l)-:/: 0.) Note 

that this conclusion does not depend on the details of the quantum corrections g 

and f. 

Another physical quantity of interest is the gravitino mass m 0 which is the 

natural order parameter measuring supersymmetry breaking. The expression for 

m 0 follows directly from £ 0 . 

(2.54) 

where we have used (2.49). This expression for the gravitino mass is simple and 

elegant even for generic linear multiplet models of static gaugino condensation. 

From the viewpoint of superstring effective theories, an interesting feature of (2.54) · 

is that the gravitino mass m 0 contains no explicit dependence on the modulus 

T 1, which provides a direCt relation between m 0 and (iiu). This feature can be 

traced to the f~ct that the Green-Schwarz counterterm cancels the T 1 dependence 

of the superpotential completely, a unique feature of the linear multiplet formal­

ism. As we will see in Section 4.5, this unique feature is still.true even in a generic 

string orbifold model. We recall that in the chiral multiplet formalism of gaugino 

condensation - without the condition (2.12) - that have been studied previously 

(with or without the Green-Schwarz cancellation mechanism), m 0 always involves 

a moduli-dependence, and therefore the relation between supersymmetry breaking 

(i.e., m 0 # 0) and gaugino condensation (i.e., (uu) # 0) remains undetermined un-
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til the true vacuum can be found. By contrast, in generic .linear multiplet models of 

gaugino condensation, there is a simple and direct relation, Eq.(2.54): supersymme-

try is broken (i.e., m 0 =f. 0) if and only if gaugino condensation occurs ( {uu) =f. 0). 

We wish to emphasize that the above features of the linear multiplet model are 

unique in the sense that they are simple only in the linear multiplet model. This is 

related to the fact pointed out in Sections 2.1 and 2.2.3 that, once the constraint 

(2.12) on the condensate field U is imposed, the chiral counterpart of the linear 

multiplet model is in general very complicated, and it is more natural to work in 

the linear multiplet formalism. Our conclusion of this section is best illustrated by 

the following diagram:. 

Supersymmetry 
Breaking 

Gaugino 
{::::::} Condensation '¢:::> 

Stabilized 
Dilaton 

The equivalence among the above three issues is obvious. Therefore, in the 

following section, we only need to focus on one of the three issues in the investigation 

of the vacuum, for example, the issue of dilaton stabilization. 

2.4 Supersymmetry Breaking and Stabilization of the 

Dilaton 

As argued in Section 2.3.1, non-perturbative contributions to the Kahler po,. 

tential should be introduced to cure the unboundedness problem of the simple model 

(2.17). In the context of the generic model of static gaugino condensation (2.26), it 

is therefore interesting to address the question as to how the simple model (2.17) 
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should be modified in order to obtain a viable theory (i.e., with Ypot bounded from 

below). We start with the scalar potential Vp0 t arising from (2.46) after solving for 

the auxiliary fields (using (2.49), (2.50) and (2.52)). Recalling that (2.27) yields the 

identity 1 + lgt = 1 + f- lft , we obtain 

(2.55) 

which depends only on the dilaton .e. The necessary and sufficient condition for Vpot 

to be bounded from below is 

f- l/
1 

> -O(le1/bl) for .e --+ 0, 

f - l/1 > 2 for .e --+ oo. 

(2.56) 

(2.57) 

It is clear that condition (2.56) is not at all restrictive, and therefore has no nontriv­

ial implication. On the contrary, condition (2.57) is quite restrictive; in particular 

the simple model (2.17) violates this condition. Condition (2.57) not only restricts 

the possible forms of the function fin the strong-coupling regime but also has im­

portant implications for dilaton stabilization and for supersymmetry breaking. To 

make the above statement more precise, let us revisit the unbounded potential of 

Fig. 2.1, with the tree-level Kahler. potential defined by g(V) = f(V) = 0. Adding 

physically reasonable corrections g(V) and J(V) (constrained by (2.56-57)) to this 

~imple model should not qualitatively alter its behavior in the weak-coupling regime. 

Therefore, as in Fig. 2.1, the potential of the modified model in the weak-coupling 

regime starts with Yp0 t = 0 at .e = 0, first rises and then falls as l increases. On the 

other hand, adding g(V) and f(V) completely alters· the strong-coupling behavior 
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of the original simple model. As guaranteed by condition (2.57), the potential of 

the modified model in the strong-coupling regime is always bounded from below, 

and in most cases rises as .e increases. Joining the' weak-coupling behavior of the 

modified model to its strong-coupling behavior therefore strongly suggests that its 

potential has a non-trivial minimum (at 1!. =f. 0). Furthermore, if this non-trivial 

minimum is global, then the dilaton is stabilized. We conclude that not only does 

(2.56-57) tell us how to modify the theory, but a large class of theories so mod-

ified have naturally a stabilized dilaton (and therefore broken supersymmetry by 

the' argument of Section 2.3.3). In view of the fact that there is currently little 

knowledge of the exact Kahler potential, the above conclusion, which applies to 

generic Kahler potentials subject to (2.56-57), is especially important to the search 

for supersymmetry breaking and dilaton stabilization6 . As discussed in Sections 

2.1 and 2.2.2, the most interesting physical implication of this conclusion is that 

it is actually stringy non-perturbative effects that stabilize the dilaton and allow 

dynamical supersymmetry breaking via the field-theoretical non-perturbative effect 

of gaugino condensation. Furthermore, (2.57) can be interpreted as the necessary 

condition for stringy non-perturbative effects to stabilize the dilaton. 7 

Here we use a simple example only to illustrate the above important argument. 

A more detailed discussion of possible stringy non-perturbative corrections will be 

6Similar points of view was advocated in [48] using the chiral multiplet formalism. However, 

neither modular invariance nor the important constraint (2.12) was considered in [48]. 
7 In the presence of significant stringy non-perturbative effects, (2.57) could have implications 

for gauge coupling unification. This is considered in the study of multi-gaugino and matter con­

densation [14]. 
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Figure 2.2: The scalar potential "V;,ot (in reduced Planck units) is plotted versus the 

dilaton .e. A = 6.92, B = 1 and ,u=l. 

given in Chapters 4 and 5 where a generic and phenomenologically viable model 

is presented. Consider f(V) = Ae- B/V, where A and B are constants to be 

determined by the non-perturbative dynamics. The regulation conditions (2.56-57) 

require A 2:: 2. In Fig. 2.2, "V;,ot is plotted versus the dilaton e, \vhere A = 6.92, 

B = 1 and ,u=l. Fig. 2.2 has two important features. Firstly, "V;,ot of this modified 

theory is indeed bounded from below, and the dilaton is stabilized. Therefore, 

we obtain supersymmetry breaking, gaugino condensation and dilaton stabilization 

in this example. The gravitino mass is m 0 = 7.6 x 10-s in reduced Planck units. 

Secondly, the vev of dilaton is stabilized at the phenomenologically interesting range 

( (.e) = 0.45 in Fig. 2.2). The above features involve no unnaturalness since they 

are insensitive to A. Furthermore, the dilaton is naturally stabilized in a weak 
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coupling regime if B is of order one. ·Fig. 2.2 is a nice realization of the argument 

in the preceding paragraph. It should be contrasted with the racetrack model 

where at least three gaugino condensates and large numerical coefficients are needed 

in order to achieve similar results. Besides, the racetrack model has a serious 

phenomenological problem of having a large negative cosmological constant. We can 

also consider possible stringy non-perturbative contributions to the Kahler potential 

suggested in [4]. It turns out that we obtain the same general features as those of 

Fig. 2.2. This is not surprising since, as argued in the preceding paragraph, the 

important features that we find in Fig. 2.2 are common to a large class of models. 

More such discussions will be presented in Chapters 4 and 5 in conjunction with 

other issues. 

Note that the value of the cosmological constant is irrelevant to the arguments 

presented here and in Section 2.3.3. In other words, the generic model (2.26) suffers 

from the usual cosmological constant problem, although we can find a fine-tuned 

subset of models whose cosmological constants vanish. For example, the cosmolog­

ical constant of Fig. 2.2 vanishes by fine tuning A. It remains an open question 

as to whether or not the cosmological constant problem could be resolved within 

the context of the linear multiplet formalism of gaugino condensation if the exact 

Kahler potential were known. 
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2.5 Concluding Remarks 

We have presented a. concrete example of a. solution to the infamous runaway 

dila.ton problem, within the context of local supersymmetry and the linear multiplet 

formalism for the string dilaton. We considered models for a static condensate that 

reflect the modular anomaly of the effective field theory while respecting the exact 

modular inva.ria.nce of the underlying string theory. The simplest such model [18, 19] 

has a. nontrivial potential that is, however, unbounded in the direction of strong cou-

. piing. Including stringy non-perturbative corrections [4, 7] to the Kahler potential 

for the dilaton, the potential is stabilized, allowing a. vacuum configuration in which 

condensation occurs and supersymmetry is broken. This is in contrast to previous 

analyses, based on the chira.l multiplet formalism for the dilatqn, in which supersym­

metry breaking with a. bounded vacuum energy was achieved only by introducing 

an additional source of supersymmetry breaking, such as a. constant term in the 

superpotentia.l [16, 29, 46]. 

In further contrast to most of the models studied using the chiral multiplet 

formalism,. supersymmetry breaking arises from a. nonva.nishing vacuum expecta­

tion value of the auxiliary field associated with the dila.ton rather than the moduli: 

roughly speaking, in the dual chiral multiplet formalism, (Fs) =j:. 0 rather than 

(F1) =j:. 0. That is, only.the dila.ton participates in supersymmetry breaking (the 

so-called dila.ton-domina.ted scenario.) As we shall see in Chapter 4, this unique 

feature is in fact true in generic string orbifold models, which therefore has non-
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trivial implications for FCNC. As a consequence, gaugino masses and A terms are 

generated at tree level. Although scalar masses are still protected at tree level by 

a Heisenberg symmetry [49], they will be generated at ~ne loop by renormalizable 

interactions8 . For the model considered here, the hierarchy (about five orders of 

magnitude) between the Planck scale and the gravitino mass is insufficient to ac-

count for the observed scale of electroweak symmetry breaking. Of course, this 

is completely due to the large gauge content of the hidden E8 gauge group un-

der consideration in this chapter, and will certainly be improved when a generic 

string model with a product of smaller hidden gauge groups g = ITaYa· In that 

case, we will have to generalize the studies of this chapter by considering multiple 

, gaugino condensation as well as hidden matter condensation. Another unsatisfac-

tory feature of the model presented in Chapter 2 is that, according to (2.55), the 

moduli T 1 remain flat directions of the scalar potential, and therefore the vev of 

t 1 is undetermined. Fortunately, this is a feature belonging only to string models 

with hidden E8 gauge group and no hidden matter. As we shall see in Chapter 4, 

in a generic string model where multiple gaugino condensation as well as hidden 

matter condensation occurs naturally, hidden matter condensation together with 

string threshold corrections9 generates a non-perturbative potential for the moduli 

T 1. Furthermore, the moduli are therefore stabilized at the self-dual point. The 

generalization of our formalism to generic string orbifold models, including model's 

8The situation is more complicated in a generic orbifold model, and will be discussed in 

Chapter 5. 

9 Both are required by modular invariance. 
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without universal anomaly cancellation, will be presented in Chapter 4. 

As mentioned before, we have only dealt with generic models of static gaugino 

condensation in this chapter, but in the context of supergravity or superstrings it 

can be shown that models of dynamical gaugino condensation rather than models 

of static gaugino condensation occur. Therefore, in the next chapter we will answer 

two questions: first, we show how to construct generic models of dynamical gaugino 

condensation using the linear multiplet formalism. Secondly, we study how the 

models of dynamical gaugino condensation are coimected to the models of static 

gaugino condensation, and show that static gaugino condensation is indeed the 

appropriate effective description of dynamical gaugino condensation and therefore 

justify the use of static gaugino condensation in Chapter 2. Notice that the Kalb­

Ramond field (or the model-independent axion, in the dual description) remains 

massless in the static models considered here. It has recently been shown in the 

context of global supersymmetry [20, 18] that an axion mass term is naturally 

generated in models of dynamical gaugino condensation. Again, as we shall see 

in Chapter 3, one of the axions does get a very large mass through dynamical 

gaugino condensation in the context of local supersymmetry. On the other hand, 

after this very heavy axion is integrated out, the resulting axion content is in fact 

the same as that of static gaugino condensation, and we are still left with a massless 

model-independent axion. Furthermore, we will show in Chapters 4 and 5 that this 

model-independent axion axion will pick up a very small mass through multiple 

gaugino condensation. It can escape the cosmological bound on the axion decay 
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constant and it has the desirable properties to be the candidate for the QCD axion. 
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Chapter 3 

Dynamical Gaugino 

Condensation 
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3.1 Introduction 

In Chapter 2, we have studied models of static gaugino condensation using_ 

the linear multiplet formalism. As mentioned before, one of the major motivations 

for studying models of dynamical gaugino condensation is the observation that 

kinetic terms of the gaugino condensate naturally arise from field-theoretical loop 

corrections [19] as well as from classical string corrections [50]. For example, the 

relevant field-theoretical one-loop correction has been computed using the chiral 

multiplet formalism [19, 51]: 

NG J 4 - 2 a a 2 
.Cone-loop 3 

128
71'2 d BE(S+S) (W Wa)(Wa_W) InA, (3.1) 

where A is the effective cut-off and NG is the number of gauge degrees of freedom. 

Therefore, the confined theory using the linear multiplet formalism should contain 

a term which corresponds to (3.1 ): 

:c-. jd4fJE [/U 
Leff J V2' (3.2) 

as well as higher-order corrections (VUjV2
)

2
, (VUjV2t, · · ·. These D terms 

are corrections to the Kahler potential, and will generate the kinetic terms for the 

gaugino condensate U. An interesting interpretation of these corrections is that 

they are S-duality invariant in the sense defined by Gaillard and Zumino [52]. This 

S-duality, which is an SL(2,R) symmetry among elementary fields, is a symmetry 

of the equations of motion only of the dilaton-gauge-gravity sector in the limit of 

vanishing gauge coupling constants. The implication of this S-duality for gaugino 

condensation has recently been studied in [19] using the chiral multiplet formalism. 
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For studies of gaugino condensation in the past where the important constraint 

(2.12) was not included, the connection between static and dynamical gaugino con-

. densation is very easy to see and trivial: static gaugino condensation is just the 

low-energy limit of dyna~ical gaugino condensation after the gaugino condensate is 

integrated out. However, it certainly becomes a non-trivial issue once the constraint 

(2.12) is included, and it is necessary to settle this issue in order to justify the use of 

static gaugino condensation in the context of superstrings or supergravity. There­

fore, in this chapter we would like to study generic models of dynamical gaugino 

condensation. In Section 3.2, the field component Lagrangian for the generic model 

of dynamical gaugino condensation is constructed, and its vacuum structure is an­

alyzed. In Section 3.3, the S-dual models of dynamical gaugino condensation are 

studied. In particular, we show that the model of static gaugino condensation is the 

appropriate effective description for the model of dynamical gaugino condensation 

and its implications. 

3.2 Generic Model of Dynamical Gaugino Condensation 

It will be shown in this section how to construct the component field La­

grangian for the generic model of dynamical gaugino condensation using the Kahler 

superspace formulation of supergravity [34, 35]. Similar to Chapter 2, we consider 

here string orbifold models with gauge groups E8®E6®U(1)2, three untwisted (1,1) 

moduli T 1 (I = 1, 2, 3) [31, 32, 36], and universal modular ariomaly cancellation 

[40] (e.g., the Z3 and Z7 orbifolds). The confined E8 hidden sector is described by 
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the following generic model of a single dynamical gaugino condensate U with 'Kahler 

potential ](: 

K - In V + g(V, UU) + G, 

.CeJJ - j d40 E { ( -2 + f(V, UU)) + bVG} + { j d40 ~ eKf2Wyy + h.c.}, 

G - - 2:ln(T1 + '1'1), 
I . 

(3.3) 

where U - -('D&Va - 8R)V, 0 = -(V011J01 - SRt)V. We also write In V + 

g(V, UU) = k(V, UU). The term ( -2 + f(V, UU)) of .Ceff is the superspace in-

tegral which yields the kinetic actions for the linear multiplet, supergravity, matter, 

and gaugino condensate. The term bVG is the Green-Schwarz counterterm [31] 

which cancels the full modular anomaly here. b = C j81r2 = 2b0 /3, and C = 30 

is the Casimir operator in the adjoint representation of E8 • b0 is the E8 one-loop 

,8-function coefficient. g(V, UU) and f(V, UU) represent the quantum corrections to 

the tree-level Kahler potential. g(V, UU) and f(V, UU) are taken to be arbitrary 

but bounded here. The dynamical model (3.3) is the straightforward generalization 

of the static model (2.26) by including the UU dependence in the Kahler potential. 

Using superspace partial integration (2.18), up to a total derivative we can also 

rewrite (3.3) as a single D term: 

I< - In V + g(V, UU) + G, 

.Ceff - j d40 E { ( -2 + J(V, UU)) + bVG + bV1n(e-KOUj J.£6
)}. (3.4) 

Only the bosonic and gravitino parts of the component field Lagrangian will be 
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presented here. In the following, for convenience and completeness we enumerate 

the definitions of the bosonic component fields: 

e - Vle=B=o' 

o-':erBm - ~ [ Va, Ver] Vle=B=O + ~f_q~erba, 
-2 u - Ule=e=o = -(V - 8R)VIe=8=o, 

u - Ule=B=O = -(V2
- sRt)VIe=B=Ol 

-4Fu 'D
2Uie=9=o, 

- -2-
- -4Fo = V Ule=e=o, 

D - 1 /3 -z B':D (V - SR)Vp Vle=e=o 

1 . 
gV!J(':D2

- 8Rt)V13 VIe=e=o, 

(3.5) 

components of the supergravity multiplet. ( Fu - Po) can be expressed as follows: 

(Fu- Fv) = 4i\1mBm + uM- uM, (3.6) 

and (Fu + P0 ) contains the auxiliary field D. We also write Z _ UU, and its 

bosonic component z = Zlo=B=O = uu. 

