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Abstract

Weakly-coupled heterotic string is known to have problems of dilaton/moduli stabi-
lization, supersymmetry breaking (by hidden-sector gaugino condensation), gauge
coupling unification, QCD axioh, as well as cosmological problems involving dila-
ton/moduli and axion. We study these problems by adopting the pbint of view that
they arise mostly due to our limited calculational power, little knowledge of the
full vacuum structure, and an inappropriate treatment of gaugino condensation. It
turns out that these problems can be solved or are much less severe after a more
consistent and complete treatment.

There are two kinds of non-perturbative effects in our construction of string
effective field theory: the field-theoretical non-perturbative effects of gaugino con-
densation (with an important constraint ignored in the past) and the stringy non-
perturbative effects conjectured by S. Shenker, which are best described using the
linear multiplet formalism. Stringy non-perturbative correctibns to the Kahler po-
tential are invoked to stabilize the dilaton at a value compatible with a weak cou-
pling regime. Modular invariance is ensured through the Green-Schwarz countert-
erm and string threshold corrections which, together with hidden matter condensa-
tion, lead to moduli stabilization at the self-dual point Wheré the vev’s of moduli’s
F components vanish. In the vacuum, supersymmetry' is broken at a realistic scale
with vanishing cosmological constant. As for soft sﬁpersymmetry breaking, our
model always leads to a dilaton-dominated scenario. For the strong CP problem,
- the model-independent axion haé the right properfies to be the QCD axion. Fur-
thermore, there 1s a naﬁural hierarchy between the dilaton/moduli mass and the
gravitino mass, which could -solve both the cosmological moduli problem and the

cosmological problem of the model-independent axion.
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Chaptei' 1

Preamble



How the electroweak symmetry is broken is one of the fundamental questions
of particle physics. In the standard model, the scalar Higgs doublet acquires a non-
vanishing vacuum expecta,tién value (vev), and thérefore breaks the electroweak
symmetry. However, the field-theoretical loop corrections to the masses of scaia.r
particles are quadratically divergent. Therefore, the scale of electroweak symmetry
breaking is in-fact unstable against radiative corrections, and how the very large hi-
erarchy between the Planck scale and the Ascale- of electroweak symmetry breaking is
generated rema;ins a mystery. Currently, weak scale supersymmetry {1] is the most
promising solution thié hierarchy problem. Supersymmetric theories are free from
quadratic divergences due to delicate cancellations between boson and and fermion
loop corrections, and therefore can stabilize the hierarchy between the Planck scale
and the electroweak scale. However, .supersymrﬁetry itself ‘does not explain the
origin of the electroweak scale. Furthermore, supersymmetry introduces new par-
ticles (i.e., supersymmetric partners of the standé.rd model particles.) Therefore,
as a requirement of particle phenomenology, sui)ersymmétry must be broken and
the resulting theory is a supersymmétric extension of the standard model with su-
persymmetry softly broken at the electroweak scale. The experimental search for
supers_ymmetric partners is very important to our understanding of electroweak
‘symmétry breaking. It will also shed light on the mechanism bf supersymmetry
breaking as well as the physics at (and possibly above) the scale wher;: supersym-
metry is br_()ken. On the other hand, constructing a realistic scheme of supersymme-

try breaking remains one of the big challenges to supersymmetry phenomenology.



Aithough it s possib.le, without knowing the details of the supersymmetry breaking -
mechanism, to parametrize the effects of softly broken supersymmetry in an effecf.ive
description, yet it involves a huge numbers of unknown parameters and thus makes
phenomenologicél analyses highly intractable. It is therefore desirable to have a re-
alistic supersymmetry breéking scheme which predicts all the soft sﬁpersymmetry
breaking parameters in terms of only a few parameters.

It is well known that superstring theory offers, according to the above consider-
ation, the most i)owerful scheﬁle of supersymmetry phenomenology. More precisely,
all the parameters appearing in the effective description of the superstring are in
principle determined by the dynamics of superstring alone, i.e., by the vev’s of cer-
tain fields (e.g., the string dilaton and moduli.) Besides, the most compelling reason
to study superstring theory is the fact that it is the only known candidate theory
of quantum gravity. However, at the perturbative level thg superstring has many
vacuz; parametrized by flat directions (e.g., the string dilaton and moduli) which
will be lifted only after non-perturbative effects are included!. Even with the reg:enf
progress of string duality, there is still little knowledge of these non-perturbative
effects anci hence how the above powerful feature of superstring theory is realized.
Earlier attempts to study the phenomenology of superstrings [2] have ei'ther ignored
fhe non-perturbative effects responsible for stabilizing the string dilaton/moduli or

relied on the racetrack model? [3], and therefore their results may not be reliable. It

1t is very possible that the same non-perturbative effects are also responsible for supersym-

" metry breaking. v _
2As will be discussed later, the racetrack model suffers from a negative cosmological constant



is believed and will be shown in the following chapters that it is possible to draw re-
liable predictions from superstrings only after the relevant non-perturbative effects
are fully taken into account.

Our study of superstring phenomenology contains two kindé of non-perturbative
effects: the stringy non—perturba.tiveveffects generated above the string scale, and
the field-theoretical non-perturbative effects of gaugino condensation generated by
strongly-interacting gauge groups below the string scale. As for stringy non-perturbative
effects, they have always been ignored in the past. The existence of significant
stringy non-perturbative effects was first conjectured by S.H. Shenker [4]. The re-
cent development of string duality has provided further evidence [5, 6] fqr Shenker’s
conjecture. It was first noticed by T. Banks and M. Dine that significant stringy
non-perturbative effects could have interesting implications [7]. Here we will study
in detail the phenomenological implications of stringy non-perturbative effects using
the linear multiplet formalism of superstring effective theory. It was first poipted
out in [8] that the field-theoretical limit of weakly-coupled heterotic string theory
shoﬁld be described using the linear multiplet formalism rather than the chiral mul-
tiplet formalism. A similar point of view has also been emphasized by other authors
[9, 10, 11]-. Furthermore, our study represents a concrete and elegant realization of
this viewpoint. As we shall see in Chapter 2, in the linear multiplet formalism the
string coupling is the linear multiplet L which is the natural parametrization of

stringy physics. On the other hand, the coupling of string effective field theory

problem as well as an un-naturalness problem.



is L/(1+f (L)) which is the natural parametrization of ﬁold-theoretical effects; it
is modiﬁed in the presence of stringy effects f(L). Therefore, the linear multiplet
formalism naturally distinguishes stringy effects from field-theoretical effects, and it
is this feature that makes the incorporation of stringy effects with the effective field
theory simple and transparent. This advantage of the linear multiplet formalism is
very crucial to our study where both stringy and field-theoretical non-perturbative
effects are considered. As we v‘;ill see, stringy non-perturbative effects do play
an important role in stabilizing the string dilaton/oloduli and in breaking super-
symmetfy via the field-theoretical non-perturbative effects of gaugino condensation
[12, 13, 14].

As for the field-theoretical noo-perturba.tive effects, gaugino condensation has
always played a unique role: at low energy, the strong dilaton;Yang-Mills interaction
leads to gaugino condensation which not only breaks supersymmetry spontaneously
but also generates a non-perturbotive potential which may eventually stabilize the
_dilaton:". In the scheme of gaugino condensation the stabilization of string dila-
ton/moduli and the breaking of supersymmetry are therefore unified in the semse
that they are two aspects of a single non-perturbative phenomenon. Furthermore,
gaugino condensation has its own important phenomenological motivations: gaug-

ino condensation occurs in the hidden sector of a generic string model [15, 16]; it

can break supersymmetry at a sufficiently small scale and may induce viable soft

3In general there is also matter condensation which generates a non-perturbative potential for

string moduli.



supersymmetry breaking effects in the observable sector through gravity and/or
an anomalous U(1) gauge interaction [17]. However, although gaugino» condensa-
tion has been studied since 1982, it still has several long-standing problems in the
context of superstrings. Firstly, superstring phenomenology based on the scheme of
gaugino condensation has been long plagued by the infamous dilaton runaway prob-
lem [7, 16]. That is, (assuming that the tree-level Kahler potential of the dilaton is
a good approximation) one generally finds that the suoersymmetric vacuum with
vanishing coupling constant and no gaugino condensation is the only stable mini-
mum in the weak-coupling regime. Secondly, modular invariance is a very important
property of superstring. However, most of the studies of gaugino condensation had
neither complete nor correct treatments of modular invariance. As we shall see,
a fully modular invariant treatment of gaugino condensation has non-trivial phe-
nomenological implications. Thirdly, in the past the gaugino condensate has always
been describod by an unconstrained chiral superfield U which corresponds to the
bound state of W*W, in the underlying theory. It was pointed out recently that
U should be a constrained chiral superfield [18, 19, 20, 21] due to the constrained

superspace geometry of the underlying Yang-Mills theory:

U = —(DsD* -8R,

U = —(D*D, -8RV, - (1.1)

where V is an unconstrained vector superfield. Fourthly, superstring ‘phenomenol-

ogy based on gaugino condensation suffers from several cosmological problems such

~
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as the cosmological moduli problem [22] and the cosmological bound on the invisible
axion [23]. These cosmological problems either destroy the successful nucleosynthe-

sis or overclose the universe.

These formidable problems might make one think that the W;aakly—coupled het-
erotic string theory is in grave danger. On the other hand, these préblems are
not unrelated to one a.néther because ‘the superstring has a highly constrained and
predictive framework. As we shall see, in fact these problems arise from our poor
understanding of non-perturbative string dynamics as well as incorrect/incomplete
treatments of superstring phenomenology in the past. Once we _khow how to proceed
in the right direction, these problems turn out to be solved or much less serious.
For the first problem, we emphasize the advantage of using the linear mulfiplet
formalism and show that stringy non-perturbative effects may stabilize the dilaton
at a value compatible witﬁ a weak coupling. regime [12, 13]. For the second and
the fhird problems, full modular invariance is ensured through the Greeﬁ—Schwarz
tem and string th;'eshold corrections, and the constraint on the gaugino conden-
sate U is expliéitly solved using the linear multiplet formalism [12, 13, 14]. They do
lead to uniqué predictions of supéfstring’ theory about supersymmetry breaking, thé
compactification scale, and axion physics®. For example, string moduli are stabi-
Iized at the self-dual point, and therefore they do hot participate in supersymmetry

breaking because the vev’s of moduli’s F' terms vanish [14]. This is certainly a de-

4These unique predictions were unknown in the past due to the aforementioned first three

problems. -



sirable feature in consideration of flavor changing neutral current (FCNC) because
non-vanishing vev’s of moduli’s F' terms generically lead to non-universal contribu-
Vtions to the soft supersymmetry breaking parameters. For the fourth problem, let’s
recall the standard lore of superstring phenomenology which tells us that, based
on'a, very naive order-of-magnitude estimate, string dilaton and moduli gain from
supersymmetry breaking masses of order of bthe gravitino mass. Since the gravitino
mass is of order of the electroweak scale, these small masses of the dilaton and
moduli lead to the cosmological moduli problem. On the other hand, our model is
realistic enough for us to discuss these issues based on actual computations rather
than educated guesses: it turns out that the string dilaton and moduli are in fact
much heavier than the gravitino, which may be sufficient to solve the cosmological
moduli problem [24]. Furthermore, the large ‘entropy pr.oduced by the decays of
the heavy moduli in our model will dilute the axion density and therefore raise the
cosmological bound on the axion decay constant. As we sha.]i see, this could solve

the cosmological problem of the invisible axion.

Finally, let’s make a brief comment on how the recent development of string
duality might affect the status of weakly-coupled heterotic string theory. There
have been claims in the literature in favor of the strongly-couplgd heterotic string
t‘heory by arguing that it is unlikely that the weakly-coupled heterotic string theory
can solve the dilaton runaway problem. However, the recent observation of string -
dualities actually implies that the strong coupling limit of heterotic string theory,

which can be described by another weakly-coupled theory (i.e., M-theory compact-

8



ified on R10xS! /Z2 [25]), is plagued by a similar runaway problem [26]. Therefore,
there seem to be only two logical options for solving the runaway problem: either
a truly ﬁon—perturbative heterotic string theory which does not allow a weakly-
coupled description, or a weakly-coupled theory (¢.e., the weakly-coupled heterotic
string theory or the strong coupling limit of heterotic string theory). So far the first
option remains a remote vpossibility.5 On the other hand, as for the second option
both the weakly-coupled heterotic string theory and the strong coupling limit of
heterotic string théory certainly deserve further study®. As mentioned before, it
is our purpose here to show that the Wea,kly;<:‘oupled heterotic string theory could
solve the dilaton runaway problem as well as lead to a §atisfactory phenomenology
[24].

In Chapter 2, a simple string orbifold model with a hidden Es gauge group
and no hidden matter is used to illustrate the studies of the linear multiplet formal-
ism, the incorporation of stringy non-perturbative effects, static gaugino condensa-
tion, and the dilaton runaway problem. In Chapter 3, we give the motivations for °

*studying dynamical gaugino condensation, and then show that static gaugino con-

densation is indeed the appropriate low-energy effective description of dynamical

5Some recent attempts at a non-perturbative formulation of heterotic string theory can be

- -found in [27]. ‘ . _
SAlthough recently there is an argument of coupling unification preferring the strong cou-

pling limit of heterotic string theory to the wea.kly—coqpled heterotic string theory [28], it involves
assumptions that are not true generically. For example, it is assumed in [28] that the compact-
ification volume Vi om,p is of order MggT, where Mgy is the grand unification scale. However, in
our model the moduli associated with compactification are stabilized at the self-dual point, and

therefore the argument of [28] is not valid.



gaugino condensation. In Chapter 4, we extend our previous studies to a generic
string orbifold model. The resulting model is geﬁeric and realistic enough, and we
are therefore in a position to address several important phenomenological issues.
In Chapter 5, we discuss phenomenological issues such as the dilaton and moduli
masses, axion physics, soft supersymmetry breaking parameters, gauge coupling

unification, as well as cosmological issues.

10



Chapter 2

The Stringy Story of Gaugino

Condensation
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2.1 Introduction

Constructing a realistic scheme of supgrsymmetry breaking is one of the big
challenges to supersymmetry phenomenology. _However, in the context of super-
string phenomenology, there are actually more challenges. As is well known, a very
powerful feature of superstring phenomenology is that all the parameters of the
model afe in pfinciple dynamically determined by the vev’s of certain fields. One
of these important fields is the string dilaton whose vev determines the gauge cou-
pling constants. On the ofher hand, how the dilaton is stabilized is outside the
reach of perturbation theory since the dilaton’s potential remains flat to all order in
perturbation theory according to the non-renormalization theorem. Therefore, un-
derstanding how the dilaton is stabilized (i.e., how the gauge coupling constants are
determined) is of no less signiﬁcaﬂce than understanding how supersymmetry is bro-
ken. Gaugino condensation has been playing a unique role in these issues: Gaugino
condensation not only breaks supersymmetry but also generates a non-perturbative
dilaton potential which may eventually stabiliée the dilaton. Furthermore, gaugino
condensation has its own important phenomenological motivations [15, 16, 17]. Un-
fortunately, this béa.utiful scheme of gaugino condensation has been long plagued
by the infamous dilaton runaway problem [7, 16]. (The recent observation of string
dualities further implies that the strong-coupling regime is plagued by a similar run-
away préblem [26].) Only a few solutions to the dilaton runaway problem have been

proposed. Assuming the scenario of two or more gaugino condensates, the racetrack

12



model stabilizes the dilaton and breaks supersymmetry with a more complicated
dilaton superpotential generated by multiple gaugino condensation [3]. However;
stabilization of the dilaton in the racetrack model requires a delicate caﬁcella,tion
between the contributions from different gaugino condensates, which is not very
natural. Furthermore, it has a large and negative cosmological constant when su-
persymmetry is broken. The other solutions generica.l.ly reéuire the presence of an
additional source of supersymmetry breaking (e.g., a constant term in the superpo-
tential) [16, 29]. It is therefore fair to say that there is no satisfactory solution so
far. | |

Recently, there have been several new developments and insights in superstring
phenoménology. It is our purpose to show that these new ingredients play impor-
tant roles in the above issues and can eventually lead to a promising solution. One
of these new ingredients is the linear multiplet formalism of superstring effective
theoriés [8, 9, 10]: Among the massless string modes, a real scalar (dilaton), an
antisymmetric tensor field (the Kalb-Ramond field) a.nd their supersymmetric part-
ners can be described either by a chiral superfield S or by a linear multiplet L,
which is kﬁown as the chiral-linear duality. [30]. By definition, the linear multiplet

L is a vector superfield that satisfies the following constraints [30]:
- —(DsD* —8R)L = 0,
—(D*D,—8RL = 0. (2.1)

The lowest component of L is the dilaton field £, and its vev is related to the gauge

13



coupling constant as follows!: g2(M,) = 2({¢), where M, is the string scale [31, 32].
Although the chiral-linear duality is obvious at tree level, it becomes obscure when
quantum effects are included. Although scalar-2-form field strength duality, which
is contained in chiral-linear duality, has been shown to be preserved in perturbation
theory [33], the situation is less clear in the presence of non-perturbative effects,
which are importa,nt.in the study of gaugino condensation.- It has recently been
shown [18, 20] that gaugino condensation can be formulated directly using a linear
multiplet for the dilaton. Although a formal equivalence between the chiral and
linear multiplet formalisms has been shown [20], the content of the resulting chiral-
linear duality transformation is in general very complicated. If there is an elegant
description of gaugino condensates in the context of superstring effective theories,
it may be simple in only one of these fofmalisms, but not in both. Therefore, a
pertinent issue is: which formalism is better? Here we will construct the effective
theory of gaugino condensation directly in the linear multiplet formalism without
referring to the chiral multiplet formalism. There is reason fo believe that the linear
multiplet formalism is in fact more appropriate. The stringy reason for choosing
the linear multiplet formalism is that the precise field content of the linear multi-
plet appeafs in the massless string spectrum, and (L) plays the role of string loop
éxpansion parameter. | Thérefore, string information is more naturally encoded in

the linear multiplet formalism of string effective theory. Furthermore, as we will see

1However, as we shall see in Section 2.2.2, this identification of gauge coupling constant in

terms of (£) will be modified in the presence of stringy non-perturbative effects [4].
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in Cha,pter 2, stringy effects are believed to be important in the stabilization of the
dilaton and supersymmetry breaking by gaugino condensation; therefore, it is more

appropriate to study these issues in the linear multiplet formalism.

The other new ingredient concerns the effective description of gaugino conden-
“sation. In the known .models of gaugino condensation using the chiral superfield
representation for the dilaton, the gaugino condensate has always been described
by an unconstrained chiral supérﬁeld U which corresponds to the bound state of
WeW,, in the underlyiﬁg theory. It was pointed out recently that U should be
a constrained chiral sﬁperﬁeld [18, 19, 20, 21] due to the constrained superspace

geometry of the underlying Yang-Mills theory:

U = —(DsD*-8R)V,

U = —(p*D, -8R, (2.2)

Where V is an unconstrained vector superfield. Furthermore, in the Linear multiplet
formalism the linear multiplet L and the constrained U, U nicely me;rge into an
unconstrained vector superfield V' [18], and therefore the effecti;re Lagrangian can
elegantly Be described by V alone.

The third new ingredient is the stringy non-perturbative effect conjectured by
SH Shenker [4]. It is further argued in [7] that the Kéhlgf potential can in principle
receive significant stringy non-perturbative corrections although the superpotential
cannot generically. Significant stringy non-perturbative corrections to the Kahler

potential imply that the usual dilaton runaway picture is valid only in the weak-
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coupling regime; as pointed out in [7], these correctiqns may naturally stabilize the
dilaton.? |

In the next section we describe the linear multiplet formalism of string ef-
fective Yang-Mills theor)-r, whose effective theory below the condensation scale is
constructed and analyzed in Section 2.3. It is then shown in Section 2.4 that su-
persymmetry is broken and the éilaton is stabiliz;:l i;fl a large class of models of

static gaugino condensation. Here we use the Kahler superspace formulation [34] of

supergravity, suitably extended to incorporate the linear multiplet [35].

2.2 The Linear Multiplet Formalism

2.2.1 Effective Yang-Mills Theory from Superstring

In the realm of superstring effective Yang-Mills theory, there are two important
ingredients, namely, the symmetry group of modular transformations and the linear
multiplet. In order to make the discussion as explicit as possible in tﬁis chapter, we
consider here orbifolds with gauge group® Es ® Es ® U(1)?, which have been studied
most extensively in the context of modular symmetries [31, 32, 36]. They contain

three untwisted (1,1) moduli 77, I = 1, 2, 3, which transform under SL(2,Z) as

2Choosing a specific form for possible non-perturbative corrections to the Kahler potential, [48]
has discussed the possibility of stabilizing the dilaton in a model of gaugino condensation using
chiral superfield representation for the dilaton. However, neither the issue of modular anomaly

cancellation nor the constraint (2.2) was taken into account.
3 As for phenomenological consideration, it is more desirable to discuss a generic orbifold. Such

a non-trivial generalization will be made in Chapter 4.
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follows:
71 aTl — b

- T D ad - bc=1, a,b,c,d € 7. (2.3)

The corresponding Kahler potential is
G =3 ¢" + > exp(} aug")I®* + O(|2]), (24)
1 A I

where g' = —In(TT + T7), and the modular weights g} depend on the particular
matter field ®4 as well as on the modulus TZ. However, it is well known that the
éffectiv‘e theory obtained from the massless truncation of superstring is not invariant
under the modular transformations (2.3) at one loop [37, 38]. Counterterms, that
correspond to the result of ihtegrating out massive modes, have to be added to the
effective theory in order to restore modular invariance since string theory is known
to be mc;dular invariant to all orders of the loop expansion [39]. Two types of such
counterterms have been discussed in the litera.tﬁre [31, 36, 38], the so-called f—typ\e
counterterms (i.e., string threshold corrections) and the ‘Green-Schwarz countert-
- erm. The Green-Schwarz counterterm, which is analogous to the Green-Schwarz
anomaly cancellation mechanism in D=10, is naturally implemented with the lin-
ear multiblef formalism [30]. In Chapters 2 and 3 we consider ogly those orbifolds
in which t.he full modular anémaly is cancelled by the Green-Schwarz countert-
"erm alone (i.e., orbifolds with universal modﬁla.r anomaly cancellation), and more
genefic orbifolds with both <types of counterterms present will be considered in

Chapter 4. Indeed, an orbifold has universal modular anomaly cancellation unless

its modulus T corresponds to an internal plane which is left invariant under some
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orbifold group transformations, which may happen only if an N=2 supersymmetric
twisted sector is present [40]. Therefore, a large class of orbifolds, including the Z3
and Z- orbifolds, is under consideration in this chapter.

