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Abstract 

Any deformation of a Weyl or Clifford algebra can be realized through a 

change of generators in the undeformed algebra. q-Deformations of Weyl or 

Clifford algebrae that were covariant under the action of a simple Lie algebra 

g are characterized by their being covariant under the action of the quantum 

group Uhg , q := eh. We present a systematic procedure for determining 

all possible corresponding changes of generators, together with the corre

sponding realizations of the Uhg -action. The intriguing relation between 

g -invariants and Uhg -invariants suggests that these changes of generators 

might be employed to simplify the dynamics of some g -covariant quantum 

physical systems. 

*EU-fellow, TMR grant ERBFMBICT960921. e-mail: Gaetano.Fiore@physik.uni-muenchen.de 



1 Introduction 

Weyl and Clifford algebrae (respectively denoted by A+, A_ in the sequel, and 

collectively as "Heisenberg algebrae") are at the hearth of quantum physics. The 

important question whether quantum mechanics is stable under deformation of 

Heisenberg algebrae (within the category of associative algebrae) was addressed in 

the fundamental paper [1]. A general result [11] regarding the Hochschild cohomol

ogy of the universal enveloping algebra associated to a nilpotent Lie group states in 

particular that the first and second cohomology groups of any Weyl algebra~ are 

trivial. This implies [17] that any deformation ~,h ( h denoting the deformation 

parameter) of the latter is trivial, in the sense that there exists an isomorphism 

of topological algebrae over C[[h]] (a "deforming map", in the terminology of Ref. 

[36]), f : A+,h --+ ~[[h]], reducing to the identity when h = 0 (a concise and 

effective presentation of these results can be found in Sect.'s 1,2 of Ref. [28]). Prac

tically this means that the generators Ai, At of A+,h can be realized as power series 

in h with coefficients in ~ Ai := f(Ai), At := f(Ai), and the coefficients of the 

h0 term are generators ai, at of A+· 

Given any automorphism g : A+[[h]] ---+ A+[[h]], g = id + O(h), then g o f 
is a new deforming map; conversely, given two deforming maps f, f', the map 

f' o f- 1 is clearly an algebra automorphism. Now, by the vanishing of the first 

cohomology group of A+, all automorphisms of A+[[h]] are 'inner', i.e. of the form 

g(a) = aaa-1
. Hence, all deforming maps can be obtained from one through the 

formula 

a= 1 + O(h) E A+,h· (1.1) 

These results apply [28] in particular to so-called "q-deformations" (q := eh) 

of Weyl algebrae which are covariant under the action of some simple Lie algebra 

g; such deformations [29, 34, 4] are matched to the deformation of U g into the 

quantum group Uhg , in the sense that for all q the deformed algebrae are in fact 

Uhg -module algebrae1
. We shall denote ~Y A+,g ,p the Weyl algebra with generators 

1They should not be confused with the celebrated Biedenharn-Macfarlane q-oscillator (su

per)algebrae [2], whose generators o:i, o:j fulfil ordinary (anti)commutation relations, except for 

the q-(anti)commutation relations o:io:t =r q2 o:t o:i = 1, and are not Uhg -covariant (in spite of 

the fact that they are usually used to construct a generalized Jordan-Schwinger realization of 

Uhg ). It is of interest to note that, however, the generators o:;, o:J can be tipically realized as 

algebraic 'functions' of Ai, At (26], whereas the generators a;, at can be tipically realized only as 
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ai, at belonging respectively to some representation p of g and to its contragradient 

pv, and by Ai,g ,p its q-deformation. In the same way as the commutation relations 

among ai, at are compatible with the classical action t> : U g x A+,g ,p ~ A+,g ,p, so 

are the commutation relations among Ai, At with the q-deformation of the latter, 

the 'quantum' action f>h : Uhg x Ai,g ,p ~ Ai,g ,p· 

At the representation-theoretic level one would be tempted to interpret deform

ing maps f as "operator maps". Whether this is actually possible depends however 

not only on the explicit form of f, but also on the particular representation picked 

up. In fact, the rigidity [11, 28] of Weyl algebrae is true only in the loose sense of 

formal power series in h [technically speaking; in the socalled h-adic topology], in 

general not in other (e.g. operator norm) topologies. In the case of q-deformations, 

the point eh = q = 1 may yield various types of 'singularities' at the representation 

level: the limit q ~ 1 of a representation may be non-smooth2
, or even ill-defined3. 

In spite of the existence of algebra isomorphisms f: Ai,g,p ~ A+,g,p[[h]], and 

'Ph: Uhg ~ Ug [[h])[10]\ the Uhg -module algebra structure (Uhg, A~,g,p,r>h) is 

however a non-trivial deformation of (U g, A±,g ,p, t> ), i.e. for no 'Ph, f the equality 

f o r>h = t> o ('Ph x f) holds. This is because Uhg itself as a Hopf algebra is a non

trivial deformation of U g , in other words all 'Ph's are algebra but not coalgebra 

(and therefore not Hopf algebra) isomorphisms (this is related to the non-triviality 

of the Gerstenhaber-Schack cohomology [18]). 

transcendental 'functions' of A i, Ai. 
2E.g. spectra of hermitean operators may switch from discrete into continuos (and correspond-

ingly their eigenvectors may become non-normalizable) [21, 24]. 
3It was shown in Ref. [29] that the set of unitary irreducible representations of A~,su(N),pd,* 

[* denotes the natural *-Structure of oscillators, (Ai)* = Ail on separable Hilbert spaces splits 

into more than one (actually infinitely-many) unitarily inequivalent classes, whereas there is just 

one class when q = 1, according to Von Neumann theorem [this is to be contrasted with the set 

of unitary irreps of Uhsu(N) itself: the latter are in one-to-one correspondence with the unitary 

irreps of su(N)]. This is not in contradiction with the existence of a deforming map, since (as 

we verified in Ref. [12], in the concrete case of A+h (2) ), at q = 1 the inverse f- 1 of the ,su ,pd,* 

q-deforming map becomes singular, as an operator map, on all but one of the Pusz-Woronowicz 

unitary irreducible representations [29]. /-1 is regular Cas an operator map) on this particular 

representation (the unique one possessing a ground state) and intertwines the latter with the 

(standard) Fock space representation of the corresponding undeformed Weyl algebra. 
4The existence of the latter ~nd its being defined up to inner automorphisms of U g [[h]] again 

is a consequence of the triviality of the first and second Hochschild cohomology groups of U g . 
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Using f>h and any f we can draw the solid arrows in the following diagram: 

X Ah ±,g,p 

..1- id X j 

X A±,g ,p[[h]] 
t>h 

---+ 

Ah ±,g,p 

+ f 
A±,g,p[[h]]. 

(1.2) 

In this paper we give a systematic procedure to construct all pairs (!, t:>h) such that 

the above diagram commutes (in other words t:>h will realize f>h on A±,g ,p[[h]]). 

We start by showing (Sect. 3) that one particular t:>h can be naturally con

structed in a ('Ph-dependent) 'adjoint-like' way. To determine the corresponding f 
it is sufficient to identify in A±,g,p[[h]] appropriate images Ai = J(Ai), At= J(At): 
with this aim in mind, we first show [formula (3.3)] how to construct two classes of 

objects Ai, At having the same transformation properties under t:>h as the genera

tors Ai, At of Al,g ,p under f>h; these two classes turn out to be parametrized by 

some g -invariants. The construction method is founded on the properties of the 

"Drinfel'd twist" [10]. Then (Sect. 5) we try to restrict our choice by requiring 

that the Ai, At also have the same commutation rules as the Ai, At: this con

dition can be translated into a system of equations (5.0.1-5.0.3) where the twist 

appears only through the socalled "universal coassociator"; fortunately, the latter 

is known rather explicitly in terms of solutions of the socalled universal Knizhnik

Zamolodchikov (22] equation. Up to this point the whole formalism is completely g

and p-independent. Then we solve case by case the system (5.0.1-5.0.3) for the most 

celebrated examples of q-deformed Heisenberg algebrae, i.e. A~,st(N),Pd, A~,so(N),Pd 5, 

(Pd will denote the defining representations of either g); the solutions Ai, At are 

determined up to an automorphism (1.1), with a g-invariant a. Coming back to 

the general results, in Sect. 6 we study the conditions under which *-structures of 

A±,g ,p realize *-structures of A~,g ,p; imposing a *-Structure constrains the choice 

of the g -invariant a. The subalgebrae A~,g )[h]], A~:~~p[[h]] of A±,g ,p[[h]] that are 

invariant respectively under t:>h and the classical Ug action t:> coincide (Sect. 4), 

but we find out that invariants in the form of polynomials in Ai, Aj are highly non

polynomial (analytic) functions in ai, aj, and conversely. Finally, in Sect. 7 we show 

how to extend our previous results to all other isomorphisms fa:; Ai,g ,p -+ A±,g ,p 

[formula ( 1.1)], while giving an outlook of the whole construction. 

5 Actually, in order to realize A~,so(N),pd one needs to slightly extend A+,so(N),pj[h]] with the 

square root of the element representing the casimir of so(N) 
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In Ref. [12] we started the program just sketched, by sticking to the cases 

of arbitrary triangular deformations of the Hopf algebra U g (this case is easily 

recovered in the present setting by postulating a trivial coassociator) and of the 

deformation Atsl(2),Pd of A±,sl(2),pd· We would like also to note that examples of 

q-deforming maps (in the restricted sense of the first paragraph) for Heisenberg 

algebrae have been explicitly determined "by hand" in past works [32, 26, 28, 24]. 