The construction of component field Lagrangian using chiral density multiplet 

method [34] has been detailed in Chapter 2, and therefore only the key steps are 

presented here. The chiral density multiplet r and its hermitian conjugate r for the 
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generic model (3.3) are: 

r - - ~(V2 -·SR) { ( -2 + f(V,UU)) + bVG + b~ln(e-KUUfp6)}, 

F - - ~(1:>2 - 8Rt) { ( -2 + f(V, UU)) + bVG + bVln(e-KUUJ p.6)}, (3.7) 

. and the component field Lagrangian Ceff is the same as (2.30). The Amle=e=o for 

the generic model (3.3) is: 

zgz (ii) 
- 4(1- zg,J Y'm In ;; . (3.8) 

The following are the simplified notations for partial derivatives of g: 

_ 8g(l, z) 8g(l, z) 
9t = 8£ ' g,. = 8z (3.9) 

and similarly for other functions. 

We need to decompose the lowest components of the following six superfields: 

where 

1 . 
Xa - - B(Va'Da- SR)'Dai<, 

ga - - ~('Da'Da - sRt)vaK, 

(VCXXa + 'D&Xa) - - ~'D2f>2K - ~1YD2K - va"'DaaK 

- aa& ['Da, Va] I< + 2RtiJ2K + 2WK 
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(3.10) 

This is done by solving the following six algebraic equations: 

(3.11) 

ea 
...... ' (3.13) 

-2R ba + 12GaG ba a 

+ 96RRt. (3.16) 

The computation of (3.10) defines the contents of 3a, :=;c. and ~. ·Eqs. (3.8-16) 

describe the key steps in the computations of (2.30). In the following sections, 

several important issues of this construction will be discussed. 

3.2.1 Canonical Einstein Term 

In order to have the correctly normalized Einstein term in Cef f, an appropriate 

constraint should be· imposed on the generic model (3.3) .. Therefore, it is shown 

below how to compute the Einstein term for (3.3). According to (3.3), the following 
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are those terms in .Ceff that will contribute to the Einstein term: 

;.cef J 3 ~ ( 2 - f + lft - bl(1 + lgt)) ('D2R + V2Rt) le=e=o 

+ 
3
1
2 [zf., + bl(1- zg..)] ( ~VZV2fi + ~15~2U) le=e=o· (3.17) 

Note that the terms 1)'1)2(j and 15'iJ)Z[J are related to 1JOtXa and 'DaX6 through 

the following identities: 

term are obtained by solving (3.15-16): 

2 -z t (V R + V R )le=e=o 

(3.19) 

By combining (3.17-19), it is straightforward to show that the Einstein term 

in .Cef J is correctly normalized if and only if the following constraint is imposed: 

( 1 + zf, )( 1 + lgt) = ( 1 - zg,. )( 1 - lft + f), (3.20) 

which is a first-order partial differential equation. From now on, the study of the 

generic model (3.3) always assumes the constraint (3.20). (3.20) will be useful in 
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simplifying the expression of Cef f, and it turns out to be convenient to define h as 

follows: 

h -
( 1 + zf,.) 
( 1 - zg,. )' 

( 1 - lfl +f) 

( 1 + lgl) 
(3.21) 

Furthermore, the partial derivatives of h satisfy the following consistency condition: 

(3.22) 

Eqs. (3.21-22) will also be very useful in simplifying the expression of Ceff· Notice 

that h = 1 for generic models of static gaugino COJ?-densation, and (3.20) is reduced 

to (2.27). We will show in Section 3.3.2 how to construct physically interesting 

solutions for this partial differential equation (3.20). 

3.2.2 Component Field Lagrangian with Auxiliary Fields 

Once the issue of canonical Einstein term is settled, it is straightforward to 

compute Lef f according to (3.6-13). The rest of it is standard and will not be 

detailed here. Because the component construction of supergravity is well known 

for its complexity, here we try our best to minimize irrelevant details. However, 

two important aspects of this construction using the linear multiplet formalism 

are worth emphasizing: how to solve the constraint (2.12) and how to perform a 

duality transformation for the vector component Bm of V. As we shall see, they have 

non-trivial implications for the axions. Therefore, first we present the component 

Lagrangian with auxiliary fields, and in the next section we show how to perform 
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a duality transformation for Bm. In the following, we present the component field 

expression of Le!f as the sum of the bosonic Lagrangian CB and the gravitino 

Lagrangian Ca. 

;cB - - ~'R. - 4~2 (h- .eht)(l + .e9l)vm.ev;,;. 

+ ~zh%(1 + lgt) vmln(uu) v,.;, 

u h (2- zg.J~m- ~ _ 
+4U z·zg"(1-zg,.)v UvmU 

- ~h [(2 - zg,.) - z l vmu v. u 
2 " (1- zg.) 9,. m 

u h (2- zg,.) ~m ~ 
+ 4u " . zg" (1 - zg") v u v m u 

. - zh" 2:: 1 (Vm[I- vmtl)Vmln(~) 
2(1 - zgz) 1 (ti + tl) . u 

zh" '"' 1 vmF v. F 
+ 4(1- zgz) f:J (t1 + tl)(tJ +F) m 

[ l 
-r J 

1 '"' (h b£)8 zh,. vmt "Vmt 
-2 fJ 2 + IJ + (1 -.zgJ (t1 + t1 )(tJ + tJ) 

' 

zhz '"' 1 vmtl v. tJ 
+ 4(1- zg,.) f:J (tl + fl)(tJ + tJ) m 

(2 - lgt - 3zgJ bab 
+ 9(1- zgz) a 

+ (1 + fgt) BmB 
4£2(1- zgJ m 

+ ~ [ h + bl - (1 _
1 zg,.)l Bm Vmln(:) 
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- 2ih" [1 - zg" - ~(1 + fgt)] ( u.M - uM) vmBm 

1 [ 2 ] - 2 - 4h" 1 - zg" - 3(1 + fgl) ( u.M- uM) 

1 -
-g-[3 + (fht-h)(1+fgt)]MM 

+ ~(fhl + b£)(1 + fgl) 
) ( uM + uM) 

1 - 2 + 4h=(1- zgJ(Fu +Fa) 

ie [1 + f + bfln(e-kuu/JL6
)] 

+ + fe(lht + b£)(1 - zgJ 

- ~h=(l + fgl)( u.M + uM) 

"'""" 1 -1 I + (h + bf) L...J ( I l)2F F 
I t + t 

1 
-

16
£2 (fht + h + 2bf)(1 + fgt)uu. 

- 8~ [ 1 + f + bfln(e.,..kuu/JL6)] u ('l/;m<7mn'l/;n) 

- 8~ [ 1 + f + bfln( e-kuuj JL6
)] u(7f;mo-mn7[;n) 

(Fu +Fa) 

- _41 (h + bf) L ( I 1 I) €mnpq({;mun'l/;p)( "Vq:£1 - "Vqtl) 
I t + t 
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{3.25) 

The bosonic Lagrangian .CB contains usual auxiliary fields and the vector field 

Bm which is dual to an a.xion. The details of this duality and the structure of 

.CB will be discussed in the following sections. The gravitino Lagrangian .C0 is 

in its simplest form. An important physical quantity in .C0 is the gravitino mass 

me; which is the natural order parameter measuring supersymmetry breaking. The 

expression of m 0 follows directly from £ 0 : 

(3.26) 

3.2.3 Duality Transformation of Bm 

As pointed out in [18, 21], the constraint (2.12) allows us to interpret the 

degrees of freedom of U as those of a 3-form supermultiplet, and the vector field Bm 

is dual to a 3-form rnpq. Since a 3-form is dual to a 0-form in four dimensions, Bm 

is also dual to a pseudoscalar a. In this section, we show explicitly how to rewrite 

the Bm part of .CB in terms of the dual description using a. According to (3.24), 

the Bm terms in .C B are: 

+ (1 + fgt) BmB 
4£2(1- zgJ m 

+ ;£ [ h + bf - (1 -lzgz)l Bm 'Vmln(~) 
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i [ 1 l ( vmfi - \lmti ) 
- 2l h + b£ - (1- zgz) ~ (tl + tl) Bm 

- 2ihz [1 - zgz - i(l + lg1 )] ( uM - uM) \lmBm 

(3.27) 

They are described by the following generic Lagrangian of Bm: 

(3.28) 

To find the dual description of CBm, consider the following Lagrangian Cvua.l· 

(3.29) 

In Cvua/, the auxiliary field a acts like a Lagrangian multiplier, and its equation of 

motion is: 

(3.30) 

Therefore, CBm follows directly from LDual using (3.30). On the other hand, we can 

treat the Bm in LDual as auxiliary, and write down the equation of motion for Bm 

as follows: 

(3.31) 

Eliminating Bm from .Cvual through (3.31) and then performing a field re-definition 

a =? a- {3, we obtain the Lagrangian .Ca of a: 

(3.32) 

Therefore, ..Ca is the dual description of !-Bm in terms of a which is interpreted as an 

axion. Notice that dynamical gaugino condensation naturally generates a mass term 
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for the axion a which corresponds to the appearance of non-vanishing (V'mBm? in 

the dual description. The fact that a is massive in dynamical gaugino condensation 

has already been observed in [18, 20]. On the other hand, the (V'mBm)2 term 

vanishes in static gaugino condensation (i.e., hz = 0 in (3.27)), and it is found 

that the model-independent axion dual to Bm is either massless or very light [12, 

14, 18, 20]. This issue of axion mass seems to be a contradiction because we expect 

static gaugino condensation to be the appropriate effective description of dynamical 

gaugino condensation; the resolution is the following: In comparison with static 

gaugino condensation (e.g., [12, 14]), dynamical gaugino condensation contains one 

more axionic degree of freedom a, and indeed a is very massive (e.g., compared 

to the dilaton mass). As will be shown in Section 3.3.1, after integrating out this 

massive axion a, the resulting axionic contents of dynamical gaugino condensation 

are identical to those of static gaugino condensation. Therefore, at low energy we 

are always left with a massless or very light model-independent axion. 

According to (3.27-28) and (3.32), the £eff defined by (3.23-25) is rewritten 

in the dual description as follows: 

(3.33) 

where £kin and £pot refer to the kinetic part and the non-kinetic part of the bosonic 

Lagrangian respectively. £ 0 is defined by (3.25). 
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+~{ 

-~{ 

+~{ 

-~{ 

+~{ 

-~L:{ 2 I,J 

+~{ 
1 
-Cpot -
e 

zh ·zg (2-zg,) 
~ z(1-zg1 ) 

+ (1-zg,) [ h b£ 1 ]2 
(1Hgl) + - (1-zg,) 

zh [ (2-zg,) ] 
" (1-zg,) - zg,. 

+ (1-zg;) [ h bl 1 r 
(l+lgl) + - {1~zg,.) 

zh · zg (2-zg,) 
' '(1-zg,) 

+ (1-zg,) [ h bl 1 r 
(l+lgl) + - (1-zg,) 

zh, 
(1-zg,) 

+ (1-zg,) [ h b£ 1 ]2 
(1Hgl) + - (1-zg,) 

zh, 
(1-zg,) 

+(1-zg,) [h b£ 1 t 
(l+lgl) + - (1-zg,) 

2(h + bl)8rJ + ( zh, ) 1-zg, 

+ (1-zg,) [ h b£ 1 t 
(I+lgl) + - (1-zg,) 

zh, 
(1-zg,) 

+(1-zg,) [h + b£- 1. ]2 
(l+lgl) {1-zg,) 
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} 1 vm-::- u Y'mu 
uu 

} : 2 vmu'llmu 

} cvmjl _ vmtl) C) 
~ (tl +F) Y'mln ~ 

} vmFvmP t.1 (t1 + fi)(tJ + tJ) 

} vmf!v t1 
. (t1 + t1)(t;+ tJ) 

} vmti'IZ t1 E (t1 + t1)(t; + tJ) · 
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r + f + bl!n(e-ku:u/p6 ) 

+ Hthl + bt)(l + tgl) 
] (u.M + UM) 

- i_ [ 1 - (1 + lgt) l ( M- - -M ). 
4 3(1 - zgJ a u u 

1 . - 2 
+ 4h .. (1- zg..)(Fu-+ Fo) 

it [ 1 + f + bt'ln( e-kuu/ ~L6 )] 

+ + ie(lht + b£)(1 - zg,.) 

- ~h .. (l + t'gt)( uM + uM) 

"" 1 -r I + (h + bl) L.J ( I 1)2F F 
I t + t 

1 
-

16
£2 (t'ht + h + 2bt')(1 + t'gt)flu 

. uu 2 
- a 

16zh"(l- zgJ · 

(Fu +Fa) 

(3.35) 

The baba term has been eliminated by its equation of motion, ba = 0, and £kin is 

in its simplest form. Note that the kinetic terms of those axionic degrees of freedom 

a, i ln(u/u) and i(F- t 1) are more complicated, which essentially reflects the non-

trivial constraint (2.12) satisfied by U and 0. An important issue is the structure 

of £pot, and it will be discussed in the next section. 
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3.2.4 The Scalar Potential 

It is straightforward to solve the equations of motion for the auxiliary fields 

ba., pi, pi, M, M and (Fu + Fo) respectively as follows: 

b" - 0, 

pi 0, -I - F = 0, 

M - 3 [ k ] 3iu -
8
£ 1 + f + blln( e- uuf p.6 ) u - 4 a, 

M 3 3iu 
= -

8
£ [ 1 + f + blln( e-kuuf p.6 )] u + 4 a, 

(Fu + Fo) (lh -h) [ k ] uu = l 1 + f + blln( e- uuf p.6 ) -
4zhz e 
(lhl + b£) uu 

(3.36) 
2zhz ·T· 

Note that ( IMI) = 3m0 because (a) = 0 always. To obtain the scalar potential, 

the auxiliary fields are eliminated from CeJJ defined by (3.33), and Ceff is then 

rewritten as follows: 

(3.37) 

where Vpot is the scalar potential. Ckin and £ 0 are defined by (3.34) and (3.25) 

respectively. 
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-'-(2-lg~-3zgJ [1 f bnl ( -k- / 6)]2uu 
64(1- zgz) + + <- n e uu P. (l 

+ 
(h- lh1 - 3zhz)uu 2 

16zh.. a · (3.38) 

Several interesting aspects of lt;ot can be uncovered. Firstly, there is always 

a trivial vacuum with ( lt;ot) = 0 in the specific weak-coupling limit defined as 

follows: 

1 .e --+ 0, z --+ -lp.6 e-l/bi --+ 0, . and g(l, z), f(l, z) --+ 0. 
e2 

(3.39) 

Note that quantum corrections to the Kahler potential, g and J, should vanish in. 

this limit. As expected, this is consistent with the well-known runaway behavior of 

the dilaton near the weak-coupling limit. 

To proceed further, in the following of this section we only study 'V;ot in the 

z ~ 1 regime. Since a physically interesting model of dynamical gaugino conden-

sation should predict a small scale of condensation (i.e., ( z) ~ 1), there is no loss 

of generality in this choice. Note that in the z ~ 1 regime we have h ~ 1, lh1 ~ 0, 

zh= ~ 0 and zg= ~ 0 up to small corrections that depend on z. The structure 

of 'lt;ot can be analyzed as follows: The only axion-dependent term in Vpot is the 

effective axion mass term, the last term in 'lt;ot· In order to avoid a tachyonic axion, 

the sign of the effective axion mass term must be positive. Therefore, the absence 

of ,a tachyonic axion requires zh= > 0, which is the first piece of information about 

the UU-dependence of the dynamical model. Furthermore, (a) = 0 always, and 

therefore the last term in 'lt;ot is of no significance in discussing the vacuum struc-

ture. Because of zh= > 0, the second term in lt;ot is always positive. The signs of 
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the first term and the third term in 'Vp0 t remain undetermined in general; however, 

near the weak-coupling limit the first term is positive and the third term is negative 

(which is expected because the third term is the contribution of auxiliary fields M 

and M). Notice that the second term in V,ot contains a factor 1/zhz (1/zhz ~ 1), 

and therefore it is the dominant contribution to V,ot except near the path 1 de­

fined by { 1 + f + blln(e-"uufp.6
) + 2(lht + b£)(1- zgJ} = 0. Hence, the vacuum 

always sits close to the path 'Y· This observation will be essential to the following 

discussion of vacuum structure. 

The second piece of information about the UU-dependence of the dynamical 

model can be obtained as follows. For 0 < l < oo, the first term and the third term 

in 'Vp0 t vanish in the limit z -+ 0 generically. If h'" has a pole at z = 0, then the 

second term in 'Vp0 t also vanishes for z-+ 0 and 0 < l < oo. Therefore, for those 

dynamical models whose h= has a pole at z = 0, there exists a continuous family of 

degenerate vacua (parametrized by ( l)) with ( z ) = 0 (no gaugino condensation), 

m{; = 0 (unbroken supersymmetry) and (V,ot) = 0. In other words, in the vicinity 

of z = 0 those models always exhibit runaway of z toward the degenerate vacua at 

z = 0 which do not have the desired physical features; whether those models may 

possess other non-trivial vacuum or not is outside the scope ofthis simple analysis. 