The antisymmetric tensor field of superstring theories undergoes Yang-Mills
gauge transformations. In the effective theory, it can be incorporated into a gauge
invariant vector superfield L, the so-called modified linear multiplet, coupled to the

Yang-Mills degrees of freedom as follows:
—(DsD* —8R)L = (DsD* —8R)Q = 3. Tr(WW,)%,
—(D*D. —8RYL = (D°D, —8RNQ = > Tr(WaW?)?, (2.5)

where 2 is the Yang-Mills Chern-Simons superform. The summation extends over
the indices a numbering simple subgroups of the full gauge group. The modified lin-
ear multiplet L contains the linear multiplet as well as the Chern-Simons superform,
and its gauge invariance is ensured by imposing appropriate transformation proper-
ties for the linear multiplet. The gene;ic lagrangian describing the linear multiplet
coupled to supergravity and matter in the presence of Yang-Mills Chern-Simons

superform is [31]):

K = InL+g(L)+ G,

L = /d49E{—2+f(L)} +/d49E{bLZgI}, (2.6)
I .
c 2 - |
b = W = 'gbo, 7 (2.7)

where L is the modified linear multiplet and C = 30 is the Casimir operator in
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the iadjoint representation of Eg. b is the Eg oné-loop B-function coefficient. The
first term of L is the superspace integral which yields the kinetic actions for »the
linear multiplet, supergravity, matter and Yang-Mills fields. The second term in
(2.6) is the Green—Schwafz counterterm, which is “minimal” in the sense of [31]..
Furthermore, arbitrariness in the two functions g(L) and f(L) is reduced by the re-
quirément that the Einstein term in £ be canonical. Under this constraint, g(L) and

f(L) are related to each other by the following first-order differential equation [35]:

dg(L) _ _,df(L) | |
= = L3+ A, (2.8)

The complete component lagrangian of (2.6) with the tree-level Kahler potential
(i.e., g(L) = 0 and f(L) = 0) has been presented in [9] based on the Kahler ;super-
space formulation. Similar studies have also been performed in the superconformal
formulation of supergravity [8, 10]. In the following, we are interested in the effective

lagrangian of (2.6) below the condensation scale.

2.2.2 Stringy Effects versus Field-Theoretical Effects

In this section we wouid like to illustrate how stringy effects are naturally
incorpordted with the superstring effective field theory using the linear multiplet
formalism. Consider again the effective field theory defined at the string scale M,.
’i‘he qua.ntum\corréctions, g(L) and f(L), to the tree-level Kahler potential of (2.6)
are naturally interpreted as stringy effects. Indeed, in the context of superstring
L plays the role of string loop expansibn parameter (i.e., the string coupling), and
therefore stringy effects are naturally parametrized by L. Although perturbative
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contributions to g(L) and f(L) are generically small, yet, as first pointed out by
Shenker [4], there can be significant stringy non-perturbative contributions. It is
then interesting to ask how the usual relation between the dilaton £ and the gauge
coupling constant of the effective field theory, gz(Ma) = 2({), might get modified in
the presence of stringy effects? It is straightforward to compute the gauge coupling
constant at the string scale, g(M;), defined by the effective field theory (2.6) as

follows:

P(M,) = <1+2£—}(£)>- (2.9)

Indeed, the presence of stringy effects do affect the usual interpretation of the gauge
coupling constant of the effective field theory in terms of the string dilaton. More
precisely, the linear multiplet formalism naturally distinguishes stringy effects from
field-theoretical effects; that is, £ is the natural parametrization of stringy effects and
(2¢/ (1 + f(£))) is on the other hand the natural parametrization of field-theoretical
effects. Therefore, the linear multiplet formalism of superstring effective field theory
has the advantage of incorporating stringy effects with the effective field theory in a
simple and transparent manner. As mentioned before, this unique feature of linear
multiplet f§rmalism is crucial to our study here, since stringy non-perturbative
effects do play an important rolé in the stringy story of gaugino condensation.

On the other hand, in the chiral multiplet formalism where the string dilaton
is described by a chiral sﬁperﬁeld S chiral superfield (s = S|s=5=0), S has to be
re-defined order by order in perturbation, whiéh is clear frqm the perturbative
chiral-linear duality. Furthermore, in the chiral multiplet formalism there is no
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clear distinction between stringy effects and field-theoretical effects; more precisely,
-we always have from the chiral multiplet formalism of the superstring effective field
theory ¢*(M,) = (2/(s+3)) even when stringy effects are included. One may also
derive this result by a duality transformation from the linear multiplet formalism
(26) to the corresponding chiral multiplet formalism of (2.6‘). It has been shown |
[31] that 1/(S + S) corresponds to L/(1+ f) through this duality trénsformation,
and therefore the interpretations of g?(M;) in both formalisms are consistent with
each other. In conclusion, we emphasize thé a,dva,'nta,ge of using the linear multiplet
formalism over the chiral multiplet formalism in telling the stringy story of gaugino
condensation. More evidence of this advantage will be discovered in the following

sections.

2.2.3 Low-Energy Effective Degrees of Freedom

Below the condensation scale at which the gauge interaction becomes strong,
the effective lagrangian of the Yang-Mills sector can be described by a composite
chiral superfield U, which corresponds to the chiral superfield Tr(W*W,) of the un-
derlying theory. (We consider here gaugino condensation of a simple gauge group.)
The scalar component of U is naturally interpreted as the gaugino condensate. It
was pointed out only recéntly that the composite field U is actually a constrained
chiral superfield [19, 20, 21]. The constraint on U can be seen most clearly through
the constrained superspace geometry of the underlying Yang-Mills theory. As a

consequence of this constrained geometry, the chiral superfield Tr(W*W,, ) and its
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hermitian conjugate Tr(W;W9) satisfy the following constraint:
(D*Dy — 24RNTr(WW,) — (DyD* — 24R) Tr(WsW*S) = total derivative. (2.10)

(2.10) has a natural interpretation in the con'text of a 3-form supermultiplet, and
indeed Tr(W>W,) can be interpreted as the degrees of freedom of the 3-form field
strength [41]. The explicit solution to the constraint (2.10) has been presented in
[21], and it allows us to identify the constrained chiral superfield Tr(W*W,) with

the chiral projection of an unconstrained vector superfield L:

Tr(WoWe) —(DsD* —8R)L,

Tr(WsW*) = —(D*D, —8R')L. (2.11)

Below the condensation scale, the constraint (2.10) is replaced by the following

constraint on U a.ﬁd U:
(DD, — 24RNYU — (DyD* — 24R)U = total derivative. (2.12)

Similarly, the solution to (2.12) allows us to identify the constrained chiral superfield

U with the chiral projection of an unconstrained vector superfield V:

U = —(DsD*—8R)V,

U = —(D*D,-8RHV. (2.13)

(2.13) is the explicit constraint on U and U.

In fact, the constraint on U and U enters the linear multiplet formalism of gaug-
ino condensation very naturally. As described in Section 2.2.1, the linear multiplet
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formalism of supersymmetric Yang-Mills theory is described by a gauge-invariant

vector superfield L which satisfies
~(DsD*~8R)L = (D3D*—8R)Q = Tr(W*W,),
—(D*Dy —8RL = (D*D,—8RNQ = Tr(WW%). (2.14)

For the linear multiplet formalism of the superstring effective lagrangian below the

condensation scale, (2.14) is replaced by

—(DsD* —8R)V = U,

—(D*D, — 8RNV U, (2.15)

]

Where U is the gaugino condensate chiral superﬁeld, and V contains the linear
multiplet as well as the “fossil” Chern-Simons superform. In view of (2.15), it is clear
that the constraint on U and U arises naturally in the linear multiplet formalism
of gaugino condensation. Furthermore, the low-energy degrees of freedom (i.e., the
linear multiplet and the gaugino condensate) are nicely merged into a single vector
superfield V, and therefore the linear multiplet formalism of gaugino condensation
can elega.r;tly be described by V alone in the context of superstring. The detailed
construction of the effective lagrangian for the vector superfield V will be presented

in the next section.
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2.3 Gaugino Condensation in Superstring

Effective Theory

2.3.1 A Simple Model

Constructing the linear multiplet formalism of gaugino condensation requires
the specification of two functions of the vector superfield V, namely, the super-
potential and the Kahler potential. In the linear multiplet formalism, there is no
classical superpotential [19], and( the quantum superpotential originates from the
non-perturbative effects of gaugino condensation. This non-perturbative superpo-
tential, whose form was dictated by the anomaly structure of the underlying theory,
was first obtained by Véneziano and Yankielowicz {42, 43, 44, 45]. The details of
its generalization to the case of matter coupled to N=1 supergravity in the Kahler
superspace formulation has been presented in [46], and the superpotential term in

the Lagrangian reads:
ag B kp2 4 ~-K/277/,,3
/d 0= Wyy = /d 0——bU1n(e U/ i),
[ 440 £ ki 4 ~K/2f7/,3
/d 0 Wy = /d 6——bU1n( T/u3), (2.16)
where U = —(DsD*—8R)V is the constrained gaugino condensate chiral superfield
with Kahler weight 2, and' i is a constant with dimension of mass that is left

undetermined by the method of anomaly matching.

As for the Kahler potential for V, there is little knowledge beypnd tree level.

The best we can do at present is to treat all physically reasonable Kahler potentials
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‘on the same footing and to look for possible general features and/or interesting
special cases. In particular, we are interested in a specific class of K3hler potentials
where there are significant stringy non-perturbative corrections as pointed out in
[4, 7]. Before dis;ussing this general analysié, it is instructive to examine a simple
yet uh-realistic linear multiplet model for gaugino condensation defined as follows

[19]:
K = InV +G,

Less = /d49E{ -2 4+ VG} + /d“ A/sz n /d“() Wy

@
Il

> In(TT+TY). | (2.17)
I

This simple model describes the eﬁec£ive theory for (2.6) below the condensation
scale, where the Kahler potential of V assumes its tree-level form. It is a “static”
model of gaugino condensation in the sense thét no kinetic term for U is included.
From the viewpoint of the anomaly structure, static as well as dynamical models
" of gaugino condensation a,reI interesting in their. own right. However, as will be
discussed in Chapter 3, dynamical rnodel; rather than staticv‘models generically
occur in the context of supérStrings. Dynamical m;)d;els of gaugino condensation
in the linear multiplet formalism [18, 20] have been studied less extensively. On
'tile other hand, as will also be shown in Chapter 3, after integrating out the heavy
modes the static model of gaugino condensation is proven to be the appropriate

effective description for the dynamical model?. Therefore, in Chapter 2 we will

4Unlike studies using the chiral multiplet formalism in the past, proving such a connection
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concentrate on static models of gaugino condensation, and there will be no loss of
generality.

With U = —(DsD*—8R)V and U = —(D*D, —8R!)V , we can rewrite the
superpotential terms of L.ss as a single D term by superspace partial integration.

For example, for any chiral superfield X of zero Kahler weight:

1 4, B _ 4 7
8/d GRUalnX+h.c.—/d 8 EV,In(XX)

O ( [a

where E%™ is an element of the supervielbein, and the total derivative on the right

EhhX ;
Dd' a am b H 2.
SR V.E +hc> (2.18)

hand side contains the chiral anomaly (x 0, B™ =~ F2_F™") of the F term on the
left hand side. Therefore, up to a total derivative, the simple model (2.17) can be

rewritten as follows:
K = hV +G6,

Loy = / d*E{-2 + VG + bV In(e XTU/p%)}. (2.19)

In (2.19), the modular anomaly cancellation by the Green-Schwarz counterterm is
transparent [19]. The Green-Schwarz counterterm 8V G and the superpotential D
term bV In(e~KT U./ ©®) are not modular invariant separately, but their sum is mod-
ular invariant, which ensures the modular invariance of the full theory. In fact, the
Green-Schwarz counterterm cancels the 77 moduli-dependence of the superpoten-

tial completely. This is a unique feature of the linear multiplet formalism, and, as

between static and dynamical gaugino condensation is much more non-trivial in the linear multiplet

formalism with the constraint on U incorporated consistently.
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we will see later, has interesting implications for the moduli-dependence of physical
quantities. |

Throughout this paper only the bosonic and gravitino parts of the compo-
nent lagrangian are presented, since we are interested in the vacuum (;onﬁguration
and the gra.w)itino mass. In the following, we enumerate the definitions of bosonic

component fields of the vector superfield V.

L = V|9=9_=0’
1 2 .
U;nd-Bm = E[Da)Dd.]V|G=9—=O + '§£0adba7
u = Ule:é:o = _(ﬁ? - 8R)V[9=0_=07

@ = Ulpmgeo = ~(D* — 8RNV s=gmo,

D = -D’(D*-8R)DsVlpjeo

1
8
1 ; .
= gDB(DZ — 8RN D Vls—p0» (2.20)
where
1 1 - t 1
-_.. gM = Rla:?:oa —-6_M = R '9:5:0) - gba = Ga,&:é':o (2’21)

are the auxiliary components of supergravity multiplet. It is convenient to write

the lowest components of D*U and D?U as follows:.
- 4FU = DzUIé:é:O) —4Fb = 232[7"9:5:0' (2’22)
(Fu — Fp) can be explicitly expressed as follows:

(Fu —VF'U) = 4V™B,, + uM — aM. (2.23)
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The expression for (Fy+ Fj7) contains the auxiliary field D. The bosonic components

of T! and T' are
tI = TIIB:@:O’ —4FI = D2T1l0=0-=07
{I = TI'9=§=O7 _4FI = ﬁ2T’I[€=§=0‘ (2'24)

We leave the details of constructing the component lagrangian for this simple model
(in the Kahler superspace formulation) to Section 2.3.2, and present here only the
scalar potential obtained from eliminating the auxiliary fields in the boson La-
grangian given in (2.46) below:

1

Toaap(1 + 260 — 20702 Yube 1/, (2.25)

‘/pot =

Eq. (2.25). agrees with the result obtained in [18], where the model defined by (2.17)
was studied for the case of a single modulus using the superconformal formulation
of supergravity.

However, this simple model is not viable. As expected, the weak-coupling limit
£ = 0 is always a minimum. As shown in Fig. 2.1, the scalar potential starts with
Voot = 0 at £ = 0, first rises and then falls without limit as £ increases. Therefore,
Vpot is unbounded from below, and this simple model has no well-defined vacuum.
This may be somewhat surprising because the model defined by (2.17) superficially
ai)pea,rs to be of the no-scale 'type: the Green-Schwarz counterterm, that destroys
the no-scale property of chiral models and destabilizes the potential, is cancelled
here by quantum effects that induce a potentiai for the condensate. However the
resulting quantum contribution to the Lagrangian (2.19), bV In(UU/V), has an
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Figure 2.1: The scalar potential V,,: (in reduced Planck units) is plotted versus the
dilaton £. u=1.
implicit T/-dependence through the superfield U due to its nonvanishing Kahler
weight: w(U) = 2. This implicit moduli-dependence is a consequence of the anom-
aly matching céndition, and parallels the construction of the effective theory in the
chiral multiplet formalism [41‘7 42, 43, 44] which is also not of the no-scale form once
the Green-Schwarz counterterm is _inc’luded.

If we take a closer lookv at (2.25), it is clear that the unboundedness of V,,; in the
- strong-coupling limit £ — oo is caused by a term of two-loop order: ~2b%/%. This
" observation strongly suggests that the ﬁndérlying reason for unboundedness is our
poor control over the model in the strong-coupling regime. The form of the superpo-
“tential Wyy is completely fixed by the underlying anomaly structure. However the

Kahler potential is much less constrained, and the choice (2.17) cannot be expected
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to be valid in the strong-coupling regime where the non-perturbative contributions
should not be ignored. We conclude that the unboundedness shown in Fig. 2.1
simply reflects the importance of non-perturbative contributions to the Kahler po-
tential. In particular, it is natural to expect that the stringy non-perturbative effects
conjectured by Shenker [4, 7] are the non-perturbative contributions to the Kahler
potential ignored in this simple model. In the absence of a better knowledge of the
exact Kahler potential, we will consider models with generic Kahler potentials in

the following sections.

2.3.2 General Static Model

In this section, we show how to construct the component lagrangian for generic

linear multiplet models of static gaugino condensation in the Kahler superspace
formulation. Further computational details can be found in [9, 34]. Although our
results can probably be rephrased in ﬁhe chiral multiplet formalism, the equivalent
chiral multiplet formalism are expected to be rather complicated because of the °
constraint on the gaugino condensate chiral superfield U. Quite generally we do

not expect a simple ansatz in one formalism to appear simple in the other.

As suggested in Section 2.3.1, we extend the simple model in (2.17) to lin-

“ear multiplet models of static gaugino condensation with generic Kahler potentiéls

defined as follows:

K = InV + g(V) + G,

-
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Ly = [dOB{(=2+ f(V)) + VG + VIn(e™*TU/p)}.  (226)

For convenience, we also write InV + ¢(V) = k(V). ¢(V) and f(V) represent
quantum corrections to the tree-level Kahler potential. Here we have chosen to keep
the Kahler potential under discussion as generic as possible. However, as suggestea
by [7], stringy non-perturbative correlcﬁtions to the Kahler poteﬁtia.l are brobably the
most important non-perturbative corrections. And, as We have discussed in detail in
-Section 2.2.2, such stringy non-pertufbative corrections can be nicely parametrized
by g(V') and f(V) using the linear multiplet formalism. According to (2.8), g(V) and

f(V) are unambiguously related to each other by the following first-order differential

eqﬁation:
dg(V) _ _,4f(V)
g(V=0)=0 and f(V=0)=0. (2.28)

~ The boundary coﬁdition of g(V) and f(V) at V = 0 (the weak-coupling limit) is
- fixed by the tree-level Kahler potential. Before trying to specify g(V) and f(V),
it is reasonable to assume for the present that g(V') aﬁd f(V) are arbitrary but
bounded.

In the constructioﬁ of the component field lagrangian, we use the chiral density
multiplet method [34], which provides us with the locally supersyrﬁmetric gene;a.l—
ization of the F' term con;struction in global supersymmetry. The chiral density

multiplet r and its hermitian conjugate F for the generic model in (2.26) are:

r = _.;.(ﬁ? —-8R){ (-2 + f(V)-) + VG + bV In(e~XOU/1®) },
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Fo= _213-(192 _8RN{(=2 + f(V)) + VG + WV la(e KTU/u®)}.  (2.29)

In order to obtain the component lagrangian L. 11, we need to work out the following

expression
1 1 2 i —m\a
—‘Ceff = —-D l".|0=§=0 + _(1/)'"10- ) Dar|6=§=0
e 4 2
- (,zl;ma.mngzn + M)rlﬂ=§=0 + h.C. (2'30)
An important point in the computation of (2.30) is the evaluation of the component
field content of the Kahler supercovariant derivatives, a rather tricky process. The

details of this computation have by now become general wisdom and we can to a

large extent rely on the existing literature [47]. In particular, the Lorentz transfor-

mation and the Kahler transformation are incorporated in a very similar way in the
Kahler superspace formulation, and the Lorentz connection as well as the so-called
Kahler connection Aps are incorporated into the Kahler supercovariant derivatives
in a concise and constructive way. The Kahler connection Ajps is not an independent

field but rather expressed in terms of the Kahler potential K as follows:

A, = %EOMBMK, Ay = — iEdMaMK, | (2.31)
3, 1 ‘
0ozAs = §zo§,dGa - gz[Da,’D&]K. (2.32)

In order to extract the explicit form of the various couplings, we choose to write
out explicitly the vectorial part of the Kahler connection and keep only the Lorentz

connection in the definition of covariant derivatives when we present the component
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expressions. In the following, we give the lowest component of the vectorial part of

‘the Kahler connection Am|s—g=¢ for our generic static model.

1 1. . |
An = e hs + 56, e + Smal®. (2.33)
Am’g:&—_—o - - ﬂ(egz + 1)B‘m + g(zgt - 2)em ba

1 3 I
+ 3 gy (e~ Vet (2.34)

_ d9(V), _ dg(v),

g, = dv =0=0> 9o = WIQ:G:O’
df(v d’f(v

fz = d(‘/ ) 8=8=0> fu = —di/'(_a_219=0_=0' (2’35)

Another hallmark of the Kahler superspace formulation are the chiral superfield
X, and the antichiral superfield X¢. They arise in complete analogy with usual
‘supersymmetric abelian gauge theory except that now the correspondi.ng vector

superfield is replé.ced by the Kahler potential:
1 .
Xoa = - g(D&D"‘ —8R)D, K,
X = —%(D“Da — 8RNDAK. O (2.36)
In the computation of (2.30), we need to decomposé the lowest components of the
following six superfields: X, X%, Do R, D°R!, (D°X, + D5X%) and (D?R + D°R')

into component fields. This is done by solving the following six simple algebraic
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equations:

dg —_

(V7 + VDR + Xo = Ea, (2.37)
3DR + Xo = —2(0%€)aeTy’- (2.38)
(Vd—g +1)D°R' + X¢ = Z° (2.39)

dv T :
3DRY + X¢ = —2(6%€)*Ty,. (2.40)
(Vad% + 1)(D’R+ D°RY) + (D*X, + DaX®) = A, (2.41)

3(D’R+ D°RY) + (D°Xa + DaX ) —=—2R;* +12G°G;

+96RR'. (2.42)

The identities (2.38), (2.40) and (2.42) arise solely from the structure of Kahler
superspace. (2.38) and (2.40) involve the torsion superfields T,,* and Tis;, which
in their lowest components contain the qurl of the Rarita-Schwinger field. The
identities (2.37), (2.39) and (2.41) arise directly from the definitions of X,, X9,
(D*X, + DsX?), and therefore they depend on the Kahler potential explicitly.
Computing Xa, X% and (D*X, + DsX?) according to (2.36) defines the contents
of Z,, =% and A respectively. In the following, we present the component field
expressions of the lowest components of =,, =% and A.

i, —myo— Z s =m &
§(¢m0 ) :-a|9=§=0 - §=&(U z/)m) |o=5=o
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1 4,
= - 8—[(2_(][-" 1)('1_1 + :.,)"EM )(¢m0mn'¢'n)

1 4 ; A
— g7t + D(v + €M )($m3™"Yn)

?

R,

(€9, + 1)(7™ 0™ = ™" ) (PmFathp) Vol
g I o= a
+ E(Kg, + 1)emP (mGntfp) e, be

Z -
= 270+ D (Fnt) By

1 a 1~ a TG
—'Z(D Dak)%baal(i:é:o - Zd)ad(D D k)|0=6—=0' (2‘43) '

The way Zalg—s=0 and =%|y_s-, are presented in (2.43) will be useful for the com-

putation of (2.30).