We are now in the conditions to give some motivations for the present work. A 

systematic procedure for determining q-deforming maps can help in understanding 

the relation (or contrast) between the representation theories of A±,g ,p and Al,g ,p· 

Our construction procedure is applicable in particular to Heisenberg algebrae A±,g ,p 

where pis a direct sum of many copies of Pd's; these are physically the most inter

esting cases (the different copies could correspond e.g. to different particles, crystal 

sites or space(time)-points, respectively in quantum mechanics, condensed matter 

physics or quantum field theory); solutions of the corresponding system (5.0.1-

5.0.3) will be searched elsewhere. In the particular case of a q-deformation Atg ,p 

of a oscillator *-algebra A±,g ,p, knowledge of a (*-compatible) q-deforming map 

would allow to identify one of the many unitary representations of Atg ,p with the 

unitary Fock space representation of A±,g ,p; correspondingly, a particle interpreta

tion in terms of ordinary bosons and fermions would be possible [13], and At, Ai 

could be interpreted as "composite operators" creating and destroying some sort ()f 

"dressed states". In view of the mentioned relation between g and Uhg invariants, 

the change of generators ai, at --+ Ai, At could be employed in order to simplify 

the dynamics of a physical system based on some complicated g -invariant inter

action Hamiltonian (similarly to what has been su~gested in Ref. [33] for a 1-dim 

toy-model), if the functional dependence of the latter on the q-deformed generators 

At, Ai were of polynomial character. 

2 Preliminaries and notation 

Some general remarks before starting. The fact that we will denote the generators 

of the Heisenberg algebrae. by ai, at, A i, At, ... does not necessarily mean that we 

have in mind creators/annihilators: only the choice of a *-structure may give the 

generators the meaning of creators/annihilators, or coordinates/derivatives, etc. (a 

few ones are considered in section 6). Given an algebra B, we will denote (with 
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a standard notation) by B[[h]) the algebra of formal power series in h E C with 

coefficients belonging to finite-dimensional subspaces of B, completed in the h-adic 

topology. Tensor products like B[[h]) 0 B[[h]] are also to be understood to be 

completeted in the same topology. We shall use throughout the paper the symbol 

Uhg [9], to denote the algebra on the ring C[[h]] (completed in the h-adic topology) 

underlying the quantum group. 

2.1 Twisting groups into quantum groups 

Let H = (U g, m, !:1, c, S) be the cocommutative Hopf algebra associated to the 

universal enveloping (UE) algebra U g of a Lie algebra g . The symbol m denotes 

the multiplication (in the sequel it will be dropped in the obvious way m(a0b) = ab, 

unless explicitly required), whereas !:1, c, S the comultiplication, counit and antipode 

respectively. 

Let :F E Ug [[h]) 0 Ug [[h]] (we will write :F = :;=(1) 0 ? 2l, in a Sweedler's 

notation with upper indices; in the RHS a sum Li :F~1 ) 0 :F~2 ) of many terms is 

implicitly understood) be a 'twist', i.e. an element satisfying the relations 

(c 0 id):F = 1 = (id 0 c):F 

:F = 1 0 1 + O(h) 

(2.1.1) 

(2.1.2) 

(h E C is the 'deformation parameter', and 1 the unit in Ug; from the second 

condition it follows that :F is invertible as a power series). It is well known [8] that 

if :F also satisfies the relation 

(:F 0 1)[(!:10 id)(:F)] = (10 :F)[(id 0 !:l)(:F), (2.1.3) 

and 'Ph is any automorphism of Ug [[h]] satisfying 'Ph= id (mod h) (in particular, 

'Ph = id), then one can construct a triangular non-cocommutative Hopf algebra 

Hh = (Ug[[h]], m,!:lh,Eh,Sh,R) having an isomorphic (through 'Ph) algebra struc

ture (Ug [[h]], m), an isomorphic counit ch := cocph,\ comultiplication and antipode 

defined by 

where 
'Y := s :;=-1(1) . :;=-1(2)' 

5 

Sh(a) = cph, 1['Y-1S[cph(a)]!'], 

(2.1.4) 

(2.1.5) 



and (triangular) universal R-matrix 

(2.1.6) 

Condition (2.1.3) ensures that !).h is coassociative as /:).. The inverse of Sh is given 

by S;; 1 (a) = 'Ph" 1[iS['Ph(a)h'- 1
], where 

'Y'-1 = s;::-1(2) . ;::-1(1); (2.1. 7) 

"(-
1
"(

1 E Centre(Ug ), and S"f = i-1. 

Conversely, given a h-deformation Hh = (Uh, m, /).h, Eh, sh, n) of H in the form 

of a triangular Hopf algebra, one can find [8] and an isomorphism 'Ph : Uh -+ U g [[ h]] 
an invertible F satisfying conditions (2.1.1), (2.1.2), (2.1.3) such that Hh can be 

.obtained from H through formulae (2.1.4),(2.1.5),(2.1.7). 

Examples ofF's satisfying conditions (2.1.3), (2.1.1), (2.1.2) are provided e.g. by 

the socalled 'Reshetikhin twists' [31] 

(2.1.8) 

where {hi} is a basis of the Cartan subalgebra of g and Wij = -wji E C. 

A similar result to the above holds for genuine quantum groups. A well-known 

theorem by Drinfel'd, Proposition 3.16 in Ref. [10] (whose results are partially 

already implicit in preceding works by Kohno [23]), proves, for any quasitriangular 

deformation Hh = (Uhg 'm, /).h, Ch, sh, n) [9, 15] of u g' with g a simple finite

dimensional Lie algebra, the existence of an algebra· isomorphism 'Ph : Uhg -+ 
U g [[h]] and an invertible F satisfying condition (2.1.1) such that Hh can be obtained 

from H through formulae (2.1.4),(2.1.5),(2.1.7), as well, after identifying h = lnq. 

This F does not satisfy condition (2.1.16), however the (J?ontrivial) co_associator . 

¢> := [(!). 0 id)(F-1 )](F-1 0 1)(1 0 F)[(id 0 !).)(F) (2.1.9) 

still commutes with !). (2) (U g ) , 

(2.1.10) 

thus explaining why !).h is coassociative in this case, too. The corresponding uni

versal (quasi triangular) R-matrix n is related to F by 

(2.1.11) 
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where t := .6.(C)-10C-C01 is the canonical invariant element in Ug 0Ug (Cis the 

quadratic Casimir) 6. The twist :F is defined (and unique) up to the transformation 

:F--+ :FT, (2.1.12) 

where Tis a g-invariant [i.e. commuting with .6.(Ug )] element of Ug [[hJr~
2 

such 

that 

T = 1 0 1 + O(h), (c-0id)T = 1 = (id0c-)T. (2.1.13) 

Under this transformation 

¢--+ [(.6. 0 id)(T-1 )](T-1 0 1)¢(1 0 T)[(id 0 .6..)(T). (2.1.14) 

A function 

(2.1.15) 

of the Casimirs Ci E U g of U g and of their coproducts clearly is g -invariant. We 

find it plausible that any g -invariant T must be of this form; although we have 

found in the literature yet no proof of this conjecture, in the sequel we assume that 

this is true. 

We will often use a 'tensor notation' for our formulae: eq. (2.1.3) will read 

(2.1.16) 

and definition (2.1.9) ¢ = ¢ 123 = :FJ.2: 3:F]} :F23:F1,23 , for instance; the commas 

separate the tensor factors not stemming from the coproduct. 

¢ satisfies the equations 

(2.1.17) 

6To arrive at this result, Drinfel'd introduces the notion of quasitriangular quasi-Hopf algebra; 

the latter essentially involves the weakening of coassociativity of the coproduct into a property 

("quasi-coassociativity") valid only up to a similarity transformation through an element ¢ E 
3 

Ug[[h]]0 (the "coassociator"). This notion is useful because quasitriangular quasi-Hopf algebra 

are mapped into each other under twists [even if the latter do not satisfy condition (2.1.3)]. As an 

intermediate result, he shows that Ug [[h]], beside the trivial quasitriangular quasi-Hopf structure 

(Ug[[h]],m,~,c:,S,R = 10
2
,¢ = 10

3
), has a non trivial one (Ug[[h]],m,~,c-,S,R = q~,cp =J 

10\ 
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While for the twist F, apart from its existence, very little explicit knowledge is. 

available, Kohno [23] and Drinfel'd [10] have proved that, up to the transformation 

(2.1.14),¢> is given by 

cl>m = g- 1(x)g(x), 0 <X< 1, (2.1.18) 

where g, g(x) are Ug [[h]J<~3 -valued 'analytic'7 solutions of the first order linear dif

ferential equation 

dg 1i (tl2 t23 ) -= -+-- g, 
dx x x-1 

0<x<1 (2.1.19) 

.(1i = 2~i) with the following asymptotic behaviour near the poles: 

~ (·1 )-ht23 x-+1 1@3 g· -X / ---7 . (2.1.20) 

Using eq. (2.1.19) it is straightforward to verify that the RHS of eq. (2.1.18) is 

indeed independent of x. 8 Using eq. (2.1.20) we can take the limit of eq. (2.1.18): 

(2.1.21) 

We can formally solve the previous equations (2.1.19), (2.1.20) by a path ordered 

integral: 
' 

lim {x0ht12 Pexp [-nix dx (t 12 + ~)]} 
xo-+0+ X X- 1 

xo 

(2.1.22) 

g(x) = lim {Pexp [-n 1

~-y
0

dx (t12 +..!E._)] y~t23·}· 
Yo-+O+ X X- 1 

X . 