On the other hand, the dynamical models whose hz has no pole at z = 0 are 

much more interesting. If hz has no pole at z = 0, then V,ot -+ oo for z -+ 0 and 

0 < l < oo. Therefore, these dynamical models exhibit no runaway of z toward 

z = 0 except for the weak-coupling limit (3.39). Furthermore, the equation of 
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motion for z is 

(3.40) 

Impose (3.40), and from (3.26) we have the gravitino mass ma = ~b( lui) + 

0 (z312h .. ). To the lowest order, it is identical to the ma of static gaugino conden­

sation, (2.54); therefore, similar to Section 2.3 we can argue that supersymmetry is 

l. 

broken if and only if the dilaton is stabilized for dynamical gaugino condensation. In 

fact, for dynamical models whose hz has no pole at z = 0, it can be shown that they 

are effectively described by static gaugino condensation of Chapter 2. As pointed 

out in Section 3.1, kinetic terms of the gaugino condensate U naturally arise in 

generic string models, where these terms are S-duality invariant and correspond to 

corrections UU/V2, (0UjV 2)
2

, ···to the Kahler potential. This interesting class 

of S-dual dynamical gaugino condensation obviously belongs to dynamical models 

whose hz has no pole at z = 0 discussed here. In Section 3.3, S-dual dynamical 

gaugino condensation will be studied in detail. 

3.3 S-Dual Model of Dynamical Gaugino Condensation 

As discussed in Section 3.1, we consider in this section models of dynamical 

gaugino condensation where the kinetic terms for gaugino condensate arise from the 

S-dualloop corrections defined by (3.2). More precisely, we consider the following 

dynamical model: 

K - In V + g(V, X) + G, 
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.Cefl = j d40E { ( -2 + f(V,X)) + bVG + bVln(e-KUU/JL6
) }, (3.41) 

(2+ x :i) (1- v:~) = (2-x ;_i) (1- J+ v!?). (3.42) 

For convenience, we have written the S-dual combination (UU)~ /V as a vector 

superfield X, and therefore its lowest component x =·XIe=9=o is x = (uu)ij£ = 

vzfi. Eq. (3.42) guarantees the correct normalization of the Einstein term. 

g(V, X) and f(V, X) satisfy the boundary condition in the weak-coupling limit 

defined by (3.39). We also assume that g(V, X) and f(V, X) have the following 

power-series representations1 in terms of X 2: 

Furthermore, g(n)(V) and J(n)(V) (n > 0) are assumed to be arbitrary but 

bounded here. The interpretation of each term in (3.43) is obvious: As has been 

discussed in Section 2.2.2, in the linear multiplet formalism gC0>(V) and j<0>(V) 

are to be identified as stringy (non-perturbative) corrections to the Kahler poten-

tial. g(n)(V)·X2n and f(n)(V)·X 2n (n ~· 1) are therefore S-dualloop corrections 

to the Kahler potential in the presence of stringy (non-perturbative) effects. 

It is also more convenient to use the coordinates ( £, x ) instead of ( l, z ) 

for the field configuration space. The component field expressions constructed in 

Section 3.2 can easily be rewritten in the new coordinates ( £, x) according to the 

1 It should be noted that one can actually start with a more generic dynamical model by 

considering more generic g(V, X) and f(V, X) , and the discussions of Section 3.3 remain valid. 
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. following rules: 

zg,. (3.44) 

where 

_ 8g(l,x) _ 8g(l,x) 
gl = 8l ' g,. = ax (3.45) 

on the right-hand side of (3.44) are to be understood as partial derivatives in the 

coordinates ( f, x ). The scalar potential of this generic model follows directly from 

(3.38): 

+ 1 { 
16xh,.( 2 - xg"') + ( 2 - xg,. )( lhl - xh,. + bl) 

( 4-2lg -xg )[ ]2 
- l '" 1 + f + blln(e-kuujp.6

) x 2 

64(2 - xg,.) . 

( 2h - 2fhl - xh,. )uu 2 + a. 
16xh"' 

(3.46) 

The kinetic terms also follow directly from (3.34). Th~ absence of a tachyonic axion 

requires xh"' > 0. 

3.3.1 Effective Description of Dynamical Gaugino Con­

densation 

As discussed in Section 3.1, one of the major motivations for studying dy-

namical gaugino condensation is to understand how static gaugino condensation 

71 



could emerge as the effective description of dynamical gaugino condensation after 

all the heavy modes belonging to dynamical gaugino condensation are integrated 

out. Unlike studies in the past where the important constraint (2.12) on the gaugino 

condensate chiral superfield U is ignored, proving the above connection is certainly 

non-trivial. From this point of view, our construction in Section 3.2 can be regarded 

as efforts to solve (2.12) in the context of dynamical gaugino condensation using 

the linear multiplet formalism, and the above connection is actually obvious after 

(2.12) is explicitly solved. In order to make the following discussion as explicit as 

possible, in this section we choose to study S-dual dynamical gaugino condensation. 

However, we would like to emphasize that our discussion is actually valid for any 

dynamical model whose h,. has no pole at z = 0. 

Firstly, the axionic contents of dynamical gaugino condensation are a, iln(V.fu) 

and i(F- t1). Since a physically interesting model of dynamical gaugino conden-

sation should predict a small scale of condensation (i.e., ( x) ~ 1), it is clear· from 

(3.46) that generally the condensate x and the axion a are much heavier than the 

other fields, and therefore should be integrated out. It is straightforward to inte-

grate out d and x through their equations of motion: The equation of motion for a 

is a = 0. The equation of motion for x· is: 

(3.47) can be re-written in a more instructive form: 

6 

X
2 = .!!_ g(O)- (I+f(O))fbt + P')( 4) 

e2£ e v x , (3.48) 
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where we have used the fact that g ~ g<0>, f ~ f(o), h ~ 1, lg~, ~ £g(o), lf~, ~ £j(O), 
) . l l 

lh~. ~ 0, xg"' ~ 0, xfz ~ 0 and xhz ~ 0 up to corrections of order O(x2). The 

(bosonic) effective Lagrangian, Ce!J = Lkin - e'Vp0t, of the dynamical'model 

(3.34,46) after integrating out a and x is as follows: 

(3.49) 

where 

(3.50) 

(3.51) 

Furthermore, (3.42) leads to £gi0> =f(o)- lf}0> to the lowest order in x 2
• 

In comparison with static gaugino.condensation studied in Chapter 2, it is clear 

that the effective Lagrangian of dynamical gaugino condensation after integrating 

out the heavy fields are indeed identical to the Lagrangian of the static model, 
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(2.46), to the lowest order in x 2
• Note that, in (3.51), the O(x4 ) terms do not 

depend on the remaining axionic degrees of freedom (i.e., iln(ufu) and i(fl -t1)), 

and therefore these remaining a.xions are massless as they should be in static gaugino 

condensa.tion2 [12]. In conclusion, after integrating out the heavy modes the a.xions 

left in the effective theory of dynamical gaugino condensation are identical to those 

of static ga.ugino condensation. Consistently there is always a. massless (or very 

light in· multiple ga.ugino condensation [14]) model-independent a.xion. According 

to the equation of motion for x, (3.48), x2 ~ 1 actually holds for any value of l. 

It implies that only the lowest-order terms of (3.49) and (3.51) are important, and, 

as we have expected and now prove here, the static model of gaugino condensation 

is indeed the appropriate effective description of the dynamical model. This proof 

therefore justifies the use of static gaugino condensation in Chapter 2. 

This proof also implies that the necessary and sufficient condition for lt;ot of 

dynamical gaugino condensation to be bounded from below is exactly the same as 

that of static gaugino condensation (2.57), 

for l -+ oo, (3.52) 

which depends only on stringy non-perturbative effects g<0> and f(o). (3.52) does 

not depend on the details of S-dual loop corrections, and therefore it holds for 

genericS-dual dynamical models. Furthermore, (3.52) implies that only s~ringy non-

perturbative effects are important in stabilizing the dila.ton, and therefore allowing 

2 As pointed out in [14] as well as in Chapter 4 here, these axionic degrees of freedom naturally 

acquire different masses in scenarios of multiple gaugino condensation. 
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supersymmetry breaking via gaugino condensation. S-dualloop corrections play no 

role in this issue, and S-dualloop corrections alone cannot stabilize the dilaton. As 

discussed in Section 2.4, (3.52) can also be interpreted as the necessary condition 

for the dilaton to be stabilized. 

3.3.2 · Solving for Dynamical. Gaugino Condensation 

In the previous section, the dynamical model of gaugino condensation is ana­

lyzed through its effective Lagrangian after integrating out the heavy modes. One 

can also analyze the dynamical model directly, and obtain the same conclusion: 

Here, we would like to present a typical example of dynamical gaugino condensa­

tion as a concrete supplement to the analysis of Section 3.3.1. Solving for dynamical 

gaugino condensation is generically difficult due to the partial differential equation, 

(3.20) or (3.42), which guarantees the correct normalization of the Einstein term. 

On the other hand, only those solutions of (3.20) which are of physical interest 

deserve study. Therefore, in the following we show explicitly how to construct the 

solution for the interesting S-dual model of dynamical gaugino condensation de­

fined by (3.41-43). In order to simplify the presentation but leave the generality 

of our conclusion unaffected, we choose a specific form for J(V, X) in the following 

discussion: f(V, X) = f( 0)(V) + cX2 , where c is a constant and lei is in princi­

ple a small number because X -dependent terms arise from loop corrections.· In 

this restricted solution space, (3.42) together with the boundary condition (3.39) 

can be re-expressed as an infinite number of ordinary differential equations with 
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appropriate boundary conditions (evaluated at 0 = e = 0) as follows: 

for n 2: 2. (3.53) 

The associated boundary conditions in the weak-coupling limit are: 

(3.54) 

Therefore, g(V, X) is unambiguously3 related to f(V, X) in this interesting solution 

space. 

Firstly, notice that the boundedness of g(n) and j<n) can be guaranteed if (3.52) 

is satisfied. Therefore, the solution defined by (3.53-54)4 exists at least for viable 

dynamical. models in the sense of (3.52). Secondly, g(n) is suppressed by a small 

factor lc:ln, which is obvious from (3.53-54). Therefore, the solution defined by 

(3.53-54) converges for x2 < 0 (1/c:). Since a physically interesting model of gaug-

ino condensation should predict a small scale of condensation (i.e., ( x2 ) ~ 1), this 

3 In fact, there is one free parameter (3 involved due to the fact that g~n)(£ = 0) is not well­

defined in (4.15); this ambiguity can be parametrized by g~n)(£ = 0) = ntn-lp. We take /3 = 0 

here. 

4The generalization to generic f(V, X) is straightforward. 
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Vpot 
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X 

Figure 3.1: The scalar potential Vpot (in reduced Planck units) is plotted versus I! 

and x. A= 6.8, B = 1, c: = -0.1 and Jt=l. (The rippled surface of Vpot is simply 

clue to discretization of the /!-axis.) 

solution does cover the regime of physical interest. 5 

(3.52) is the necessary condition for stringy non-perturbative effects to stabi-

lize the dilaton. By looking into the details of the scalar potential, it can also be 

argued [12] that stringy non-perturbative corrections to the Kahler potential may 

naturally ·stabilize the dilaton if (3.52) is satisfied. In the following, the solution 

defined by (3.53-54) is used to construct a typical realization of this argument. 

Furthermore, it is the typical feature of this .example rather than the specific form 

of g(V, X) and f(V, X) assumed in this example that we want to emphasize. In 

5This solution can in principle be extended into the x 2 > 0 (1/t:) regime using the method of 

characteristics. 
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Figure 3.2: Xmin(f) is plotted versus .e for Figure 3.1. 

Fig. 3.1, the scalar potential "V;ot is plotted versus .e and x for an example with 

f(V, X)= J<0)(V) + cX2 and J(o)(V) = A-e-BIV_ There is a non-trivial vacuum 

with the dilaton stabilized at (f) = 0.52, X stabilized at (X) = ( yuuj f) = 0.0024, 

and (fine-tuned) vanishing vacuum energy ( "V;ot) = 0. Supersymmetry is broken 

at the vacuum and the gravitino mass me= 4 x 10-4 in reduced Planck units. To 

uncover more details of dilaton stabilization in Fig. 3.1, a cross section of 1~ot is 

presented in Fig. 3.3. More precisely, with the value of .e fixed, Vpot is minimized 

only with respect to x; the location of this minimum is denoted as (f, Xmin(t')). 

The path defined by ( .e, X min (f)) is shown in Fig. 3.2. The cross section of 1~ot 

is obtained by making a cut along (.e, Xmin(f)); that is, the cross section of Vpot 

is defined as v:ot(.e) - "V;ot (.e, Xmin(f)). Fig. 3.3 shows that the dilaton is indeed 

stabilized at (.e) = 0.52. Therefore, we have presented a concrete example with · 
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Figure 3.3: The cross section of the scalar potential, v;ot(t') = l~ot (£, Xmin(t')) (in 

reduced Planck units), is plotted versus .e for Figure 3.1. 

stabilized dilaton, broken supersymmetry, and (fine-tuned) vanishing cosmological 

constant. As pointed out in Sections 2.1 and 2.5, this is in contrast with condensate 

models studied previously [3, 16, 28] which either need the assistance of an addi-

tional source of supersymmetry breaking or have a. large and negative cosmological 

constant problem. 

3.4 Concluding Remarks 

The field component Lagrangian for the linear multiplet formalism of generic 

dynamical gaugino condensation is constructed and studied. A major conclusion of 

this chapter is that static gaugino condensation is indeed the appropriate effective 

description of dynamical gaugino condensation after the heavy modes are integrated 
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out. Some issues about the axions are also clarified. This justifies our studies in 

Chapter 2, and allows us to use static gaugino condensation in constructing more 

realistic models in Chapter 4. 
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Chapter 4 

Gaugino and Matter 

Condensation in Generic String 

Models 
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4.1 Introduction 

It was recently shown how to formulate gaugino condensation using the linear 

multiplet [8, 30] formalism for the dilaton superfield, both in global supersymme­

try [18, 20] and in the superconformal formulation of supergravity [18]. Using the 

Kahler superspace formulation of supergravity [34, 35], which we use throughout 

this study, it was subsequently shown [19] how to include the Green-Schwarz term 

for a string model with a pure Yang-Mills E8 hidden sector. In this case there are 

no moduli-dependent threshold corrections and there is a single constant - the Es 

Casimir C -that governs both the Green-Schwarz countertenn and the coupling 

renormalization. This model of gaugino condensation has been studied in detail 

in Chapters 2 and 3, where it was found that the dilaton can be stabilized at a 

phenomenologically acceptable value with broken supersymmetry if stringy non­

perturbative corrections [4, 7] to the Kahler potential are included. However, the 

model studied in Chapters 2 and 3 has several drawbacks from the viewpoint of 

phenomenology. As discussed in Section 2.5, due to the large gauge content of E8 a 

sufficiently large gauge hierarchy is not generated. Furthermore, the string moduli 

T 1 re~ain fiat directions. As we have pointed out, these unsatisfactory features 

belong only to the specific string model with with a pure Yang-Mills E8 hidden 

sector, and therefore are not generic at all. As we will see, in a generic string model 

the hidden sector contains a product of smaller gauge groups. Therefore, a large 

enough gauge hierarchy could be generated naturally. Furthe:tmore, a generic string 
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model contains hidden matter, and together with string threshold corrections the 

hidden matter condensation lifts the flat directions associated with the moduli. 

Consider a generic string model whose hidden sector gauge group is a product 

of simple groups: Q = ITa 9a· On~ immediate difficulty is the following: since we 

need to describe several gaugino condensates Ua ~ Tr(WaWa)a and each gaugino 

condensate Ua is constrained by (2.12) separately, therefore according to (2.13) we 

need to introduce several vector superfields Va. However, since the theory has a ' 

single dilaton .e, it must be identified with the lowest component of V = LaVa. 

What should we do with the other components fa = Val 8:e·=o? We will see that, 

in our description, these are non-propagating degrees of freedom which actually do 

not appear in the Lagrangian. Similarly only one antisymmetric tensor field (also 

associated with V = La Va) is dynamical. This allows us to generalize our approach 

to the case of multiple gaugino condensation. 

Let us stress that the goal is very different from the so-called "racetrack" 

ideas [3] where resorting to multiple gaugino condensation is necessary in order 

to get supersymmetry breaking. Here supersymmetry is broken already for a si~gle 

gaugino condensate. Indeed, we willsee that the picture which emerges from multi­

ple gaugino condensation (complete with threshold correction~ and Green-Schwarz 

mechanism) is very different from the standard "racetrack" description: indeed, the 

scalar potential is largely dominant by the condensate with the largest one-loop 

beta-function coefficient. 

To be more precise, we generalize in this chapter the Lagrangian (2.26) studied 
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in Chapter 2 to string models with arbitrary hidden sector gauge groups and with 

three untwisted (1,1) moduli T 1• We take the Kahler potential for the effective 

theory at the condensation scale to be: 

K = k(V) + l:g1
, g1 = -ln(T1 + '1'1), 

I 
(4.1) 

where the Va are vector superfields and n is the number of (asymptotically free) 

nonabelian gauge groups 9a in the hidden sector: 

n 

ghidden = II 9a. ® U(l)m. (4.2) 
a.=l 

We will take Qhidden to be a subgroup of E8 • In general, there will be hidden matter 

associated with the hidden sector gauge groups. 

We introduce both gaugino condensate superfields Ua and hidden matter con-

densate superfields rra that are non-propagating: 

Ua. ~ Tr(WaWa)a, rra ~II (~A) n~' (4.3) 
A 

where Wa and ~A are the gauge and matter chiral superfields, respectively. The 

matter condensate rra is a chiral superfield of Kahler weight w = 0, while the 

gaugino condensate Ua associated with gauge subgroup 9a is a chiral superfield of 

Kahler weight w = ·2, and is identified with the chiral projection of Ya: 

We are thus introducing n scalar fields la = Va.le=B=O·, However only one of these 

is physical, namely l =La. la.; the others do not appear in the effective component 

Lagrangian constructea below. 
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The effective Lagrangian for multiple gaugino condensation is constructed and 

analyzed in Sections 4.2-4.5. In an appendix we dis~uss a par8JJ.el construction using 

the chiral supermultiplet representation for the dilaton and unconstrained chiral 

supermultiplets for the gaugino condensates in order to illustrate the differences 

between the two approach_es and the significance of including the constraints· ( 4.4). 