A|9=§=0

1
Nz

1
(Zzgu - 1)V’"£Vm€ + e_g_(ez 73 l)BmBm
+4Z——-—1——vmt"1v t! — 5(% ./ ;Q)MM
e Lot T g

4 2 q 1 ol I
+ §(Zg” +2€gl + l)b ba - 4; WF F

4 1 _
- @(32 vt zgz)Bmemabﬂ - ﬁ(e.ge + 1)(FU + FU)

1 2 g _ 1 ; 2 ’ -
- 62(2£ Yee —_-ng - 3)( ulM + UM) - E(Z Tee — 1)tdu

+2vmvmk - (DaDak)d’aalO:é:O - 'Iza&(Dade)b:é:O' (2'44)

It is unnecessary to decompose the last two terms in (2.43) and in (2.44) because
they eventually cancel with one another.
Eqgs.(2.31-44) describe the key steps involved in the computation of (2.30).
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The rest of it is standard and will not be detailed here. In the following, we present
the component field expression of Les; as the sum of the bosonic part Lp and the

gravitino part L5 as follows.®

Less = L + Lg. (2.45)
1
-C_LB = - '2—R - '—(1 +£g,)V’n£vmg
1 m mzl I
+ E(fgl -+ l)B Bm — (1 -+ bg ZI: I)2V 4 th

1 . 1
+ §(£gz - Q)MM - _9'(Zgz - 2)baba
1 I ol
+(1 +b£)212 (t1+{I)2F F
1 _
+ Q{ 1 4 f + bln(e *au/us) + 2bL}(Fy + Fy)
- -817{1 + f + din(e *au/u®) + -g—bé(lg, +1) }(uM + aM)

——(1 + 2b0)(1 + £g,)uu

16f2
'l: U m i mil m I
_— — ' — — — — 1 . .
~bIn(>) V"B ZbZI:(t1+t’)(v # — v™)B (2.46)
1 1 mn 7 = 7,
Zﬁé = 56 pq(¢m0nvp¢q - ¢m0nvp¢q)

_ 8_1£{ 1+ f + din(e *au/u®) } @ (Ymo™ ,)

_.8%{ 1+ f + bln(e~*au/u®) } u (Pmd ™ %n)

5Only the bosonic and gravitino parts of the component field expressions are presented here.
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1 1 mnpq(,.j = ¥
—_ Z(l + bf) ; '(tI—+{—I)-€ (¢man¢p)( Vqtl - Vth)

2

Y,

(1401 + £g,) (0™ 0" — 1™ 0™ Y(PmBtby) Vol
? -
= Y™ = 0™ ) ($mnthy) Vg In(n)
1 mn, T = u ’
+ Zb[ € e (zbma,,z/)p) Vq In(;) (247)
For completeness, we also give the definitions of covariant derivatives:
Vid = 0, Vntl = 0,t!, V.t = 8,1,
Vm‘l/"na = 67711/’71& + d)nﬁwmﬁaa Vm"/-}néz = mﬁ'nd + 'l/)—n[;wmﬁ‘&. (248)
To proceed further, we need to eliminate the auxiliary fields from L.ss through
their equations of motion. The equation of motion of the auxiliary field (Fy + Fp)
is
f+ 1+ bln(e*au/u®) + 26 =0. - | (2.49)

Eq. (2.49) implies that in static models of gaugino condensation the auxiliary field |
u is expressed in terms of dilaton £. The equations of motion of F I FI and the
auxiliary fields 5°, M, M of the supergravity multiplet are (if £g, — 2 # 0)

FI = 0, Fl=o,

¥ = 0,

3 _ 3
= — = —ba. o 2.

M = 7 buy, M 1 (2.50)

Now we are left with only one auxiliary field to eliminate, where this auxiliary field

can be either :In(%/u) or B,,. This corresponds to the fact that there are two ways
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to perform duality transformation. If we take :In(@/u) to be auxiliary, its equation
of motion is
Vil BY = Ll ()} = O, (2:51)

which ensures that {B? — £e™P9(3,,5,%,)} is dual to the field strength of an
antisymmetric tensor v[18]. The term B™B,, in the lagrangian L.s; thus generates a .
kinetic term of this antisymmetric tensor field and its coupling to the gravitino. The
other way to perform the duality transformation is to treat B,, as an auxiliary field

by rewriting the term — 1bIn(#/u)V™B,, in Less as £bB™V,In(4/u), and then to

eliminate B,, from L.ss through its equation of motion as follows:

. b2 u
Bm = -1 mvmln(z)
be? 1

) ; (t1+t_’)(vmt_1 =Vt (252)

The terms B™B,, and ibB™V,In(#/u) in Les; will generate a kinetic term for
¢In(@/u). It is clear that ¢In(@/u) plays the role of the pseudoscalar dual to B,
in the lagrangian obtained from the above after a duality transformation. With
(2.49-52), it is then trivial to eliminate the auxiliary fields from L.ss. The physics

of Les; will be investigated in the following sections.

2.3.3 Gaugino Condensate and the Gravitino Mass

Hidden-sector gaugino condensation has been a very attractive scheme [15, 16]
for supersymmetry breaking in the context of superstring. However, before we can
make any progress in superstring phenomenology, two important questions must
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be answered: is the diiaton stabilized, and is sﬁpersymmétry broken? Past analy-
ses have generally found that, in the absence of a second source of supersymmetry
‘breé.king,, the dilaton is destabilized in the direction of vanishing gauge coupling
constant (the so-called runaway dilaton problem) and supersymmetry is unbroken.
To address the above questions in generic linear multiplet modéls of gaugino con-
densation, we first §how how thé three issues of supersymmetry breaking, gaugino
condensation and dilaton stabilization are reformulated, and how they are interre-

lated, by examining the explicit expressions for the gravitino mass and the gaugino

condensate. A detailed investigation of the vacuum will be presented in Section 2.4.

The explicit expression for the gaugino condensate in terms of the dilaton ¢ is
determined by (2.49):

1
du = gl/.tseg"(f"’.l)/“. (2.53)

With g(€)=0 and f(£)=0, we recover the result of the simple model (2.17) [18]. For
. generic models, the dilaton dependence of thé gauginoﬁ condensate involves g(£) and
f(£) which represent stringy non-perturbative correctioﬁs to the tree-level Kahler
potential. Recall that in the linear multiplet formalism ;che gauge coupling of ;che
sgperstring effective field theory is g>(M,) = (2¢/ (1 + f(£))). Therefore, it is easy
to see that thc;, dependence on the gauge coupling constant g(M;) of the gat‘lgino
é)ndensate is indegd consistent with the usual results obtained by the renormal-
ization group equation arguments. According to ou.r- assumption of boundedness
for g(£) and f (l) (especially at £ =0 where following (2.28) we have the boundary
conditions g(£ = 0)=0 and f(£.= 0)=0), £=0 is the only pole of g — (f +1)/bL.
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Therefore, we can draw a simi)le and clear relation between (4u) and (£): gauginos
condense (i.e., (4u) # 0) if and only if the dilaton is stabilized (i.e., (£) # 0.) Note
that this conclusion does not depend on the details of the quantum corrections g
and f.

Another physical quantity of interest is the gravitino mass mg which is the
natural order parameter measuring supersymmetry breaking. The expression for

mg follows directly from L.

mg = th-b (), (2.54)

where we have used (2.49). This expression for the gravitino mass is simple and
elegant even for generic linear multiplet models of static gaugino condensation.
From the viewpoint of superstring effective theories, an interesting feature of (2.54)
is that the gravitino mass mg contains no explicit dependence on the modulus
T!, which provides a direct relation between ms and (@iu). This feature can be
traced to the fact that the Green-Schwarz counterterm cancels the T7 dependence
of the superpotential completely, a unique feature of the linear multiplet formal-
ism. As _We‘Will see in Section 4.5, this unique feature is still-true e\;en in a generic
string orbifold modei. We recall that in the chiral multiplet formalism of gaugino
condensation — without the condition (2.12) - that have been studied previously
(with or without the Green—Schwarz cancellation mechanism), mgs always involves
a moduli-dependence, and therefore the relation between supersymmetry breaking

(i.e., mg # 0) and gaugino condensation (i.e., (Zu) # 0) remains undetermined un-
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til the true vacuum can Be found. By contrast, in generic linear multiplet models of
gaugino condensation, there is a simple and direct relation, Eq.(2.54): supersymme-
try is broken (i.e., mz # 0) if and only if gaugino condensation occurs ({@u) # 0).
Wé wish to exﬁphasize that the above fea,tur‘es of the linear multiplet model are
unique in the sense that they are simple only in the linear multiplet model. This is
related to the fact pointed out in Sections 2.1 and 2.2.3 that, once the constraint
(2.12) on the condensgte field U is iﬁlposed, the chiral counterpart of the linear
multiplet model is in general very complicated, and it is' more natural to work in
the linear multiplet formalism. Our conclusion of this section is best illustrated by

the following diagram: .

Supersymmetry Gaugino Stabilized
Breaking <= |Condensation| <= | Dilaton

The equivalence among the above three issues is obvious. Therefore, in the
following section, we only need to focus on one of the three issues in the investigation

of the va,cuﬁm, for example, the issue of dilaton stabilization.

~ 2.4 Supersymmetry Breaking and Stabilization of the
Dilaton |

As argued in Section 2.3.1, non-perturbative contributions to the Kahler pd—
~ tential should be introduced to cure the unboundedness problem of the simple model
(2.17). In the context of the generic model of static gaugino condensation (2.26), it

is therefore interesting to address the question as to how the simple model (2.17)
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should be modified in order to obtain a viable theory (z’.é., with V},,: bounded from
| below). We start with the scalar potential V,,: arising from (2.46) after solving for
the auxiliary fields (using (2.49), (2.50) and (2.52)). Recalling that (2.27) yields the
identity 1 +4g, =1+ f — £f, , we obtain |

1
16e2¢

Voor = {1+ f—£f,)(1 4 b8)> — 36242 } e~ A+N/EL (2.55)

which depends only on the dilaton £. The necessary and sufficient condition for V.

to be bounded from below 1s
f—tf, > —0O@e’) for £ — 0, (2.56)
=L = 2 for £ — oo. (2.57)

It is clear that condition (2.56) is not at all restrictive, and therefore has no nontriv-
ial implication. On the contrary, condition (2.57) is quite restrictive; in particular
the simple mode] (2.17) violates this condition. Condition (2.57) nét only restricts
the possible forms of the function f in the strong-coupling regime but also has. im-
portant implications for dilaton stabilization and for supersymmetry breaking. To
make the above statement more precise, let us revisit the unbounded potential of
Fig. 2.1, Wﬁh the trée—level Kéhler potential defined by g(V) = f(V) = 0. Adding
physically reasonable corrections g(V') and f(V') (constrained by (2.56-57)) to this
,simple model should not qualitatively alter its behavior in the weak-coupling regime.
Therefore, as in Fig. 2.1, the potential of the modified model in the weak-coupling
regime starts with V,,; = 0 at £ = 0, first rises and then falls as £ increases. On the
other hand, adding g(V') and f(V) completely alters the strong-coupling behavior
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Qf the original simple model. As guaranteed by condition (2.57), the potential of
the modified model in the stroﬁg—coupl’ing regime is always bopnded from below,
and in most cases rises as £ increases. Joining t-hel weak-coupling behavior of the
modified model t;:» its strong-coupling behavior therefore stroﬁgly suggests that its
poténtial has a non-trivial minimum (at £ # 0). Furthermore, if this non-trivial
minimum is global, then the dila,ton-is stabilized. We conclude that not only does
(2.56-57) tell us how to modify the theory, but a large class of theories so mod-
ified have naturally a stabilized dilaton (and therefore bfoken supersymmetry by
the v‘a,rgumer;t of Section 2.3.3). In view of the fact that there is currently little
knowledge of the exact Kéhier potential, the above. conclusion, which applies to
generic Kahler potentials subject to ‘(2.56—57), is especially important to the search
for supersymmetry breaking and dilaton stabilization®. >As discussed in Sections
2.1 and 2.2.2, the most interesting physical implication of this conclusion is that
it is actually stringy non-perturbative effects that stabilize the dilaton and allow
dynamical supersymmetry breaking via the field-theoretical non-perturbative effect
of gaugino condensation. Furthermore, (2.57) can be interpreted as the neceséary

condition for stringy non-perturbative effects to stabilize the dilaton.”

Here we use a simple example only to illustrate the above important argument.

A more detailed discussion of possible stringy non-perturbative corrections will be

5Similar points of view was advocated in [48] using the chiral multiplet formalism. However,

neither modular invariance nor the important constraint (2.12) was considered in [48].
"In the presence of significant stringy non-perturbative effects, (2.57) could have implications

for gauge coupling unification. This is considered in the study of multi-gaugino and matter con-

densation [14].
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Figure 2.2: The scalar potential V. (in reduced Planck units) is plotted versus the
dilaton . A =6.92, B=1 and p=1.

given in Chapters 4 and 5 where a generic and phenomenologically viable model
is presented. Consider f(V) = Ae B/Y  where A and B are constants to be
determined by the non-perturbative dynamics. The regulation conditions (2.56-57)
require.- A > 2. In Fig. 2.2, V,, is plotted versus the dilaton ¢, where A = 6.92,
B =1 and p=1. Fig. 2.2 hés two important features. Firstly, V,o of this modified
theory is indeed bounded from below, and the dilaton is stabilized. Therefore,
we obtain supersymmetry breaking, gaugino condensation and dilaton stabilization
in this example. The gravi'gino mass is mg = 7.6 x 107° in reduced Planck units.
Secondly, the vev of dilaton is stabilized at the phenomenologically interesting range
((£) = 0.45 in Fig. 2.2). The above fea,tures involve no unnaturalness since they

are insensitive to A. Furthermore, the dilaton is naturally stabilized in a weak
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coupling regime if B is of order one. Fig. 2.2 is a nice realization of the argument
in the preceding paragraph. It sho_u_ld be contrasted with the racetrack model
where at least three gaugino condensates and large numerical coefficients are needed
in order to achieve similar results. Besides, the racetrack model has a serious
phenomenological problem of having a large negative cosmological constant. We can
also consider possible stringy non~pertﬁrbative contributions to the Kahler potential
suggested' in [4]. It turns out that we obtain the same general features as those of
Fig. 2.2. This is not surprising since, as argﬁed in the preceding paragraph, the
important features that we>ﬁnd in Fig. 2.2 are common to a lafée class of lmodels.
More such discussions will be presented in Chapters 4 and 5 in conjunction with
other issues.

Note that the value of the cosmological constant is irrelevant to the arguments
presented here and in Section 2.3.3. In other words, the generic model (2.26) suffers
from the usual cosmological constant problem, although we can find a fine-tuned
subset of models whose cosmological constants vanish. For example, the cosmolog-
ical constant of Fig. 2.2 vanishes by fine tuning A. It remains an open question
as to whet.he: or not the cosmological constant problem could be resolved within
~ the context of the linear mtﬂtiplet formalism of gaugino condensation if the exact

Kahler potential were known.

45



2.5 Concluding Remarks

We have presented a con;rete example of a solution té the infamous runaway
dilaton problem, within the context of local supersymmetry and the linear multiplet
forma,lisrﬁ for the string dilaton. We considered models for a static condenéate that
reflect the modular anomaly of the effective field theory while respecting the exact
modular invariance of the underlying string theory. The simplest such model [18, 19]
has a nontrivial potential that is, however, unbounded in the direction of strong cou-
- pling. Including stringy non-perturbative corrections [4, 7] to the Kahler potential
for the dilaton, the potential is stabilized, allowing a -vacuum configuration in which
condensation occurs and supersymmetry is broken. This is in contrast to previous
analyses, based on the chiral multiplet formalism for the dilaton, in which supersym-
metry breaking with a bounded vacuum energy was achieved only by introducing
an additional source of supersymmetry breaking, such as a constant term in the
superpotential [16, 29, 46].

In further contrast to most of the models studied usiﬁg the chiral multiplet
formalism, supersymmetry breaking arises from a nonvanishing vécuum expecta-
tion value of the auxiliary field associated with the dilaton rather than the moduli:
roughly speaking, in the dual chiral multiplet formalism, (Fs) # 0 rather than
(FTy # 0. That is, only the dilaton participates in supersymmetry breaking (the
so-called dilaton-dominated scenario.) As we shall see in Chapter 4, fhjs unique

feature is in fact true in generic string orbifold models, which therefore has non-
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trivial implicati‘ons for FCNC. As a consequence, gaugino masses and A terms are
generated at tree level. Although scalar masses are still protected at tree level by
a Heisenberg symmetry [49], they will be generated at one loop by renormaiizable
interactions®. For the model considered here, the hierarchy (about five orders of
magnitude) between the Planck scale and the gravitino mass is insufficient to ac-
count for the observed scale of 'electryowea.k symmetry breaking. Of course, this
is completely due to the large gauge content of the hidden Eg gauge group un-
der consideration in this chapter, and will certainly be improved when a generic
string model with a product of smaller hidden gauge groups G = II,G,. In that
ca,ée, we will have to generalize the studies of this chapter by considering multiple
gaugino condensation as well as hidden matter condensation. Another unsatisfac-
tory feature of the model presented in Chapter 2 is that, according to (2.55), the
moduli 77 remain Vﬂa.t directions of the scalar potential, and therefore the vev of
t! is undetermined. Fortunately, this is a feature belonging only to string models
with hidden Eg gauge group and ﬁo hidden matter. As we shall see in Chapter 4,
in a generic string model where multiple gaugino condensation as well as hidden
matter condensation occurs naturally, hidden matter condensation together with
string threshold corrections® generates a non-perturbative potential for the moduli
T*. Furthermore, the moduli are therefore stabilized at the self-dual point. The

generalization of our formalism to generic string orbifold models, including models

8The situation is more complicated in a generic orbifold model, and will be discussed in

Chapter 5.

SBoth are required by modular invariance.
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without universal anomaly cancellation, will be presented in Chapter 4.

As mentioned before, we have only dealt with generic models of static gaugino
condensation in this chapter, but in the context of supergravity or superstrings it
can be shown that models of dynarﬂical gaugino condengation rather than models
of static gaugino condensation occur. Therefore, in the next chapter we will answer
two questions: first, we show how to construct generic models of dynamical gaugino
condensation using the linear multiplet form_alism. Secoﬁdly, we study how the
models of dynamical gaugino condensation are connected to the models of static
gaugino condensation, and show that static gaugino condensation is indeed the
appropriate effective description of dynamical gaugino condensation and therefore
justify the use of static gaugino condensation in Chapter 2. Notice that the Kalb-
Ramond field (or the model-independent axion, in the dual description) remains
massless in the static models considered here. It has recently been shown in the
context of global supersymmetry [20, 18] that an axion mass term is naturally
generated in models of dynamical gaugino condensation. Again, as we shall see
in Chapter 3, one of the axions does get a very large mass through dynamical
gaugino condensation in the context of local supersymmetry. On the other hand,
after this very heavy axion is integrated out, the resulting axion content is in fact
the same as that of static gaugino condensation, and we are still left with a massless
model-independent axion. Furthermore, we will show in Chapters 4 and 5 that this
model-independent axion axion will pick up a very small -mass through multiple

gaugino condensation. It can escape the cosmological bound on the axion decay
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constant and it has the desirable properties to be the candidate for the QCD axion.
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Chapter 3

Dynamical Gaugino

Condensation
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3._1 Introduction

In Chapter 2, we have studied modgls of static gaugino condensation using
the linear multiplet formalism. As mentioned before, one of the major motivations
for studying models of dynamical gaugino condensation is the observation that
kinetic terms of the gaugino condensate naturally arise from ﬁéld-theoretica.l loop
corrections [19] as well as from classical string corrections [50]. For example; the
relevant field-theoretical one-loop correction has been computed using the chiral
multiplet formalism [19, 51]:.

Ng
12872

Lonetoo 3 / A E (S + 5)2(WW,) (WeW¥) InA2, (3.1

where A is the effective cut-off and Ng is the number of gauge degrees of freedom.

Therefore, the confined théory using the linear 'multiplet'forma.lism should contain

a term which corresponds to (3.1):

uu
Legs 3 / d0E -, (3.2)
as well as higher-order corrections (U U/ Vz)z, (U U/ Vz)s,--- . These D terms

are corrections to the Kahler potential, and will generate the kinetic terms for the
gaugiﬁo condensate U. An interesting interpretation of these corrections is that
they are S-duality invariant in the sense defined by Gaillard and Zumino [52]. This
S-duality, which is an SL(2,R) symmetry among elementary fields, is.a. symmetry
of the equations of motion only of the diléton—ga.uge-gravity sector in the limit of
vanishing gauge coupling constants. The implication of this S-dﬁa.lity fof gaugino
condensation has recently been studied in [19] using the chiral r.r.mltiplet formalism.
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For studies of gaugino condensation in the past Qhere the important constraint
(2.12) was not included, the connection between static and dynamical gaugino con-
" densation is very easy to see and trivial: static gaugino condensation is just the
low-energy limit of dynamical gaugino condensation after the gaugino condensate is
integrated out. However, it certainly becomes a non-trivial issue once the constraint
(2.12) is included, and it is necessary to settle this issue in order to justify the use of
static gaugino condensation in the context of superstrings or supergravity. There-
fore, in this chapter we would like to study generic models of dynamical gaugino
condensation. In Section 3.2, the field component Lagrangian for the generic model
of dynamical gaugino condensation is constructed, and its vacuum structure is an-
alyzed. In Section 3.3, the S-dual models of dynamical gaugino condensation are
studied. In particular, we show that the model of static gaugino condensation is the
appropriate effective description for the model of dynamical gaugino condensation

and its implications.

3.2 Generic Model of Dynamical Gaugino Condensation

It will be shown in this section how to construct the component field La-
grangian for the generic model of dynamical gaugino condensation using the Kahler
éuperspace formulation of supergravity {34, 35] Similar to Chapter 2, we consider
here string orbifold models with gauge groups Es®Es®U(1)?, three untwisted (1,1)
moduli T7 (I = 1, 2, 3) [31, 32, 36], and universal modular anomaly ca.ncéllation

[40] (e.g., the Z3 and Z; orbifolds). The confined Es hidden sector is described by
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the following generic model of a single dynamical gaugino condensate U with Kéhler

potential K:
K = IV +g(V,0U) + G,
- - E
— 4 4 K/2
Lyr = [a0E{(-2+ v,00)) + G} + { [a0Z & Wiy +hc},

G = Y In(T!+7T7, |  (33)
. I

where U = —(DsD* —8R)V, U = ~(D*D, — 8R')V. We also write InV +
9(V,UU) = k(V,UU). The term (—2 + f(V, UU)) of L.s; is the superspace in-
tegra.l which yields the kinetic actions for the linear multiplet, supergravity, matter,
a.nd’ga.uginolcondensate. The term bVG is the Gréen-Schwarz counterterm [31]
which cancels the full modular anomaly here. & = C/87? = 2by/3, and C = 30
is the Casimir operator in the adjoint representation of Eg. by is the Eg one-loop
,B-functién coefficient. g(V,UU) and f(V,UU) represent the quantum corrections to
the tree-level Kahler potential. g(V,UU) and f(V,UU) are taken to be afbitr@ry
but bounded here. The dynamical model (3.3) is the straightforward generalization
of the sta.ti’c modei (2.26) by including the UU dependence in the Kihler potential.

Using superspace partial integration (2.18), up to a total derivative we can also

rewrite (3.3) as a single D term:
K = WV + ¢gV,UU) + G,

ze,} = / ¢*0E { (-2 + f(V, UU)) + VG + BV In(e XTU/%) }.  (3.4)

Only the bosonic and gravitino parts of the component field Lagrangian will be
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presented here. In the following, for convenience and completeness we enumerate

the definitions of the bosonic component fields:

e = Vl0=§=0,
m 1 2 a
aaéBm = 5 [DCH Dél] Vlﬁ=§=0 + geaa&ba’
u = Ul€=0_= = -(1—)2 - SR)V|9=§=Oa

_(D2 - SRT)V'9=9_=0’

N}
Il
twa
s
|
D
|
(=]
I

"'4FU = D2U|e=y=o, _4F0 = ﬁ2[]'9:9-:0’

D = %’Dﬁ (D* — 8R)DsVs=s=0

1 .
= gDﬂ(Dz - SRT)DpV|9=§=O?

tl = TII€=9_=0’ _4FI = DzTIIG:@:O’

{I = TI|9=§=O> —4FI = ﬁ2T’I|6=9-=07 (3'5)
where b, = —3Galsmgcos M = —6R|pjeo, M = —6R!|s_j—o are the auxiliary
components of the supergravity multiplet. (Fy — Fp) can be expressed as follows:

(Fy — Fg) = 44V™B,, + uM — uM, ' (3.6)
and (Fy + Fg) contains the auxiliary field D. We also write Z = UU, and its
bosonic component z = Zlj_g_o = Gu.