(2.1.23) 

(P[A(x)B(y)] := A(x)B(y)19(y- x) + B(y)A(x)19(x- y)), so that we can give a 

more explicit expression for ¢>: 

cl>m = lim {x0ht12 P exp [-n 1

~-yo dx (t12 + ..!E._)] y~t2a} . 
~~-+~ x x-1 

xo 

(2.1.24) 

00 
7In the sense that the coefficients gn(x) appearing in the expansion g(x) = L gn(x)hn of gin 

n=O 

h-powers are analytic functions of x with values in a finite-dimensional subspace of U g 0
3

• 

8Kohno and Drinfel'd proved that</> can be obtained as the 'monodrorny' of a system of three 

first order linear partial differential equations in three complex variables Zi (the socalled universal 

Knizhnik-Zamolodchikov [22] equations), with an Ug 03 -valued unknown j, *!; = h L#i z;t:_izJ· 
The system can be reduced to the equation (2.1.19) exploiting its invariance under linear tranfor

rnations Zi -+ azi +b. For a review of these results see for instance Ref. [5]. 
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Note that ¢>m = 1 ®
3 + O(h2). 

We will say that the twist :F is 'minimal' if the corresponding¢> (2.1.9) is equal 

to ¢>m or is trivial respectively in the case of Hh = Uhg or Hh is a triangular 

deformation of U g . 

The algebra isomorphism 'Ph : Uhg -+ Ug [[h)] is defined up to an inner auto

morphism (a 'similarity transformation') of Ug [[h]], 

(2.1.25) 

for any v = 1 + O(h) E Ug [[h]] (we shall normalize it in such a way that c-(v) = 1). 

It is easy to check that Drinfel 'd theorem [1 OJ remains true provided one repla~es 

:F by :Fv := ( v ® v ):F .6.( v-1) and all the objects derived from :F correspondingly; in 

particular, it is easy to check that the coassociator ¢> remains unchanged, because 

it is g -invariant 

(2.1.26) 

The freedom in choosing 'Ph (and :F) is usually eliminated if one requires it to satisfy 

additional properties, such as to lead to a specific *-structure for Uhg . 

The Lie algebra g = sl(2) is the only g for which explicit 'Ph's are known9 . 

be the classical generators, and Jo, J+, J- E Uhsl(2) 

(2.1.27) 

the quantum ones. An entire class of algebra isomorphisms 'Ph : Uhsl(2) ~ U sl(2)[[h]] was given 

in Ref. [7]. One is [the reader can easily check the commutation rules (2.1.27)]: 

(J ) = [j- jo]q[j + jo + 1]q . 
'Ph - (j- jo)(j + jo + 1) J-· 

The *-Structure (J+)* = J_, (Jo)* = J0 of Uhsu(2), for instance, requires changing the preceding 

isomorphism by the inner automorphism generated by 

v= 
r(j- jo + 1)rq(j + jo + 1) 

fq(j- jo + 1)f(j + jo + 1) 

[fq is the deformation of Euler's r-function defined in formula (A.4.14)], which leads to the new 

algebra isomorphism </>v [6] 

9 

[j ± jo]q[1 + j =f jo]q . 
(j ± jo)(1 + j =f jo) J±· 



For practical purposes it will be often convenient in the sequel to use the 

Sweedler's notation with lower indices ~(x) = X(l) 0 X(2) for the cocommutative 

coproduct (in the RHS a sum I:i xh) ®xh) of many terms i~ implicitly understood); 

similarly, we will use the Sweedler's notation ~ (n-l) (x) = X(l) 0 ... 0 X(n) for the 

(n-1)-fold coproduct. For the non-cocommutative coproducts ~h, instead, we will 

use a Sweedler's notation with barred indices: ~h(x) = X(l) 0 X(2)· 

To mantain a simple notation, in the sequel we will drop the symbol 'Ph unless 

this may cause ambiguities. 

2.2 Classical g -covariant Heisenberg algebrae 

Let A±,g ,p be the unital algebra generated by lA and elements {at he I and { aJ} jEI 

satisfying the (anti)commutation relations 

[at, a}]± 
i + [a , aj ]± 

0 (2.2.1) 

(the ± sign denotes commutators and anticommutators respectively), belonging 

respectively to some representation p and to its contragradient pv =proS of H (r 

is the transpose): 

x C> at - p(x)~at 
x C> ai p(Sx)fal 

X E Ug, p(x)~ E C. (2.2.2) 

Equivalently, one says that at, ai are "covariant", or "tensors", under C> • 

A±,g,p is a (left) module algebra of (H,e>), if the action C> is extended on the 

whole A±,g ,p by means of the (cocommutative) coproduct: 

x C> (ab) = (x(1) C> a)(x(2) C> b). (2.2.3) 

Setting 

(2.2.4) 

for all X E g, one finds that CJ : g --+ A±,g ,p is a Lie algebra homomorphism, so 

that CJ can be extended to all of U g as an algebra homomorphism CJ : U g --+ A±,g ,p; 

Here j is the positive root of the equation j(j + 1)- C = 0, C = i-i+ + j 0 (j0 + 1) is the Casimir, 

[x]q := q;~{~,z, and we have used the ordinary r-function, as well as its q-partner fq, defined in 

formulae (A.4.9), (A.4.14) in the appendix. 
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on the unit element we set a(lug) := l.A. a can be seen as the generalization of 

the Jordan-Schwinger realization of g = su(2) [3] 

Then it is easy to check the following 

Proposition 1 The {left) action 1> : U g x A±,g ,p --t A±,g ,p can be realized in an 

'adjoint-like' way: 

X E Ug, a E A±,g,p· (2.2.6) 

Let us introduce the notion of g -invariant subalgebra A~,g ,p c A±,g ,p: 

A~,g ,p := {IE A±,g ,p I x 1> I= c(x)I Vx E Ug} (2.2.7) 

(it is not difficult to see that the above is the natural definition of invariant subal

gebrae in the Hopf algebraic language; in fact if x E g then c(x) = 0 and the RHS 

vanishes). It is easy to show that 

Proposition 2 

A~,g,p ={IE A±,g,p I [a(y),I] = 0, y E Ug} (2.2.8) 

Proof. Given any IE A~,g,p' y E Ug take x = Y(l) in definition (2.2.7), where 

Y(l) 0 Y(2) = !::J.y: 

I a(y) lc(Y(l))a(y(2)) (
4
.
1
) (Y(l) 1> J)a(Y(2J) 

(
2
.
2
.
6
) a(yc1J)Ia(Sy(2) · Y(3J) = a(Y(IJ)Jc(y(2J) = CJ(y)I. D (2.2.9) 

The simplest nontrivial invariant is the 'number of particle operator' n := at ai, 

which satisfies 

[n a+] =a+ ' ~ ~ 
(2.2.10) 

l,From the previous proposition it trivially follows that, for any I, 1 E A~,g ,p ®
2 

the objects 

(2.2.11) 
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(we are using again a Sweedler's notation) transform exactly as ai, at under 1>. If 
·~ 

the decomposition of p into irreducible components reads p = E&tl ptl, the same 

remains true if we define the ai (resp. at) belonging to the J.t-th component by 

plugging in the previous formula some J.t-dependent invariants Itl, itl, E A~,'g ,p 
02 

In the rest of this work we will denote by the symbols C7, 1>, .•• also the linear 

extensions of these operations to the corresponding algebrae of power series in h, 

(7: Ug [[h]] ---t ~,g,p([h]], I>: Ug [[h]] X A±,g,p[[h]] ---t A±,g,p[[h]], .... 
Remark 1. Let us note finally that other 'more exotic' algebra homomorphisms 

e7cr : U g ---t A±,g ,p can be introduced b;r-

(2.2.12) 

where a E A±,g,p[[h]] is of the form a= 1 + O(h) and therefore invertible. Propo

sition 2 remains valid after the replacement C7 ---t C7cr. 

2.3 Quantum Uhg -covariant Heisenberg algebrae 

Examples of Uhg -covariant Heisenberg algebrae (denoted by Al,g ,p in the sequel) 

were introduced in Ref. [29, 34, 30, 4], "gluing" together a Uhg -covariant "quan

tum space function algebra" [15L (whose generators we will call here At) with its 

"dual" (whose generators we will call here Ai) with appropriate cross commutation 

relations. These Al,g ,p are deformations of corresponding A±,g ,p with generators \ 

at, ai belonging to certain representations p, pv of g (in the notation of the previous 

subsection). The cases actually considered were Ai,st(N),Pd'[29, ,34] A~,sl(N),Pd'[30] 

Ai so(N) P , [4]; one could consider also A~ (.!:!..) 
10

. 
, , d ,sp 2 ,Pd 

The QCR ('quantum commutation relations') among Ai, At's can be put in the 

form 

A.iA.j 

A.+ .At 
t J 

A.i.At 
J 

±PF{~AkAh 

±PF~: At At 
£5~1 ± PFih A.+ Ak 

J A Jk h ' 

(2.3.1) 

(2.3.2) 

(2.3.3) 

where: ± refers to the Weyl and Clifford case respectively; PF = q±1 R and R is 
10Together with the generalizations in which p, pv are direct sum of m ~ 1 copies of these Pd, p~ 

[14], these are among the few sensible cases, for the reasons we recall below. 
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the (numerical) 'braid matrix' [15] associated to Uhg 

C 
·- { qfr if g = sl(N) g .-

1 otherwise, 
(2.3.4) 

(the factor qk in the case g = sl(N) is the conventional normalization); P denotes 

the permutation matrix; Pd,q denotes the defining representation of Uhg ; pF is 

a polynomial of degree one or two in R (usually it is chosen in such a way that 

(PF)2 = 1). Both pF and f>F reduce to P in the limit q ---+ 1. The choice 

f>F = q=f-1 fl-l is also possible, but will not be considered explicitly in the sequel. 