4.2 Construction of the Effective Lagrangian 

We adopt the following superfield Lagrangian: 

(4.5) 

where 

CKE = j d4 8 E [-2 + f(V)], k(V) = ln V + g(V); (4.6) 

is the kinetic energy term for the dilaton, chiral and gravity super:fields. The func-

tions f(V),g(V) parameterize stringy nonperturbative effects. According to (2.8), 

they are related by the following first-order differential equation: 

vdg(V) = _ vdf(V) 1 dV · dV + ' (4.7) 

which ensures that the Einstein term has canonical form [12]. In the classical limit 

g = f = 0; we therefore impose the boundary condition at the weak-coupling limit: 

g(V = 0) = 0 and f(V = 0) = 0. (4.8) 
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Two counterterms are introduced to cancel the modular anomaly [31], namely the 

Green-Schwarz counterterm [37, 38]: 

CGs = b j d4BEVL:l, 
I 

c 
b = 87r2' (4.9) 

and the term induced by string loop corrections (36): 

"' b~ J 4 E 2( I) Cth = - ;.; 647r2 d 0 R Ua In 1J T + h. c .. (4.10) 

The parameters 

b! = C- Ca + 2: (1- 2qf) C1, C = CE8 , 

A 

(4.11) 

vanish for orbifold compactifications with no N = 2 supersymmetry sector [40]. 

Here Ca and C1 are quadratic Casimir operators in the adjoint and matter repre-

sen~ations, respectively. qf are the modular weights of the matter superfields ~A 

of the underlying hidden sector. The term 

(4.12) 

where p, is a mass parameter naturally of order one in reduced Planck units (which 

we will set to unity hereafter), is the generalization to supergravity [43, 44] of 

the Veneziano-Yankielowicz superpotential term generated by condensation, includ-

ing [54] the gauge invariant composite matter fields rra introduced in eq. ( 4.3) (one 

can also take linear combinations of such gauge invariant monomials that have the 

same modular weight). Finally 

(4.13) 
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is a superpotential for the hidden matter condensates rra that respects the symme-

tries of the superpotential W ( q>A, T 1) of the underlying theory. 

The coefficients b~ and b~ in ( 4~12) are dictated by the chiral and conformal 

anomalies of the ·underlying field theory. Under modular transformations, we have: 

TI aT1 - ib 
ad- be= I, a, b,c,d E Z, -+ 

icTI + d' 

l -+ g! +HI+ fii, H1 = 1n(icT1 +d), 

q,A -+ - E HiqAq;A e I I , 

A a -+ 
_i E JmHI). e 2 I a, XA-+ et LI(iimHI-2qfHI)XA' i E I 8-+ e-:z IImH 8, 

Ua -+ -il: JmHiu. e J a, rra -+ e- LIHiqfrra' 

(4.14) 

The field-theoretical loop correction!) to the effective Yang-Mills Lagrangian from 

orbifold compactification have been determined [31, 32] using supersymmetric regu-

larization procedures that ensure a supersymmetric form for the modular anomaly. 

Matching the variation under (4.14) of that contribution to the Yang-Mills La-

grangian with the variation of the effective Lagrangian ( 4.12) we require 

(4.15) 

which implies 

'V I. {4.16) 
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In the fiat space limit where the reduced Planck mass1 M' p ~ oo, under a canonical 

scale transformation 

we have the standard trace anomaly as determined by the ,8-functions: 

(4.17) 

which requires 

(4.18) 

Eqs. (4.16) and (4.18) are solved by [54] (up to O(M'f,1
) corrections) 

""' ba A ""' C1 L...., ana = L..J 47r2. 
a,A A 

. ( 4.1~) 

Note that the above arguments do not completely fix Ceff since we can a priori add 

chiral and modular invariant terms of the form: 

~£ = L b~01 j d48EVa In (eLrqf91 IT01ll0
). 

a,a 
(4.20) 

For specific choices of the b~OI the matter condensates rra can be eliminated from 

the effective Lagrangian. However the resultintfcoiri.porient Lagrangian has a linear 

dependence on the unphysical scalar fields la - R.b, and their equations of motion 

impose physically unacceptable constraints on the moduli supermultiplets. To en-

sure that ~£ contains the fields la. only through the physical combination Ea.la., 

1The reduced Planck mass M'p = Mpjy'Si, where Mp is the Planck mass. 
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we have to impose b~a = b~ independent of a. If these terms were added, the last 

condition in ( 4.19) would become 

~ba A+~b' A ~ c: 
L...J a ncr L..J crncr = L..J 47r2. 
cr,A A A 

(4.21) 

We shall not include such terms here. 

Combining ( 4.11) with ( 4.19) gives b~ = 81r2 (b- b~- La b~q[). Combining 

the terms ( 4.6)-( 4.13) by superspace partial integration (2.18), the "Yang-Mills" 

part of the Lagrangian ( 4.5) can be expressed - up to a total derivatives that we 

drop in the subsequent analysis - as a modular invariant D term: 

Ceff - j d48 E(- 2 + f(V) + ~Va{ b~ln(UaUa/e9V) + ~ b~In (rr~fi~) 

- ~ 8~2ln [(TI + ti) I1J2(TI)I2]}) + Cpot, (4.22) 

where 

II~ = IT (<I>~ t~ = eLr q'f91 12ITcr, <I>~ = eLr qfg
1

f2<J>A, (4.23) 
A 

is a modular invariant field composed of elementary fields that are canonically nor-

malized in the vacuum. The interpretation of this result in terms of renormalization 

group running will be discussed below. We have implicitly assumed affine level-one 

compactification. The generalization to higher a.ffine levels is trivial. 
' 

The cqnstruction of the component field Lagrangian obtained from ( 4.22) para!- ·. -:-

leis that given in Section 2.3.2 for the case g = E8 • Since the superfield Lagrangian 

is a sum ofF terms that contain only spinorial derivatives of the superfield Va, and 

the Green-Schwarz and kinetic terms that contain Va only through the sum V, the 
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unphysical scalars fa appear in the component Lagrangian only through the physical 

dilaton £. The result for the bosonic Lagrangian is: 

1 1 ( ) ""' 1 ( m -I _q I -I I) - cB - - -
2 
n - 1 + b£ ~ ( 1 -1)2 a t Umt - F F 

e 1 t + t 

- 1~£2 (1 + fgt) [4(8mea;;- BmBm) + uu- 4eKI2f (Wu + uW)J 

where 

+ ~ (fg,- 2) [MM- bmbm-H M (~b;u,- 4WeKI') +h.c.}] 

1' {!+1 -+ 8 E -e- + b~ ln(e2-Kuaua) + L b~ ln(7r~7r~) 
a a 

+ ~ [bl- 4~2 lnl~(t1)1']} (F.- u.M +h.c.) 

- 1~ ~ [b~ (1 +fg,)Uu.- 4fu. (~<= + (b~- b) 2:.:11 ) +h.c.] 

i_""' [b' 1 (ua) ""'bal (7ra)] '\!mBa - ~""' omlmtl B + 2 ~ a n - + ~ a n -a m 2 ~ R tl m' 
a Ua a 7r I e 

+ E 1!~2 [ (( t1
) ( 2iB::v mt

1 
- UaF

1
) +h. c.] 

!,a 

(4.24) 

_1_81](t) 00 

((t) - 1J(i) = e-?rt/12 IT ( 1- e-2mm)' 
1}(t) 8t ' m=l 

e - Vlo=6=o, 

mBa ~[Va, 'Da ]Vale=B=O + ~faO":a;bm, Bm-"i:Bm O"~ix m - - a' a 

-2 
u = l:ua, Ua - Uale=B=O = -('D - SR)Vale=B=O' 

a 

Ua - Ualo=B=O = -('D2 
- 8Rt)Valo=B=O' u = l:ua, 

a 
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-4Fa 1J
2
Uale=6=o' -4Fa -2- Fu=l:Fa, - = 1) Uale=B=O' 

a 

7rcr - flcrle=B=O jfcr = ficrle=B=O 

-4Fcr 1)
2 flcr le=B=O' -4Fcr -2-cr - = 1J II le=e=o, 

e - Tile=e=o' -4FI = 1J
2Tile=e=o' 

-I -I -4FI = -2- I 
t - T le=B=o, 1J T le=D"=o, ( 4.25) 

bm and M = (M)t = -6Rle=D"=o are auxiliary components of the supergravity 

multiplet [34]. Notice that ((t) defined in (4.25) is related to the Einstein function 

G2(t) [53] as follows: G2(t) = -1r (1 + 4((t)Ret) fRet. For n = 1, Ua = u, etc., 

(4.24) reduces to (2.46) of Section 2.3.2. 

The equations of motion for the auxiliary fields bm, M, F1, pa + pa and per 

give, respectively: 

M = ! ("" b' u - 4WeKf2
) 4 L..Jaa ' 

a 

F I Ret
1 

{""' _ [ , ) b! -I) I] K/2 ( I - - ) } - 2(l+b£) ~Ua (b-ba + 27r 2 ((t Ret -4e 2Ret W1-W , 

iia Ua - ~ eg- (J+I)/b~e-EI b~gr /87r2b~ II 117( ti) lb~/2~b~ II ( 7r~1f~tb: /b~' 1r~ = II~ le=B::(h 
I . cr 

0 = L b~ua + 47rcreKf2Wa V a. (4.26) 
a 

Using these, the Lagrangian ( 4.24) reduces to 
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+ i I: 8~2 [C(t1)B:V' mt1
- h.c.] - 'Vpot, 

l,a 

v,,. _ (l ~·) { uu +£ [ u ( ~ b: u. - 4eK12W) + h.c.J} 

+ 1 
"" ""u (b- b' + b! ((tl)Ret1

) - 4eKf2 (2RetiW - W) 
2 

16(1 + bf) ~ -7' 11 11 
271"2 I 

(4.27) 

where we have introduced the notation 

(4.28) 

and 

if Wa =/:- 0. (4.29) 

To go further we have to be more specific. Assume2 that for fixed a, b~ =f:. 0 for 

only one value of a. For example, we allow no representations ( n, m) with both n 

and m # 1 under 9a ® ~lb. Then Ua = 0 unless Wa # 0 for every a with b~ =f:. 0. We 

therefore assume that b~ # 0 only if Wa # 0. 

Since the rra are gauge invariant operators, we may take W linear in II: 

W(IT, T) = LWa(T)ITa, Wa(T) = Ca Il[7J(TI)]2(qf-l), (4.30) 
a I 

where 17(T) is the Dedekind function. If there are gauge singlets Mi with modular 

weights q}, then the constants Ca are replaced by modular invariant functions: 

. Ca -+ wa(M, T) = Ca Il(Mi)nr Il[11(TI)]2nrq}. 
i I 

2 For, e.g., g = E6 0 SU(3), we take n ~ (27)8 of E6 or (3)3 of SU(3). 

92 



/ 

In addition if some Mi have gauge invariant couplings to vector-like representations 

of the gauge group 

W( ~' T, M) 3 CiABMi~A~Bil[TJ(T1)] 2(qf+qf+q})' 
I 

one has to introduce condensates nAB ~ ~A~B of dimension two, and corresponding 

terms in the effective superpotential: 

W(II, T, M) 3 CiABMiiiAB Il[TJ(TI)] 2(qf+qf+q}). 
I 

Since the Mi are unconfined, they cannot be absorbed into the composite fields 

II. The case with only vector-like representations has been considered in (54]. To 

simplify the present disc!-lssion, we ignore this type of coupling and assume that 

the composite operators that are invariant under the gauge symmetry (as well as 

possible discrete global symmetries) are at least trilinear in the nonsinglets under 

the confined gauge group. We further assume that there are no continuous global 

symmetries-such as a flavor SU(N)L ®SU(N)R. whose anomaly structure has to be 

considered (54]. With these assumptions the equations of motion (4.26) give, using 

p~ _ e-2b~/b4eK e-(1+!)/bal-b E1 g
1 fb,. IT ITJ(ti)I4(b-b,.)fb,. IT lb:f4cal-2b:/ba., 

I a 

(4.31) 

Note that promoting the second equation above to a superfield relation, and sub-

stituting the expression on the right hand side for II in ( 4.22) gives 
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- L b~ ln ( eL:I
91

(l-q!) l4Wa/b~l2) 
a 

(4.32) 

It is instructive to compare this result with the effective Yang-Mills Lagrangian 

found [31, 32] by matching field-theoretical and string loop calculations. Making 

the identifications V -+ L, Ua -+ Tr(WaWa)a, the effective Lagrangian at scale p. 

obtained from those results can be written as follows: 

c~'f(p) _ j d4
9E( -2 + f(V) + ~v.{ 8~, (c.-~~ C.;') In L~(~~] 

- 4~2 ~C1ln [9fZA(Ma)fgl(JL)ZA(JL)] 

- ~ 8~, In [ (r' + t') l~'(T')l']}), (4.33) 

with M'1 :=:::: g; :=:::: 2( l) (g8 = g(Ms)) in the string perturbative limit, f(V) = g(V) = 

0. The first term in the brackets in ( 4.32) can be identified with the corresponding 

term ( 4.33) provided 

(4.34) 

In fact, this constraint follows from ( 4.19) if the rra are all of dimension three, 

which is consistent with the fact that only dimension-three operators survive in the 

superpotential in the limit M' p -+ oo. Then ba. is proportional to the ,8-function 

for 9 a, and ( Pa ) ~ ( I).~ .>.aa I} has the correct exponential suppression factor for 

a small gauge coupling constant as expected by a RGE analysis. In the absence of 

(stringy) nonperturbative corrections to the Kahler potential (f(V) = g(V) = 0), 
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2( V le=9=o) = 2( l) = g: = M'1 is the string scale in reduced Planck units and also 

the gauge coupling at that scale [31, 32]. Therefore, the argument of the logarithm 

in ( 4.33), 

{4.35) 

gives the exact two-loop result for the coefficient of Ca. in the renormalization group 

running from the string scale to the appropriate condensation scale [31, 32, 46}. 

The relation between ( 11" 01 
) and ( Ua. ) , and hence the appearance of t~e gaugino 

condensate as the effective infra-red cut-off for massless matter loops, is related to 

the Konishi anomaly [55]. The matter loop contributions have additional two-loop 

corrections involving matter wave-function renormalization[51, 56, 57, 58]: 

- -~ [te9 L el:191(l-qf-qf-qf) Z,41(p)ZB 1(p)Zc 1(JL)IW ABcl2 

3211" BC 

-4 ~g;(p)C;(RA)l + O(l) + O(q>~), (4.36) 

where C2(RA) = (dim9a./dimRA)C!, RA is the representation of 9a on q>A· The 

boundary condition on ZA [31] is ZA(JLs) = (1 - PA£)-1
, where PA is the coefficient 

of eLr qfgi lq>A 12 in the Green-Schwarz counterterm of the underlying theory: V = 

as a rough parameterization of the second line of ( 4.33). 

In the following analysis, we retain only dimension three operators in the su-

perpotential, and do not include any unconfined matter superfields in the effective. 
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condensate Lagrangian. The potential V,ot takes the form: 

-
1
;[2 ~PaPbCOSWabRab(t1), Wab = Wa -wb, 

a,b 

- (1 + lgl) (1 + bal) (1 + bb£)- 3£2babb + (1 : b£) ~da(t1)db(t1), 
bl 

- b- b~ + 
2
; 2 ((t1 )Ret1

- 2: b~ ( 1- 4(q[ - l)((t1)Ret1 ] 
Q 

(4.37) 

Note that da(t1 ) oc F 1 oc G2(t1)Ret1 vanishes at the self-dual point t1 = 1, where 

A > 
((t1) = -1/4, G2(t1) = 0, 17(t1) ~ 0. 77. For Ret1 "' 1 we have, to a very good 

approximation, ((t 1) ~ -7r/12, 17(t1) ~ e-1rt/I2. Note that also Pa- and hence the 

potential V,ot - vanishes in the limits of large and small radii; from ( 4.31) we have 

lim p~ rv (2Retl)(b-ba)/bae-11"(b-ba)Ret1 f3ba, 
ti ...... oo 

lim p~ "' (2Retl)(ba-b)/bae-11"(b-ba)/3baReti, 
tl-+O 

(4.38) 

where the second line follows from the first by the duality invariance of p~. So 

there is potentially a "runaway moduli problem" .. However, as will be shown in 

Section 4.4, the moduli are stabilized at a physically acceptable vacuum, namely 

the self-dual point. 
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4.3 Axion Content of the Effective Theory 

Next we consider the axion states of the effective field theory. If all Wa =f. 0, the 

equations of motion for Wa obtained from ( 4.27) read: 

( 4.39) 

These give, in particular, 

( 4.40) 

The one-forms B':n_ are a priori dual to 3-forms: 

B a - ! (-1-rnpq an I.flq) 
m- 2€mnpq 3!4 a + U"a ' ( 4.41) 

where r:pq and ~q are 3-form and 2-form potentials, respectively; ( 4.41) assures the 

constraints (2.10) for Tr(WaWa) --+ Ua; explicitly 

( 4.42) 

We obtain 

{4.43) 
a 

If rnpq =f. 0, bPq can be removed by a gauge transformation rnpq --+ rnpq + arn APq]_ 

Thus 

{4.44) 
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and we have the additional equations of motion: 

which are equivalent, respectively, to 

( 4.46) 

with 

(4.47) 

Combining these with (4.39) and the equations of motion for l and t 1, one can 

eliminate B! to obtain the equations of motion for an equivalent s~alar-axion La-

grangian. 