The construction of component field Lagrangian using chiral density multiplet
method [34] has been detailed in Chapter 2, and therefore only the key steps are

presented here. The chiral density multiplet r and its hermitian conjugate T for the

o4



generic model (3.3) are:

sR){ (-2 + f(V,0U)) + VG + b In(e *TU/p°) },

ooj oolH

(D* -8RNY{ (-2 + f(V,0V)) + bVG + 5VIn(e XTU/®) }, (3.7)

21}

“and the component’ﬁeld Lagrangian L.ss is the same as (2.30). The An|s=g=o for

the generic model (3.3) is:

i (1+4g,)

o (1 +4g,) a
nlitn = =g (T + | - e
tia —lzg,) 2w Jlr (vt = V)

The following are the simpliﬁed notations for partial derivatives of g:

— 9g(¢, 2) _ 99(4,z)
9. = EY; y 9. = 0z ’ (39)

and similarly for other functions.

We need to decompose the lowest components of the following six superfields:

X, X%, DaR, D°R!, (D°Xs + DeX%) and (DR + D?R!) into component fields,

where
X = - 5(DD* ~8RDK,
X¢ = — %(D"Do, ~ 8RNYDK,
(DX, + DaX®) = — %WD"K — %ﬁ"’DZK — D*DyeK

— G**[Da, D5 ) K + 2R'D’K + 2RD'K
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—(D°Gos — 2DsRYYDK
+(D*Gac + 2DR)D°K. (3.10)

This is done by solving the following six algebraic equations:

9y dg _ =
(1 +V av) D.R + (1 - z;ﬁ) Xo = Ea (3.11)
3DLR + Xa = —20%)aTy?.  (3.12)
14+ v29) pegt 4 99) g5 - =5 | (3.13)
v 0z = '
DR + X& = —2(5%€)%¢ Ty (3.14)
(1 +V 3g> (D°R + D°R') + ( 99 ) (D“X +Du X)) = A, (3.15)
3(D'R + D°RY) + (D°X, + D:sX%) = —2R.>* + 12G°G,

+96RR!.  (3.16)

The computation of (3.10) defines the contents of =,, =* and A. Egs. (3.8-16)
describe the key steps in the computations of (2.30). In the following sections,

several important issues of this construction will be discussed.

3.2.1 Canonical Einstein Term

In order to have the correctly normalized Einstein term in L.;, an appropriate
constraint should be imposed on the generic model (3.3). Therefore, it is shown

below how to compute the Einstein term for (3.3). According to (3.3), the following
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are those terms in £.s; that will contribute to the Einstein term:

W | =

1 _
—Less 3 7[2-F+4f, - b1+ £g) ] (DR + DR")lo=so
1 G N
o5 1af, + (1~ 29,)] (;_‘-D?'DZU + -5 U) loieor  (3.17)
Note that the terms DD and D?DYU are related to DX, and D3 X4 through

the following identitieé:
DD = '169"@0(7 + 64iG°D,U — 48UGG, + 48iUDG,
-~ 8UD*X, + 16R'D*U + 8(D°Ga&)(1>éfj). |
DDV = 1sD°baU — 64iG°*D,U — 48UG"G, — 4&UDG,
_8UDs X% + 16RDU — 8(D°Gas)(DV). (3.18)

The contributions of (D?R+D?R")|s=s=0 and (DX, +DsX%)|s=s=0 to the Einstein

term are obtained by solving (3.15-16):

- 2(1 — zgz) R bal _
(2—£g, —32g,) 77
2(1 + £g,)

(2 - 'egl - 3292)

(D’R+ D°RY)lpagm0 2

Ry2%lo=g=0- (3.19)

(DX + DsX%)pmto > +

By combining (3.17-19), it is straightforward to show that the Einstein term

in L.s5 is correctly normalized if and only if the following constraint is imposed:

(1+{f,)(1+29¢)=(1—zg,)(1—£f,+f), (3.20)

which is a first-order partial differential equation. From now on, the study of the

generic model (3.3) always assumes the constraint (3.20). (3.20) will be useful in

~
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simplifying the expression of L.y, and it turns out to be convenient to define & as

follows:

(14 2zf,)
(1 = 29) .
(1 —L4f, + f)
T ‘ (3.21)

h =

Furthermore, the partial derivatives of h satisfy the following consistency condition:
(h—2h,)z9, = 1)+ 2h,(1+4g,)+1=0. (3.22)

Egs. (3.21-22) will also be very useful in simplifying the expression of L.ss. Notice
that A = 1 for generic models of static gaugino condensation, and (3.20) is reduced
to (2.27). We will show in Section 3.3.2 how to construct physically interesting

solutions for this partial differential equation (3.20).

3.2.2 Component Field Lagrangian with Auxiliary Fields

Once the issue of canonical Einstein term is settled, it is'straightforward to
compute L.ss according to (3.6-13). The rest of it is standard and will not be
detailed here. Beca.use the component construction of supergravity is well known
for its complexity, here we try our best to minimize irrelevant details. However,
two important aspects of this construction using the linear multiplet formalism
&e worth emphasizing: how to solve the constraint (2.12) and how to perform a
duality transformation for the vector <.:omponent B,, of V. As we shall see, they have
non-trivial implications for the axions. Therefore, first we present the component
Lagrangian with auxiliary fields, and in the next section we show how to perform

58



a dﬁa.lity transformation for B,,. In the following, we present the component field

expression of L.ss as the sum of the bosonic Lagrangian Lp and the gravitino

Lagrangian L.
Lesy = Lp + Lg. (3.23)
l,C = - lR - —1—(h —2h,)(1 +£9,)VTVL
e BT 2 442 ¢ 9e

+ %Zzh,(l + £g,) V™n(au) Vil

u (2 zgz) m - -
+4gh e )V TAVART)
1, [(2—zg,) _

—p (e 29 Vra v,
2hz [(l-zg,) zg,] i Viu
i Mtk 29,) m,

AR ey M

zh, 1 me m u
T 2(1-29,) 4 2 (t1+if)(v F - .V tI)V"‘ln<}2)

v v,

TG zg,)zw T

1 zh, V7t Vint!
- .2_ E 2(h + b8)615 + (1 = zg,)] T+ )¢ + 1)

vl vt

i zg,)z(tf e

(2—4g,—32g,) ,,
G1—7g) 0
(1+4g,)

= zg)? Dm

i 1 m 7

59



i 1 ] (VPH — vmd)
20 [”*be“(l—zg,)]; G I

+4h,(1 - 29,)(V"Bn)?

— 2%h, [1 ~ 2g, - -:1;(1+eg,)] (ull — aM)V™B,,

h[L= 20, — (1440 (bt — aM

Ol W=

[3 + (¢h, — R)(1 + £g,)) MM

1+ f + dln(e ™ au/p®) .
_ 1 (uM + aM)

8¢
+2(¢h, + bO)(1 +£g,)

1 ' -
+7h.(1 — 20)(Fy + Fp)?

L1+ F + bl au/u®)]

+9  +L(eh, +b0)(1 - 29,) ¢ (Fu + Fp)

—2h,(1+4g,)(uM + aM )

\

' 1 =ror

1

- Téﬁ(eh‘ + A+ 2b0)(1 + 4g,)uu.

1 1 7 b
E'CG' = §€mnpq( YmTnVehg — YmTaVpi, )

1

~ % [1 + f + bZln(e‘“"ﬁu/uG)] T (Ymo ™" n)

- 81—2 [1 + f+ bZln(e‘kﬁu/ye)] u_(}/;m&mnlzn)
1 1 mnpq(,], = ry
— 7(h+0) ; T W PmGnthp)( Vol — Vi)
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+ -:—Z(h + bf)(l + ég,)( ﬂénﬂpq - 77'""77” )(@Zm&n¢P) qu
= 110 = 20.)(h+0) = 1 (777 = 77977 )Fmty) Vs In(a)

+ 30~ 1+ 80 9 (Frnnty) Voln (2 ). (3.25)

The bosonic Lagrangian Lp contains usual auxiliary fields and the vector field
B,, which is dual to an axion. The details of this dﬁality and the struéture of
Lp will be discussed in the following sections. The gra;vitino Lagrangian L5 is
in its simplest form. An important physical quantity in Lg is the gravitino mass
mg which is the natural order parameter mea;suring supersymmetry breaking. The

expression of ms follows directly from Lgs:

mg = <l81_€ [1 + f+ blln(e_kﬁu/pe)] u > - (3.26)

3.2.3 Duality Transformation of B,

As pointed out in [18, 21], the constraint (2.12) allows us to interpret the
degrees of freedom of U as thoée of a 3-form supermultiplet, and the vector ﬁeld B,
“is dual to a 3-form I'™?9. Since é. 3-form is dual to a 0-form in four dimensions, B,
is also dual to a pseudoscalar a. In this section, we show explicitly how to rewrite
the B, part of Lp in terms of the dual description using a. .According to (3.24),

the B,, terms in Lp are:

1. (1+4,) om
eﬁB > +4Z2(1—zgz)B Brn
ilheses 2 ] arv (—)
2L (1—2zg,) ™\ u
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)B,,

1 } (v — vl
(1 - zgz) I (tI + {I)

— 2R, [1 ~ 2g, - %(1 +eg,)] (ull — GM)V™B,,

i
—2—£[h+be—

+4h,(1 — 20,)(V"Bn)*. (3.27)
They are described by the following generic Lagrangian of By,:
-i-cB,,, — B™B,, + AV™B,, + ("B, + T(V"By)% (3.28)

To find the dual description of Lp,,, consider the following Lagrangian Lpyar.

écpua, = aB™Bpn + BV™Bm + (™Bn + aV™By, — al;az. (3.29)

In Lpual, the auxiliary field a acts like a Lagrangian multiplier, and its equation of

motion is:

a = 2rV™B,. (3.30)

Therefore, Lp,, follows directly from Lpy.; using (3.30). On the other hand, we can
treat the B,, in Lpy. as auxiliary, and write down the equation of motion for By,

as follows:
B = %(vma + VB = Cn). (331

Eliminating B,, from Lp,.: through (3.31) and then performing a field re-definition
a = a — [3, we obtain the Lagrangian £, of a:

u= (Ve = (") (Ve ~ ) = (e = B (332)

Therefore, L, is the dual description of Lp,, in terms of a which is interpreted as an
axion. Notice that dynamical gaugino condensation naturally generates a mass term
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~ for the axion a which corresponds to the appearance of non-vanishing (V™B,,)? in
the dual description. The fact that a is massive in dynamical gaugino condensation
has already been observed in t18, 20]. On the other hand, the (V"‘Blm)2 term
vanishes in static gaugino condensation (i.e., A, = 0 in (3.27)), and it is found
that the model-independent axion dual to By, is either massless or very light [12,
14, 18, 20]. This issue of axion mass seems to be a contradiction because we expect
static gaugino condensation to be the appropriate effective description of dynamical
gaugino condensation; the resolution is the following: In comparison with static
gaugino condensation (e.g., [12, 14]), dyné.mica.l gaugino condensation contains one
more axionic degree of freedom a, and indeed a is very massive (e.g., compared
fo the dilaton mass). As will be shown in Section 3.3.1, after integrating out this
massive axion a, the resulting axionic contents of dynamical gaugino condensation

are identical to those of static gaugino condensation. Therefore, at low energy we

are always left with a massless or very light model-independent axion.
According to (3.27-28) and (3.32), the L.5; defined by (3.23-25) is rewritten

* in the dual description as follows:
£eff = *Ckin + £pot + ﬁé: (333)

where Ly;, and L, refer to the kinetic part and the non-kinetic part of the bosonic

Lagrangian respectively. L is defined by (3.25).

1 11 ‘ -
Lain = = 3R = (b= )L+ )Vt
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(1 +l g,) 2€
(1 zg,) [ 1 ] i
DN PRI Y N S evmavmln(-)
(l +4g,) | (1-2zg,) u
(1 (1—=2g,) [ 1 ] (thI vl
2\ h + b — JAY
ey N T DY
zh,-2g, {3720
+ .]L ) (1=2g,) > —_-1-2-V"‘a Vit
4 (1—zg.) |3 bl 1 2 u .
\ + (1+lg ) [ + - (1—7'93)] J
( \
Zh‘ ﬁg_&l - zg,
_.% 4 [ (1-2g.) ] , ) Elzvmﬂ Vot
gl—zg‘[ 1
BRE Al LR A =—n]
zh,-zg, 2=l
+%< (1=25:) 2 »Z‘l;vmu V..
jl—zgg! 1
L + (1+2g,) [h + b - (1-zy:)] )
=" | - (omt = wmar
T2 . 2 7 + 1) Vln( )
(1—zg,) 112 I3
|+ h e =
' 2 ‘ mil 3J
+l< (1-2g.) Z V™t V t
4 (1=z9,) . 12 = (¢ + T)(t7 + 1)
SR Al L =1 N
1 2(h + b0)b15 + =2~ (1 =) vl v, t7
JE2 =2 Ry, 2 [+ +2)
+ s [h + bl — g3 ')'] '
1| =5 vl v, 10 |
= : i 34
i (1=20.) [p o pg — 12 Z (t’+t1)(t-’+t-’) (3:34)
+ 7)) [ + (= )}
_ h (1 +Zgz) 2
Sl = Gy ull — aM)
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~ 518 + (th, — )1+ £0,) | FIM

1 '+ f + blln(e~*au/p)

1 (uM + aM)
+2(Lh, + bO)(1 + £g,)

_2[ — -:%-‘é%]a(uﬁ‘d - aM)
+ %h,(li— 29, )(Fu+ Fp)?

( =~ [1 + f+ bZIn(e""ﬁu/ys)] -
+ +zl'z(£h4+bf)(.1 ~ 2g,) ¢ (Fo + Fo)

| -3h0 +£g,)(uM + aM) |
HA+) Y (—tﬁszyz'F’F’
— '13125(%‘ + h + 2b8)(1 + £g,)tu

_q | (3.35)

" 16zh,(1 — zg,) @
The b%b, term has been eliminated by its eéuation of motion, * = 0, and Li;, is
in its simplest form. Note that the kinetic terms of those axionic degrees of freedom
a, iIn(@/ u) and (¢ —t!) are more complicated, which eséentially reflects the non-
trivial constraint (2.12) satisfied by U and U. An imporfant issue is the structure

of Loty and it will be discussed in the next section.
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3.2.4 The Scalar Potential

It is straightforward to solve the equations of motion for the auxiliary fields

b2, FI, FI, M, M and (Fy + Fp) respectively as follows:
o= g,

FI = 0, FI =0y,

- _3 ~hgo/uf) | w — ¥
M = 8£[1+f+b€1n(e au/p )]u %
M = _3 [1 + f+ bZln(e'kﬁu/ps)]ﬂ + -3—ZEa

. 8 , 4
L (th—h) ) o] B

(Fuv+ Fp) = ey [1 + f + bln(e "au/u )] 7
Lh, + bl) Tu
ST (3:36)

Note that (|M]|) = 3mg because (a) =0 always. To obtain the scalar potential,
the auxiliary fields are eliminated from L.;; defined by (3.33), and Less is then
rewritten as follows: -

1 1 1

g‘ceff = Z»Ckin - V;)ot + E»CC‘;, : (3.37)
where V,,: is the scalar potential. L, and Lz are defined by (3.34) and (3.25)

respectively.

1 Uy
Vir = 15(th +h+200)(1+1g,) 5

1 L+ f + beln(etau/p®) | gy

h,(1 - 4
64zh ( zg.) +2(Lh, + bE)(1 — zg,)

~+
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| (24, _329;) -k 7,6y ]2 BU
6401 —2q.) [1 + f + ¥ln(e Fuu/p )] 7
h —¢h, — 3zh,)uu
( fﬁzh ) a’. (3.38)

Several interesting aspects of V,.: can be uncovered. Firstly, there is always
a trivial vacuum with (Vpet) = 0 in the specific weak-coupling limit defined as

follows:
£ -0, z— elz—l,uee'l/“ — 0, and g(¢,2), f(£,z) — 0. (3.39)

Note that quantum corrections to the Kahler potential, g and f, should vanish in.
this limit. As expected, this is consistent with the well-known runaway behavior of

the dilaton near the weak-coupling limit.

To proceed further, in the folloWing of this section we only study V;.: in the
2 < 1 regime. Since a physically interesting model of dynamical gaugino conden-
sation should predict a small scale of condensation (i.e., (z) < 1), there is no loss
~ of generality in this choice. Note that in the z < 1 regime we have A= 1, ¢h, = 0,
zh, = 0 and zg, = 0 up to small corrections that depend on z. The struéture
of Vot can be analyzed as follows: The only axion-dependent term in V,,: is the
effective axion mass term, the last term in V,.;. In order to avoid a tachyonic axion,
the sign of the ef'_fect%ve axion mass .term must be positive. Therefore, the absence
of a tachyonic axion requires zh, > 0, which is the first piece of information about
the' UU-dependence of the dynamical model. Furthermore, (a) = 0 always, and
therefore the last term in V,,; is of no significance in discussing the vacuum struc-
tﬁré. Because of zh, > 0, the second term in Voot is always positive. The signs of

67



the first term and the third term in V,,; remain undetermined in general; however,
near the weak-coupling limit the first term is positive and the third term is negative
(which is expected because the third term is the contribution of auxiliary fields M
and M). Notice that the second term in V,,; contains a factor 1/zh, (1/zk, > 1),
and therefore it is the dominant contribution to V,,: except near the path v de-
fined by {1 + f + bln(e*au/p) + 2(¢h, + bE)(1 — zg,)} = 0. Hence, the vacuum
always sits close to the path <. This observation will be essential to the following

discussion of vacuum structure.

The second piece of information about the UU-dependence of the dynamical
model can be obtained as follows. For 0 < £ < oo, the first term and the third term
in V,t vanish in the limit z — 0 generically. If &, has a pole at z = 0, then the
second term in Vpo; a.léo vanishes for 2z = 0 and 0 < £ < oo. Therefore, for those
dynamical models whose %, has a pole at z = 0, there exists a continuous family of
degenerate vacua (parametrized by (£)) with {z) = 0 (no gaugino condensation),
mg =0 (unbroken\supersymmetry) and (V,ot) = 0. In other words, in the vicinity
of z = 0 those models always exhibit runaway of z toward the degenerate vacua at

z = 0 which do not have the desired physical features; whether those models may

possess other non-trivial vacuum or not is outside the scope of this simple analysis.

On the other hand, the dynamical models whose %, has no pole at z =0 are
much more interesting. If 2, has no pole at z = 0, then V,,; — oo for z — 0 and
0 < £ < oco. Therefore, these dynamical models exhibit no runaWay'of z toward

z = 0 except for the weak-coupling limit (3.39). Furthermore, the equation of
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motion for z is
1+ f +blin(e  au/p’) + 2(¢h, £ b0)(1 — 29,y = 0 + O (zh,). (3.40)

Impose (3.40), and from (3.26) we have the gravitino mass mg = 1b(|u]) +
o (23/ 2h,). To the lowest order, it is identical to the mg of static gaugino conden-
sation, (2.54); therefore, similar to Section 2.3 we can argue that supersymmetry is
broken if and only if the dilaton is stabilized for dynamical gaugino condensation. In
fact, for dynamic#l models whose h, has no pole at z = 0, it can be shown that they
are effectively described by static gaugino condensation of Chapter 2. As pointed
out in Section 3.1, kinetic terms of the gaugino condensate U naturally arise in
generic string models, where thes_e terms are S-duality invariant and correspond to
corrections UU/V?, (U U/ V2)2 ,--- to the Kahler potential. This interesting class
of S-dual dynamical gaugino cqndensation obviously belongs to dynamical models
whose &, has no pole at z = 0 discussed here. In Section 3.3, S-dual dynamical

gaugino condensation will be studied in detail.

3.3 S-Dual Model of Dynamical Gaugino.vCondensation

As discussed in Section 3.1, we consider in this section models of dynamical
gaugino condensation where the kinetic terms for gaugino condensate arise from the
S-dual loop corrections defined by (3.2). More precisely, we consider the following

=

dynamical model:

K = IV + g(V,X) + G,
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Lgp = [SE{(=2+ f,X)) + VG + 8V in(eXTU/p®)},  (3.41)

box®) (i-v2) < (rox2) (-rovE). g
For‘convenience, we have written the S-dual combination (UU )% [V as a vector
superfield X, and therefore its lowest component z = X|s_5-0 is ¢ = (ﬁu)% /L =
Vz/¢. Eq. (3.42) guarantees the correct normalization of the Einstein term.
g(V,X) and f(V,X) satisfy the boundary condition in the weak-coupling limit
defined by (3.39). We also assume that g(V,X) and f(V,X) have the following

power-series representations! in terms of X?2:

gV, X) = dOV) + ¢I(V)- X2 + ¢gV).X* + ...

FX) = OW) + fOW)X 4 fOW)XE e (343)

Furthermore, ¢™(V) and f™(V) (n > 0) are assumed to be arbitfary but
bounded here. The interpretation of each term in (3.43) is obvious: As has been
discussed in Section 2.2.2, in the linear multiplet formalism ¢®(V) and fO(V)
are to be identified as stringy (non—perﬁurbative) corrections to the Kahler poten-
tial. gt (V)-X?* and f™(V)-X?" (n > 1) are therefore S-dual loop corrections
to the Kahler potential in the presence of stringy (non-perturbative) effects.

It is also more convenient to use the coordinates (£, z) instead of (/, z)
for the field conﬁgu.ra,tion space. The component field expressions constructed in

Section 3.2 can easily be rewritten in the new coordinates (4, ) according to the

11t should be noted that one can actually start with a more generic dynamical model by

considering more generic g(V, X) and f(V,X), and the discussions of Section 3.3 remain valid.
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following rules:

g, — tg, —zg

E

1 .
zgx — Emgz b (3'44)

where
9g(¢,z) _ 09(¢,z)

9. =

50 %= g (3.45) 

on the right-hand side of (3.44) are to be understood as partial derivatives in the
coordinates (£, z). The scalar potential of this generic model follows directly from

(3.38):
Voot = 116-(1 + £g, — zg, )(h + Lh, — zh_ + 2bf)z?

N 1 1 + f + bln(e *au/us) .2
T62h.(2 =
102k (2 = 20.) | 4 (2~ og, )(th, — ah, + B2)

[1 + f+ blln(e""z'm/;ts)]z:1:2

64(2 — zg,)
2h — 20h, — zh_)uu
( e Ju 2 (3.46)

The kinetic terms also follow directly from (3.34). The absence of a tachyonic axion

_requires zh, > 0.