Al,g ,p is a left module algebra of Hh = (Uhg, m, .D.h, Eh, Sh) w.r.t. to the quan

tum action f>h of the latter, namely 

\:lx,y E Uhg, a,b E Al,g,p; Jii,A.j span two quantum conjugate irreducible rep

resentations Ph, Ph =PI 0 sh of (H, f>h ): 

-+ xf>h Ai 

xf>h }ii 

Let <Ph be an algebra isomorphism <Ph : Uhg ---+ Ug [[h]], and :Fa corresponding 

twist; for any representation Ph of Uhg , setting 

p :=Ph o <Pf:l 

defines a representation p of Ug [[h]] 11
. l,From formula (2.1.11) and t~e polynomial 

dependence of pF on R it follows that 

pF 

pF 

FU p-l 

FV p-l 

(2.3.5) 

(2.3,6) 

where F := pf (:F), V = cg P qP~
2 

(t/2) and U, being a polynomial in P qP~
2 

(t/2) 

such that (PF) 2 = 1, reduces to U = P. 

If pis the direct sum of m copies of the (N-dimensional) defining representation 
m 

of g, p = EB Pd,f.l' one can consistently define [14] a Uhg -covariant Heisenberg 
J.l=l 

algebra Al,g ,p having the same Poincare series as its classical counterpart A±,g ,p, 

following the rules of 'braiding'12 . The generators Af.l,i, At,i, satisfy: 

11 In particular, it is well-known that the defining representations Pd,q,Pd of Uhg ,gcoincide, 

in the sense that the matrix identity Pd,q(X~) = Pd(Xi), where X~ are e.g. the Drinfel'd-.Jimbo 

generators of U hg and X; the corresponding Chevalley generator of g , holds. 
1 ~For an introduction to braiding see e.g. Ref. (25). 
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• QCR of the form (2.3.1), (2.3.2), (2.3.3) with the same NxN matrices pF, pF 

as before, within each subalgebra JL Atg ,p generated py AJL,i, At,i; 

• cross commutation relations which, up to a reordering Of JL Al,g ,p's, read 

±q±l.R~~.4+ .4+ 
t) v,h JL,k 

±q± 1 _Ri.h A+ AJL,k Jk JL,h 
±q±l _kij AJL,k AJL,j hk 

(2.3.7) 

±q=Fl(_k-l)i.~ .4+ jiJL,k 
JK v,h 

when J.L < v. 

If we summarize these QCR in the form (2.3.1), (2.3.2), (2.3.3) (but now with 

indices i, j, ... running over the values 1, 2, ... , mN), it is immediate to realize that 

them~ x mN matrices pF, pF can be put again in the form (2.3.5), (2.3.6), where 

now 

(2.3.8) 

and U, V are suitable m N x m N matrices such that 

(2.3.9) 

Remark 2. It is hot difficult to verify that, given an arbitrary (finite-dimensional) 

representation Ph of Uhg , arbitrary T satisfying the condition (2.3.9) and V ex 

P qP
02

(tf2 ), then relations (2.3.1), (2.3.2), (2.3.3) with pF, PF defined by (2.3.5), 

(2.3.6), (2.3.8), (2.3.9) are still compatible with the (left) Uhg- action f>h. How

ever, in general they don't generate a left and right ideal alone, i.e. without in

troducing additional first, third or higher degree relations, which have no classical 

counterpart; if, in order to define an algebra Ai,g ,p, one adds the latter, then the 

Poincare series of Al,g ,p is smaller than that of A±,g ,p, what makes Al,g ,p physi

cally non-interesting. This is the reason why these Al,g ,p have not been considered 

in the literature. On the contrary, in the cases mentioned at the beginning of this 

subsection the quantum and classical Poincare series coincide. 

One can introduce the notion of Uhg -invariant subalgebra A~~~~P c Al,g ,p by 

mimicing the classical definition (2.2.7): 

(2.3.10) 
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For later use we recall that from the projector decomposition and the properties 

of R [15, 34, 4] it follows that the 'q-number operator' N := At Ai of Ai,st(N)Pd 
satisfies the relations 

(2.3.11) 

and the invariant elements A+CA+ := AtCiiAj, ACA := AiCiiAi of A~,so(N)Pd 
satisfy the relations 

(ACA) Ai Ai (ACA) - 0 (2.3.12) 

(A+cA+) At At(A+cA+) 0 (2.3.13) 

(ACA) At q2 At (ACA) - (1 +q2-N)CiiAi (2.3.14) 

Ai (A+cA+) _ q2 (A+cA+) Ai (1 +q2-N)Cii Aj. (2.3.15) 

3 Realization of the quantum action and of Uhg -

covariant generators 

Having learnt from Drinfel'd theorem that a quantum group Uhg can be realized 

essentially by U g itself as an algebra (upon the introduction of the commuting 

deformation parameter h = log q) and, through a similarity transformation, also as 

a coalgebra, it is natural to ask whether one can realize a Uhg -covariant Heisenberg 

algebra [29, 34] Ai,g ,p with generators lA, Ai, Aj by the corresponding A±,g ,p[[h]] 
(as characterized in the previous section). 

We begin by the obvious observation that the algebra Uhg can be realized in 

A±,g ,p[[h]] by t~e homomorphism 

(3.1) 

Inspired by Propostion 1, we are naturally led to 

Definition-Proposition 1 The definition[12} 

(3.2) 

allows to realize f>h as an action on the left module A±,g ,p[[h]], in an 'adjoint-like' 

way. 
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Note now that at, ai are not covariant w.r.t. to f>h. One may ask whether 

there exist some objects At, Ai E A±,g ,p that are (and going tb at, ai in the limit 

h-+ 0). 

The answer comes from the crucial 

Proposition 3 {12} Let ai,at be defined as in formula {2.2.11), with I,i = 1~
2 + 

O(h) (in particular, it may be ai = ai at =at), and let :F be a twist associated to 

'Ph· The elements 

(3.3) 

are "covariant" under r>h, more precisely belong respectively to the irreducible rep

resentation Ph and to its quantum contragredient one Ph =pro Sh of (H, r>h ), and 

go to at, ai in the limit q -+ 1.13 

Proof. Due to relation (2.1.4), :F is an intertwiner between L:1h and !:1 (we drop the 

symbol 'Ph): 

(3.4) 

Applying id 0 S on both sides of the equation and multiplying the result by 1 0 1 

from the right we find [with the help of relation (2.1.5)] 

Applying a 0 a to both sides and sandwiching at between the two tensor factors 

we find 

which, together with equations (2.2.6), (2.2.2), (3.2) proves the Uhg -covariance of 

At. 
To prove the covariance of Ai, let us note that relation (2.1.4) implies an anal

ogous relation 

13The Ansatz (3.3) has some resemblance with the one in Ref. [19], prop. 3.3, which defines an 

intertwiner a: Ug [[h]] ~ Uhg of Uhg -modules. 
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This can be shown by applying in the order the following operations to both sides 

of eq. (2.1.4): multiplying by ;:'-I from the left and from the right, applying St.iSJS, 

multiplying by "(10"(1 from the left and by .6.(S'Y) from the right, replacing a ---7 Shx, 

using the properties (2.1.4) and (Sh t.5.9 Sh) 0 .6.h = T 0 .6.h 0 sh. Next, we observe that 

Ai can be rewritten as 

whence, reasoning as for the first relation, 

(3.5) 

(2.2.6) 

(2.1.4) 

(3.5) 

which, together with equation (2.2.6),(2.2.6), proves the second relation. D 

Remark 3. Under the right action h<J (ah<Jx := (S;;1x)r>h a with a E A±,g,p[[h]], 
x E Ug [[h]]) the covariance properties of Ai,At read 

Remark 4. For any invertible g-invariant elements N 1 , N2 E Ug [[h]] t.5.9 Ug [[h]] 

the objects 

(3.6) 

are still of the form (2.2.11). In fact, by eq. (2.1.15) N1 , N2 can depend only on 

Cit.5.91, 10Ci, Ci(I)0Ci(2), but O"(Ci(l))atO"(SCi(2)) = Cir>at =cat, O"(SCi(I))aiO"(Ci(2)) = 

Ci <Jh ai = cai, where c E C is the value of the Casimir Ci in (the irreducible compo

nent of) the representation p to which at belongs; moreover O"(Ci), O"(SCi) E A~,'g,p· 

Thus any transformation (2.1.12) in definitions (3.3) amounts to a replacement of 

the type at, ai ---7 a/, a'i. Therefore, without loss of generality, we can assume from 

the starting :F to be 'minimal' in definitions (3.3). 