Again, these equations simplify considerably if we assume that for fixed a, b~ =/= 

0 for only one value of a. In this case, ( 4.39) reduces to 

(4.48) 

and we have 

(4.49) 

if we restrict the potential to terms of dimension three with no gauge singlets Mi. 
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Using Lab~ (q'}- 1) + b!/81r2 = b- ba gives: 

,...., (1 +lgt)Bm bam ~ami I [(b b) 1r b J-
,...., 2f.2 . + a Wa + ~ mt - a 6 - 2Reti ' (4.50) 

where the last line corresponds to the approximation ((ti) ~ -Jr/12. In the follow-

ing we illustrate these equations using specific cases. 

4.3.1 Single Gaugino Condensate 

As we have seen in Section 2.3.2, for the case of a single gaugino condensate there 

is an axion w = Wa + (1rj6)(b/ba- 1) EI Imt1 that has no potential, and, setting 

B m 1 mnpqJ:l b 2£2 (bam b "'amimt
1

) ( ) 
a = 2€ Un pq = - (1 + lgi) a W - 2 7 Ret I ' 4.51 

the equations of motion derived from ( 4.27) are equivalent to those of the effective 

· bosonic Lagrangian: 

4.3.2 Two Gaugino Condensates: b1 =I= b2 

Making the approximation TJ(t) ~ e-n/12, the Lagrangian (4.27) can be written as 

follows: 

T'"?mo IT'"?mD b""" amimtiB v. 
- W v .Dm - W v .Om - -

2 
L..J R 1 m - pot, 

I et 
(4.53) 
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where 

f3 - (4.54) 
a 

We have 

7ri: I 1 (' b7rL: I) wl - w+- lmt +- w -- Irnt , 
6I bl. 6I 

W2 w + -:- Irnt + - w - - Irnt , 1ri: I 1 (, b1rL: I) 
6I b2 6 I 

8Ypot 8V,ot 8V,ot (4.55) 
awl 

- - 8w2 = 8w12 · 

Then taking w, w' and ti as independent variables, the equations of motion for w 

and w' are: 

B 
- _1_ rnpq 

m - 318 €mnpq • (4.56) 

Substituting the first of these into the Lagrangian ( 4.53), we see that the a.A-ion wand 

the three-form Bm drop out because they appear only linearly in the Lagrangian; 

hence they play the role of Lagrange multipliers. The equation of motion for bmn 

implies the constraint on the phase w as follows: 

(4.57) 

The equations of motion for Imti and r mnp read: 
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( 4.58) 

and the equivalent bosonic Lagrangian is: 

( 
I -I ) - Vvot f, t , t , W12 • (4.59) 

As in Section 4.3.1, there is a single dynamical axion w' - or, via a duality trans-

formation, *q>- but there is now a potential for the axion in the multi-condensate 

case. 

4.3.3 General Case 

We introduce n linearly independent vectors Bm, Bm, .B:n, z 1 .. . n- 2, and 

decompose the B;: as follows: 

B::" = aaiJm + CaBm + L~Bi, Bi = "Le'/B::". (4.60) 
a 

Then 

7r "" I 1 ( b1r "" I) ""' e~ · 
Wa = w + 6 7 Imt + ba w' - 6 7 Imt + L: b: w', (4.61) 

and the Lagrangian can be written as in ( 4.53) with an additional term: 

(4.62) 

101 



The equations of motion for the phases w, w' and wi are: 

(4.63) 

and the equations for r~np = 8EmnpqB[ give amwi = 0. Hence 
I 

( 
1 b1r ""' I) Wab = -f3ab w - 6 7 Imt + Bab, ()ab =constant. (4.64) 

Therefore, as in the two-condensate case of Section 4.3.2, there is one dynamical 

axion with a potential. The dual bosonic Lagrangian is the same as ( 4.59), with 

I -I ) 'Vpot = 'Vpot(f, t , t , Wab . 

4.4 The Effective Potential 

The potential ( 4.37) can be written in the form 

2 2 

Vt - (1 + lgl) L (1 + bal) Ua ' v2 = 3£2 L baUa ' a a 

V3 = 

In the strong coupling limit 

lim Vpot = (lgl - 2) IL baual
2

, 
l-+oo a 

(4.65) 

(4.66) 

giving the exactly same condition on the functions J, g as (2.57) to assure bound-

edness of the scalar potential. Therefore (2.57), the necessary condition for stringy 
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non-perturbative effects to stabilize the dilaton, is indeed true in general. Note 

however that if vi = v3 = 0 has a solution with v2 =f. 0, the vacuum energy is always 

negative. v3 = 0 is solved by t1 = 1, i.e. the self-dual point. As explained below, 

this is the only nontrivial' minimum if the cosmological constant is fine- tuned to van­

ish. In the case of two condensates, there is no solution to VI = 0, v2 =f:. 0, forf > 0, 

and the cosmological constant can be fine-tuned to vanish, as will be illustrated be­

low in· a toy example. More generally, the scalar potential "V;,ot is dominated by the 

gaugino condensate with the largest one-loop ,8-function coefficient, so the general 

case is qualitatively very similar to the single condensate case, and it appears that 

positivity of the scalar potential can always be imposed. Otherwise, one would have 

to appeal to another source of supersymmetry breaking to cancel the cosmological 

constant, such as a fundamental 3-form potential [21, 41] whose field strength is 

dual to a constant that has been previously introduced in the superpotential [16], 

and/or an anomalous U(1) gauge symmetry [17]. 

In the following we study Z3-inspired toy models with E6 and/or SU(3) gauge 

groups in the hidden sector, and 3NJ matter superfields [59] in the fundamental 

representation f. Asymptotic freedom requires N27 < 3 and N3 < 5. For a true 

Z3 orbifold there are no moduli-dependent threshold corrections: b! = 0. In this 

case, universal anomaly cancellation determines the average value of the matter 

modular weights in these toy models as: ( 2qJ7- 1) = 2/N27, ( 2qy-1) = 18/N3. 

In some models Wilson line breaking of the hidden sector E8 generates vector­

like representations that could acquire masses above the condensation scale, so 
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that the universal anomaly cancellation sum rule is not saturated by light states 

alone. In this case the qj no longer drop out of the equations, so some of the 

above formulae would be slightly modified. In addition, one would have to include 

threshold effects [32), unless the masses of the heavy s.tates are pushed to the string 

scale. Here we assume for simplicity that the sum rule is saturated by the light 

states. Denoting the fundamental matter fields by Q?:}cr, a= 1, ... ,Nf, the hidden 

matter condensates can be constructed as 

3 

ITO - II ;n.]Ot. 
f- "¥!' 

1=1 

where gauge indices have been suppressed. 

bo 1 
SU(3) = 81r2 ' 

In the analysis of the models described below, we assume- for obvious phe-

nomenological reasons - that the vacuum energy vanishes at the minimum ( 'Y;.ot } = 

0. Thus we solve the following equations: 

v. _ 8'Vpot _ O n I 
pot- ax - 1 X= .c., t 1 Wa· (4.67) 

For x = f, tl, we have 

1 (A 1 B) B - "(1 + fgt) 2 x + ba :z; Pa' l - £2 ' 
b [ I I] B1 = 2Retl 1 + 4((t )Ret , 

av;,ot 
ax ( 2 ) 1 " ( Bx a ) Ax - fbxt Vpot + 16£2 -7;: PaPb cos Wab b; Rab + ax Rab 

1;£2 ~ PaPb COS Wab ( ~:z; ~ f3caRab + :X Rab) 

+ (Ax- ~bxt + ~x ~:a) 'Vpot 1 (4.68) 

where f3ab is defined in ( 4.63). By assumption, the last term in ( 4.68) vanishes in 

the vacuum. Note that the self-dual point, da(t1 ) = B1 = 0, t1 = 1, is always 
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a solution to the minimization equations for t1. It is the only solution for the 

single condensate case. For the multi-condensate case, if we restri~t our analysis to 

the (relatively) weak coupling region, f < ljb_, where b_ is the smallest ,8-function 

coefficient, the scalar potential \l;ot is dominated by the gaugino condensate with the 

largest ,8-function coefficient b+ : V;,ot ~ p~R++f16f2 • Moreover, since 7rb/3ba > 1, 

the scalar potential \l;ot is always dominated by this term for Ret1 > 1 ( c.f Eq. 

{4.38)), so the only minimum for Ret! > 1 is Ret1 -+ oo, Pa --+- 0. By duality 

the only minimum for Ret1 < 1 is Ret1 -+ 0, Pa -+ 0, so the self-dual point is 

the only nontrivial solution. Since our scalar potential is always dominated by 

one gaugino condensate, the picture is very different from the "race-track" models 

studied previously [3]. 

At the self-dual point with \l;ot = 0, we have 

{4.69) 

Positivity of the potential requires R++ ~ 0, and .Be+ < 0 by definition, so the 

extremum at the self-dual point with \l;ot = 0, P+ f:. 0 is a true minimum. In 

practice, the last term is negligible, and the normalized moduli squared mass is: 

(4.70) 
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4.4.1 Single Gaugino Condensate with Hidden Matter 

In this case f3ab = 0, and the minimization equations for t1 require 

{)~I j1 + 4((ti)Retij
2 

= 0, 

which is solved by 1 + 4((ti)Reti = 0, ti = 1. Then v3 = pi = 0, and the 

scalar potential "Vvot is qualitatively the same as in the E8 case studied in Chapter 

2 - except for the fact that here the string moduli are stabilized· at the self-dual 

point. (Note however that if f3ab = 0 one can choose the b~a in ( 4.20) such that the 

matter condensates drop out of the effective Lagrangian; then Raa is independent 

of the moduli which remain undetermined.) The quantitative difference from the 

E8 case is the value of the .8-function coefficient: bE6 = (12 - 3N27) /81r2
, bsu(3) = 

(6- N3 ) jl61r2 • As in Chapter 2, two possible choices for the function fare f = 

Ae-BfV [7] and f = Ap( .Jv)-pe-BIVV [4], where we fine tune the parameter A (or 

Ap) to get a vanishing cosmological constant. 

Attention has been drawn to the leading correction for small coupling that is 

of the form f = Ae-BfVV [4]. If we restrict f to this form, we have to require a 

rather large value for the parameter A: A ~ 40 in order to cancel the cosmological 

constant. On the other hand, the important feature off here is its behaviour in the 

strong coupling regime; iff contains terms of the form Ae-Bfv¥-, the strong coupling 

limit will be dominated by the term with the largest value of n. In the numerical 

analysis we take f = Ae-BfV; adding to this a term of the form f = A'e-B'f.../V will 

not significantly affect the analysis. We find that the vev of l is insensitive to the 
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content of the hidden sector; it is completely determined by stringy non-perturbative 

effects, provided a potential for I! is generated by the strongly coupled hidden Yang­

Mills sector. More specifically, taking f = Ae-B/V we find that ( V';,ot) = 0 requires 

A ~ e2 ~ 7.4, and the dilaton is stabilized at a value (!!.) ~ B /2. Taking B = 1 

gives (I!) ~ 0.5, ( f(l!)) ~ 1, and the squared gauge coupling at the string scale 

is g; = ( 21!/(1 +f)) ~ 0.5. If instead we use f = Ae-Biv'V, the corresponding 

numbers are A ~ 2e3 ~ 40, (I!) ~ B 2 /9, g; ~ 2B2 /27. Therefore, the vev of the 

dilaton I! completely determined by stringy non-perturbative effects, and the dilaton 

is naturally stabilized at a weak coupling regime if, for example, the parameter B 

in the function f considered here is of order one. 

One may look more closely at the second choice which is a genuine stringy 

nonperturbative effect3 . Taking for illustrative purposes f = ( A0 + Ad .Ji) e-B!.Ji, 

where the condition,( 4.66) or (2.57) requires A0 to be larger than 2, one finds 

a realistic minimum for 0(1) values of the parameters: B(/!)-112 ~ 1.1 to 1.3, 

Ao ~ 2.7 to 5.3 and A 1 ~ -3.1 to -4.6. Therefore, the previous problem of a 

rather large value of A (A ~ 40) for f = Ae-Bivfv does not exist in general. From 

now on we take f = Ae-1
/V in the numerical analysis, but notice that the major 

conclusions of the analysis apply to more generic choices for f. 

The scalar potential V';,ot for 9a = E6, N21 = 1, is plotted m Figures 4.1-

3We do not consider here the case where the coefficient B in the exponent is moduli-dependent 

[6]. Such stringy nonperturbative contributions would perturb the moduli ground state away from 

the self-dual point. However, one has to worry about the problem of modular invariance for this 

type of stringy nonperturbative contributions [60] 

" 
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Figure 4.1: The scalar potential Vpot (in reduced Planck units) is plotted versus /! 

and ln t. 

4.3. Fig. 4.1 shows the scalar potential in the /!, ln t plane, where we have set 

; 

tl = t, Imt = 0; with this choice of variables the T-duality invariance of the scalar 

potential is manifest. Fig. 4.2 shows the scalar potential l!;,ot for £ at the self-dual 

point t 1 = 1, and Fig. 4.3 shows the scalar potential for ln t with/! fixed at its vev. 

The qualitative features of the scalar potential are independent of the content of 

the hidden sector. Fixing A in each case by the condition ( l!;,ot) = 0, we find for 

9a = E6 
7.324 0.502 1 

A= 7.359 l ( £) = 0.501 ~ g;, for N21 = 2 . ( 4. 71) 

7.381 0.500 3 

For 9a = SU(3), N3 = 1, we find A= 7.383, (/!) = 0.500 ......., g2 ......., s. As will be 

discussed in Section 4.5, the scale of supersymmetry breaking in this case is far too 
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Figure 4.2: The scalar potential "V;,ot (in reduced Planck units) is plotted versus f 

with t 1 = 1 (the self-dual point). 
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· Figure 4.3: The sc~lar potential "V;,ot (in reduced Planck units) is plotted versus ln t 

withf=(f). 
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small, and further decreases with increasing N3 . 

4.4.2 Two Gaugino Condensates 

We have 

L f3caPaPbRab COS Wab = /321 (Pi Ru - p~Rn) · (4.72) 
abc 

Minimization with respect to w1 requires either (sin w12 ) = 0 or ( R 12 ) = 0. Identi-

fying b1 = b+, b2 = b_, positivity of the scalar potential requires R11 2: 0, which in 

turn implies R12 > 0, so the extrema in w are at sin w12 = 0, with cos w 12 = -1 ( + 1) 

corresponding to minima (maxima): 

( 4. 73) 

There is also a small Imt1-w12 m1xmg. Note that while in contrast to the single 

condensate case, the dynamical axion is no longer massless, its mass is exponentially 

suppressed relative to the gravitino mass by a factor "' ( p2/ p1 ) 
1/

2
. Therefore, in 

generic string models there is only one very light axion4 (i.e., the model-independent 

axion). As will be discussed in Chapter 5, this very light axion has the right 

properties to be the QCD axion [61]. 

For g = E6 ® SU(3), the potential is dominated by the E6 gaugino condensate, 

and the results are the same as in ( 4. 71). The only other gauge groups in the 

4 As discussed in Section 3.3.1, this statement is true in the context of both stati~ and dynamical 

gaugino condensation, where the former is the effective description of the latter. 
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restricted set considered here that are subgroups of E8 are g = [SU(3)]n, n < 4; 

these cannot generate sufficient supersymmetry breaking. 

4.5 S upersymmetry Breaking 

The pattern and scale of supersymmetry breaking are determined by the vev's of 

the P components of the chiral superfields. From the equations of motion for 71"
01 

and Pa we obtain, at the self-dual point ( P1 ) = 0: 

( pcx) - (i +lgt) 01 (- n~b-) 3b! a- ( cb )-1 
4flba 7r U + {. 7 bUb ~ 4ba 7r U+ 1 + {. + ' b~ # 0, 

- 4~b. (1 +lg,)(l+lb.) [u. (u+l~b,u,) +h:c·] 

(4.74) 

where the approximations on the right hand sides are exact for a single gaugino 

condensate. The dominant contribution is from the gaugino condensate with the 

largest ,8-function coefficient: 

(4.75) 

It has been known for some time that, if the dominant supersymmetry breaking 

effects come from the dilaton rather than the moduli, the soft supersymmetry 

breaking parameters are naturally flavor blind, and non-universal squark and slep-

ton masses that could induce unacceptably large :flavor-changing neutral currents 

(FCNC) could be-thereby avoided [62]. Therefore, the fact that the P1 vanish in 

the vacuum is a desirable feature for phenomenology. And it should be empha-
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sized that this unique feature is just the natural consequence of modular inva.riance 

and a correct treatment of gaugino condensation in string theory. In other words, 

a modular. invariant treatment of gaugino condensation in string theory naturally 

leads to the phenomenologically desirable dilaton-dominated supersymmetry break· 

ing scenario, which is very impressive! However, as we will see in Chapter 5, the 

dilaton-dominated supersymmetry breaking scenario is not always free from the 

FCNC problem, which means the the analysis of dilaton-dominated scenario in the 

past [2, 62] is oversimplified. In fact, possible non-universal couplings of the matter 

superfields to the Green-Schwarz counterterm could induce non-universal squark 

and slepton masses. More discussion of this problem will be given in Chapter 5. 

Another important parameter for soft supersymmetry breaking in the observ-

able sector is the gravitino mass m 0 . The derivation of the gravitino part of the 

Lagrangian again parallels the construction in Section 2.3.2. The gravitino mass 

rna is determined by the term: 

1nf,m nf,n""'- {1+J+ b'l { 2-K- )+""'bal (a-a) -S'f' O"mn'f' L...J Ua -f- a n e UaUa L...J a n 7r 1r 
a a 

(4.76) 

giving, when the equations of motion ( 4.26) are imposed, 

1 1 1 1 
ffi(; = -( IMI) =- ( 12: b~ua- 4eKI2WI) =- (I L baual) ~ -b+( P+ }. (4.77) 

3 4 a 4 a 4 

The scale of supersymmetry breaking is governed by the vev (4.31) of the 

gaugino condensate with the largest ..8-function coefficient. This includes the usual 
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suppression factor ( Pa) <X e-1/bag;, where g; = ( 2£/ (1 +f)) is the effective squared 

coupling constant at the string scale. However, there are also other important 

parameters that determine the scale of the hierarchy .between the supersymmetry 

breaking scale and the Planck scale. The dependence on the string moduli provides 

a second exponential suppression factor: 

( Pa) <X (II ITJ(tl)l2(b-ba)/ba) = l77(1)16(b-ba)/ba ~ e-11"(b-ba)/2ba. (4.78) 
I 

On the other hand,, the numerical factor I1c. I b~ J 4ca- 1-b~ /ba generates an exponential 

enhancement if Ca rv 1. This is the largest numerical uncertainty in our analysis. A 

priori, Ca is related to the Yukawa couplings of matter fields in the hidden sector. 