3.3.1 Effective Description of Dynamical Gaugino Con-

densation

As discussed in Section 3.1, one of the major motivations for studying dy-
namical gaugino condensation is to understand how static gaugino condensation
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could emerge as the effective description of dynamical gaugino condensation after
all the heavy modes belonging to dynamical gaugino condensation are integrated
out. Unlike studies in the past where the important constfa.int (2.12) on the gaugino
condensate chiral superfield U is ignored, proving the above connection is certainly
non-trivial. From this point of view, our construction in Section 3.2 can be regarded
as efforts to solve (2.12) in the context of dynamical gaugino condensation using
the linear multiplet formalism, and the above connection is actually obvious after
(2.12) is explicitly solved. In order to make the following discussion as explicit as
possible, in this section we choose to study S-dual dynamical gaugino condensation.
However, we would like to emphasize that 01;r discussion is actually valid for any
dynamical model whose h, has no pole at z = 0.

Firstly, the axionic contents of dynamical gaugino condensation are a, ¢ In(%/u)
and (! —t). Since a physically interesting model of dynamical gaugino conden-
sation should predict a small scale of condensation (i.e., (z) < 1), it is clear from
| (3.46) that generally the condensate z and the axion a are much heavier than the
other fields, and therefore should be integrated out. It 1s straightfoﬁva.rd to inte-
grate out a and z through their equations of motion: The equation of motion for a

is @ = 0. The equation of motion for = is:
'1 + f + bIn(e Fau/u’) + (2 — zg,)(Lh, — zh, + bE) = 0 + O(z?). (347)
(3.47) can be re-written in a more instructive form:
2 = #_669(0)_(1+f(°))/be + O(z?), . (3.48)

e2f
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where we have used the fact that g ~ ¢, f = fO, hx 1, £g, » £, £f, ~ 25,
'éhl ~0, zg, ~0, =f, ~0 and zh, ~0 up to corrections of order O(z2). The
(bosonic) effective Lagrangian, L.ty = Liin — €Vpor, of the dynamical model

(3.34,46) after intégrating out @ and z is as follows:

1 1 1
1l = — iR — — @) ym
~Lin sR — 1 (1 +4] )h% A
- 1 __ympyry L ©) Bmg
(1+be);(t,+t.,)2vt Vat! + 5 (1+46%) BB
+ O(2?), , (3.49)
where
- 2 i
Bn = —i—2 v
(1+.ng°)) U
be? 1 _ ~
+1 =Vt — Vntl). 3.50
(1+£g$°))z;(t’+t’)( ) (350
1 © = (1440
— ©) _ pr(0)N (1 2 _ 91242 6 14+ £(9) ) /be
Voot = == 1+ 7O fO) (1 + be)? — 36722 } ptes® ~ (141)

+0(2). (351)

Furthermore, (3.42) leads to £9(® = f(© — £ to the lowest order in z*.

In comparison with static gaugino condensation studied in Chapter 2, it is clear
that the effective Lagrangian of dynamical gaugino condensation after integrating

* out the heavy fields are indeed identical to the Lagrangian of the static model,
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(2.46), to the lowest order in z?. Note that, in (3.51), the O(z*) terms do not
depend on the remaining axionic degrees of freedom (i.e., 7In(@/u) and i(# —t%)),
and therefore these remaining axions are massless as they should be in static gaugino
condensation? [12]. In conclusion, after integrating out’ the heavy modes the axions
left in the effective theory of dynamical gaugino condensation are identical to those
of static gaugino condensation. Consistently there is always a massless (or very
light in- multiple gaugino condensation [14]) model-independent axion. According
to the equation of motion for z, (3.48), 22 <« 1 actually holds for any value of £.
It implies that only the lowest-order terms of (3.49) and (3.51) are important, and,
as we have expected and now prove here, the static model of gaugino condensation
is indeed the appropriate effective description of the dynamical model. This proof

therefore justifies the use of static gaugino condensation in Chapter 2.

This proof also implies that the necessary and sufficient condition for V. of
dynamical gaugino condensation to be bounded from below is exactly the same as

that of static gaugino condensation (2.57),
FO—tf® >2 for £ - 00, (3.52)

which depends only on stringy non-perturbative effects g and f(®. (3.52) does
not depend on the details of S-dual loop corrections, and therefore it holds for
generic S-dual dynamical models. Furthermore, (3.52) implies that only stringy non-

perturbative effects are important in stabilizing the dilaton, and therefore allowing

2 As pointed out in [14] as well as in Chapter 4 here, these axionic degrees of freedom naturally

acquire different masses in scenarios of multiple gaugino condensation.
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supersymmetry breaking via gaugino condensation. S-dual loop corrections play no
role in this issue, and S-dual loop corrections alone cannot stabilize the dilaton. As
discussed in Section 2.4, (3.52) can also be interpreted as the necessary condition

for the dila,toﬁ to be stabilized.

3.3.2° Solving for Dynamical.Gaugino Condensation

In the previous section, the dynamical model of gaugino condensation is ana-
lyzed through its effective Lagrangian after intégra.ting out the heavy modes. One
can also analyze the dynamical model directly, and obtain the same conclusion. |
Here, we would like to present a typical example of dynamical gaugino condensa—
tion as a concrete supplement to the analysis of Section 3.3.1. Solving for dynamical
gaugino condensation is generically difficult due to the partial differential equation,
- (8.20) or (3.42), which guarantees the correct normalization of the Einstein term.

On the other hand, only those solutions of (3.20) which are of physical interest
deserve study. Therefore, in the following we show explicitly how to construct the
solution fof the interesting S-dual model of dynamical gaugino condensation de-
fined by (3.41-43). In order to simplify the presentation but leave the generality
of our coﬁclusion unaffected, we choose a specific form for f(V, X) in the following
“discussion: f(V,X) = fO(V) + eX?, where & ils a constant and [e] is in princi-
ple a small number because X-dependent terms arise from loop co?rections.' In
this restricted solution space, (3.42) together with the boundary condition (3.39)

can be re-expressed as an infinite number of ordinary differential equations with
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appropriate boundary conditions (evaluated at § = § = 0)‘ as follows:

ggt(o) = f(O)_gfe(O).

L9 — (1 ~ @+ th(o)) gV = —e-£g9 1 2.
ggfn) -n (1 - fO 4 gfl(o)) g = —e eg‘(n—l) —e(n—1)g* D,
for n>2.

The associated boundary conditions in the weak-coupling limit are:
O =0) =0, fOU=0) =0,
g(l)(e = 0) = _25,

¢ =0) = —%e" for n>2.

(3.53)

(3.54)

Therefore, g(V, X) is unambiguously® related to f(V,X) in this interesting solution

space.

Firstly, notice that the boundedness of g(™ and (™ can be guaranteed if (3.52)

is satisfied. Therefore, the solution defined by (3.53-54)* exists at least for viable

dynamical models in the sense of (3.52). Secondly, g{™ is suppressed by a small

factor [e|®, which is obvious from (3.53-54). Therefore, the solution defined by

(3.53-54) converges for z? < O (1/¢). Since a physically interesting model of gaug-

ino condensation should predict a small scale of condensation (z.e., (z2) < 1), this

3In fact, there is one free parameter 8 involved due to the fact that gg")(f = 0) is not well-
defined in (4.15); this ambiguity can be parametrized by g{™)(£ = 0) = ne"~!3. We take 8 =0

here.

4The generalization to generic f(V, X) is straightforward.
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Figure 3.1: The scalar potential V,,: (in reduced Planck units) is plotted versus ¢
and z. A=6.8, B=1, ¢ =—0.1 and p=1. (The rippléd surface of V,, is simply

due to discretization of the ¢-axis.)

solution does cover the regime of physical interest.®

(3.52) is the necessary condition for stringy non-perturbative effects to stabi-
lize the dilaton. By looking into the details of thé scalarv potential, it can also be
argued [12] that stringy non-perturbative corrections to the Kahler pot-ential may
naturally stabilize the dilaton if (3.52) is satisfied. In the following, the solution
c-leﬁned by (3.53-54) is used to conétruct a typical realization of this argument.
Furthermore, it is the typical feature of this .example rather than the specific form

of g(V,X) and f(V,X) assumed in this example that we want to emphasize. In

5This solution can in principle be extended into the z? > O (1/¢) regime using the method of

characteristics.
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Figure 3.2: z,:,(£) is plotted versus £ for Figure 3.1.

Fig. 3.1, the scalar potential V,, is plotted versus £ and z for an example with
f(V,X) = fO(V)+eX? and fO(V)= A-e~B/Y. There is a non-trivial vacuum
with the dilaton stabilized at (£) = 0.52, z stabilized at (z) = {/au/¢) = 0.0024,
and (fine-tuned) vanishing vacuum energy (V,.:) = 0. Supersymmetry is broken
at the vacuum and the gravitino mass mgs =4 x 10™* in reduced Planck units. To
uncover more details of dilaton stabilization in Fig. 3.1, a cross section of V,, is
presented 1n Fig. 3.3. More precisely, with the value of £ fixed, Vot 1s minimized
only with respect to z; the location of this minimum is denoted as (£, zmin(£))-
The path defined by (¢, zmin(£)) is shown in Fig. 3.2. The cross section of Vp,
is obtained by making a cut along (¢, Zmin({)); that is, the cross section of Vo
is defined as V;,’Of'(f) = Voot (£, Tmin(£)). Fig. 3.3 shows that the dilaton is indeed

stabilized at (£) = 0.52. Therefore, we have presented a concrete example with
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Figure 3.3: The cross section of the scalar pofential, Vi () = V;ot (£, zmin(€)) (in
reduced Planck units), is plotted versus ¢ for Figure 3.1.

stabilized dilaton, bréken supersymmetry, and (fine-tuned) vanishing cosmological
constant. As pointed out in Sections 2.1 and 2.5, this is in contrast with condensate
models studied previously (3, 16, 28] which either need the assistance of an addi- .
tional source of supersymmetry breaking or have a large and negative cosmological

constant problem.

3.4 Concluding Remarks

The field component Lagrangian for the linear multiplet formalism of generic
dynamical gaugino condensation is constructed and studied. A major conclusion of
this chapter is that static gaugino condensation is indeed the appropriate effective

description of dynamical gaugino condensation after the heavy modes are integrated
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out. Some issues about the axions are also clarified. This justifies our studies in
Chapter 2, and allows us to use static gaugino condensation in constructing more

realistic models in Chapter 4.
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‘Chapter 4

Gaugino and Matter
Condensation in Generic String

Models
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4,1 Imtroduction

It was recently shown how to formulate gaugino condensation using the linear
multiplet [8, 30] formalism for the dilaton sui)erﬁeld, both in global supersymme-
try [18, 20] and in the superconformal formulation of supergravity [18]. Using the
Kahler superspace formulation of supergravity [34, 35], which we use throughout
this study, it was subsequéntly shown [19] how to include the Green-Schwarz term
for a string model with a pure Yang-Mills £ hidden sector. In this case there are
no moduli-dependent threshold corrections and there is a single constant — the Eg
Ca,simif C - that governs both the Green-Schwarz counterterm and the coupling
renormalization. This model of gaugino condensation has been studied in detail
in Chapters 2 and 3, where it was found that the dilaton can be stabilized at a
phenomenologically acceptable value with broken supersymmetry if stﬁngy non-
perturbative corrections [4, 7] to the Kahler potential are included. However, the
model studied in Chapters 2 and 3 has several drawbacks from the viewpoint of
phenomenology. As discussed in Section 2.5, due to the large gauge content of E5 a
suﬁiciently large ga,ugew hierarchy is not generated. Furthermore, the string moduli
T! remain flat directions. As we have pointed out, these unsatisfactory features
belong only to the specific string model with with a pure Yang-Mills Eg hidden
sector, and therefore are not generic at all. As we will see, in a generic stringvmodel
the hidden sector contains a product of smaller gauge groups. Therefore, a large

enough gauge hierarchy could be generated naturally. Furthermore, a generic string
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model cont‘a.ins hidden matter, and together with string threshold corrections the
hidden matter condensation lifts the flat directions associated with the moduli.
Consider a generic string model whose hidden sector gauge group is a product
of simple groups: G = [I, G,. One'immediate difficulty is the following: since we
need to describe several gaugino condensates U, ~ Tr(W*W,), and each ge,ugino
condensate U, is constrained by (2.12) separately, therefore according to (2.13) we
need to introduce several vector superfields V,. However, since the theory has a
single dilaton ¢, it must be identified with the lowest component of V = 3, V,.
What should we do with the other components €, = V,|,_5_o7 We will see that,
in our description, these are non-propagating degrees of freedom which actually do
not appear in the Lagrengian. Similarly only one antisymmetric tensor field (also
associated with V = 3°_ V) is dynamical. This allows us to generalize our approach

to the case of multiple gaugino condensation.

Let us stress that the goal is very different from the so-called “racétrack”
ideas [3] where resorting to multiple gaugino condensation is necessary in order
to get supersymmetry breaking. Here supersymmetry is broken already for a single
gaugino condensate. Indeed, we will see that the bicture which emerges from multi-
ple gaugino condensation (complete with threshpld cerrectiong and Green-Schwarz
' mechanism) is very different from the standard “racetrack” description: indeed, the
scalar potential is largely dominant by the condensate with the largest one-loop
beta-fuﬁction coefficient.

To be more precise, we generalize in this chapter the Lagrangian (2.26) studied
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in Chapter 2 to string models with arbitrary hidden sector gauge groups and with
three untwisted (1,1) moduli /. We take the Kéhler potential for the effective

theory at the condensation scale to be:

K = kV)+> ¢, ¢d=-W@T'+T), v=>3 1, (4.1)
I

a=1

where the V, are vector superfields and n is the number of (asymptotically free)

nonabelian gauge groups G, in the hidden sector:

Grisaen = 11 Go ® U(L)™. (4.9)

a=1

We will take Gpidden to be a subgroup of Es. In general, there will be hidden matter
associated with the hidden sector gauge groups.
We introduce both gaugino condensate superfields U, and hidden matter con-

densate superfields II* that are non-propagating:

nA
U = Ti(W°Wa),, TI* =] (24)™, (4.3)

A

where W, and ®“ are the gauge and matter chiral superfields, respectively. The
matter condensate II* is a chiral superfield of Kahler weight w = 0, while the
gaugino condensate U, associated with gauge subgroup G, is a chiral superfield of

Kahler weight w = 2, and is identified with the chiral projection of V,:
U, = —(DsD* —8R)V,, U, = —(D*D, —8RHYV,.. (4.4)

We are thus introducing n scalar fields £, = V,|g—g—=¢. . However only one of these
is physical, namely £ = ¥, {,; the others do not appear in the effective component

Lagrangian constructed below.
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The effective Lagrangian for multiple gaugino condensation is constructed .and
| analyzed in Sectioﬁs 4.2-4.5. In an appendix we discuss a parallel construction using
the chiral supermultiplet representation for the dilaton and unconstrained chiral
supermultiplets for the gaugino condensates in order to illustrate the differences

between the two approaches and the significance of including the constraints (4.4).

4.2 = Construction of the Effective Lagrangian

We adopt the following superfield Lagrangian:
Less = Lkg+ Las + L + ﬁv? + Lot (4.5)
where
Lxp= [d9B[-2+f(V)], HV)=hV+g(V) (4:6)

is the kinetic energy term for the dilaton, chiral and gravity superfields. The func-
tions f(V),g(V) parameterize stringy nonperturbative effects. According to (2.8),

they are related by the following first-order differential equation:

V) _ _,4f0) , @

dv - dV
which ensures that the Einstein term has canonical form [12]. In the classical limit

g = f = 0; we therefore impose the boundary condition at the weak-coupling limit:

g(V=0)=0 and f(V=0)=0, (4.8)
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Two counterterms are introduced to cancel the modular anomaly [31], namely the

Green-Schwarz counterterm [37, 38]:

C
_ 4 I >

Los=b [d OEVI, b= (4.9)

and the term induced by string loop corrections [36]:

LA Y
Lo = —:,_; = / 40 U (1) + huc.. | (4.10)
The parameters

=C-Cat+Y (1-2¢)C% C=Cg, - (4.11)

A
vanish for orbifold compactifications with no N = 2 supersymmetry sector [40].
Here C, and C# are quadratic Casimir opera.tprs in the adjoint and matter repre-
sentations, respectively. gf are the modular weights of the matter superfields ®4

of the underlying hidden sector. The term
Lvy =) : / d*e EU., b In(e U, /p®) + 3 b3 InII%| + h.c. (4.12)
g VR b :

where 4 is a mass parameter ﬁaturally of order one in reduced Planck units (which
we will set to unity hereafter), is the generalization to supergravity [43, 44] of
the Veneziano-Yankielowicz superpotential term generated by condensation, includ-
ing [54] the gauge invariant composite matter fields II* introduced in eq. (4.3) (one
can also take linear combinations of such gauge invariant monomials that have the

same modular weight). Finally

_ Y B ok 'a I
Low = 5 / &' =XKW (0%, T7) + h.c. (4.13)
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‘is a superpotential for the hidden matter condensates ITI* that respects the symme-
tries of the superpotential W(®4,T7) of the underlying theory.
The coefficients 4, and 5% in (4.12) are dictated by the chiral and conformal

anomalies of the underlying field theéory. Under modular transformations, we have:

aTl —3b

I
= sFrra

ad—bc=1, a,bc,d €7Z,
¢ - Jd+H +A, H =@ +4d),
o4 e"ZIHIq?(PA,

Ae — e=% 2 ImH XA — e%Z!(ihHI-Zq?HI)XAa § — em1 LsmH'g

ay ?

U, — e"iztmIUa, I* — e~ 2rHlef e,
¢ = Domaqr - (419
' A

The field-theoretical loop corrections to the effective Yang-Mills Lagrangian from
>orbifold compactification have been determined [31, 32] using supersymmetric .regu-
larization procedures that ensure a supersymmetric form for the modular anomaly.
Matching the variation under (4.14) of that contribution to the Yang-Mills La-
grangian with the variation of the effective Lagfangia.n (412) we require

-1 E Ay _ o I
§Lyy = e %/d"aﬁUa [C’a — AEJC’a (1 - 2q}4):| H +hec, (4.15)

which implies

¥, +3_benaef = g%[c -t (1- 2q;*)] v I (4.16)
a,A ) A
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In the flat space limit where the reduced Planck mass' M'p — oo, under a canonical

scale transformation
A — eg'”/\, U— ea”U, M - e”@A, 1% — eZA"é”Ha, 6 — e‘i“’o,
we have the standard trace anomaly as determined by the S-functions:

&Ceff

(30 ZC") +h.c.+ O(M'F), (4.17)
which requires

30, + Zb" 4= (30 ZC“‘) +O(M'Eh. (4.18)
Eqgs. (4.16) and (4.18) are solved by [54] (up to O(M'p!) corrections)

1
s = & (eser)

b A A _ CA bo: A CA
E el = 24 2QI’ E —247!'2
a,A A

a,A

(4.19)

Note that the above arguments do not completely fix £.ss since we can a priori add

chiral and modular invariant terms of the form:
AL=Y, / d6EV, In (eXr99'TI°T1%) . (4.20)

For specific choices of thé b, the matter condensates II* can be eliminated from
the effective Lagrangian. However the resulting corriponent Lagrangian has a linear
dependence on the unphysical scalar ﬁeldé £, — £, and their equations of motion
impose physically unacceptable constraints on the moduli supermultiplets. To en-

sure that AL contains the fields £, only through the physical combination 3~, £,

1The reduced Planck mass M’'p = Mp /\/87, where Mp is the Planck mass.
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we have to impose &, = b/, independent of a. If these terms were added, the last

condition in (4.19) would become
| A ! A CA
lgb"n" +;ba o = ;m (4.21)
We shall not include such terms here.
Combining (4.11) with (4.19) gives b] = 872 (b — b, — 3, b%¢¥). Combining
the terms (4.6)-(4.13) by superspace partial integration (2.18), the “Yang-Mills”

part of the Lagrangian (4.5) can be expressed — up to a total derivatives that we

drop in the subsequent analysis — as a modular invariant D term:

Less = /d4<9E(—2+f(V)+ZT/;{b;ln([7aUa/egV)+ZbZ‘1n(HfI—I,‘f’)

bl _ o
-3 g la (27 + 1) 1] }) ¥ Ly (4.22)
where
% = JJ(@4)" = eXr o' /2[1°, B = e2or 791294, (4.23)
A .

1s a modular invariant field coinposed of elementary fields that are canonically nor-
malized in the vacuum. The interpretation of this result in terms of renormalization
group running will be discussed below. We have implicitly assumed affine level-one

compactification. The generalization to higher affine levels is trivial.

~

The construction of the component field Lagrangian obtained from (4.22) paral-
lels thatl given in Section 2.3.2 for the case G = Ejs. Since the superfield Lagrangian
is a sum of F' terms that contain only spinorial derivatives of the superfield V,, and
the Green-Schwarz and kinetic terms that contain V, only through the éum V, the
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unphysical scalars £, appear in the component Lagrangian only through the physical

dilaton £. The result for the bosonic Lagrangian is:

1
~Lg =
€

where

1 1

-5R - (1+be)z(tI

—-—_rt—l—)z- (6""{1 a»n,tl - FIFI)
I

- 1—;/37 (1+4g,) [4(87 8k — B™Bn) + _ 4eK/% (Wa +uW)]
+ % (49, - 2) [MM b™ by { (Z blup — 4W¢K/’-) + h,c.}]

-; ! o In(e>Ka,u,) + z b In(mo7®)

mlt—‘

=
ZI: [bg] ln(tf)l2] } (Fo—u. +h.c)

1 , o , FI
~ 15 }: [b 1+ Zgl) du, — 40u, (Zb — + (b, — )2Ret1) -I-h.c.]
[ .

U o moa 8™ Imt!
In( )+Zb ln( )]VB 221: Roil —B,

l\’Jl

o [¢(t) (2BP Vot — uaF) +hc]

+ % 167r2

+ X2 ST FN (W 4+ KfW) + > F*W, + h.c.] , (4.24)
I a :

N

~
o~

S’

?

1 aﬂ(t) . _—nt/12 had —-2m=nt
mORETI n(t)=e /":!;Il(l—e2 )

¢ = V|9=§=0’

3

o™ B = .;-[Da,pd]v,,;g:g:o + 200mb,, B =3B

&
[
il

Uale=§=o = _(2_)2 - SR)‘/GIB=§=07 u= Zuth
e = Udlgmseo = —(D* —8RNWViloeicoy @=3 . i,
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—4F° = D,|sjoo, —4F° = D?Uslpageo, Fu =D F4,
= Do 7 = Mlasno
—4F? = DM%yopo, —4F* = D140,

th = Tlegeoy —4F' = DTy,

{I = TI‘B:@:O) —4FI = ﬁ2T1l9=é=0, | (4‘25)

bm and M = (M )]L = —6R|s_5—0 are auxiliary components of the supergravity

multiplet [34]. Notice that ((¢) defined in (4.25) is related to the Einstein function

G, (t) [53] as follows: Ga(t) = — (1 +4¢(t)Ret) /Ret. For n =1, u, = u, etc.,

(4.24) reduces to (2.46) of Section 2.3.2.