To conclude this section, let us give useful alternative expressions for At, Ai by 

'moving' to the right/left past at, ai the expressions O"(·) lying at their left/right in 

definitions (3.3). In the appendix we prove the following 
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Lemma 1 IfF is a 'minimal', then 

F -1(SF-1(1))F-1(2) 0 F-1(2) 
"( (1) (2) (3.7) 

;:-:1(1) 0 '(SF-1(2))F-1(2) 
(1) "( (1) (3.8) 

F-1 - _r)1) 0 F(1)(SF(2)h 
(1) (2) (3.9) 

F(2) (Sf{1)h'-1 0 F(2) 
(1) (2)" (3.10) 

-,.. 
Proposition 4 With a 'minimal' F = F', definitions {3.3) amount to 

Af 
t 

at a(F-1(2) )p(F-1(1) )~ (3.11) 

A+ 
t 

p( SF(1)"fr-1 )~a( F(2) )at (3.12) 

Ai p( F(1))ta( F(2) )at (3.1.3) 

Ai ata(F-1(2) )p( 'Y-1 SF-1(1))~. (3.14) 

Remark 5. In spite of its original definition (3.2), from the latter expressions we 

realize that only a 'semiuniversal form' of the type (p 0 id)P1 for F is involved in 

the definition of Ai, Aj. 

Proof of Prop. 4. Observing that 

a(x)a = a(X(l))aa(Sx(2) · X(3)) 

aa(x) "= a(x(3)Sx(2))aa(X(l)) 

Jor all x E Ug, a E A±,g,p, we find 

A+ (2.2.6),(2.2.2) + ('1:"(1)(S.-r12)) ) ('1:"(1))t (3.9) + ('1:"-1(2)) ('L"-1(1))t 
i - at a .r(2) .r' 'Y P .r(1) i - at a .r1 P .r1 i' 

Ai (2.2.6),(2.2.2) ( -r-1(1))i ( '(S '1:"-1(2)) '1:"-1(1)) t (3.s) i( '1:"(1)) ( '1:"(2)) t 
- P .r(1) tO""! . .r .r(2) a - Pt .r2 a .r2 a· 

Similarly one proves the other relations. D 

4 Classical versus quantum invariants 

(3.15) 

(3.16) 

(3.i 7) 

(3.18) 

Having defined two actions t>, t>h on A±,g ,p[[h]], let us ask what is the relation 

between their respective invariant subalgebrae A~,g,p([h]] c A±,g,p[[h]] [see def. 

(2.2.7)] and 

(4.1) 
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It is easy to show the 

Proposition 5 ~,g)[h]] = A~':g~p[[h]]. 

Proof. We have to show that definition (4.1) is equivalent to 

A~:g:p = {IE A±,g ,p[[h]] I [(J(y), I]= 0 y E Ug [[h]]}. 

The proof goes exactly as for proposition 2 if we replace ~ by ~h and S by Sh· D 

Thus, given an element I E A~,g ,p = A~:g:p, we can express it as a function of 

ai,aj or Ai,Aj, I= f(ai,aj) = fh(Ai,Aj). What is the relation between fh,f? 

Since l> (resp. l>h) acts in a linear homogeneous way on the generators ai, aj 

( resp. A i, Aj), we can choose a basis {In} nEN ( resp. { Ih} nEN) of the vector space 

A~,g ,p[[h]] consisting of normal ordered homogeneous polynomials in ai, aj (resp. 

Ai,Aj): 

(4.2) 

(4.3) 

(kn, hn E N U {0} ); the coefficients d{:."."."i~:n (resp. Df:.-."."i~:n) make up classical (resp. 

quantum) g -isotropic tensors, i.e. satisfy 

c(x)df: 

ch(y)Df: 

( 4.4) 

( 4.5) 

\:lx E Ug [[h]], y E Uhg . Here and in the rest of the section we use the collective

index notation In = (ii .... ihn), ln = (j1 .... jkn) and the short-hand notation bn := 

hn +kn. Using formula (2.1.4) it is straightforward to verify that the d's and D's 

are related to each other by 

(4.6) 

where :F12 .... b E Ug [[h]]0 b is an intertwiner between ~(b- 1 ) and ~~- 1 ) (symbolically, 

:Fcph(~h(a)) = ~(cph(a)):F), i.e. it is given, up to multiplication from the right by 

a g-invariant tensor Q E Ug [[h]]0bn, by 

(4.7) 

The replacement :F -t :F · T, with T E U g [[h]]02 and g -invariant, results also 

in multiplication from the right by a related Q. 
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Relation ( 4.6) guarantees the existence of D's in one-to-one correspondence with 

· the d's, but from the practical viewpoint is not of much help for finding the D's 

(since the universal :F is unknown and its matrix representations are known only 

for few representations); the latter can be found more easily from the knowledge of 

nand a direct study of i5h. 

Our question can be ·now reformulated as follows: what is the explicit depen

dence of the IJ:'s on ai, at? and on In? We answer here the first question. 

Proposition 6 

I n _ ( + +) ( )Ln h - a ... a Mn a ... a x 

[( 
®kn V ®hn ) (.+,-1 .+,-1 </J-1 )lMnLn dJn 

p 0p 0 (J . 'f'(bn-1)bn(bn+1)'f'(bn-2),(bn-1)bn,(bn+1)""" 1,2 ... bn,(bn+1) j J I In 
n r. 

where </J1,2 ... m,mt1 := ( id 0 ~ (m-2) 0 id)¢123 and bn := hn + kn-

The Proof is given in the appendix. 

Remark 6. Note that in these equations :F does not explicitly appear any more; 

the whole effect of twisting is concentrated in the coassociator </J of g and in its 

coproducts. Consequently, use of formula (2.1.24) allows the explicit determination 

of the dependence of IJ:'s on ai, aj. 

If Hh is triangular then </J- 1 and all its copruducts are trivial, and consequently 

we find 

I n _ In 
h- . 

l 

But if Hh is a genuine quasitriangular Hopf algebra as Uhg , then 

(4.8) 

(4.9) 

The IJ: will be some nontrivial function of the Im's, generally speaking a highly 

non-polynomial function of the latter and of the ai, aj's. 

This can be already verified for the simplest invariants. To the g -isotropic tensor 

d{ = 8{ there corresponds Uhg -isotropic tensor D{ = 8{ [by formulae (4.6), (2.1.5)], 

whence we can construct the invariants I := at ai = n and I := At Ai, which 

are necessarily different: we will show in next section that e.g. I = (n)q2 in the 

g = sl(2) case. In the g = so(N), p = Pd case another basic isotropic tensor is the 

classical metric matrix Cij = Cji (with inverse cii = cii, to which there corresponds 

the quantum metric matrix [15] Cij, and its inverse Cii: 

( 4.10) 
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the last two equalities follow from the .so(N) property 

(s )i ( )m li Pd X j = Pd X 1 C Cmj X E Ug. 

So one can build the invariants 

I 2
'
0 

·- aicijai = a c a 

Ii'0 AiCiiAi = AC A 

I 0'2 ·- atciiaJ =a+ ca+ 

I~'2 ·- AtCii AJ =A+ cA+; 

we will see in next section that Ii'0 
=1= I 2'0 , I~'2 =1= I 2,D. 

(4.11) 

(4.12) 

5 Fulfilling the QCR of Al,g,p within A±,g,p[[h]] 

In section 3 we have left some freedom in the definition of Ai, A{: the g -invariants 

I, i appearing in the definitions (2.2.11) of ai, at have not been not specified. Can 

we choose I, i in such a way that Ai, At fulfil the QCR (quantum commutation 

relations) of Al,g ,p? This question can be studied explicitly using the following 

Proposition 7 If we replace Ai, AJ-+ Ai, AJ [with Ai, AJ defined as in formulae 

{3.11), {3.13), ·with a minimal F), then equations {2.3.1), {2.3.2), {2.3.3) become 

equivalent to 

± (M-1 U M){~am a1 

±a+ a+ (M-1 U M)1~ l m tJ 

6]1A ± at(M-1 V M)~~am 

( 5.0.1) 

(5.0.2) 

(5.0.3) 

where U = IIUh{ II, V = IIV~tll are the {numerical) matrices introduced in equations 

{2.3.9) and M = IIM,%11 is the cr(Ug [[h]])-valued matrix defined by 

M := (p 0 p 0 cr)(¢m)· (5.0.4) 

(The proof is given in the appendix.) We recall that, if p = Pd, then simply U is 
2 

the permutation matrix p, and V CX: p qP~ C&) 0 lA. 

Remark 7. The above equations have to be understood as equations in the 

unknown I, i E (A~;g ,p)®2
• They can be studied explicitly because the whole 

dependence on :F is concentrated again in the coassociator ¢ of g . 

21 



Remark 8. If Hh is a triangular deformation, then U = V = P, ¢> = 1 @
3 

(and consequently M = 1@
3
), and the eq. (5.0.1), (5.0.2)are satisfied with trivial 

invariants J,i, i.e. with ai = ai, at= at. This was already shown in Ref. [12]. 

To look for solutions of eq. (5.0.1), (5.0.2), (5.0.3) for genuine quasitriangular 

deformations we have to treat the g 's belonging to different classical series separatly. 