However, there is an arbitrary normalization factor in the definition of n.:r. If the 

hidden-sector Yukawa couplings were known, it might be possible to estimate Ca by 

· a matching condition for the vev's of the second lines of ( 4.32) and ( 4.33)~ In our 

numerical analysis, we have set c01 = 1. Then, if the. hidden gauge group with the 

largest ,8-function coefficient is g+ = E6 with 3N21 matter chiral. superfields in the 

fundamental representation, we obtain: 

1.1 X IQ-9 1 

mG = 3.3 X IQ-ll for N21 = 2, (4.79) 

1.65 X IQ-15 3 

in reduced Planck units. For g+ = SU(3) with three matter chiral superfields in 

the fundamental representation, we obtain an unacceptably large gauge hierarchy: 

ma = 2.2 x 10-32
; me; decreases rapidly as N3 increases, i.e. as the ,8-function 

coefficient decreases. 
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4.6 Concluding Remarks 

In the class of models studied here, the introduction of a parameterization for 

stringy nonperturbative contributions to the Kahler potential for the dilaton gener-

ically allows a stable vacuum at a nontrivial, phenomenologically acceptable point 

in the dilaton/moduli space. In particular, when we impose the constraint that 

the cosmological constant vanishes, we find that in the linear multiplet formalism, 

the string moduli t 1 are stabilized at the self-dual point, and their associated F 

components vanish in the vacuum, which results in a phenomenologically desir-

able dilaton-dominated supersymmetry breaking scenario. This striking feature of 

string phenomenology is in fact just the consequence of modular invariance and 

a correct treatment of gaugino condensation5 • Therefore, in this sense the exper-

imental search for a dilaton-dominated supersymmetry breaking scenario can be 

regarded as an indirect test of the modular invariance of superstring theory. 

A salient feature of our formalism is that there is little qualitative difference 

between a single condensate and a multi-condensate scenario. For several gaugino 

condensates with equal (or very similar) ,8-function coefficients, the scalar potential 

reduces to that of the single gaugino condensate case, except that there may be fiat 

directions. If bt = b2 = · · · bk, then at·-the self-dual point Pal p1 = (a = constant 

and the potential vanishes identically in the direction E!=l (aeiw,. = 0, Pa>k = 0. 

5 As discussed in the appendix, an incomplete/incorrect treatment of gaugino condensation 

and/or modular invariance is the reason why this unique feature of string phenomenology has 

been ignored in the past. 
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This always has a solution if (a = 1, in which case the flat direction preserves 

supersymmetry and there is no barrier between this solution and the interesting, 

supersymmetry breaking solution. For several gaugino condensates with different /3-

function coefficients, the scalar potential is dominated by the gaugino condensate( s) 

with the largest /3-function coefficient, and the result is essentially the same as in 

the single gaugino condensate case, except that a very small mass is generated 

for the dynamical (model-independent) axion. In all cases, stringy nonperturbative 

corrections to the dilaton Kahler potential are required to stabilize the dilaton. This 

picture is very different from previously studied "racetrack" models [3] where dilaton . 

stabilization is achieved through cancellations among different gaugino condensates 

with similar /3-function coefficients. The qualitative difference between an E8 hidden 

sector and one with a product gauge group is the presence of hidden matter; in the 

E8 case there is no hidden matter and the scalar potential is independent of the 

moduli, which therefore remain undetermined in the classical vacuum of the effective 

condensate theory. More phenomenological discussions of the model constructed in 

this chapter will be presented in Chapter 5. \ 

4. 7 Appendix: Chiral Multiplet Formalism 

There has been interest in the question as to whether the linear and chiral multiplet 

formalisms are equivalent at the quantum level. They are presumably equivalent in 

the sense that technically we may always perform a duality transformation at the 

superfield level on the Lagrangian ( 4.5) so as to recast it entirely in terms of chiral 
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supermultiplets. The resulting effective Lagrangian should be the chiral multiplet 

formalism with the gaugino condensates constrained by (2.12), and it is apt to be 

rather complicated. 

The string phenomenology that we have constructed and studied so far is quite 

different from the "conventional" string phenomenology in several aspects. Besides 

the aforementioned linear-chiral duality question, the "conventional" string phe-

nomenology is different from ours in the sense that the constraint (2.12) on gaugino 

condensates has always been ignored, and usually the treatment of modular invari-

ance is incomplete or incorrect in the "conventional" study of string phenomenology. 

Therefore,· a more practical question that we address in this appendix is the extent 

to which our studies in Sections 4.1-4.6 can be reproduced if one takes as a starting 

point the usual chiral multiplet formalism for the dilaton with the gaugino con-

densates represented by unconstrained chiral superfields (i.e., the "conventional" 

approach), and modular invariance is ensured through the Green-Schwarz mecha-

nism and string threshold corrections. In particular, we would like to know how 

an incorrect treatment of gaugino condensation (i.e., a treatment without the con-

straint (2.12) on gaugino condensates) might have affected our understanding of 

string phenomenology in the past. 

In the chiral multiplet formalism, the Green-Schwarz counterterm appears as 

a correction to the Kahler potential, which we take to be 

J{(S,T1
) = ln(L) + g(L) + L:g1

, 
I 
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L~1 = S + S- b L:g1 , 

I 

(4.80) 



where g is the correction from stringy nonperturbative effects in the chiral multiplet 

formalism6
• Modular invariance of the Yang-Mills Lagrangian at the quantum level 

is assured by the transformation property of S under ( 4.14): 

( 4.81) 

and modular covariance of the Kahler potential (I< ---+ J( + LI(H1 + H1)) requires 

that it depend on S only through the vector superfield L defined in ( 4.81 ). We 

introduce static gaugino and matter condensate superfields Ua and rrae as before, 

but now the gaugino condensate chiral superfield 

(4.82) 

is not constrained by the constraint (2.12) or ( 4.42) because Ha is taken to be an 

unconstrained chiral superfield in the treatment here. (This is what has always 

been done in the conventional study of string phenomenology.) We construct the 

superpotential in analogy to (4.5), using the standard approach of Veneziano and 

Yankielowicz: 

Wtot = Wcond + W(fl), 

where W(II) is the same as in (4.30), and 

Wcond 1 ""' 3 - We+ Wvy + Wth, We= 4S L.J Ha, 
a 

Wvy = ~ ~H; (3b:lnHa + ~b~lnna), 

(4.83) 

6 Notice that the vector superfield L here is simply a convenient notation for (S+S-b 2:1 gl)-1 • 

It should not be confused with the L used in the linear multiplet formalism. 
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(4.84) 

where We represents the classical contribution of gaugino condensation. H; trans-

forms in the same way as Ua under rigid chiral and conformal transformations, and 

the anomaly matching conditions give the same constraints on the coefficients b's as 

in Section 4.2. Then it is straightforward to check that, under the modular transfor-

by modular invariance of the Lagrangian. Summing the various contributions, the 

superpotential for Ha can be written in the following form: 

Wcond = ~ L b~H~ln {eSfb~H: Il(ITa)b:Jb~ Il[17(TI)rb!f4~b~}. 
a a I 

(4.85) 

The bosonic Lagrangian takes the standard form: 

K/2 [ i - ] +e F (Wi + I<iW)- MW + h.c. , (4.86) 

zi, zm = Ha, rra, and the equations of motion for pi give Wi = 0 for these fields. 

This determines the chiral superfields Ha, rra as holomorphic functions of s, T 1• 

Making the same restrictions on W(II) and the b~ as in Section 4.2, we obtain: 

H~ e(2n+I)i1r(b~-b,.)Jb,.-b~fb,.e-Sfb,. I1[7l(TI)]2(b-b,.)/ba JI lb~ / 4Ca ,-b::fb,., 
I or 

(4.87) 

As in ·(4.31), the correct dependence of the gaugino condensates on the squared 

gauge coupling constant ( 2/Res ), s = Sle=B=o, is recovered. Note however that, 
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in contrast to ( 4.31 ), the phases of gaugino condensate here are quantized once Ims 

is fixed at its vev. Using these results gives 

(4.88) 

The scalar potential "V;,ot is determined in the standard way after eliminat~g the 

remaining auxiliary fields through their equations of motion: 

The inverse Kahler metric for the Kahler potential ( 4.81) is: 

_ 4(Ret1) 2 
81

J 

(1- bKs) ' 
Ku-= _ 2bRet1 

(1- bKs)' 

1- bKs + 3b2Kss 
Kss(1 - bi<s) ' 

and the scalar potential "V;,ot reduces to 

( 4.89) 

(4.90) 

K -

"V;,ot = 1 ~ bKs {1<~1 (1- bl<s + 3b2 I<ss) IWs- + I<sWI 2 + 4 2t (Ret!) 
2

IW1 + I<rWI 2 

-2b [ (W, + I<,W) ~Ret1 (W1 + I<,W) + h.c.] } - 3eKJWj2
• (4.91) 

We have 

-2Ret1 (WI+ I<rW) 2: 1 [ - b - ba I ( I)] 3 - - - 1 - bi< - --Ret r t H 4b- 9 b ':. a' 
a a a 

(4.92) 

and the scalar potential can be written in the following form: 

(4.93) 
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where here Wa is the phase of h~ = H;lli=B=O' Wab is defined as before, and 

Rab = babbfab(f) + (b- ba)(b- bb) L II+ 4Reti((ti)j2
, £ = Lle=B=o, 

I 

(4.94) 

In the absence of stringy nonperturbative effects, I<s = -£, l<55 = £2
, Jab -+ -2bf as 

f -+ oo, and the scalar potential "V;ot is unstable in the strong coupling direction, as 

expected. A positive definite scalar potential requires that f++(f) be positive semi-

definite where, as before, b+ is the largest ba. Note that the perturbative expression 

for faa(f) is negative for baR > 1.4, while in the linear multiplet formalism the 

corresponding expression is negative only for baf > 2.4, so stringy nonperturbative 

effects are required to be more important in the unconstrained chiral multiplet 

formalism 7 here. If there is only one gaugino condensate, the self-dual point for the 

moduli is again a minimum, but (pi) =P 0. In the general case, the minimization 

equations for the moduli read: 

(4.95) 

where f3ab is defined as in ( 4.63). Again imposing ( "V;ot ) = 0, the minimum is shifted 

slightly away from the self-dual point if some f3ab =f. 0. 

The effective Lagrangian constructed using the linear multiplet formalism -like 

the string and field-theoretical loop-corrected Yang-Mills Lagrangian (31, 32] -de-

7 Unconstrained chiral multiplet formalism means the chiral multiplet formalism without the 

constraint (2.12) or ( 4.42). 
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pends only on the variables·t1 and the modular invariant field f, so the Lagrangian is 

invariant under modular transformations on the t 1 alone. In contrast, the effective 

Lagrangian constructed using this unconstrained chiral multiplet formalism has an 

explicit s-dependence which accounts for the fact that the self-dual point is not the 

minimum. The unconstrained chiral multiplet construction forces a holomorphic 

coefficient for the interpolating superfield for the Yang-Mills composite superfield 

\ 

U ~ Tr(WaWa), and hence cannot faithfully reflect the non-holomorphic contri- · 

bution from the Green-Schwarz counterterm. This is again related to the fact that 

the unconstrained chiral multiplet construction does not account for the constraint 

(2.12) or (4.42) which has to be satisfied by the gaugino condensate superfields. o.ur 

analysis in this appendix explicitly explains why in the past the study of string phe-

nomenology using the unconstrained chiral multiplet formalism has not been able to 

predict moduli stabilization at the self-dual point and therefore a dilaton-dominated 

supersymmetry breaking scenario. 
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Chapter 5 

Phenomenology of · 

Weakly-Coupled Superstring 
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5.1 Introduction 

In Chapter 4, we have constructed string models which include supersymme-

try broken at a realistic scale, a stabilized dilaton, moduli fields with couplings 

respecting modular invariance and a vanishing cosmological constant. We believe 

that it is sufficiently realistic to allow for a discussion of many phenomenological 

issues associated with supersymmetry breaking, moduli physics and axion physics 

based on actual ~amputations rather than educated guesses1 . Needless to say, we 

have no miraculous solution for either dilaton stabilization or the vanishing of the 

cosmological constant. Although these are incorporated in the model by fixing some 

parameters (only the second constraint requires fine tuning), the model is still pre-

dictive enough in many respects. In Sections 5.2 and 5.3, we comment on several 

problems associated with string moduli and axion. In particular, these analyses are 

quite insensitive to the details of the string models, and therefore the conclusions 

are fairly model-independent. In Section 5.4, we study the pattern of soft super-

symmetry breaking parameters. As expected, the conclusions of this section are 

sensitive to the details of the specific string model under consideration. In Sec-

tion 5.5, we comment on gauge coupling unification in the presence of significant 

stringy non-perturbative effects. In order to make the presentation transparent, in 

most sections we start with the known results and problems of string phenomenal-

1 As we shall see, several such educated guesses about string phenomenology which have been 

regarded as standard turn out to be inappropriate according to our actual computations. 
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ogy studied in the pa.st2 • We then present the results obtained from the realistic 

model constructed in Chapter 4. In particular, we emphasize how the standard lore 

of string phenomenology is modified within our model, and how the problems of 

string phenomenology could naturally be solved by these important modifications3 • 

5.2 Moduli Physics 

At the perturbative level, the dilaton and moduli are are fiat directions of 

the potential, and they are lifted only through non-perturbative effects. It is often 

argued that the non-perturbative effects which break supersymmetry also lift these 

flat directions. As we have learned from the standard lore of string phenomenology, 

a naive oder-of-magnitude estimate concludes that string dilaton and moduli have 

masses of order (or no larger than) the gravitino mass (22, 63], where the natural 

scale of gravitino mass is about 1 TeV. Obviously, these light dilaton and moduli 

fields with couplings suppressed by the Planck scale could lead to serious cosmolog-

ical problems. A rough estimate for the decay rater of string dilaton or moduli is 

at most 

m3 r ,....., 
81rM'~' 

(5.1) 

2 As discussed in the appendix of Chapter 4 and elsewhere, these studies in the past are based 

on the unconstrained chiral multiplet formalism. 
3 As we have seen and shall see, many so-called problems of weakly-coupled string phenomenol-

ogy known in the past are not really problems of weakly-coupled string phenomenology itself. In 

fact, they are mostly due to our limited calculational power in string theory, little knowledge of 

its true vacuum structure, and an incorrect/inappropriate treatment of gaugino condensation. 
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where m is the mass of string dilaton or moduli, MJ, = Mpfy&; is the reduced 

Planck scale and Mp is the Planck scale. This slow decay rate is the source of 

cosmological problems. That is, relic dilaton and moduli produced in the very early 

universe survive to a dangerously late epoch. With the slow decay rate (5.1), they 

result in a low reheat temperature TR [22, 64]: 

( 
m )3/2 

TR "'5 -
TeV 

keV. (5.2) 

Such a low reheat temperature is inconsistent with su<;cessful nucleosynthesis unless 

m 2: 0(3) x 104 GeV (if TR 2: 0(1) MeV i~ required.) According to the standard 

lore of string phenomenology, m ~ 0(3) x. 104 GeV would imply an un-naturally 

large gravitino mass, which is not acceptable. This is the so-called cosmological 

moduli problem [22, 64, 65], where the Polonyi problem is an earlier. version of this 

problem. in the context of spontaneously broken supergravity [66]. In order to solve 

the cosmological moduli problem, there have been attempts at a hierarchy between 

moduli and squark masses [65, 67]; however, none of them is realistic. There are 

also possible cosmological solutions to the cosmological moduli problem, such as a 

weak scale inflation [64]. 

Now, let's leave the standard lore of string phenomenology and turn to the 

realistic model constructed in Chapter 4. One can easily extract from the scalar 

potential the masses of the dilaton and of the moduli, which are particularly relevant 

for cosmology. According to ( 4. 70), one finds the mass of the moduli mti as follows: 

1 1 {b- b+) ) 
\ 2 {1 + bl) P+ • (5.3) 
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where P+ is the hidden-sector gaugino condensate with the largest one-loop /3-

function coefficient b+. As for the mass of the dilaton md, one finds: 

(5.4) 

According to ( 4. 77), the gravi tino mass is: m 0 ~ ~b+ { P+ ) . In generic string 

models bfb+ and 1/b! are naturally large numbers, and therefore in contrast to the 

standard lore of string phenomenology our model has a natural hierarchy between 

the dilaton/moduli and squark/slepton masses. More precisely, in order to generate 

a realistic hierarchy of order m 0 ~ 10-15 MJ:, ~ 103 GeV, it is required that bfb+ ~ 

10 for the string models under consideration. (Such an example has been presented 

in Section 4.5.) In this case, mtr ~ 20m0 ~ 20 TeV and md "' 103m0 ~ 103 

TeV (where m0 ~ 1 TeV.) This natural hierarchy between the dilaton/moduli and 

squark/slepton masses could be sufficient to solve the cosmological moduli problem. 

One may wonder why the mass of dilaton is particularly large in our model. 