The equations of motion for the auxiliary fields b,,, M, FI,F® 4+ F® and F°

give, respectively:

bm

FI

UgUq

0, = .z_ (Z blu, — 4WeK/2> ,

2(—?%;7) {}: g [(b b)) + %c(t" )Reth — 4;"/2 (2RetIW, - W)} ,

£ _ 1o 1,1/0.2 I ' b [B
£ s~ Grme- S 1900 Ty P T 0%, 55 = o
I . a

> bu, + 4refPW, VY o : (4.26)

Using these, the Lagra.ngian (4.24) reduces to

amtI antI -

1 ™, m
oy ~ a1+ %0 (0¢ad — BmBy)

——'R (1+be)z

6"‘Imt’

o) o - S
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I
FiS B BVt ] = Vo
Ia

(1+4g,) | . |
Voot = _1—67‘— du+ £ Z;b;ua—4eK/ZW + h.c.

1
TSP

2

b£ I I K/2 I
;ua (b—b;+'2—7r—2€(t )Ret ) —4e (2R£t W[—-W)

1 Kl
+ 15 (49, - 2) ? buy — aWel/?| | (4.27)
where we have introduced the notation
U, = pgee, T =n%, (4.28)
and
) >, bru, W, . -
o« o _ 1 a Ya o . ) .
24 iln (—Za beT W, if Wya#0 (4.29)

To go further we have to be more specific. Assume? that for fixed a, b2 # 0 for
only one value of a. For example, we allow no representations (n,m) with both n
and m # 1 under G, ® G;. Then u, = 0 unless W,, # 0 for every a with 5% # 0. We

therefore assume that % # 0 only if W, # 0.

Since the II* are gauge invariant operators, we may take W linear in II:
W(ILT) =3 Wo(T)I%, Wo(T) = ca [[[n(THP6FY, (4.30)
o I '

where n(T') is the Dedekind function. If there are gauge singlets M* with modular

weights g, then the constants ¢, are replaced by modular invariant functions:

o = wa(M,T) = cq H(M*‘)”f’-lll{n(T’)P"f’q?.

2For, e.g., G = Es ® SU(3), we take Il ~ (27)3 of Es or (3)3 of SU(3).
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In addition if some M* have gauge invariant couplings to vector-like representations

of the gauge group
W(®,T, M) 3 ci4pM'&485 [[In(TH)ef +eF +eb),
T

one has to introduce condensates IT*? ~ @45 of dimension two, and corresponding

terms in the effective superpotential:
W(IL, T, M) 5 c;4p M'TIAB [[[n(TT)P6f +7+ei),
I§

Since the M* are unconfined, they cannot be absorbed into the composite fields
II. The case with only vector-like representations has been considered in [54]. To
simplify the present discussion, we ignore this type of coupling and assume that
the composite operators that are invariant under the gauge symmetry (as well as
possible discrete global symmetries) are at least trilinear in the nonsinglets under
the confined gauge group. We further assume that there are no continuous glob;ﬂ
symmetries~such as a flavor SU(N); ® SU(N)r whose anomaly structure has to be
considéred [54]. With these assumptions the equations of motion (4.26) give, using
5, bigf + bL/8x = b,
PZ ‘= e~ 2ba/ba oK o= (14f)/bal~b 3197 /ba Hln(tl)!'i(b—ba)/bol"[lb: /4 cal—zb:/ba’
1 a _

3;, Usy ba = b, +;b§. (4.31)

«

R

= —e 5+, (-8)e"]

Note that promoting the second equation above to a superfield relation, and sub-

stituting the expression on the right hand side for II in (4.22) gives
Lo = /d4oE( -2+ f(V)+> w,{b,, In(U,U, /e V) \'
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AN ORI Ay

— bg o I ] 2/mnIyi2
;Sﬂzl [(T!+T7) In*(T )I]})+£M. (4.32)

It is instructive to coinpare this result with the effective Yang-Mills Lagrangian
found [31, 32] by matching field-theoretical and string loop calculations. Making
the identifications V — L, U, — Tr(WW,),, the effective Lagrangian at scale y

obtained from those results can be written as follows:

Mg * ]

L () = /d49E(—2+f(V)+za:%{s_ylFf (C“_%;C‘f)ln[usga(#)“‘

s S 02 [0} 2400/ F (1240
A
- __bé_ I I 2/mI\i2
z}: s o [(T"+ T7) In*(THP] }) (4.33)

with M? = ¢ ~ 2(£) (9, = g(M,)) in the string perturbative limit, f(V) = g(V) =
0. The first term in the brackets in (4.32) can be identified with the corresponding

term (4.33) provided

«_ 1 1 1
;ba:‘mﬂzé:cfa ba=§r—i(Ca—§§C¢f)- (4.34)

In fact, this coﬁstra.int follows from (4.19) if the II* are all of dimension three,.
which is consistent with the fact that only dimension-three operators survive in the
superpotential ig the limit M'p — oo. Then b, is proportional to the S-function
for Go, and (p.) = (|A%)e]) has the correct exponential suppression factor for
a small gauge coupling constant as expected by a RGE analysis. In the absence of

(stringy) nonperturbative corrections to the Kahler potential (f(V) = g(V) = 0),
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2(V |g=p=0) = 2(£) = g?> = M? is the string scale in reduced Planck units and also

the gauge coupling at that scale [31, 32]. Therefore, the argument of the logarithm

in (4.33), ,
| 0.0 \"* | (D)™ _ (1A22al)® '
A , | 4.35
< 4 > gr® M2g;*3 (£.35)

gives the exact two-loop resﬁlt for the coeflicient of C, in the renormalization. group
funning from the string scale to the appropriate condensation scale [31, 32, 46].
The relation between (7*) and (u.), and hence the appeara.ncé of t_he gaugino
condensate as the effective infra-red cut-off for massless matter loops, is related to
the Konishi anomaly [55] The matter loop contributions have additional two-loop

corrections involving matter wave-function renormalization [51, 56, 57, 58]:

O0ln Z4(p) 1 I(1—qA—qB—oCY) i -1 _ | .
a_l_n;ﬂ _—_327!'2 feggezﬂ?( 97 ~9r QI)ZA (#)ZB (”)ZCI(/-‘)IWABCI

ST AWCHR| +ON +O®),  (e)

where C3(Ra) = (dimG,/dimR,4)C#, R4 is the representation of G, on @4. The
boundary condition on Z4 [31] is Za(ps) = (1 — pal)™?, where p, is the coefficient
of €217’ |®4|2 in the Green-Schwarz counterterm of the underlying theory: V =
g7 + paear 9 |®4|2 + O(|@4 ). The second line of (4.32) can be interpreted
as a rough parameterization of the second line of (4.33).

In the following analysis, we retain only dimension vthree opera£ors in the su-

perpotential, and do not include any unconfined matter superfields in the effective.
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condensate Lagrangian. The potential V;,: takes the form:

Voot = -l—élﬁ az,bpapb cos wap Rap(t),  wap = wo — wy,

2 _
— _ /2 s I T
Ry = (1 + Eg,) (1 + baf) (1 + bbf) 364b, by + (1 T bf) ;da(t )d[,(t ),
I
d.(t") = b-0,+ -;%C(t’)RetI -y [1 — 4(q¢¥ — 1)¢(tH)Ret! ]

= (b—ba) (1 +4((t")Ret!)

Ret! .

= —(b—b) —Gy(t). (4.37)

T
Note that do(t!) o« FI o Go(t!)Ret! vanishes at the self-dual point ¢/ = 1, where
¢t = —1/4, Go(t!) = 0, n(t]) = 6.77. For Ret! R 1 we have, to a very good
approximation, ((t/) ~ —n/12, n(t!) ~ e~™/!2, Note that also p, — and hence the

potential V;,: — vanishes in the limits of large and small radii; from (4.31) we have
lim pi ~ (ZRetI)(b—ba)/bae—vr(b—bq)RetI/3ba’

lim pz ~ (2R£tl)(ba—b)/bae—ﬁ(b~ba)/3baRetl , (4.38) '

where the second line follows from the first by the duality invariance of p2. So
there is potentially a “runaway moduli problem”. However, as will be shown in
Section 4.4, the moduli are stabilized at a physically acceptable vacuum, namely

the self-dual point.
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4.3 Axion Content of the Effective Theory

Next we consider the axion states of the effective field theory. If all W, # 0, the

equations of motion for w, obtained from (4.27) read:

g‘i -4 V"B — = Z by (Eb;ta - + h.c..> V"B, — %‘:;L:t =0. (4.39)
These give, in i)articula,r,
; 66 f = - za:banB; =0. (4.40)
The one-forms By, are a priori dual to 3-forms:
B = e, ( L anbpq> - (4.41)
2 34 , |

where I'?7? and %7 are 3-form and 2-form potentials, respectively; (4.41) assures the
constraints (2.10) for Tr(WW,) — U,; explicitly

(DD, —24RNU, — (D3 D*~24R)U, = —2i"9, = —%emn,,qamrzm = —16iV™BZ..

(4.42)

We obtain

’ * o baua o —_ : 6‘/1’“ . —
_BrD, — Zb (Zcbg' - +h.c.) B =85, TbhiO=0. (443

If ™74 £ 0, 5" can be removed by a gauge transformation I'P? — I'¢ 4. §inAPd,
Thus ~

1 . 1 ' .
B = Memﬂpqanbm 30 8emn,,qr: , Db T =0, b9=> b, (4.44)
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~ and we have the additional equations of motion:

5 1 5 1.8 6. _0Ls  m( 0L
5b,q£" (b 6Ta b 6T )ﬁB“O’ 558 =3g ~V (a(Vm¢))’

npg npg
(4.45)

which are equivalent, respectively, to

lon 6 0 _ 16 16 B
emnoe 23V g lB =0, (EZ 5BT b 53;1) £e=0,  (446)

with
l 6 — (1+egl) m ! am -1 gUb ™m |
663&,63 = 57 AL B™ 4 b, 0™ w, + — Zb (Ecbg c-}-h.c. O"w,
+>. 82 [6mea¢ E(a"‘tf (;I +he )]
amIrntI
IyamgI _Z
+z§8 5 [¢(t)o™t —h.c ] 1 BT (4.47)

Combining these with (4.39) and the equations of motion for £ and ¢, one can
eliminate By, to obtain the equations of motion for an equivalent scalar-axion La-
grangian. |

Again, these equations simplify considerabl:;r if we assume that for fixed a, 8% #

0 for only one value of a. In this case, (4.39) reduces to

ov

mpe _ _ 1
V™B; = 5 B (4.48)
and we have
a¢= _ 8¢°‘ I _
Y] = 07 atI = ZC(t ) (qI 1) ’ (4‘49)

if we restrict the potential to terms of dimension three with no gauge singlets M*.
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Using 3,62 (g5~ 1)+ b%/87% = b— b, gives:

14 o (1+4g,) o - _ o b
e6B;‘n£B = o0 B™ 4+ 5,0 wa+zZI: att ((t)(b—ba)+4RetI —h.c.

~(1+egl) m m N am I Zr__ b | . .
N St BT + 5.0 @a+;a Imt! |(b b,,)6 SRetl | (4.50)

where the last line correspoﬁds to the approximation ((¢/) &~ —=/12. In the follow-

ing we illustrate these equations using specific cases.

4.3.1 Single Gaugino Condensate

As we have seen in Section 2.3.2, for the case of a single gaugino condensate there

is an axion w = w, + (7/6)(/b, — 1) ¥; Imt! that has no potential, and, setting

1 202 O™ Imt!
m __ . _mnpq Ty o —
B! = 3¢ Onbyg = “0+4s ‘) (b oMw E Ret] ), (4.51)

‘the equations of motion derived from (4.27) are equivalent to those of the effective

~ bosonic Lagrangian:

1 gt 1 m I =1
;ﬁB——'z-R (1+bf)2m——(l+fgl)3 L4~ V(L,1,1)
2 - 0™ Imt! O Imt
- m (baa (P Z RetI ) (b 6mw 5 ; RetI ) . (4.52)

4.3.2 Two Gaugino Condensates: b; # by

Making the approximation 7(t) & e~™/!2, the Lagrangian (4.27) can be written as

follows:
1 1 o gut! 1 m m
ZL:B = 2R 1+M)Z(t1+t1)2 —Zﬁ(1+€g,)(3 ?0.{ — B™B,) B
e O™ Imt!
m '4 m —
wV™B,, —w'V™B,, 22; R ————Bp — Vo, (4.53)
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where
b1w1 - bgwg T I ’ Wwi9 bﬂ' I
= AT TN Im =22 L TS Imt
©= Tamn ey =Tt

by — by
B =%

, B™=3"bBr. . » (4.54)

We have

wy = w+zz:lmtl+i w’—blZImtI ,
6 b, 6

a ‘/pat 3 Vpot _ 3 Vpot

3w1 8w2 6&)12 '

(4.55)

Then taking w,w’ and t! as independent variables, the equations of motion for w

and w' are:
o~ 1
VmBm = 0, Bm = Eemnpqanbp ’
- 1, av 1 ]
\Y% Bm = -8— @ = ,35(;;;‘, Bm = ﬁgemnpql" pq.. (4.56)

Substituting the first of these into the Lagrangian (4.53), we see that the axion w and
the three-form B,, drop out because they appear only linearly in the Lagrangian;
hence they play the role of Lagrange multipliers. The equation of motion for by

implies the constraint on the phase w as follows:
Vmd™w = 0. (4.57)

The equations of motion for Imt! and Lianp read:

) m I ‘
0 = Vo |(14bemt b Bm]—i(av h.c.)—é’i*é,

2(Ret!)? ' 2Ret! ot 48
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(1 +49) pm  oam s b= O™ Imt! v
0 = T B™ +0™w 2; Rl (4.58)

and the equivalent bosonic Lagrangian is:

1 1 omH gt 1 .
~Ls = -3R-(l +bz)z @iy et ad
£ - o™ Imt! O Imt!
T (1+4g,) (3 - _Z Ret! ) ( me _Z Ret! )
- pot(e,tl,t—Iaw12)- . . (459)

As in Section 4.3.1, there is a single dynamical axion w' - or, via a duality trans-
formation, *® — but there is now a potential for the axion in the multi-condensate

case.

4.3.3 General Case

We introduce n linearly independent vectors Bm,Bm,Bm, t=1...n—2, and

" decompose the BT as follows:

B™ = q,B™+c,B™+ 2 &.Br, Br=3Y eBm (4.60)
Then

Z bows + (b — ba)% Z Imtl] V,,;B;" = wVpB™ + 'V, B™ + Zwiv B:“,
1 i

b a "
W, =w+ T Z Imt! + -—1- (w' — —7£Zlmtl) + Z e—‘w‘, (4.61)
6 7 be 6 7 ~ by
and the Lagrangian can be written as in (4.53) with an additional term:
—EB — —I.',B - Ew VBT, (4.62)
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The equations of motion for the phases w, w’ and w* are:

Vmém = av;wt = E = ,
8
m av;yot _ 1 aV;;ot _ av;ot = 1* — ba. _bb
VBT = - 0w’ =~ “ b, Ow, Zﬁab 8 e Pu= b.by
Am BVW 6 aV _ 1*
VeBl = =T 5 B, =8 2 (4.63)

and the equations for I‘,.,mp = 8€mnqu:-1 give 0™w' = 0. Hence
/ br I -
Wep = —PBap | W' — 5 > Imt'] + 6ap, 6ap = constant. (4.64)
1

Therefore, as in the two-condensate case of Section 4.3.2, there is one dynamical
axion with a potential. The dual bosonic Lagrangian is the same as (4.59), with

%Ot = w(/po‘t (Z, tI’ ZI, U.)ab).
4.4 The Effective Potential

The potential (4.37) can be written in the form

1
Voot = 7 (vi —v2 +v3),
2 2
n = (1+ Eg,) Z (1400 us| , v2= 362 oUe|
2
- I 2
vy = (1+b£)z > da(t )ua =4/ Rt, (4.65)
In the strong coupling limit
' 2
elim Voot = (€9, — 2) elal (4.66)

giving the exactly same condition on the functions f, g as (2.57) to assure bound-
edness of the scalar potential. Therefore (2.57), the necessary condition for stringy
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non-perturbative effects to stabilize the dilaton, is indeed true in general. Note
however that if v; = v3 = 0 has z; solution with v, # 0, the vacuum energy is always
negative. vz = 0 is solved by t! = ,l,v t.e. the self-dual point. As explained below,
this is the only nontrivial minimum if the cosmological constant is fine-tuned to van-
ish. In the case of two condensates, there is no solution to vy = 0, v, ;é 0, for f > 0,
~ and the cosmological constant can be fine-tuned to vanish, as will be illustrated be-
low in a toy example. More generally, the scalar potential V,,: is dominated by the
gaugino condensate with the largest one-lodp B-function coeflicient, so the geﬁer_al
case is qualitatively very similar to the single condensa.te case, ana it api)ears that
positivity of the scalar potential can always be imposed. Otherwise, one would have
to appeal to another source of supersymmetry breaking to cancel the cosmological
constant, such as a fundamental 3-form potential [21, 41] whose field strength is
dual to a constant that has been previously introduced in the superpotential [lé],
and/or an anomalous U(1) gauge syrnr.netry [17].

In thé following we ;tudy Zsz-inspired toy models with Eg and/or SU(3) gauge
groups in the hidden sector, and 3/Vy matter superfields [59] in the fundamental
representation f. Asymptotic freedom requires No7 < 3 and N3 < 5. For a true
Z3 orbifold there are no moduli-dependent threshold corrections: bﬁ_ = 0. In this
case, universal anomaly cancellation determines the average value of the matter
modular weights ir; these toy models as: { 2¢¥” —1) =2/Na7, (2¢3 —1) =18/N3. |
In '.;ome models Wilson line breaking of the hidden sector Eg generates vector-

like representations that could acquire masses above the condensation scale, so
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that the universal anomaly cancellation sum rule is nét saturated by light states
alone. In this case the ¢f no longer drop out of the equations, so some of _the
above formulae would be slightly modified. In addition, one would have to include
threshold effects [32], unless the masses of the heavy states are pushed to the string
scale. Here we assume for simplicity that the sum rule is saturated by the light
states. Denoting the fundamental matter fields by ®1¢, a« = 1,..., Ny, the hidden

matter condensates can be constructed as

a_3®1a a_3 be _1
p=11e7 =g Bue=ga

where gauge indices have been suppressed.
In the analysis of the models described below, we assume — for obvious phe-
nomenological reasons — that the vacuum energy vanishes at the minimum { Vot ) =

0. Thus we solve the following equations:

_ av;:ot

=0, =4t w. (4.67)

‘/pot

For z = £,t!, we have

5 = g (At B B=T B

- g 1+ 4]

0

3%ot 2 ) 1 B:z:
s = (A,,- - Z&;z Voot + 1622 % PaPb COSWap —b—a-Rab + axR“"

1 < B, B
= I‘éﬁ g; Pa Pb COS Wqyp (—T;— ; ﬂcaRab + ‘a_zRab)

2 :x:
+ (A:z: - "6zl+ E“
n

e E '51_) ‘/I’ota (4°68)

a a

where f,; is defined in (4.63). By assumption, the last term in (4.68) vanishes in
the vacuum. Note that the self-dual point, d,(¢!) = By = 0, t/ = 1, is always -
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a solution to the minimization equations for ¢!. It is the only solution for the
single condensate case. For the multi-condensate case, if we restrict our analysis to
the (relatively) weak coupling >region, £ < 1/b_, where b_ is the smallest S-function
coefﬁcient; the scalar potential V,,,; is dominated by the gaugino condensate with the '
largest B-function coefficient by : Vpor & p2 R4 /16€%. Moreover, since 7b/3b, > 1,
the scalar potential V. is always dominated by this term for Ret! > 1 (c.f. Eq.
(4;38)), so the only minimum for Ret! > 1 is Ret! — o0, p, — 0. By duality
the only minimum for Ret! < 1 is Ret! — 0, pa. — 0, so the self-dual point is
the only nontrivial solutioﬁ. Since our scalar potential is always dominated by
one gaugino condénsate, the picture is very different from the “race-track” models
studied previously [3].

At the self-dual point with V,,; = 0, we have

0 Vpor 72
Ay 321222”“ "°°S“’“"(9(1+be)(b )0 bb)——zﬂ“ “")
o 72 (b—by)? b
~ (9 (1 + be) 6222ﬂ°+R++) . (4.69)

Positivity of the potential requires Ry > 0, and 8.4 < 0 by definition, so the
exfremum at the self-dual point with V,,; = 0, p4+ # 0 is a true minimum. In

practice, the last term is negligible, and the normalized moduli squared mass is:

2 o, [ 1(6—=b:4)? ,
myr =~ <Z(T_rb—-;7)?p+> | (4.70)
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4.4.1 Single Gaugino Condensate with Hidden Matter

In this case B4 = 0, and the minimization equations for t! require

9
a1t

L+ 4¢(tHRet!| =0,
~ which is solved by 1 + 4((t!)Ret! = 0, t/ = 1. Then vs = F! = 0, and the
scalar potential V,,: is qualitatively the same as in the Eg case studied in Chapter
2 - except for the fact that here the string moduli are stabilized at the self-dual
point. (Note however thét if B.p = 0 one can choose the &), in (4.20) such that the
matter condensates drop out of the effective Lagrangian; then R,, is independent
of the moduli which remain undetermined.) The quantitative difference from the
Es case is the value of the ,B-function coeficient: bg, = (12 — 3Np7) /8x?, bsu@) =
(6 — N3) /1672. As in Chapter 2, two possible choices for the function f are f =
Ae~B/V [7) and f = A,(VV) PeB/VV [4], where we fine tune the parameter A (6r
A,) to get a vanishing cosmological constant.

Attention has been drawn to the leading correction for small coupiing that is
of the form f = Ae~B/YV [4]. If we restrict f to this form, we have to require a
rather large value for the parameter A: A ~ 40 in order to cancel the cosmological
constant. On the other hand, the important feature of f here is its behaviour in the
strong coupling regime; if f contains terms of the form Ae~B/ Y;}, the strong coupling
| limit will be dominated by the term with the largest value of n. In the numerical
analysis we take f = Ae~B/V; adding to this a term of the form f = A’ e~B'IVV will

not significantly affect the analysis. We find that the vev of £ is insensitive to the
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content of the hidden sector; it is completely determined by stringy non-perturbative
effects, provided a potential for £ is generated by the stronély coupled hidden Yang-
Mills sector. More specifically, taking f = Ae™8/V we find that (V,,; ) = 0 requires
A= e? z-7.4, and the dilaton is stabilized at a vaiue (£) ~ B/2. Taking B =1
gives (£) = 0.5, (f(£)) = 1, and the squared gauge coupling at the string scale
is g2 = (2¢/(1 + f)) =~ 0.5. If instead we use f = Ae=BIVV  the corresponding
numbers are A = 2¢> =~ 40, (£) ~ B*/9, g> ~ 2B?/27. Therefore, the vev of the
dilaton £ completely determined by stringy non-perturbative effects, and the dilaton
is naturally stabilized at a weak coupling regime if, for example, the parameter B

in the function f considered here is of order one.