We consider here Ai,sl(N),Pd, A~,so(N),Pd · 

5.1 The case of Atsl(N),Pd 

N 
As a basis of g we choose { Eij h.i=l, ... ,N with E Eii = 0 (so that there exist only 

i=l 

N 2 
- 1 linearly independent Eij), satisfying 

(5.1.1) 

The quadratic Casimir reads 

(5.1.2) 

implying 

(5.1.3) 

The matrix representation of Eij in the fundamental representation p takes the form 

8·· 
p(Eij) ='eij- ;.1N, (5.1.4) 

where eij is the N x N matrix with all vanishing entries but a 1 in the i-th row 

and j-th column, and 1N = Ei eii is the N x N unit matrix; whereas the Jordan

Schwinger realization takes the form 

( ) 
+ . 8ij 

C7 E· · = a. a1 - -n ~J ~ N . 

As a consequence e7(C) = n(N ± n + 1)- ~. 
2,From the previous three equations one finds 

1 t03' 
eii@ eji@ 1A- N1N@ 1N@ 1A =: P- N' 

(5.1.5) 

(p @ p @ (7} ( 1f) 
(p @ p @ (7) ( ~) 
(p@p@C7)(~) 

1N @ eij @ aj ai - 1N @ 1N @ ~ =: A - 1 ?v
2 

@ ~ 

eij @ 1N @ aj ai - 1N @ 1N @ ~ -· B - 1 ?v2 
@ ~; 

(5.1.6) 

p denotes the permutation matrix on CN @ CN, multiplied by 1A· 
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Ar.~t(N),Pd is generated by n := at ai. Using relations (2.2.10) we can thus 

commute I<2l to the left of ai ?-nd j(l) to the right of at in formula (2.2.11, and 

look for ai af directly in the form ai ·= I ai af ·= af 1 with I = I(n) E Ainv 
' 2 • ' 2 • 2 ' ±,g ,p, 

1 = i(n) E Ar,g ,p· l,From eq. (3.11), (3.13) it follows N :=At Ai = atai = n i(n-

1), where i(n) := I(n)l(n). In order that N, At, Ai satisfies the commutations 

relations (2.3.11), we therefore require i(n) = (~i±2 , with (x)a := a:~11 • Summing 

up, we pick 

ai ·- Iai 
' 

(5.1.7) 

af ·- afi 
2 2 

These ansatz can also be written in the equivalent form 

at= v(n)atv- 1(n), (5.1.8) 

where u, v are constrained by the relation 

-1 r(n+1) 
uv = y = Ysl(N) := rq2(n + 1) (5.1.9) 

and r, r q2 are the r -functions defined in formulae (A.4.9), (A.4.12). 

We have now the right ansatz to show that the QCR of N-dimensional Uh.sl(N)-

covariant Heisenberg algebra are fulfilled. In the appendix we prove 

Theorem 1 When g = sl ( N), the objects A i, At (i = 1, 2, ... , N) defined in formu

lae {3.11}, {3.13), (5.1. 7) satisfy the corresponding QCR (2.3.1), {2.3.2), {2.3.3). 

In Ref. [12] the case g = sl(2) was worked out explicitly. Choosing u = v- 1 = 

~' we found for the Ai, AtE A+,sl(2),Pd (i =t, -!-), 

i + and for the A , Ai E A-,sl(2),pd 

Here ni := atai (no sum over i). 
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(5.1.10) 

(5.1.11) 



5.2 The case of A~,so(N),pd 

As a basis of g =so( N) we choose { Lij hi=l, ... ,N with Lij = - Lji (so that there exist 

only N(~-l) linearly i_ndependent Lij), satisfying 

(5.2.1) 

here Cij denotes the (classical) metric matrix on the N -dimensional Euclidean space 

(cij = Cji), which in the special case we choose real Cartesian coordinates takes 

simply the form Cij = 8ij· In the rest of this subsection classically-covariant indices 

·will be lowered and raised by means of multiplication by c: vi = Cijvi vi = ciivj, 

etc., and v · w := viwi Cij = viwi = viwi 

The quadratic Casimir reads 

1 .. 
C = -L· ·L1~ 2 ~J ' 

(5.2.2) 

implying 

(5.2.3) 

The matrix representation of Eij in the fundamental representation p takes the form 

(5.2.4) 

and the Jordan-Schwinger realization becomes 

(5.2.5) 

It is easy to work out 

N ( N )
2 

l2 := a(C) + (1-
2 

)2 = n + 
2 

- 1 - (a+ ·a+)(a·a), (5.2.6) 

and to check that, as expected, 

A direct calculation also shows that 

[l2, ai] 

[t2' atJ 

-ai(2n + 1 + N) + 2(a · a)ajcii 

at(2n + 3 + N)- 2c;jai(a+.a+) 

We look for "eigenvectors" of l2 
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(5.2.7) 

-ai(2n-3+N) + 2ajcii(a ·a) 

at(2n-1+N)- 2cij(a+.a+)ai. 



in the form ai = ail+ aJ cii ( a·a) b, at = at a+ ai Cji (a+ ·a+) ,8 with "eigenvalues" 

)., fJ and "coefficients" a, (3, /, b depending on n, l2
. We find second order equations 

for )., f..l with solutions )., fJ = (l ± 1 )2 , where formally l = .Ji2. We can therefore 

consistently extend A-r,so(N),Pd by the introduction of a new generator l [whose 

square is constrained to give the l2 defined in eq. (5.2.6)] such that 

a~ ai(n+ ~ -1± l)- ciiaJ (a· a) ai(n+~ +1± l)- (a· a) ciiaJ, 

at(n+~ +1± l)- cijai (a+-a+) 
(5.2.8) 

at± ·- at(n+~ -1±l)- (a+-a+)cijai 

satisfy 

za+± z, 

l ai ± 

at± (l±1), 

a~ (l=t=1). (5.2.9) 

After these preliminaries, let us determine the right ai, at's for Ai, At to satisfy 

the QCR. To satisfy at once eq. 's (2.3.12),(2.3.13) we make the ansatz: 

This implies 

A+ C A+ (s.~10 ) aia~clm = v a+· a+ v-1 

A C A (s.2
.
10 a1amCtm = u a· a u-1 

(5.2.10) 

(5.2.11) 

(5.2.12) 

The QCR determine only the product y := v-1u; we are going to show now that 

eq.'s (2.3.14), (2.3.15) completely determine the latter. It is immediate to check 

that the former implies 

Expressing at, Cij(a+ · a+)ai as combinations of ai± we easily move y past the 

"eigenvectors" ai± of n, l; factoring out (from the right) ¥z we end up with a LHS 

being a combination of ai,+, ai,-· Therefore eq. (2.3.14) amounts to the condition 

that the corresponding coefficients vanish: 

N N 
(1+qN-2

) = (n+ 
2 

+1-l) y(n+1, l+1)y- 1(n+2, l) -q2 (n+ 
2 

-1-l) y(n-1, l-1)y- 1 (n, l) 

N N 
(1+qN- 2

) = (n+
2 

+1+l) y(n+1, l+1)y- 1(n+2, l)- q2 (n+ 
2 

-1-l) y(n-1, l-1)y- 1 (n, l) 
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Similarly, from eq. (2.3.15) it follows 

N N 
(1+qN-2

) = (n+-+1-l) y(n, l)y-1(n+1, l-1) -q2 (n+--1-l) y(n-2, l)y- 1(n-1, l-1) 
2 2 

(1+qN-2
) = (n+ ~ +1+l) y(n, l)y-1(n+1, l+1) -q2(n+ ~ -1+l) y(n-2, l)y-1(n-1, l+1) 

It is straightforward to check that the last four equations are solved by 

UV_1 = = ·= (1+qN-2)-n f [~ (n+~+1-1)] fa (n+~+1+l)] 
. Y Yso(N) · ') [1 ( N )] [1 ( N )] ' ~ rq2 2 n+2+1-l fqz 2 n+2+1+l 

(5.2.13) 

where r, r a are defined in formulae (A.4.9), (A.4.12). 

We have now the right ansatz for the QCR of N-dimensional Uhso(N)-covariant 

Weyl algebra to be fulfilled. In the appendix we sketch the proof of 

Theorem 2 When g = so(N), the objects Ai, A{ (i = 1, 2, ... , N) defined in formu

lae (3.11), (3.13}, (5.2.10), (5.2.13) satisfy the corresponding QCR (2.3.1), (2.3.2), 

(2.3.3). 

6 *-Structures 

Given the Hopf *-algebra Hh = (Uhg 'm, !J.h, Ch, sh, n' *h), we ask now whether 

the *-structures h of Ai,g,pcompatible with the action t>h of Uhg ,i.e. such that 

(6.1) 

can be naturally realized by the ones of A±,g ,p· 

We stick to the case that Hh is the compact real section of Uhg . Then Uhg as 

an algebra is isomorphic to Ug [[h]], where g is the compact section of g and hER, 

and the trivializing maps 'Ph intertwine between *h and * 

['Ph(x)]* = 'Ph(x*h) (6.2) 

where * is the classical *-Structure in U g having the elements of g as fixed points. 

One can easily show [20] that there is a (unique) unitary twist :F, 

(6.3) 
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In fact, applying *h ® *h to eq. (2.1.4) and using eq.'s 6.2, ( *h ®*h) o t:::..h = t:::..h o *h, 

( * ® *) o t:::.. = L:::.. o * we find, Vx E Uhg 

[.r *0 * F, L:::..[cph(x*h )J] = 0 

so that F *0 * F = 1 ® 1 + O(h) is g -invariant. Performing the transformation 

(2.1.12) with T = (F *0 * F)-~ one gets a unitary F. 