In fact, this specific feature has to do with the cancellation of the cosmological 

constant. In our model, it is implicitly assumed that the mechanism which breaks 

supersymmetry is also responsible for the cancellation of the cosmological constant, 

which is the minimal and most economical assumption4 • With this assumption, 

( 'Vp0 t ) = 0 leads to ( 1 + £g t ) ~ 3b! { £2 ) . According to ( 4.27), the kinetic term of 

dilaton contains the small factor { 1 +fgt ), which therefore leads to an enhancement 

of the mass of dilaton. On the other hand, there is so far very little insight about 

4In our model, positivity of the scalar potential can always be imposed. One thus does not 

need to appeal to another source of supersyrnmetry breaking to cancel the cosmological constant. 

-126 



how the cosmological constant problem should be solved. It is possible that there are 

other sources which could contribute to the cancellation of cosmological constant. 

However, a detailed analysis of these more complicated scenarios is beyond the scope 

of our study here. We wish to emphasize that, even if { 1 + lgt ) might turn out to 

be, for example, an 0(1) number in some other more complicated solutions to the 

cosmological constant problem, the natural hierarchy between the dilaton/moduli 

and squark/slepton masses still exists as long as gaugino condensation is the major 

source of supersymmetry breaking; in this case we have mt ~ 20m a ~ 20 Te V and 

5.3 Axion Physics 

The invisible axion is an elegant solution to the strong CP problem. In string 

theory, there seem to be many such axion candidates. However, as for the weakly-

coupled superstring, it has been argued that QCD cannot be the dominant contribu-

tion to the potential of any string axion [68], and therefore none of the string axions 

is qualified for the QCD axion. For the string model-independent axion, it is usually 

argued (again using the unconstrained chiral multiplet formalism) that the model-

independent axion cannot be the QCD axion due to both stringy non-perturbative 

effects (of order e-cfg. for the superpotential of dilaton) and non-perturbative dy­
J 

namics of the hidden sector which breaks the Peccei-Quinn symmetry [7, 68}. For 

string axions associated with the Tl moduli, Peccei-Quinn symmetries are signif-

icantly broken by world-sheet instanton effects [68]. On the other hand, we have 
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emphasized that the constraint (2.12) on gaugino condensates, which has been ig­

nored in the above arguments, has non-trivial effects on axion physics. Furthermore, 

stringy non-perturbative effects are most naturally described by the linear multiplet 

formalism. As we shall see, in the realistic model constructed in Chapter 4 where 

both stringy non-perturbative effects and hidden-sector gaugino condensation are 

fully included using the linear multiplet formalism, the model-independent axion 

does have the right features to be the QCD axion. The resolution for the stringy 

non-perturbative contribution, e-cfg., to the superpotential of the dilaton is simple 

and impressive: as argued in [7, 68] using the chiral multiplet formalism, it seems 

plausible that there should be significant e-dS contributions to the superpotential 

of dilaton, leading to the QCD axion problem raised by Banks and Dine [68]. On 

the other hand, in the linear multiplet formalism of string effective theory where 

the dilaton is represented by a vector superfield L, it is simply impossible to writ'e 

down any £-dependent contribution (e.g., e-cf../L) to the superpotential - a con­

straint coming from holomorphy. Therefore, in the linear multiplet formalism the 

QCD axion problem of Banks and Dine [68] is resolved in an elegant way, and one 

should re-examine the attractive possibility of the string model-independent axion 

being the QCD axion in this framework. 

For any of the string axions to solve the strong CP problem, there is also a 

cosmological constraint. Cosmological considerations require the decay constant Fa. 

of the invisible axion to lie between 1010 GeV and 1012 GeV (the so-called axion 

window (23, 69]). The upper bound on the axion decay constant, Fa. < 1012 GeV,. 
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is due to the requirement that the energy density of the coherent oscillations of the 

axion be less than the critical density of the universe [23]. However, in superstring 

theory the axion decay constant Fa is naturally of order the Planck scale, and 

therefore the cosmological upper bound on Fa is seriously violated. Although it was 

shown by Choi and Kim [70] that the decay constant Fa of the model-independent 

axion in the weakly-coupled heterotic string theory actually is M~jl61r2 ~ 1016 

GeV, this is still much larger than the cosmologica! upper bound. On the other 

hand, cosmological constraints could be quite scheme-dependent; for example, it 

has been pointed out that the entropy production due to the decays of massive 

particles dilutes the axion density and therefore raise the upper bound on Fa [71]. 

Based on the above idea Kawasaki, Moroi and Yanagida [72) have proposed a refined 

scenario where the Polonyi fields of supergravity models are natural candidates for 

entropy production. The new cosmological upper bound on Fa in. this scheme is: 

F. < 5 X 1015 ,P ( 
m )-3/4 

a - 10 TeV GeV, (5.5) 

where m,p is the mass of the Polonyi field. In order to keep successful primordial 

nucleosynthesis in this scheme, m,p should be larger than about 10 TeV. With m,p ~ 

10 TeV, Fa :::; 5 x 1015 GeV and therefore the string model-independent axion is 

almost consistent with this new upper bound. However, m,p > 10 TeV seems un-

natural according to the standard lore of string phenomenology where one expects 

m,p :::::: m 0 :::::: 1 Te V. On the contrary, the cosmological scenario of Kawasaki et al 

naturally occurs in our model constructed in Chapter 4. As discussed in Section 5.2, 
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in our model there is a natural hierarchy between the moduli and gravitino masses 

(mti ~ 20mc; ~ 20 TeV), and therefore the decays of moduli serve the purpose of 

raising the cosmological upper bound on Fa to a value consistent with the Fa of 

string model-independent axion. This natural hierarchy is indeed a desirable. feature 

of our model since it not only could solve the cosmological moduli problem but also 

keeps the energy density of the oscillations of string model-independent axion from 

overdosing the universe. 

One particularly interesting aspect of our model constructed using the lin-

ear multiplet formalism of gaugino condensation in Chapter 4 is axion physics. 

Pseudoscalar fields are the phases wa of the condensates and the so-called model-

independent axion which is dual to the fundamental antisymmetric tensor field. The 

latter couples in a universal way to the Fap.v P;v term of each gauge subgroup. If 

again we look at the dynamical model with one E8 gaugino condensate in Chapter 3, 

we find that out of the two possible pseudoscalar the condensate phase is very heavy 

whereas the string model-independent axion remains massless. This is obviously the 

supersymmetric counterpart of what happens with the scalars. If we allow for more 

than one gaugino condensate, the model-independent axion acquires a very small 

mass5 (typically exponentially suppressed relative to the gravitino mass by a factor 

of order ( p2 / p1 ) 112 in the two-condensate case according to ( 4. 73)). Furthermore, 

as we have seen in Section 5.2, the axions associated with the T 1 moduli get masses 

5Higher-dimension operators might give extra contributions to the mass of this axion. However, 

these contributions can be argued to be negligible using discrete R symmetry [7]. 
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of order 20 m 0 . Therefore, we are always left with only one very light axion, the 

model-independent axion, and it has the right properties to be the QCD axion. Re­

member that there are two kinds of non-perturbative effects in our model (i.e., the 

field-theoretical non-perturbative effects of hidden-sector gaugino condensation con­

strained by (2.12) and stringy non-perturbative effects), and they are best described 

using the linear multiplet formalism. In contrast to the argument against the string 

model-independent axion as the QCD axion [68] in the presence· of both stringy 

non-perturbative effects and non-perturbative dynamics of the hidden sector using 

the unconstrained chiral multiplet formalism, in our model the model-independent 

axion can indeed be the QCD axion. As explained before, the reason why the 

model-independent axion has the desirable features in the linear multiplet formal­

ism are a correct treatment of gaugino condensation and the fact that such stringy 

non-perturbative effects of dilaton are actually forbidden in the superpotential due 

to holomorphy. As for the decay constant Fa of the model-independent axion in our 

model, there is an additional reduction factor of ( 2£2(1 + igL) )112 compared to the 

result obtained by Choi and Kim [70]. As discussed in Section 5.2, this reduction 

factor comes from the fact that the kinetic term of dilaton in ( 4.27) contains the 

small factor ( 1 +igl} ~ 3b~ ( £2} when ( "Vp0 t} = 0 is imposed. More precisely, this 

reduction factor is about (2£2 (1 + igl) }112 ~ ( v'6b+£2) ~ 1/50 if the gravitino 

mass is about 1 Te V. Besides the fact that the cosmological scenario of Kawasaki et 

al naturally occurs in our model, this reduction in the model-independent axion's 

decay constant is certainly desirable from the viewpoint of the cosmological upper 
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bound on Fa. Indeed, with this reduction factor the axion decay constant in our 

model is Fa ~ 2 x 1014 GeV, which is truly consistent with the upper bound on 

Fa ( ~ 5 x 1015 GeV) imposed by the scenario of Kawasaki et al. 

5.4 Soft Supersymmetry Breaking Parameters 

In contrast to the studies of moduli and axion, the analysis of soft supersymme­

try breaking parameters is much more sensitive to the very details of a string modeL 

Unfortunately, our current knowledge of string models is still limited. Although in 

the following we will try to discuss soft supersymmetry breaking parameters in a 

model-independent way whenever it is possible, yet it should be kept in mind that 

our analysis cannot cover all the interesting possibilities and therefore should not 

be regarded as final. 

It is straightforward to compute the soft supersymmetry breaking terms, that 

are generated at the condensation scale JLcond ~ ( P+ )113 , for our model constructed 

in Chapter 2. The gaugino masses m~b are: 

Notice that the expression o~ gaugino masses contains the small factor ( 1 + lgl) 

discussed at .the end of Section 5.2, and therefore gaugino masses are suppressed by 

b! after ( Y;,ot ) = 0 is imposed. Therefore, it is possible that this suppression of 

gaugino masses could be relieved in models with a more complicated mechanism of 

cosmological constant cancellation. 
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The soft terms in the scalar potential are sensitive to the - as yet unknown -

details of matter-dependent contributio~s to the Green-Schwarz counterterm and 

string threshold corrections. We negle<?t the former6 , and write the Green-Schwarz 

counterterm as follows: 

Vas= b L91 + LPAeL19191 l<PAl 2 + O(I<I>AI 4
), (5.7) 

I A 

where the <PA. are gauge nonsinglet chiral superfields, the q~ ar.e their modular 

weights, and the full Kahler potential reads 

]{ = k(V) + L9I + I::eLzqfgii<PAI2 + O(I<I>AI4). (5.8) 
I A 

Under these assumptions, the scalar masses and cubic "A terms" are given, respec-

tively, by the following: 

(5.9) 

where </> = <I>Ie=e=O and W(<I>) is the cubic superpotential for chiral matter super- · 

fields. Note that the squared scalar masses are always positive. As concluded in 

Section 4.6, we find in our model that moduli ti are stabilized at the self-dual 

point and their associated ( pi ) vanish in the vacuum, which results in a dilaton-

dominated supersymmetry breaking scenario. According to (5.9), both the scalar 

6If string threshold corrections are determined by a holomorphic function, they cannot con­

tribute to the scalar masses. 
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masses and A terms are indeed independent of their modular weights by virtue of the 

fact that ( F 1 ) = 0. For the FCNC constraints, this feature of dilaton-dominated 

scenario is a potential advantage over a moduli-dominant scenario. In the past, it 

was generally believed that a dilaton-dominated scenario results in universal soft su-

persymmetry breaking parameters due to the universality of dilaton couplings (62]. 

However, here we wish to stress that the above statement did not take into account 

the matter-dependent contributions to the Green-Schwarz counterterm, and there-

fore a dilaton-dominated scenario does not guarantee universal soft supersymmetry 

breaking parameters. It is clear from the computations of our dilaton-dominated 

scenario in (5.9) that soft supersymmetry breaking parameters are universal- and 

unwanted :flavor-changing neutral currents are thereby suppressed - if the matter 

couplings (PA) to the Green-Schwarz counterterm are also universal. Unfortunately, 

so far there is little knowledge of PA 's; therefore, the best we can do right now is to 

study the consequences of several seemingly reasonable choices of PA 's. One possi-

bility is that PA 's are universal; thus we have universal soft supersymmetry breaking 

parameters and in this case A terms in (5.9) reduce to 

( 

roJ 3 K/2- PA (1 + 2b+£)- b~£ _ K/2 
VA ¢>) roJ 4e u+ (1 + PA£)(1 + b+l) W(¢>) + h.c. = Ae W(<f>) + h.c.. (5.10) 

For example, if the Green-Schwarz counterterm is simply independent of the matter 

fields <J>A (i.e., PA = 0), we have mA = mt;, A ~ 2m>.. As for choices of non-

universal PA 's, a possibility is that the Green-Schwarz counterterm depends only on 

the radii R1 of the three compact tori that determine the untwisted-sector part of 
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the Kahler potentiai'(5.8): 

]{ = k(V)- L ln(2RJ) + O(j{P~wistedl 2 ), 
I 

where 2Ry = T 1 + T1 - EA. I<I>fl 2 in string units. In this case, PA = b for the 

untwisted chiral super:fields <I>f, and PA = 0 for the twisted chiral superfields.{Pfwisted· 

The untwisted scalars have masses comparable to the moduli masses: muntwisted = 

mt/2 ~ A/3. Finally, we note that if b+ ~ b/10 ~ 1/30, gaugino masses are 

suppressed relative to the gravitino mass at the condensation scale JLcond '"'J 10-4 Mj,: 

m>. '"'J ffitwisted/40. If there is a sector with PA = band a Yukawa coupling of order 

one involving SU(3) (anti-) triplets (e.g., DDN, where N is a standard model 

singlet), its two-loop contribution to gaugino masses [73] can be more important 

than the standard one-loop contribution, generating a physical mass for gluinos 

that is well within experimental bounds for m 0 ~ 1 TeV. Such a coupling could 

also generate a vev for N, thus breaking possible additional U(l)'s at a scale '"'J 10 

TeV. The phenomenologically required 1-l term of the MSSM may also be generated 

by the vev of a Standard Model gauge singlet or by one of the other mechanisms 

that have been proposed in the literature [74]. 

In contrast to the case of universal PA 's, for the case of non-universal pA_'s one 

has to worry about the FCNC problem. Scenarios in which the sparticles of the 

first two generations have masses as high as 20 Te V have in fact been proposed 

[75] to solve the FCNC problem. However, it has recently been pointed out that 

such scenarios may suffer from a negative scalar top mass squared driven by two-

135 



loop renormalization group evolution [76]1. Clearly, a better understanding of the 

matter dependence of the Green-Schwarz counterterm is required to make precise 

predictions for soft supersymmetry breaking. Nevertheless our model suggests soft 

supersymmetry breaking patterns that may differ significantly from those generally 

assumed in the context of the MSSM. Phenomenological constraints such as cur­

rent limits on sparticle masses, gauge coupling unification and a charge and color 

invariant vacuum can be used to restrict the allowed values of PA 's as well as the 

low-energy spectrum of the string effective field theory. To conclude, we would 

like to stress that the model presented above is certainly not final and some of 

the results obtained, especially on the low-energy sector of the theory, may receive 

modifications. Possible sources of modification are the presence of an anomalous 

U(l) symmetry [17) or a constant term in the superpotential that breaks modular 

invariance [77, 78). 

5.5 Gauge Coupling Unification 

String non-perturbative corrections necessary to stabilize the dilaton could 

make significant corrections to the unification of gauge couplings. The functions 

f(l) and g(l) introduced above and the threshold corrections whose form is dictated 

by T duality invariance contribute as follows to the value of couplings at unification: 

(5.11) 

7We thank Hitoshi Murayama for pointing out this problem to us. 
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with 

-2 
9s 

1+/ 
2£ ' 

(5.12) 

(5.13) 

Let us note however that this parameter is worth 1/(2e) ~ 0.18 in the perturbative 

case and e-1.ss ~ 0.19 in the one gaugino condensate model. 

Let us take this opportunity to clarify two confusing statements in the literature 

about gauge coupling unification in weakly-coupled superstring. Firstly, we stress 

that the dependence on the radii moduli T 1 does not allow an interpretation of the 

unification scale as the inverse radius of compactification. While the result (5.11) 

has been derived only for orbifold compactifications, its large T 1 lirriit is consistent 

with the behavior found in the large T 1 limit of Calabi-Yau compactification. (Note 

that in our model moduli are stabilized at the self-dual point, therefore far from 

this limit.) Secondly, it is often stated that one can determine from the low-energy 

values of gauge couplings the precise value of the gaug~ coupling unification scale 

to be 3 x 1016 Ge V. We think that this is a misleading statement. since most string 

models constructed so far that hold a claim for being realistic include new forms 

of matter which perturb the evolution of the gauge couplings at some intermediate 

threshold [79]. 
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5.6 Concluding Remarks 

As discussed in Chapter 1, the weakly-coupled heterotic string theory is known 

to have problems with dilaton/moduli stabilizatiop., supersymmetry breaking, gauge 

coupling unification, QCD axion, as well as cosmological problems involving dila­

ton/moduli and axion. In the literature some of these problems are often treated as 

evidence against the weakly-coupled heterotic string theory. However, it is actually 

hard to say whether these problems are inherent to the weakly-coupled heterotic 

string theory or they simply reflect our ignorance of important string dynamics. 

Furthermore, some of these problems will probably re-appear even in the study of 

the strong-coupling limit of the heterotic string theory. In this work we study these 

problems by adopting the point of view that they arise mostly due to our limited 

calculational power, little knowledge of of the full vacuum structure, and an inappr~ 

priate treatment of gaugino condensation. Indeed, after a careful review one finds 

that the phenomenological studies of the weakly-coupled heterQtic string theory in 

the literature contain several essential flaws. It is therefore of utmost importance to 

correct these flaws and then re-examine the problems of weakly-coupled heterotic 

string theory. In conclusion, three essential changes to the standard lore of string 

phenomenology have to be made. The first essential change is about the effective 

field theory of the weakly-coupled heterotic string. It is emphasized that the linear 

multiplet formalism rather than the chiral multiplet formalism is the appropriate 

framework for the effective field theory of the weakly-coupled heterotic string. The 
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second essential change is the inclusion of possible stringy non-peiturbative effects 

in addition to the usual field-theoretical non-perturbative effects produced by gaug-

ino condensation. The third essential change is an improved treatment of gaugino 

condensation by including the constraint (2.12). As discussed in Chapter 2, the last 

two changes -are most naturally implemented using the linear multiplet fornialism. 