One may look more closely at the second choice which is a genuine stringy
nonperturbative effect®. Taking for illusﬁrati\(e purposes f = (Ao + A/ \/Z) e~ B/ */Z,
wheré the condition (4.66) or (2.57) requires Ao to be larger than 2, one finds
a realistic minimum for O(1) values of the parameters: B(£)~1/? ~ 1.1 to 1.3,
Ao = 2.7 t0 5.3 and A; =~ —3.1 to —4.6. Therefore, the previous problem of a
rather large value of A (A ~ 40) for f = Ae~?/ VYV does not exist in general. From
now on we take f = Ae™'/V in the numerical analysis, but notice that the mdjor

conclusions of the analysis apply to more generic choices for f.

The scalar potential Vo for G, = E¢, N7 = 1, is plotted in Figures 4.1~

3We do not consider here the case where the coefficient B in the exponent is moduli-depernident
[6]. Such stringy nonperturbative contributions would perturb the moduli ground state away from
the self-dual point. However, one has to worry about the problem of modular invariance for this

type of stringy nonperturbative contributions [60]

AN
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Figure 4.1: The scalar potential V. (in reduced Planck units) is plotted versus £

and Int.

4.3. Fig. 4.1 shows the scalar potential in the ¢ Int plane, where we have set

t! = t, Imt = 0; with this choice of variables th¢ T-duality invariance of the scalz;r

potential is mani~fest. Fig. 4.2 shows the scalar potential V,, for £ at the self-dual

point ¢/ = 1, and Fig. 4.3 shows the scalar potential for Int wi’?h ¢ fixed at its vev.
The qualitative features of the scalar potential are independent of the content of

the hidden sector. Fixing A in each case by the condition (V,,:) = 0, we find for

ga = E6
7.324 0.502 1
A=<7359, (£)=140501=~g2, for Nyp=42. (4.71)
7.381 0.500 3

For G, = SU(3), N3 = 1, we find A = 7.383, (£) = 0.500 =~ gZ. As will be

discussed in Section 4.5, the scale of supersymmetry breaking in this case is far too
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Vivor

Figure 4.2: The scalar potential V,,: (in reduced Planck units) is plotted versus ¢

with ¢/ = 1 (the self-dual point).

-16
V. x 10
pot N\ 0.025}"

01015¢

Int

" Figure 4.3: The scalar potential V. (in reduced Planck units) is plotted versus In ¢
with £ = ({).
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small, and further decreases with increasing N3.

4.4.2 Two Gaugino Condensates

We have
OVpot OVpot .
= - = — R
Ow; B p1p2lt1zSin Wiy,
E  BeaPapyRab cos way = Par (P%Ru - P%Rn) - (4.72)

abe

Minimization with respect to w; requires either (sinw;; ) = 0 or ( R12 ) = 0. Identi-
fying by = by, by = b_, positivity of the scalar potential requires R;; > 0, which in
turn implies Ry > 0, so the extrema in w are at sinwy; = 0, with coswy, = —1 (+1)

corresponding to minima (maxima):

82V ot 362 ,622R12 '

There is also a small Imt’-w;, mixing. Note that while in contrast to the single
condensate case, the dynamical axion is no longer massless, its mass is exponentially
suppressed-relative to the gravitino mass by a factor ~ ({ p2/p; }/?. Therefore, in
generic string modeis there is only one very light axion* (i.e., the model-independent
axion). As will be discussed in Chapter 5, this very light axion has the right
properties to be the QCD axion [61].

For G = Es® SU(3), the potential is dominated by the Fs gaﬁgino condensate,

and the results are the same as in (4.71). The only other gauge groups in the

4As discussed in Section 3.3.1, this statement is true in the context of both static and dynamical

gaugino condensation, where the former is the effective description of the latter.
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restricted set considered here that are subgroups of Eg are G = [SU(3)]*, n < 4;

these cannot generate sufficient supersymmetry breaking.

4.5 Supersymmetry Breaking

The pattern and scale of supersymmetry breaking are determined by the vev’s of
the F' components of the chiral superfields. From the equations of motion for = /

and p, we obtain, at the self-dual point ( F1) = 0:

(1+4g,) _ ) 3 -1
(F*) = —=x%(a+{€) b = uy (1+46by)™, b2 #0,
4£2b, Xb: 4b,
= 1
(F*+F*) = 173 (1 +£g,)(1 + £b,) [ua ('& +2y° bbﬁb) + h.c.]

a b v
2

S I e ), (4.74)

™ 4b, 1+ £by
where the approximations on the right hand sides are exact for a single gaugino
condensate. The dominant contribution is from the gaugino condensate with the

largest S-function coefficient:

. 3 2 b
(F*t+F+)= §ﬁ+2:-i (4.75)

It has been known for some time that, if the dominant supersymmetry breaking
effects come from the dilaton rather than the moduli, the soft supersymmetry
breaking parameters are naturally flavor blind, and non-universal squark and slep-
ton masses that could induce unacceptably largé flavor-changing 1'1eutré.llcurrents

(FCNC) could be-thereby avoided [62]. Therefore, the fact that the F! vanish in
| the vacuum is a desirable feature for phenomenology. And it should be empha-
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sized that this unique feature is just the natural consequence of modular inva.n'a.nce
and a correct treatment of gaugino condensation in string theory. In other words,
a modular invariant treatment of gaugino condensation in string theory naturally
leads to the phenomenologically desirable dilaton-dominated supersymmetry break-
ing scenario, which is very impressive! However, as we will see in Chapter"S, the
dilaton-dominated supersymmetry breaking scenario is not always free from the
FCNC problem, which means the the analysis of dilaton-dominated scenario in the
past [2, 62] is oversimplified. In fact, possible non-universal couplings of the matter
superfields to the Green-Schwarz counterterm could induce non-universal squark

and slepton masses. More discussion of this problem will be given in Chapter 5.

Another important parameter for soft supersymmetry breaking in the observ-
able sector is the gravitino mass mgs. The derivation of the gravitino part of the
Lagrangian again parallels the construction in Section 2.3.2. The gravitino mass

mg is determined by the term:

1 1
£mass(¢) = —§¢mamn¢n Z ﬁa{ '%f‘ + b:z ln(ez"Kﬁaua) + Z b: In(r“fra)

I
+ 3 [ - L ln(eP] } - Wt b, (876)

giving, when the equations of motion (4.26) are imposed,
1 1 , K/2 1 ' 1
mg = 2(IM]) = (| bata = 45W]) = 2 (I botal) & 3041 ). (477)

The scale of supersymmetry breaking is governed by the vev (4.31) of the

gaugino condensate with the largest B-function coefficient. This includes the usual
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suppression factor (p, ) o e~1/%3% where g2 = (2¢/(1+f)) is the effective squared
coupling constant at the string scale. However, there are also other important
parameters that determine the scale of the hierarchy between the supersymmetry
breaking scale and the Planck scale. The dependence on the string moduli provides

a second exponential suppression factor:
(pa) o< (TLIn@E)PEPbe ) = |n(1)[oltadfte ny emmlombel/2be, (4.78)
I .

On the other hand, the numerical factor [, [6%/4c,| %/ generates an exponential
enhancement if ¢, ~ 1. This is the largest numerical uncertainty in our analysis. AV
priori, ¢, is related to the Yukawa couplings of matter fields in the hidden sector.
| However, there is an arbitrary normalization factor in the definition of II®. If the
hiddenfsector Yukawa couplings were knowh, it might be possible to estimate ¢, by
“a matching condition for the vev’s of the second lines of (4.32) and (4.33). In our
numerical analysis, we have set ¢, = 1. Then, if the hidden gauge group with the
largest B-function coefficient is g+ = FE¢ with 3N,; matter chiral superfields in the

fundamental representation, we obtain:

1.1 x 10~ 1
ma=1433x1071! for Npz=<2, (4.79)
1.65 x 10-15 3

| in reduced Planck units. For G, = SU(3) with three matter chirg.l superfields in
the f@damentd representation, We>obtain an unacceptably lafge gauge hierarchy:
mg = 2.2 X 10'32; meg deciea.ses rapidly as Nj increases, i.e. as the S-function
coefficient decreases. |
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4.6 Concluding Remarks

In the class of models studied here, the introduction of a parameterization for
stringy nonperturbative contributions to éhe Kahler potential for the dilaton gener-
ically allows a stable vacuum at a nontrivial, phenomenologically acceptable point
in the dilaton/moduli space. In particular, when we impose the constraint that
the cosmological constant vanishes, we find that in the linear multiplet formalism,
the string moduli ¢/ are stabilized at the self-dual point, and their associated F
components vanish in the vacuum, which results in a phenomenologically desir-
able dilaton-dominated supersymmetry breaking scenario. This striking feature of
string phenomenology is in fact just the consequence of modular invariance and
a correct treatment of gaugino condensation®. Therefore, in this sense the exper-
imental search for a dilaton-dominated supersymmetry breaking scenario can be
regarded as an indirect test of the modular invariance of superstring theory.

A salient feature of our formalism is that there is little qualitative diﬂ'e'renée
between a single condensate and a multi-condensate scenario. For several gaugino
condensates with equal (or very similar) B-function coefficients, fhe scalar potential
reduces to that of the single gaugino condensate case, excepf. that there may be flat
directions. If by = by = ---b;, then .a,t"the self-dual point p,/p = (, = constant

and the potential vanishes identically in the direction 3-%_; (,e™* = 0, posi = 0.

5As discussed in the appendix, an incomplete/incorrect treatment of gaugino condensation
and/or modular invariance is the reason why this unique feature of string phenomenology has

been ignored in the past.
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This always hgs a solution if {, = 1, in which case the flat direction preserves
sufersymmetry and there is no barrier between this solution and the interesting,
supersymmetry breaking solution. For several gaugino condensates with different -
function qoefﬁcients, the scalar potential is dominated by thé gaugino condensate(s)
with the largest B-function coefficient, and the result is essentially the same as in
the single gaugino condensate case, except that a very small mass is generated
for the dynamical (model-independent) axion. Iﬁ all cases, stringy nonpefturbative
corrections to the dilaton Kahler potential are required to stabilize the dilaton. This
picture is very different from previously studied “racetrack” models [3] where dilaton ..
stabilization is achieved through cancellations among different gaugino condensates
with similar 8-function coeflicients. The qualitative difference between an Eg hidden
sector and one Witﬁ a product gauge group is the presence of hidden matter; in the
Eg case there is no hidden matter and the scalar potential is independent of the
moduli, which therefore remain undefermined in the classical vacuum of the effective .
condensate theory. More phenomenological discuséions of the model constructed in

_this chapter will be presented in Chapter 5. \

4.7 Appendix: Chiral Multiplet Formalism

There has been interest in the question as to whether the linear and chiral multiplet
formalisms are equivalent at the quantum level. They are presumably equivalent in
the sense that technically we may always perform a duality transformation at the

superfield level on the Lagrangian (4.5) so as to recast it entirely in terms of chiral
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supermultiplets. The resulting effective Lagrangian should be the chiral multiplet
formalism with the gaugino condensates constrained by (2.12), and it is apt to be
rather éomplicated.

The string phenomenology that we have constructed and studied so far is quite
different from the “conventional” string phenomenology in several aspects. Besides
the aforementioned linear-chiral duality question, the “conventional” string phe-
nomenology is different from ours in the sense that the constraint (2.12) on gaugino
condensates has always been ignored, and usually the treatment of modular invari-
ance is incomplete or incorrect in the “conventional” study of string phenomenology.
Therefore, a more practical question that we address in this appendix is the extent
to which our studies in Sections 4.1-4.6 can be reproduced if one takes as a starting
point the usual chiral multiplet formalism for the dilaton With.the gaugindcon-
densates represented by unconstrained chiral superfields (i.e., the “conventional”
va.pproa.ch), and modular invariance is ensured through the Green-Schwarz mecha-
nism and string threshold corrections. In pa.rticular, we would like to know how
an incorrect tre#tment of gaugino condensation (i.e., a treatment without the éon-
straint (2.12) on gaugino condensates) might 'have affected our understanding of
string phenomenology in the past.

In the chiral multiplet formalism, the Green-Schwarz counterterm appears as

a correction to the Kahler potential, which we take to be

K(S,TH =Ly +§L)+Y. ¢, L1=85+5-b3 4, (4.80)
I I
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where § is the correction from stringy nonperturbative effects in the chiral multiplet
formalism®. Modular invariance of the Yang-Mills Lagrangian at the quantum level

is assured by the transformation propefty of S under (4.14):
S—S+b3 H, - (4.81)
7 _

and modular covariance of the Kahler potential (K — K + Y ;(H' 4+ H')) requires
that it depend on S only through the vector superfield L defined in (4.81). We
introduce static gaugino and matter condensate superfields U, and II* as before,

but now the gaugino condensate chiral superfield
U, = X2H3 (4.82)

is not constrained by the constraint (2.12) or (4.42) because H, is taken to be an
unconstrained chiral superfield in the treatment here. (This is what has always
been done in the conventional study of string phenomenology.) We construct the
superpotential in analogy to (4.5), using the standard approach of Vengzia.no and
Yankielowicz:

I/IItot = Wcond + W(H)7 A (4.83)

where W(II) is the same as in (4.30), and
1
Wcond = WC + WVY + I/Vth) WC = Zszﬂza

Wyy = iZHf (3b;1nHa+):b:1nH">,'

®Notice that the vector superfield L here is simply a convenient notation for (S+35-53",¢%)"".

It should not be confused with the L used in the linear multiplet formalism.
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_ %g; Lo g 1apma(), | (4.84)
where W represents the classical contribution of gaugino condensation. H? trans-
forms in the same way as U, under rigid chiral and conformal transformations, and
the anomaly matching conditions give the same constraints on the coefficients 4’s as
in Section 4.2. Then it is straightforward to check that, ﬁnder the modular tr‘;—msfor-
mation (4.14) with H, — e~ 21 H'/3 we have Wiong — e~ 21 H'BW, 4. as required
by modular invariance of the Lagrangian. Summing the various cc;ntributions, the

superpotential for H, can be written in the following form:
Wona = § S H2 0 { S TS [T . a9
a o I

The bosonic Lagrangian takes the standard form:

1 1 3
Ly = —ER—B-MM+K,,,L (FiF™ - 9,2'0"2™)
+eKI2 [F (W; + K;W) — MW +h.c], (4.86)

where Z' = S,T!,H,,11*, z* = Z!|4_5-0- In our static model K;z,K; = 0 for
Z',Z™ = H,,1I*, and the equations of motion for F* give W; = 0 for these fields.
This determines the chiral superfields H,,II* as holomorphic functions of S,T”.

Making the same restrictions on W(II) and the 2 as in Section 4.2, we obtain:

Hg = 6(2"+1)i’r(b.';—ba)/ba—bf:/bae—S/ba H['I](TI)]Z(b—b“)/b“ H Ib:{/4ca I_bg/b¢ ’
I o

bg - - . o
I = —2=8 [In(@H D, 4 #o0. (4.87)
o I

As in(4.31), the correct dependence of the gaugino condensates on the squared
gauge coupling constant ( 2/Res ), s = S|s—g=o, is recovered. Note however that,
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in contrast to (4.31), the phases of gaugino condensate here are quantized once Ims

is fixed at its vev. Using these results gives ' ’
Wtot—WSTI =——}:b H:. . (4.88)

The scalar potential V. is determined in the standard way after eliminating the

remalning auxiliary fields through their equations of motion:
M = =3KPW, F™=_XPK™(W;+ K:W),  Z'=S8,T,
Voot (5,85, 7) = X [K™ (W + KiW) (Wa + K2 W) — 3|WP] . (4.89)

The inverse Kahler metric for the Kahler potential (4.81) is:

7 4(Ret?)? . 2bRet!
1J IJ Is - —
K Gobk)’ X =~a=wky
— 2 -
o - Lo bK. 3K, (.90)

K.s(1 - bK,)

and the scalar potential V,,; reduces to

eX ‘—1 - 2 . 2 : \? 2
Vet = {ng (1 — bK. + 382K.s) [W, + KW + 4213 (Ret!)” |W; + KW
—2b [(W + K.W) " Ret! (W; + K;W) +'h.c.} } — 3K W2 (4.91)
We have
I 1 1 b— ba I I 3
—2Ret’ (Wi + KiW) = — E s 1—bK, - ——b—-Ret ¢(t")| H,
= . 4.92
W, + KW 2462(1 Kb) (4.92)

and the scalar potential can be written in the following form:
K

Voot = ———
Pt 16(1 — bK,) £

Zlh hz,l €08 Wep R, - (4.93)
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where here w, is the phase of A2 = H2|;_5_0, wqs is defined as before, and

Ray = babufu(f)+(b—b)(b—b) Y |1 +4Ret (N, £= Llpgo,
I : ‘

— b K,)(1 ~ b K)

_ox,) |
(1—bK.) e

- 3. (4.94)

fab(e)

In the absence of stringy nonperturbative effects, K, = —£, K = £2, f,, — —2blas
£ — 00, and the scalar potential V,,; is unstable in the strong coupling direction, as
expected. A positive definite scalar potential requires that f,,(¢) be positive semi-
definite where, as before, b, is the largest b,. Note that the perturbative expression
for f.o(€) is negative for b, > 1.4, while in the linear multiplet formalism the
corresponding expression is negative only for b,¢ > 2.4, so stringy nonperturbative
effects are réquired to be more important in the unconstrained chiral multiplet
formalism? here. If there is only one gaugino condensate, the self-dual point for the
moduli is again a minimum, but (FI) # 0. In the general case, the minimization

equations for the moduli read:

a‘/pot _ ek— ' 3 2b 1 a
B = TR - ok 2 el e ) 2Pl + gy
2b 1
+ (A + ;‘C(tl) > 3‘) Voot (4.95)

where f,; is defined as in (4.63). Aga.in imposing { Vyet ) = 0, the minimum is shifted
slightly away from the self-dual point if some S, # 0.
The effective Lagrangian constructed using the linear multiplet formalism - like

the string and field-theoretical loop-corrected Yang-Mills Lagrangian [31, 32] — de-

7 Unconstrained chiral multiplet formalism means the chiral multiplet formalism without the

constraint (2.12) or (4.42).
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pends only on the variables't! and the modular invariant field £, so the Lagrangian is
invariant under modular transformations on the ¢/ alone. In contrast, the effective
Lagrangian constructed using. this unconstrained chiral multiplet formalism has an
explicit s-dependence which accounts for the fact tha;t the self-dual point is not the
minimum. The unconstrained c’hiral multiplet construction forces a holomorphic
coefficient for the interpolating superfield for the Yang-Mills composite superfield
U ~ Tr(W*W,), and henceAcannot faithfully reflect the non-holomorphic contri-'
bution from the Green-Schwarz counterterm. This is again related to the fact that
the unconstrainéd chiral multiplet construction .does not account for the constraint
(2.12) or (4.42) which has to be satisfied byv the gaugino condensate superfields. Our
analysis in this appendix explicitly explains why in ‘the past the study- of string phe-
nomenology using the unconstrained chiral multiplet formalism has not been able to
predict moduli stabilizaﬁion at the seif-dual point and therefore a dilatdn-dominatéd ,

supersymmetry breaking scenario.
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Chapter 5

- Phenomenology of

Weakly-Coupled Superstring
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5.1 Introduction

In Chapter 4, we have constructed string models which include supersymme-
. try broken at a realistic écale, a stabilized dilaton, moduli fields with coupliﬁgs
respecting modular invariance and a vanishing cosmological constant. We believe
that it is sufficiently realistic to allow for a discussion of many phenomenological
issues associated with supersymmetry breaking, moduli physics and axion physics.
based on actual c_omputationé rather than educated guesses!. Needless to say, we
have no miraculous solution for either dilaton stabilization or the vanishing of th.é
cosmological constant. Although these are incorporafed in the model by fixing some
parameters (only the second constraint requires fine tuning), the model is still pre-
dictive enough in many respects. In Sections 5.2 and 5.3, we comment on several
problems associated with string moduli and axion. In partiéular, these analyses are
quite insensitive to the details of the string models, a.nd therefore the conclusions
are fairly model-independent. In Section 5.4, we study the pattern of soft super-
symmetr.y.breaking parameters. As expected, the conclusions of this section afe
sensitive to the details of the specific string model under consideration. In Sec-
tion 5.5, we comment on gauge coupliﬁg unification in the presence of significant
striﬁgy non-perturbative effects. In order to make the presentation transparent, in

most sections we start with the known results and problems of string phenomenol-

1 As we shall see, several such educated guesses about string phenomenology which have been

regarded as standard turn out to be inappropriate according to our actual computations.
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ogy studied in the past?. We then present the results obtained from the realistic
model constructed in Chapter 4. In particular, we emphasize how the standard lore
~ of string phenomenology is modified within our model, and how the problems of

string phenomenology could naturally be solved by these important modifications®.

5.2 Moduli Physics

At the perturbative level, the dilaton and moduli are are flat directions of
the potential, and they are lifted only through non-perturbative effects. It is often
argued that the non-perturbative effects which break supersymmetry also lift these
flat directions. As we have learned from the standard lore of string phenomenology,
a na,ivg oder-of-magnitude estimate concludes that string dilaton and moduli have
masses of order (or no larger than) the gravitino mass [22, 63], where the natural
scale of gravitino mass is about 1 TeV. Obviously, these light dilaton and modﬂi
fields with couplings suppressed by the Planck scale could lead to serious cosmolog-
_ical problems. A rough estimate for the decay rate I' of stﬁng dilaton or moduli is

at most

m3

~ — .1
8TM'%’ (5-1)

2 As discussed in the appendix of Chapter 4 and elsewhere, these studies in the past are based

on the unconstrained chiral multiplet formalism.
3As we have seen and shall see, many so-called problems of weakly-coupled string phenomenol-

ogy known in the past are not really problems of weakly-coupled string phenomenology itself. In
fact, they are mostly due to our limited calculational power in string theory, little knowledge of

its true vacuum structure, and an incorréct/inappropriate treatment.of gaugino condensation.
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where m is the mass of string dila.ton or moduli, Mb = Mp/+/87 is the reduced
Planék scale and Mp is the Planck scale. This slow decay rate is the source of
cosmological problems. That is, relic dilaton and moduli produced in the very early
universe survive to a dangerously late epoch. With the slow decay rate (5.1), they

result in a low reheat temperature Ty [22, 64]:

m \3/2
Ta ~ 5(2) keV. | (52)
Such a low reheat femperature is inconsistent. ';’vith successful nucleosyntheéis unless
m > O(3) x10* GeV (if Tp > O(1) MeV is required.) According )to the stand;rd
lore of string phenome;nology, m > O(3) x 10* GeV would imply an un-naturally
large g1-'avi,tino mass, which is not. acceptable. This is the so-called cosmological
moduli problem [22, 64, 65], where thé Polonyi prqblem is an earlier version of this
problém- in the context of spontaneously broken supergravity [66]. In order to solve
the cosmological moduli problem, there have been attempts at a hierarchy between
'rnoduli and squark masses [65, 67]; howe've'r, none of them is realistic. Thefe are
also possible cosmological solutioﬁs to the cosmological moduli problem, suph ‘as a
weak scale inﬂafion [64].

| Now, let’s leave the standard lore of string phenomenology and turn to the
vrealistic model constructed in Cha.pterh4. One. can easily extract from the scé.lér

potential the masses of the dilaton and of the moduli, which are particularly relevant

for cosmology. According to (4.70), one finds the mass of the moduli m,s as follows:

[ 1(b—-by) _
My & <§'(—1+_b‘;0p+>. (53)
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where p; is the hidden-sector gaugino condensate with the largest one-loop £-

function coefficient b,. As for the mass of the dilaton mg4, one finds:

1
+

According to (4.77), the gravitinb mass is: mg & 3bi(py). In generic string
models b/, and 1/b% are naturally large numbers, and therefore in contrast to the
standard lore of string phenomenology our model has a natural vhierarchy between
the dilatoﬁ /moduli and squark/slepton masses. More precisely, in order to generate
a realistic hierarchy of order mg = 107° M. II; ~ 10® GeV, it is required that b/b, =~
10 for the string models under consideration. (Such an example has been presented
in Section 4.5.) In this case, my = 20mg =~ 20 TeV and my ~ 103msz =~ 10°
TeV (where ms = 1 TeV.) This natural hierarchy between the dilaton/moduli and

squark/slepton masses could be sufficient to solve the cosmological moduli problem.