IfF is unitary then the corresponding "/, "f', ¢ clearly satisfy 

(6.4) 

On the other hand, it is evident that the 'minimal' coassociator c/Jm (2.1.18) is 

also unitary (because h E R); one could actually show that the unitary F is also 

minimal. 

If Ph is a *-representation of H, the *-structure (Ai)h = At is clearly compatible 

with r>h [condition (6.1)]; the classical counterpart of Ph is also a *-representation 

p of H (i.e. p(x*) = pT(x)), and formula 

(6.5) 

defines in A±,g ,p a *-Structure ('hermitean conjugation') t compatible with t>. 

Correspondingly, it is immediate to check that a, a'Ph become*, *h-homomorphisms 

respectively, 

a'Ph o *h =to a"'h' (6.6) 

and l>h as defined in formula (3.2) also satisfies (6.1). Under t the RHS of relations 
..,!£ 

(3.11), (3.12) are mapped into the RHS of relations (3.13), (3.14), provided that 

in this case we find, as requested 

If g = sl ( N), so( N) and p = Pd condition ( 6. 7) is satisfied by choosing 

if g =sl(n) 

if g =so(n) 

(6.7) 

(6.8) 

(6.9) 

A+,so(N),Pd admits also an alternative *-Structure compatible with t>h, namely 

(At)t = AjCii [15] together with a nonlinear equation for (Ai)h [27] which we omit 
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here; in this case one usually denotes the generators by xi, ai instead of At, A i, 

because in the classical limit they become the Cartesian coordinates and partial 

derivatives of the N -dim Euclidean space respectively. The classical limit of this h 
is 

(at)t = ajcji (ai)t = -Cijai; (6.10) 

using relations (6.10), (4.11), tr(pd) = 0, Sx = -x if E g, one finds again relations 

(6.6). r>h as defined in formula (3.2) also satisfies (6.1 ). Under t the RHS of relation 

(3.11) is mapped into the RHS of relations (3.12), provided that (at)t = ajcji, i.e. 

v=1 U = Yso(N); (6.11) 

in this case we find, as requested 

(6.12) 

. and it is not difficult to show that (Ai)t is the (nonlinear) function of Ai, At which 

was found in Ref. [27]. 

7 Summary and conclusions 

Given some solutions ai, at [in the form (2.2.11)] of equations (5.0.1-5.0.3), the 

Ai,At defined through formulae (3.3) (where.we choose a minimal :F) satisfy the 

quantum commutation relations of Ai,g ,p and are covariant under the Uhg ac

tion r>h defined in formula (3.2). The basic algebra homomorphism f : Ai,g ,p --t 

A±,g,p[[h]] is defined iteratively starting from f(Ai) := Ai, f(At) :=At. Explicit 

solutions ai,at of equations (5.0.1-5.0.3) are given by 

• formulae (5.1.8), (5.1.9) for Ai,sl(N),Pd; 

• formulae (5.2.10), (5.2.13) for A~,so(N),pd· 

According to relation (1.1), all other elements of A±,g,p[[h]] satisfying the QCR 

of Ai,g ,p can be written in the form 

A+ A+ -1 
ai = 0: i a ' (7.1) 

with a:= !A+ O(h) E A±,g ,p([h]]. They are manifestly covariant under the Uhg

action r>h a defined by 

(7.2) 
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where a¢ is the algebra homomorphism Uhg --+ A±,g ,p[[h]] defined by 

(7.3) 

In this way we have found all possible pairs (!0 , r>h 0 ) making the diagram (1.2) in 

the introduction commutative. 

Note that the change 'Ph --+ 'Ph,v = v 'Ph(·) v- 1 [formula (2.1.25)] of the algebra 

isomorphism Uhg --+ U g [[h]] amounts to the particular transformation (!, 'i>h) --+ 

Uo,'i>ho), with a:= a(v). 

In Sect 4 we have shown formula (4.3)] how to construct g-invariants I~ E 

A±,g ,p[[h]] in the form of homogeneous polynomials in Ai, At. It is immediate 

to verify that under a transformation (!, 'i>h) --+ (!0 , 'i>h o) these I~ transform into 

Ign :=a: I~ a:-1. 

In Sect. 6 we have shown (sticking to the explicit case of Al,st(N),Pd and 

Al,st(N),pJ that, if Al,g,p is a module *-algebra [formula (6.1)] of the compact 

section of Uhg (q > 1), then one can choose (J,r>h) so that f is a *-homorphism, 

f(bh) = [f(b)]t, and r>h also satisfies equation (6.1). It is straighforward to verify 

that (!0 , 'i>h 0 ) satisfy the same constraints provided that a: is "unitary": 

(7.4) 
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A Appendix 

A.l Proof of Lemma 1 

We start by observing that 

Lemma 2 [12] If 7 E Ug [[h]]®3 is g -invariant (i.e. [7, Ug [[h]]®3
] = 0) then 

mijSi7, miiSi7 (i,j = 1, 2,3, i =f. j) are g -invariants belonging to Ug [[h]]®
2

• 

(Here Si denotes S acting on the i-th tensor factor, and mii multiplication of the 

i-th tensor factor by the j-th from the right.) 

Proof. For instance, 

7(l)X(l) 0 7(2)X(2) 0 7(3)X(3) 0 X(4) = X(l) 7(l) 0 X(2) 7(2) 0 X(3) 7(3) 0 X(4) ::::} 

(m
23

)
2083 

7(l)X(l) 0 7(2)X(2)SX(3)S7(3)X(4) = X(l) 7(1) 0 X(2) 7(2) 57(3) SX(3)X(4) 

for any x E Ug [[h]J, whence (because of a(l) Sa(2) = c-(a) = Sa(l),a(2)) 

(A.l.1) 

so that 7(1) 0 7(2) S7(3) E U g [[h]]®2 is g -invariant. D 
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We may apply the previous lemma to T = ¢, or T = ¢-1. Looking at the 

definition (2.1.9) one finds in particular the following g-invariants 

T1 := m12S1¢ = (S:F( 1)'Y 0 1):F(:Fm 0 :Fm), 
T ·- s ,~.. _ (-r-1(1) 10. -r-1(1))-r-1(1 10. -1s-r-1(2)). 2 ·- m23 3'f' - .r (1) '<Y .r (2) .r '<Y 'Y .r ' 

(A.l.2) 

alternative expressions for these Ti can be obtained by applying the same operations 

to the identities 

(A.l.3) 

(A.l.4) 

which directly follow from relations (2.1.17), (2.1.9), (2.1.11) and the observation 
t12+t1a+t23 • 

that [¢, q 2 ] = 0. Applymg m12S1 to (A.l.4), m23S3 to (A.1.3) we get 

T1 = (S:F(2)1'~ 1 0 1):F21 (:F~~j 0 Fgj), 

T2 = (F(i~2)0 :F(;~2)):F2/(10 1'S:F-1(1
)). 

(A.1.5) 

t:.From eq. (A.l.2), (A.l.5) we easily find out that the inverse of Ti take the form 

y1-1 :F-1 ['Y-1(s:F-1(1))F(i~2) 0 :F(;~2)] 

- F2"11 (1'(SF- 1 (2))F(i~1) 0 :F(;?)], 

T2- 1 [~~j 0 Fgj(S:F(2))r] F 

[F~i~ 0 .rm(s.r(1)h'-1J .r21, 

. ['T' -r±1(j) -r±1(j)] 0 . h . . 1 ') smce J.i, .r (1) 0 .r (2) = , wit z, J = , ~-

(A.l.6) 

(A.l.7) 

(A.l.8) 

(A.1.9) 

If, by making a transformation (2.1.12), we arrive at a F reducing¢ to the form 

¢m (2.1.18), then it is easy to verify that, according to their definitions (A.l.2), 

Ti = 1°
3

• In the latter case the last four relations are equivalent to relations 

(3.7-dritto4). 