Finally, notice that full modular invariance is always maintained in our construe-

tion. This is important because modular invariance is supposed· to be an exact 

quantum symmetry of closed string theory [80]. 

In Chapters 2-4, the linear multiplet formalism with the aforementioned fea-

tures is constructed for an E8 model as well as a genetic orbifold model. It is par-

ticularly transparent in this framework to realize how the dilaton can be stabilized 

by stringy non-perturbative contributions to the Kahler potential.8 Furthermore, 

supersymmetry can be broken at a realistic scale once the dilaton is stabilized. As 

for the moduli, they are always stabilized at their self-dual points where the moduli 

actually do not contribute to supersymmetry breaking- a beautiful consequence of 

modular invariance and a correct treatment of gaugino condensation. Phenomeno-

logically, we always have a dilaton-dominated scenario of supersymmetry breaking. 

The fact that the compactification moduli are stabilized at the self-dual points also 

invalidates the Newton's constant (or gauge coupling unification) ·argument of Wit-

ten against the weakly-coupled heterotic string theory. As for the masses of moduli, 

80f course, still we don't know how to calculate these stringy non-perturbative effects. However, 

the point is that these effects are at least under good control here. 
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in contrast to the standard lore of string phenomenology a careful analysis reveals 

that there is a natural hierarchy between moduli and gravitino masses. It is not 

difficult to see how this hierarchy arises: in a generic orbifold model with realistic 

supersymmetry breaking scale, there is already a natural hierarchy between the E8 

.B-function coefficient b (associated with the Green-Schwarz counterterm) and the ba 

of the largest hidden gauge subgroup (bfb+ ~ 10). Such a hierarchy between mod­

uli and gravitino masses has important cosmological consequences. As discussed 

in Chapter 5, it not only could solve the cosmological moduli problem but also 

keeps the energy density of the oscillations of the string model-independent axion 

from overdosing the universe. As for the strong CP problem, there is always only 

one very light axion (the model-independent axion) in our model, and it does have 

the right features to be the QCD axion in contrast to the conclusion of Banks and 

Dine [68]. The difference between our result and that of Banks and Dine has to do 

with our improved treatment of gaugino condensation and a non-renormalization 

theorem associated with the linear multiplet which is unique to the linear multiplet 

formalism. In conclusion, it is fair to say that these problems of the weakly-coupled 

heterotic string theory can be solved or are much less severe. 

As expected, the origin of the cosmological constant remains a mystery here 
-· 

although it is indeed under better control and the cosmological constant can be fine 

tuned to zero in our treatment. Again, a final resolution of this problem might have 

to wait for a complete understanding of superstring dynamics. The other unsettled 

issue in this work is the soft supersymmetry breaking pattern. Although our model 
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always predicts a dilaton-dominated scenario of supersymmetry breaking, yet in 

contrast to the standard lore of string phenomenology we point out that whether 

a dilaton-dominated scenario predicts universal soft supersymmetry breaking pa­

rameters actually depends on whether the matter couplings to the Green-Schwarz 

counterterm are universal. To settle this issue, a better understanding of the matter 

dependence of the Green-Schwarz counterterm for generic string models is certainly 

required; it deserves further studies and could lead to a rich phenomenology. An­

other potential problem of this work is that the gaugino masses might be too small. 

Whether this is a serious problem or not can be very model-dependent, especially 

in the context of superstrings where one generically encounters scenarios beyond 

the MSSM. In conclusion, we emphasize that this work is certainly not final, and 

it is very important to understand more about the non-perturbative aspects of 

superstrings, realistic string model building and the phenomenology. After a care­

ful re-examination of the aforementioned problems of the weakly-coupled heterotic 

string theory, it is also hoped that those misunderstandings of the current status of 

weakly-coupled heterotic string theory in the literature are clarified by this work. 

141 



Bibliography 

[1] H.P. Nilles, Phys. Rep. 110 (1984) 1; 

H. Haber and G. Kane, Phys. Rep. 117 (1985) 75. 

[2] L.E. Ibanez and D. Liist, Nucl. Phys. B382 (1992) 305; 

V.S. Kaplunovsky and J. Louis, Phys. Lett. B306 (1993) 269; 

A. Brignole, L.E. Ibanez and C. Muiioz, Nucl. Phys. B422 (1994) 125;. 

T. Kobayashi, D. Suematsu, K. Yamada andY. Yamagishi, Phys. Lett. B348 

(1995) 402; 

A. Brignole, L.E. Ibanez, C. Muiioz and C. Scheich, preprint FTUAM 95/26, 

LBNL-37564, hep-ph/9508258. 

[3] N.V. Krasnikov, Phys. Lett. B193 (1987) 37; 

J.A. Casas, Z. Lalak, C. Muiioz, and G.G. Ross, Nucl. Phys. B347 (1990) 243; 

B. de Carlos, J .A. Casas and C. Muiioz, N ucl. Phys. B399 (1993) 623. 

[4] S.H. Shenker, in Random Surfaces and Quantum Gravity, Proceedings of the 

NATO Advanced Study Institute, Cargese, France, 1990, edited by 0. Alvarez, 

142 



E. Marinari, and P. Windey, NATO ASI Series B: Physics Vol.262 (Plenum, 

. New York, 1990). 

[5] M.R. Douglas, D. Kabat, P. Pouliot and S.H. Shenker, Nucl. Phys. B485 

(1997) 85; 

J. Polchinski, Phys. Rev. D50 (1994) 6041. 

[6] E. Silverstein, preprint RU-96-104, hep-th/9611195. 

[7] T. Banks and M. Dine, Phys. Rev. D 50 (1994) 7454. 

[8] S.J. Gates, Jr., P. Majumdar, R. Oerter and A.E.M. van de Ven, 

Phys. Lett. B214 (1988) 26; 

W. Siegel, Phys. Lett. B211 (1988) 55. 

[9] P. Adamietz, P. Binetruy, G. Girardi and R. Grimm, Nucl. Phys. B401 (1993) 

257. 

[10] J.-P. Derendinger, F. Quevedo and M. Quiros, Nucl. Phys. B428 (1994) 282. 

[11] J. de Boer and K. Skenderis, Nucl. Phys. B 481 (1996) 129. 

[12] P. Binetruy, M.K. Gaillard and Y.-Y. Wu, Nucl. Phys. B481 (1996) 109. 

[13] Y.-Y. Wu, Berkeley preprint LBNL-39441, UCB-96/42, hep-th/9610089. 

[14] :P. Binetruy, M.K. Gaillard and Y.-Y. Wu, preprint LBNL-39608, UCB-PTU-

96/54, hep-th/9611149, to be published in Nucl. Phys. B. 

143 .. 



[15] H.P. Nilles, Phys. Lett. Bll5 (1982) 193; 

S. Ferrara, L. Girardello and H.P. Nilles, Phys. Lett. Bl25 (1983) 457. 

[16] M. Dine, R. Rohm, N. Seiberg and E. Witten, Phys. Lett. Bl56 (1985) 55. 

[17] P. Binetruy and E. Dudas, Phys. Lett. B389 (1996) 503; 

G. Dvali and A. Pomarol, Phys. Rev. Lett. 77 (1996) 3728. 

[18] P. Binetruy, M.K. Gaillard and T.R. Taylor, Nucl. Phys. B455 (1995) 97. 

[19] P. Binetruy and M.K. Gaillard, Phys. Lett. B365 (1996) 87. 

[20] C.P. Burgess, J.-P. Derendinger, F. Quevedo and M. Quiros, 

Phys. Lett. B348 (1995) 428. 

[21] P. Binetruy, F. Pillon, G. Girardi and R. Grimm, Nucl. Phys. B477 (1996) 

175. 

[22] T. Banks, D.B. Kaplan and A.E. Nelson, Phys. Rev. D49 (1994) 779. 

[23] L.F. Abbott and P. Sikivie, Phys. Lett. Bl20 (1983) 133; 

J. Preskill, M.B. Wise and F. Wilczek, Phys. Lett. Bl20 (1983) 127. 

[24] P. Binetruy, M.K. Gaillard and Y.-Y. Wu, preprint LBNL-39744, UCB-PTH-

96/61, hep-th/9702105. 

[25] P. Horava and E. Witten, Nucl. Phys. B460 (1996) 506 and B475 (1996) 94. 

[26] J. Polchinski, Prog. Theor. Phys. Suppl. 123 (1996) 9; 

M. Dine, preprint SCIPP-96-38, hep-th/9609051, Talk given at 1996 Annual 

144 



Divisional Meeting (DPF 96) of the Division of Particles and Fields of the 

American Physical Society, Minneapolis, MN, 10-15 Aug. 1996. 

[27] S.-J. Rey, preprint IASSNS-HEP-97-36, hep-th/9704158; 

D.A .. Lowe, preprint CALT-68-2107, hep-th/9704041; 

T. Banks/andL. Motl, preprint RU-97-17, hep-th/9703218. 

(28} E. Witten, Nucl. Phys. B471 (1996) 135. 

[29] G.D. Coughlan, G. Germain, G.G. Ross and G. Segre, Phys. Lett. BI98 (1987) 

467; 

P. Binetruy and M.K. Gaillard, Phys. Lett. B253 (1991) 119; 

Z. Lalak, A. Niemeyer and H.P. Nilles, Nucl. Phys. B453 (1995) 100. 

(30] S. Ferrara and M. Villasante, Phys. Lett. B186 (1987) 85; 

P. Binetruy, G. Girardi, R. Grimm and M. Miiller, Phys. Lett. 

B195 (1987) 389; 

S. Cecotti, S. Ferrara and M. Villasante, Int. J. Mod~ Phys. A2 (1987) 1839; 

S. Ferrara, J. Wess and B. Zumino, Phys. Lett. B51 (1974) 239. 

[31] M.K. Gaillard and T.R.Taylor, Nucl. Phys. B381 (1992) _577. 

[32] V.S. Kaplunovsky and J. Louis, Nucl. Phys. B444 (1995) 191. 

[33] E.S. Fradkin and A.A. Tseytlin, Ann. Phys. 162 (1985) 31. 

145 



[34] P. Binetruy, G. Girardi, R. Grimm and M. Miiller, Phys. Lett. B189 (1987) 

389; 

P. Binetruy, G. Girardi and R. Grimm, preprint LAPP-TH-275/90. 

[35] P. Binetruy, G. Girardi, R. Grimm and M. Miiller, Phys. Lett. B195 (1987) 

· 83 and B265 (1991) 111. 

[36] L.J. Dixon, V.S. Kaplunovsky and J. Louis, Nucl. Phys. B355 (1991) 649. 

[37] J.-P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner, Nucl. Phys. B372 

(1992) 145. 

[38] G.L. Cardoso and B.A. Ovrut, Nucl. Phys. B392 (1993) 315. 

(39] A. Giveon, N. Malkin and E. Rabinovici, Phys. Lett. B220 (1989) 551; 

E. Alvarez and M. Osorio, Phys. Rev. D40 (1989) 1150. 

[40] I. Antoniadis, K.S. Narain and T.R. Taylor, Phys. Lett. B267 (1991) 37. 

[41] G. Girardi and R. Grimm, Phys. Lett. B260 (1991) 365; 

S.J. _Gates, Nucl. Phys. B184 (1981) 381. 

(42] G. Veneziano and S. Yankielowicz, Phys. Lett. Bll3 (1982) 231. 

(43] T.R. Taylor, Phys. Lett. B164 (1985) 43. 

[44] P. Binetruy and M.K. Gaillard, Phys. Lett. B232 (1989) 82. 

[45] S. Ferrara, N. Magnoli, T.R. Taylor and G. Veneziano, Phys. Lett. B245 (1990) 

409. 

146 



[46] P. Binetruy and M.K. Gaillard, Nucl. Phys. B358 (1991) 121. 

[47] J. Wess and J. Bagger, Supersymmetry arid Supergravity, Princeton Series in 

Physics (Princeton U.P~, Princeton, 1992). 

[48] J.A. Casas, Phys. Lett. B384 (1996) 103. 

[49] P. Binetruy and M.K. Gaillard, Phys. Lett. Bl95 (1987) 382. 

[50] I. Ap.toniadis, E. Gava, K.S. Narain and T.R. Taylor, Nucl. Phys. B432 (1994) 

187. 

[51] M.K. Gaillard, V. Jain and K. Saririan, Phys. Rev. D55 (1997) 883, and Phys. 

Lett. B387 (1996) 520. 

[52] M.K. Gaillard and B. Zurilino, Nucl. Phys. B193 (1981) 221. 

[53] M. Cvetic, A. Font, L.E. Ibanez, D. Liist and F. Quevedo, Nucl. Phys. B361 

(1991) 194. 

[54] T.R. Taylor, G. Veneziano and S. Yankielowicz, Nucl. Phys. B218 (1983) 493; 

D. Liist and T.R. Taylor. Phys. Lett. B253 (1991) 335. 

[55] K. Konishi, Phys. Lett. 135B 439 (1984). 

(56] R. Barbieri, S. Ferrara, L. Maiani, F. Palumbo and C.A. Savoy, Phys. Lett. 

115B (1982) 212. 

[57] I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Nucl. Phys. B407 (1993) 

706. 

147 



[58] M.K. Gaillard and V. Jain, Phys. Rev. D49 (1994) 1951. 

[59] L.E. Ibanez, H.-P. Nilles and F. Quevedo, Phys. Lett. B187 (1987) 25. 

[60] M. Dine, P. Huet and N. Seiberg, Nucl. Phys. B322 (1989) 301. 

[61] S. Weinberg, Phys. Rev. Lett. 40 (1978) 223; 

F. Wilczek, Phys. Rev. Lett. 40 (1978) 279. 

[62] V.S. Kaplunovsky and J. Louis, Phys. Lett. B306 (1993) 269. · 

(63] B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Phys. Lett. B318 (1993) 

447. 

[64] L. Randall and S. Thomas, Nucl. Phys. B449 (1995) 229. 

[65] T. Banks, M. Berkooz and P.J. Steinhardt, Phys. Rev. D52 (1995) 705. 

[66] G.D. Coughlan et al., Phys. Lett. B131 (1983) 59. 

(67] J . .Louis and Y. Nir, Nucl. Phys. B447 (1995) 18. 

[68] T. Banks and M. Dine, preprint SCIPP 96/31, RU-96/95, hep-th/9608197. 

[69] G. Raffelt, Phys. Rep. 198 (1990) 1; 

M.S. Turner, Phys. Rep. 197 (1990) 67. 

[70] K. Choi and J.E. Kim, Phys. Lett. B154 (1985) 393 and B165 (1985) 71. 

148 



[71] M. Dine and W. Fischler, Phys. Lett. B120 (1983) 137; 

P.J. Steinhardt and M.S. Turner, Phys. Lett. B129 (1983) 51; 

K. Yamamoto, Phys. Lett. B161 (1985) 289. 

[72) M. Kawasaki, T. Moroi and T. Yanagida, Phys. Lett. B383 (1996) 313. 

[73] S.P. Martin and M.T. Vaughn, 'Phys. Lett. B318 (1993) 331, and Phys. Rev. 

D50 (1994) 2282; 

Y. Yamada, Phys. Rev. Lett. 72 (1994) 25. 

[74] G.F. Giudice, and A. Masiero, Phys. Lett. B206 (1988) 480; 

J. A. Casas and C. Munoz, Phys. Lett. B306 (1993) 288; 

I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Nucl. Phys. B432 (1994) 

187. 

[75] A.G. Cohen, D.B. Kaplan and A.E. Nelson, Phys. Lett. B388 (1996) 588; 

A. Pomarol and D. Tornmasini, Nucl. Phys. B466 (1996) 3; 

G. Dvali and A. Pomarol, Phys. Rev. Lett. 77 (1996) 3728. 

[76) N. Arkani-Hamed and H. Murayama, preprint LBNL-4-0077, UCB-PTH-97 /01, 

hep-ph/9703259; 

N. Arkani-Hamed, J. March-Russell and H. Murayarna, preprint LBNL-39865, 

UCB-PTH-96/55, IASSNS-HEP-96/106, hep-ph/9701286: 

[77] R. Rohm and E. Witten, Ann. Phys. (NY) 170 (1986) 454. 

[78] P. Hofava, Phys. Rev. D54 (1996) 7561. 

149 



[79] L.E. Ibanez, D. Liist and G.G. Ross, Phys. Lett. B272 (1991) 251; 

L.K Ibanez and D. Liist, CERN-TH.6380/92 (1992); 

M. K. Gaillard, and R. Xiu, Phys. Lett. B296 (1992) 71; 

R. Xiu, Phys. Rev. D49 (1994) 6656; 

S. P. Martin and P. Ramond, Phys. Rev. D51 (1995) 6515; 

K.R. Dienes and A.E. Farraggi, Phys. Rey. Lett. 75 (1995) 2646; 

K.R. Dienes, preprint IASSNS-HEP-95/97, hep-th/9602045, to be published in 

Phys. Rep., and references therein. 

[80] M. Dine, P. Huet and N. Seiberg, Nucl. Phys. B322 (1989) 301; 

J. Polchinski, preprint NSF-ITP-96-145, hep-th/9611050. 

150 



,,, 

@!·J~83il' ~ thWIJ;J3~133 €bi;J:<f!¥ii!L@il1 ~ ~ 

~ ~ ~ 3 tmlfi:I"*LfiiR'Io ~ ~CWI§) 