One may wonder why the mass of dilaton is particularly large in our model.
In fact, this specific feature has to do with the cancellation of the cosmological
constant. In our model, it is implicitly assumed that the mechanism which breaks
supefsymmetry is also responsible for the cancellation of the cosmological constant,
which is the minimal and most economical assumption?. With this assumption,
(Voo ) =0 leads to (1+4g,) = 3b3_< £%). According to (4.27), the kinetic term of
dilaton contains the small factor (1+£g, ), which therefore leads to an enhancement

of the mass of dilaton. On the other hand, there is so far very little insight about

“In our model, positivity of the scalar potential can always be imposed. One thus does not

need to appeal to another source of supersymmetry breaking to cancel the cosmological constant.
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how the cosmological constant problem should be solved. It is possible that the:g are
other sources which could contribute to the cancellation of cosmological constant.
However, a detailed analysis of these more-complicatéd scenarios is beyond the scope
of our study here. We wish to emphasize that, even if (1+£g,) might turn out to
be, for examplé, an (’)(1) number in some other more complicated solutions to the
cosmological constant problem, the natural hierarchy between the dilaton/moduli
and squark/slepton masses still exists as long as gaugino condensation is the major
soﬁrce of supersymmetry breaking; in this case we have m; ~ 20mg =~ 20 TeV and

mg ~ (1/by)mg ~ 30ms = 30 TeV.

5.3 Axion Physics

The invisible axion is an elegant solution to the strong CP problem. Ig string
theory, there seem to be many such axion candidates. Howe?er, as for the wea,klsl-
coupled superstring, it has been argued that QCD cannot be the dominant contribu-
tion to the potential of any string axion [68], and therefore none of the string axions
is qualified for the QCD axion. For the string model-independent axion, it is usually
argued (-agéjn using the unconstrained chiral multiplet formalism) that the m;)del-
independent axion cannot be the QCD axion due to both stringy non-perturbative
effects (?f order e~%/9: for the superpotential of dilaton) and non-perturbative dy-
namics of the hidden sector which breaks the Peccei-Quinn symmetry [7, 68]. For
string gxions associated with the 77 moduli, I;eccei-Quinn symmetries are signif- -

icantly broken by world-sheet instanton effects [68]. On the other hand, we have
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~ emphasized that the constraint (2.12) on gaugino condensates, which has been ig-
nored in the above arguments, has non-trivial effects on axion physics. Furthermore,
stringy non-perturbative effects are most naturally described by the linear multiplet
formalism. As we shall see, in the realistic model constructed in Chapter 4 where
both stringy non-perturbative effects and hidden-sector gaugino condensation are
fully included using the linear multiplet formalism, the model-independent axion
~ does have the right features to be the QCD axion. The resolution for the stringy
‘non-perturbative contribution, e~°/9:, to the superpotential of the dilaton is simple
and impressive: as argued in |7, 68] using the chiral multiplet formalism, it seems
plausible that there should be significant e—VS contributions to the superpotential
of dilaton, leading to the QCD axion problem raised by Banks and Dine [68]. On
the other hand, in the linear multiplet formalism of string effective theory where
the dilaton is represented by a vector superfield L, it is simply impossible to write
down any L-dependent contribution (e.g., e~/ ‘/Z) to the superpotential — a con-
straint coming from holomorphy. Therefore, in the linear multiplet formalism the
QCD axion problem of Banks and Dine [68] is resolved in an elegant way, and one
should re-examine the ‘attra.ctive possibility of £he string modei-independent axion

being the QCD axion in this framework.

For any of the string axions to solve the strong CP problem, there is also a
cosmological constraint. Cosmological considerations require the decay constant Fy
of the invisible axion to lie between 10° GeV and 10'? GeV (the so-called axion

window {23, 69]). The upper bound on the axion decay constant, F, < 10'2 GeV,.
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is due to thé requirement that the energy density of the coherent oscillations of the
axion be less than the critical density of the universe [23]. However, in superstring
theory the axion decay C(_)nstant‘Fa is naturally of order the Planck scale, and
therefore the" cosmologica,i upper bound on F; is seriously violated. Although it was
shown by Choi and Kim [70] that the decay constant F, of the model-independent
axion in the weakly-coupled heterotic string theory actually is Mp/167% ~ 10
GeV, this is still much larger than the cosmological upper bound. On the other
hand, cosmological constraints could be quite scheme-dependent; for example, it
has been pointed out that the entropy production due to the decays of massive
particles dilutes the axion density and therefore raise the upper bound on F, [71].
Based on the above idea Kawasaki, Moroi and Yanagida [72] have proposed a refined
scenario where the Polonyi fields of supergravity models are natural candidates for

entropy production. The new cosmological upper bound on Fj, in this scheme is:

~3/4 ,
< 15 (—Tn"‘—) .
Fo <5 x10° (b GeV, (5.5)

v?here mgy 1s the mass of the Polonyi field. In order 'to~ keep successful primordiél
nucleosynthesis in this scheme, m, should be larger than about 10 TeV. With my =
10 TeV, F, < 5 x 10*® GeV and therefore the string model-independent axion is
almost consistent with this new upper bound. However, mg > 10 TeV seems un-
natural according to the standard lore ,.of string phenomenology where one expects
myg & mg &~ 1 TeV. On the contrary, the cosmologicahl scenario of Kawasaki et al

naturally occurs in our model constructed in Chapter 4. As discussed in Section 5.2,
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in our model there is a natural hierarchy between the moduli and gravitino masses
(me = 20mg = 20 TeV), and therefore the decays of moduli serve the purpose of
raising the cosmological upper bound on F, to a value consistent with the F, of
string model-independent axion. This natural hierarchy is indeed a desirable feature
. of our model since it not only could solve the cosmological moduli problem but also
keeps the energy density of the oscillations of string model-independent axion from
dverclosing the universe.

One particularly interesting aspect of our model constructed using the lin-
ear multiplet formalism of gaugino condensation in Chapter 4 is axion physics.
Pseudoscalar fields are the phases w, of the condensates and the so-called model-
independent axion which is dual to the fundamental antisymmetric tensor field. The
latter couples in a universal way to the Fe# F <, term of each gauge subgroup. If
again we look at the dynamical model with one Eg gaugino condensate in Chapter 3,
we find that out of the two possible pseudoscalar the condensate phase is very heavy
whereas the string model-independent axion remains massless. This is obviously the
supérsymmetric counterpart of what happens with the scalars. If we allow for more
than one gaugino condensate, the model-independent axion acquires a very small
mass® (typically exponentially suppressed relative to the gravitino mass by a factor
of order { p2/p1)*/? in the two-condensate case according to (4.73)). Furthermore,

as we have seen in Section 5.2, the axions associated with the T'7 moduli get masses

SHigher-dimension operators might give extra contributions to the mass of this axion. However,

these contributions can be argued to be negligible using discrete R symmetry'[7].
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of order 20 my. Therefore, we are always left with only one very light axion, the
model—independent axion, and it has the right properties to be the QCD axion. Re-
member that there are two kinds of non-perturbative effects in our model (i.e., the
field-theoretical non-perturbative effects of hidden-sector gaugino condensation con-
strained by (2.12) and stringy non-perturbative effects), and they are best described
using the linear multiplet formalism. In contrast to the argument against the string
model-independent axion as the QCD axion [68] in the oresence' of both stringy
non-perturbative effects and non-perturbative dynamics of the hidden sector using
the unconstrained chiral multiplet formalism, in our model the model-independent
axion can indeed be the QCD axion. As explained before, the reason why the
model-independent axion has the desirable features in the liﬁear multiplet formal-
ism are a correct treatment of gaugino condensation and the fact that such stringy
pon-perturba.tive effects of dilaton are actually forbidden in the superpotential due
to holomorphy. As for the decay constant F, of the model-independent axion in our
model, there is an additional reduction factor of (2¢%(1+ £g,) )l/ ? compared to the
result obtained by Choi and Kim [70]. As discussed in Section 5.2, this reduction
factor comes from the fact that the kinetic term of dilaton in (4.27) contains the
small fa.ct;or (1+4g,) ~ 3b%2(£*) when (V. ) =0 is imposed. More precisely, this
reduction factor is about (2£2(1 + £g,))/* =~ <\/(_Sb+lz> ~ 1/50 if the gravitino
mass is about 1 TeV. Besides the fact that the cosmological scenario of Kawasaki et
al naturally occurs in our model, this reduction in the model-independent axion’s

decay constant is certainly desirable from the vie_wpoint of the cosmological upper
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bound on F,. Indeed, with this reduction factor the axion decay constant in our
model is F, &~ 2 x 10 GeV, which is truly consistent with the upper bound on

F, (=~ 5x10% GeV) imposed by the scenario of Kawasaki et al.

5.4 Soft Supersymmetry Breaking Parameters

In contrast to the studies of moduli and axion, the analysis of soft supersymme-
try breaking parameters is much more sensitive to the very details of a string model.
Unfortunately, our current knowledge of string models is still limited. Although in
the following we will try to discuss soft supersymmetry breaking parameters in a
model-independent way whenever it is possible, yet it should be kept in mind that
our analysis cannot cover all the interesting possibilities and therefore should not
be regarded as final.

It is straightforward to compute the soft supersymmetry breaking terms, thait
are generated at the condensa.tioﬁ scale feong = ( py Y3, for our model constructed

in Chapter 2. The gaugino masses m,, are:

mAb=_<@%2“_’ﬁ(1+£g,);(l+baf)ﬁa>z ;’gf:f‘Z"‘sz;( ). (56)

Notice that the expression of gaugino masses contains the small factor (1 + 4g,)
discussed at the end of Section 5.2, and therefore gaugino masses are suppressed by
b3 after (Vper ) = 0 is imposed. Therefore, it is possible that this suppression of
gaugino masses could be relieved in models with a more complicated mechanism of

cosmological constant cancellation.
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The soft terms in the scalar potential are sensitive to the — as yet unknown —
details of matter-dependent contributions to the Green-Schwarz counterterm and
string threshold corrections. We neglect the former®, and write the Green-Schwarz

counterterm as follows:
Vas = b3 g7 + 3 paekor P |0417 + O(@4]*), (5.7)
J; A

where the ®4 are gauge nonsinglet chiral superfields, the ¢4 are their modular
gaug g

weights, and the full Kahler potential reads
K=kV)+3 '+ Xt 10412 + O(|24]4). (5.8)
I A

Under these assumptions, the scalar masses and cubic “A terms” are given, respec-

tively, by the following:

! (pa—ba)|* (Pa —bs)? ,
my = E<E“"(_1T}Te) > <(1+p,w)2 +>
1 . b, 1+ ¢
Va(d) = ZeK/2§aa¢AWA(¢)[€1pAZ —(1+4g,) 37 ]+hc
~ L rsp_ pa—by 4 3by
~ g u+[A —1+p,4£¢ WA(¢)_+1+b+eW(¢)] +he, . (5.9)

where ¢ = ®|s—5-0 and W(®) is the cubic superpotential for chiral matter super- -
fields. N;;te that the squared scalar masses are always positive. As concluded in
Section 4.6,. we find in our model that moduli ¢/ are stabilized at the self-dual
point and their associated { F!) vanish in the vacuum, which results in a dilaton-

dominated supersymmetry Brea.king scenario. According to (5.9), both the scalar

SIf string threshold corrections are determined by a holomorphic function, they cannot con-

tribute to the scalar masses.
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masses and A terms are indeed independent of their modular weights by virtue of the
fact that ( F7) = 0. For the FCNC cohstraints, this feature of dilaton-dominate(i
scenario is a potential advantage over a moduli-dominant scenario. In the past, it
was generally believed that a dilaton-dominated scenario results in universal soft su-
persymmetry breaking parameters due to the universality of dilaton couplings {62].
However, here we wish to stress that the above statement did not take into account
the matter-dependent contributions to the Green-Schwarz counterterm, and there-
fore a dilaton-dominated scenario does not guarantee universal soft supersymmetry
breaking parameters. It is clear from the computations of our dilaton-dominated
scenario in (5.9) that soft supersymmetry breaking parameters are universal — and
unwanted flavor-changing neutral currents are thereby suppressed — if the matter
couplings (pa) to the Green-Schwarz counterterm are also universal. Unfortunately,
so far there is little knowledge of pa’s; therefore, the best we can do right now is to
study the consequences of several seemingly reasonable choices of ps’s. One possi-
bility is that p,’s are universal; thus we have universal soft supersymmetry breaking

parameters and in this case A terms in (5.9) reduce to

3 ks pa(l+2by0)—biL K .
va@)~ge 21_‘* T+l 15,0 7 (9) + he = ATEW($) + b (5.10)

For example, if the Green-Schwarz counterterm is simply independent of the matter
fields &4 (i.e., ps = 0), we have my = ms, A = 2m,. As for choices of non-
universal pa’s, a possibility is that the Green-Schwarz counterterm depends only on

the radii Ry of the three compact tori that determine the untwisted-sector part of
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the Kahler potential (5.8):
K= k(V) - Zln(ZRﬁ) + O(léﬁvistedIZL
i

where 2R? = T + T7T — ¥, |®4? in string units. In this case, ps = b for the
untwisted chiral superfields 7, and p4 = 0 for the twisted chiral superfields ®f,;.ca-
The untwisted scalars have masses comparable to the moduli masses: Myntwistea =
my/2 ~ A/3. Finally, we note that if b, =~ b/10 ~ 1/30, gaugino masses are
suppressed relative t.o‘the gravitino mass at the condensation scale piopna ~ 107* Mp:
my ~ Mywisted/40. If there is a sector with p4 = b and a Yukawa coupling Qf order
one involving SU(3) (anti-) triplets (e.j, DDN, where N is a standard model -
singlet), its two-loop contribution to gaugino masses [73] can be more important
than the standard one-loop contribution, generating a physical mass for gluinos
that is well within experimental bounds for mg &~ 1 TeV. Such a coupling cou.ld.
also generate a vev for N, thus breaking possible additional U (lv)’s at a..sca,le ~ 10
TeV. The phenomeﬁologically require;i ¢ term of the MSSM may also be generated
by the vev of a Standard Model gauge singlet or by oné of the other mechanisms

that have been proposed in the literature [74].

In contrast to the case of universal py’s, for the case of non-universal ps’s one
has to worry about the FCNC problem. Scenarios in which the sparticles of the
first two generations have masses as high as 20 TeV have in fact been proposed
[75] to solve the FCNC problem. However, it has recently been pointed out that

such scenarios may suffer from a negative scalar top mass squared driven by two-

135



loop renormalization group evolution [76]7. Clearly, a better understanding of the
matter dependence of the Green-Schwarz counterterm is required to make precise
predictions for soft supersymmetry breaking. Nevertheless our model suggests soft
supersymmetry breaking patterns that may differ significantly from those generally
assumed in the context of the MSSM. Phenomenological constraints such as cur-
rent limits on sparticle masses, gauge coupling unification and a charge and color
invariant vacuum can be used to restrict the allowed values of pa’s as well as the
low-energy spectrum of the string effective field theory. To conclude, we would
like to stress that the model presented above is certainly not final and some of
the results obtained, especially on the low-energy sector of the theory, may receive
modifications. Possible sources of modification are the presence of an anomalous

U(1) symmetry [17] or a constant term in the superpotential that breaks modular

invariance [77, 78].

5.5 Gauge Coupling Unification

String non-perturbative corrections necessary to stabilize the dilaton could
make significant corrections to the unification of gauge couplings. The functions
f(£) and g(£) introduced above and the threshold corrections whose form is dictated

by T' duality invariance contribute as follows to the value of couplings at unification:

Ca 1
e In(Ae) —

S a @ + )@, (5.11)

-2 Ms — -2
9. (M) g; + 1677 %

“We thank Hitoshi Murayama for pointing out this problem to us.
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g2 = —/——, M?!=)\M:, (5.12)

with

A= -;—eg“l(l +f) . (5.13)

Let us note however that this parameter is worth 1/(2e) ~ 0.18 in the berturbative
case and e~1%® = 0.19 in the one gaugino copdensat;e model.

 Let us take this opportunity to clarify two confusing statementsin the literature
about gauge coupling unification in weakly-coupled superstring. Firstly, we stress
that the dependence on the radii moduli 77 does not allow an interpretation of the
unification sca;Ie as the inverse radius of compactiﬁcation; While the result (5.11)
has been derived only for orbifold compactifications, its large T limit is consistent
with the behavior found in the large T limit of Calabi-Yau compactification. (Note
that in our model moduli are stabilized at the self-dual point, therefore far fro;n
this limit.) SeCondly, it is often stated tilaf one éan determine Afror‘n the low-energy |
va.lues' of gauge couplings the precise value of the gauge coupling unification scale
to be 3 x 106 GeV. We think that this is a misleading statement since most string
models constructed so far that hold a claim for being realistic include new forms
of mai‘ftér which perturb the evolution of the gauge couplings at some intermediate

threshold [79].
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5.6 Concluding Remarks

As discussed in Chapter 1, the weakly-coupled heterotic string theory is known
to have problems with dilaton/moduli stabilization, supersymmetry breaking, gauge
coupling unification, QCD axion, as well as cosmological problems involving dila-
ton/moduli and axion. In the literature some of these problems are often treafed as
evidence against the weakly-coupled heterotic string theory. However, it is actually
hard to say whether these problems are inherent to the weakly-céupled heterotic
string theory or they simply reflect our ignorance of important string dynamics.
Furthermore, some of these problems will probably re-appear even in the study of
the strong-coupling limit of the heterotic string theory. In this work we study these
problems by adépting the point of view that they arise mostly due to our limited
calculational power, little knowledge of of the full vacuum Structure, and an inappro-
priate treatment of gaugino condensation. Indeed, after a careful review one finds
that the phenomenological studies of the weakly-coupled heterotic string theory in
the literature contain several essential flaws. It is therefore of utmost importance to
correct these flaws and then re-examine the problems of weakly-coupled heterotic
string theory. In conclusion, three essential changes to the standard lore of string
phenomenology have to be made. The first essential change is about the effective
field theory of the wéakly-coupled heterotic string. It is emphasized that the linear
multiplet formalism rather than the chiral multiplet formalism is the appropriate

framework for the effective field theory of the weakly-coupled heterotic string. The
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second essential change is the inclusion of possible stringy non—per‘turbaiive effects
in addition to the usual field-theoretical non-perturbative effects produced by gaug-
ino condensation. The third essential change is an improved treatment of gaugino
condensation by including the constraint (2.12). As discussed in Chapter 2, tvhe last
two changes ‘are most naturally impleinented using the linear multiplet formalism. |
Finally, nofice that full modular invariance is always maintained in our construc-
tion. This is important because modular invariance is supposed to be an exact

quantum symmetry of closed string theory [80].

In Chapters 2—4, the linear multiplet formalism with the aforemeﬁtioned fea-
tures is constructed for an Eg model as well as a gene‘rilc orbifold model. It is par-
ticularly transparent in this framework to realize how the dilaton can be stabilized
by stringy non-perturbative contributions to the Kahler potenti-al.s‘ Furthermore,
supersymmetry can be broken at a realistic scale once the dilaton is stabilized. As
for the moduli, they are always stabilized at their self-dual points where the moduli
actually do not contribﬁte to supersymmetry breaking — a beautiful consequence of
modular invariance and a correct treatment of gaugipo condensat-ion. Phenomeno-
logically, we always h.ave a dilaton-dominated scenario of supersyfnmetry breaking.
The fact that the corripa.ctiﬁcation moduli are stabilized at the self-dual points also
invalidates th¢ Newton’s constant (or gauge coupling unification) argument of Wit-

ten against the weakly-coupled heterotic string theorjf. As for the masses of Ihoduli,

80f course, still we don’t know how to calculate these stringy non-perturbative effects. However,

the point is that these effects are at least under good control here.
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in contraét to the standard lore of string phenomenology a careful analysis reveals
that there is a natural hierarchy between moduli and gravitino masses. It is not
difficult to see how this hierarchy ariées: in a generic orbifold model with realistic
supersymmetry breaking scale, there is already a natural hierarchy between the Eg
B-function coeflicient b (associated with the Green-Schwarz counterterm) and the b,
of the largest hidden gauge subgroup (b/b; =~ 10). Such a hierarchy between mod-
uli and gravitino masses has important cosrﬁological consequences. As discussed
in Chapter 5, it not only could solve the cosmological moduli problem but also
keeps the energy density of the oscillations of the string model-indepc;ndent axion
from overclosing the universe. As for the strong CP problem, there is always only
one very light axion (the model-independent axion) in our model, a.ﬁd it does have
the right features to be the QCD axion in contrast to the conclusion of Banks and
Dine [68]. The difference between our result and that of Banks and Dine has to do
with our improved treatment of gaugino condensation and a non-renormalization
- theorem associated with the linear multiplet which is unique to t‘he linear multiplet
formalism. In conclusion, it is fair to say that these problems of the weakly-coupled

heterotic string theory can be solved or are much less severe.

As expected, the origin of the cosmological constant remains a mystery here
although it is indeed under better control and the cosmological constant can be fine
tuned to zero in our treatment. Again, a final resolution of this problem ﬁight have
to wait for a complete understanding of superstring dynamics. The other unsettled

issue in this work is the soft supersymmetry breaking pattern. Although our model
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always predicts a dilaton-dominated scenario of supersymmetry breaking, yet in
contrast to the standard lore Aof string phenomenology we point out that whether
a dilaton-dominated scenario predicts universal soft supersymmetry breaking pa-
rameters actually depends on whether the matter couplings to the Green-Schwarz
counterterm are universal. To ;ettle this issue, a better understanding of the matter
dependence of the Green-Schwarz counterterm for generic string models is certainly
required; it. deserves further studies and could lead to a rich phenomenology. An-
other potential proBIem of this work is that the gaugino masses might be too small.
Whether this is a serious problem or 1;ot can be very model—dépendent, especially
in the context of superstrings where one generically encounters scenarios beyond
~ the MSSM. In conclusion, we emphasize that this work is certainly not final, and
it is very important to understand more about the non-pertufbative aspects of
superstrings, realistic string model building and the phenomenology. After a car:e—
ful re-examination of the aforementioned problems of the weakly-coupled heterotic

string theory, it is also hoped that those misunderstandings of the current status of

weakly-coupled heterotic string theory in the literature are clarified by this work.
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