A.2 Proof of Proposition 6 

We start by expressing (A ... A)1n = Ai1 
••• Aihn, (A+ ... A+)Jn =At ... Atn respectively 

in the form (a ... a)a(·), (a+ ... a+)a(·). First note that 

(3~4) p( 1-1 _r-1(1)) ;: p( 1-1 _r-1(1') );~ a11 a ( _r-1(2) )a12 a( _r-1(2')) 

pv (_r-1(1) "!')~~ p v ( _r-1(1'),.y')~~ al1 a( _r-1(2) )al2 a( _r-1(2')) 

(2.2.6,2.2.2) pv (F- 1 (1),./)~1 pv (F-1(2) _r-1(1'),./)12 ah a12 a(F-1(2) :F-1(2')) 
I 1,1 (1) I 22 (2) 

all al2 [(Pvtl 0 Pvi2 0 a) (.r-1 _r-1(, .. /®2 0 1))] 21 22 1,23 23 I 
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whence, by repeated application, we find 

( ) I (4.7) ( )L [(( V®hn )L ) ( -1 ( !@h" ))] A ... A n = a ... a n p Inn 0 (J .rl2. .. (hn+1) 'Y 0 1 ; 

similarly, starting from relation (3.11) we find 

Putting these results together we find 

( + +) ( )Ln [(( ®kn)Mn ( V®hn)Ln ) (-r-1 ( ®kn J@hn ))] a ... a Mn a ... a p Jn 0 p In 0 (J .r 12 ... (bn+1) 1 0 '"'( 0 1 , 

whence, 

I n(4.6)( + +) ( )L"[(( ®kn)Mn ( V®hn)Ln ) -r-1 -r ]dLn 
h CX: a ... a Mn a ... a p Jn 0 p In 0 CJ .r 12. .. (bn+1).r 12 ... bn,bn+1 Mn · 

(A.2.1) 

We prove now that 

_r-1 .r ,+,-1 ,+,-1 ,+,-1 _r-1 
12 ... (btl) 12 ... b = 'f'(b-1)b(f>t1) 'f'(b-2),(b-1)b,(f>t1) ·· ·'f'1,2 ... b,(/;tl) 12 ... m,m+1; (A.2.2) 

then the claim will follow from relation (A.2.1) and the observation that 

( (P®kn 0pv ®h" 0id) (Fl2. .. bn,bn+1) J::~" difn (
4

.4) c(F{ll)_r{2ldj: ( 2~/l dj:. (A.2.3) 

. To prove relation (A.2.2) we start from 

,+,-1 -r-1 (2.1.9) -r-1 -r-1-r (4.7) -r-1 -r 
'f'123.r12,3 = .r1,23.r23 .r12 = .r123.r12; 

this is relation (A.2.2) for b = 2. Applying id 0 D. 0 id and multiplying the result 

from the left by ¢23~ we find 

,+,-1 ,+,-1 -r-1 
'1-'234 'f'1,23,4.r 123,4 

,+,-1 _r-1 _r-r F 
'1-'234 1,234 2,34 1,23 

(2L10l -r-1 ,+,-1 _r-1 .r 
.r 1,234 '~-'234 2,34 1,23 

-r-1 -r-1 -r-1 -r -r 
.r 1,234.r 2,34.r 34 .r 23.r 1,23, 

('!.:.?) 

z. e. relation (A.2.2) for b = 3. Applying to the latter relation id 0 D. <2l 0 id and 

multiplying the result from the left by ¢;t\ we find relation (A.2.2) for b = 4, and 

so on D. 
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A.3 Proof of Proposition 7 

0 
(2 . .3.1) 

(3~.3) 

AiAi .,- pFii Ak Ah .,- hk 

(1 =F pF)~~p(:F(1))? p(:F(1'))':na(:F(2) )ama(:F(2'))al 

(2.2.6)_j2.2.2) (1 :r- pF)ii p(:F(1) ;=(2'))k p(:F(l))ha(:F(2) ;=(2'))amal· 
.,- hk (2') m l (1) (1') ' 

multiplying both sides from the left by (p 0 p 0 a)(:Fl,~3F2l) and noting that 

P F (2.3.5),(2 . .3.9) [( ) '1" '1" ]U [( ) '1"-1 '1"-1] 12 = - P 0 P 0 a .r12.r12,3 12 P 0 P 0 a .r12,3.r12 , 

we find 

{1°
3 

=F [(P
02 

0 a):Fl,~3F231 F12F12,3]U12[(p02 0 a)F12~3F121 F23:F1,23)]}?~amal = 0, 

i.e. relation (5.0.1), once we take definitions (5.0.4), (2.1.9) into account. Using 

definition (3.11) one can prove in a similar way that relations (2.3.2), (5.0.2) are 

equivalent. Similarly, 

0 
(2.3.3) 

(3.13)_j3.11) 
AiAj- b}1A =F f>F }~At Ak 

p( ;=(1) )fa( ;=(2) )i a~a( ;=-1(2')) p( ;=-1(1') )j 

-b}1A =F a~a(:F-1(2) )p(:F-1(1) )h PF }~p(:F(l') )~a(:F(2) )at; 

multiplying both sides by p(:F-1(1))f a(:F-1(2)) from the left and by p(:F( 1'))~,a(:F(2')) 

from the right, and noting that 

f>_F (2.3.6),(2.3.9) [( ®2 !0. )J= J= ]V, [( ®2 !0. ):F-1 ;=-1] 12 - P ICY a 12 .12,3 12 P ICY a 12,3 12 , 

we get 

0 ai' aj; - b}: 1A =F p(:F-1(1) )f a(:F-1(2) )a~ { [ (P02 0 a ):F!l :F 12 :F 12,3] 
' 

xV12[(p02 0 a)F1i,3F12
1F13l}:7 alp(:F( 1'))~,a(:F(2')) 

(2.2.6),(2.2.2) 
ai' aj;- b}:1A =Fa~ {[(p

02 
0 a):Fl,~3 FI.lF12F12,3] 

·I 

02 1 1 }t m l 
xl!J.2[(p Q9 a)F12,3F12 F13F1,23] j'l a, 

' whence the equivalence between relations (2.3.3), (5.0.3) follows, once one recalls 

the definition (2.1.9). D 
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A.4 Some properties of special and q-special functions 

We collect here some properties of the hypergeometric, r and f3 functions which 

can be found in standard textbooks. If the parameters a, b, c E C are such that 

none of the quantities c-1, a- b, a+b- c is a positive integer, the general solution 

of the hypergeometric differential equation in the complex z-plane 

y"(1- z)z + y'[c- (a+b+1)z]- yab = 0 

can be expressed as some combinations 

y(z) - a F(a, b, c; z) + f3 z1
-£ F(1+a-c, 1 +b-e, 2-c; z), 

I' F(a, b, a+b+ 1-c; 1-z) 

+6 (1-z)c.--<t-bF(c-a,c-b,c+1-a-b; 1-z), 

where a, /3, J', 6 E C and F(a, b, c; z) is the hypergeometric function 

~ (a)k(b)k k 
F(a,b,c;z) := ~ () k' z 

k=O C k . 

l,From this definition it follows that 

(s)k := s(s+1) ... (s+k-1). 

F(a, b, c; 0) = 1. 

(A.4.1) 

(A.4.2) 

(A.4.3) 

(A.4.4) 

(A.4.5) 

The combinations (A.4.2), (A.4.3) explicitly display the singular and non-singular 

part of the solution respectively around the poles x = 0, 1. From the above definition 

it immediately follows the property 

d ab 
-d F(a,b,c;z) = -F(a+1,b+1,c+1;z). 

z c 
(A.4.6) 

An essential identity to determine the asymptotic behaviour of a solution y 

around the pole x = 0 (resp. x = 1), known its asymptotic behaviour around the 

pole x = 1 (resp. x = 0), is 

B(c, c-a-b) 
B( b)F(a,b,a+b+1-c;1-z) (A.4.7) 

c-a,c-
F(a, b, c; z) 

B(c, a+b-c) CHt-b · 
+ B(a,b) (1-z) F(c-a,c-b,c+1-a-b;1-z); 

Here B (a, b) is Euler's /3-function, which can be expressed as a ratio of Euler's 

f-functions as follows 
B( b) = r(a)f(b) 

a, r(a+b) . (A.4.8) 
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r can be defined by 
00 

f(a+1) := J dte-tta, 
0 

whence it immediately follows that 

r(a+ 1) = af(a). 

A less obvious property is 

r(a)f(-a) = 
a sin 1ra 

The q-gamma function fq can be defined when lql < 1 by [16] 

oo (1 qk+l) oo (ql-a. q) 
r q(a) == (1 - ql-a) II - atk = (1 - ql-a) 2:.:: a., n qna, 

k=O (1 - q ) n=O (q 'q)n 

n-1 

(A.4.9) 

(A.4.10) 

(A.4.11) 

(A.4.12) 

where (a; q)n := n (1 - aqk); it satisfies the following modified version of the 
k=O 

property (A.4.10): 

. (qa- 1) 
. (a)q := ( ) . 

q-1 
(A.4.13) 

We introduce also a different version of the q-gamma function by 

(A.4.14) 

the latter satisfies 

(A.4.15) 

A.5 Proof of Theorem 1 

Proof. We need to show that equations (5.0.1-5.0.3) are fulfilled. To make com

putations more expedite we get rid of indices by introducing the following vector 

notation: 

(aa)ii ·- aiai (a+a+)ii ·- a+ at 
z J 

( av )ii ·- aivi 

(a+w)ij ·- a+w· z J 

(va)ii ·- viai 

(wa+)ij ·- + wiaj 
(A.5.1) 

w·a ·- wiai a+· v ·- a+vi 
z ' 
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where v = (vi) E eN' w = ( Wi) E eN denote arbitrary covariant and contravariant 

vectors respectively. If we plug (5.1.7) into (5.0.1-5.0.3), factor out of (5.0.1) and 

(5.0.2) I(n) I(n+1) and j(n) j(n+1) respectively and multiply eq. (5.0.3) by viwi, 

we find the equivalent system (in vector notation) 

a a ± (M- 1PM)aa 

±a+a+ (M- 1PM) 

(A.5.2) 

(A.5.3) a+ a+ 

(n+ 1)q±2 (w·a) · (a+·v) -
(n+1) 

± 1 n ±2 
w·v lA ± q _q_ wa+ (M-1 V M) va. (A.5.4) 

n 

The action of A,B,P on av,va,aa,a+w,wa+,a+a+ is easily found to be 

=rn _ q=F1 
:::} a+w qA+P q±1a+w ± q (w·a) a+a+ (A.5.6) 

n+l 

Let us prove eq. (A.5.2), (A.5.3). The matrix M (5.0.4) takes the form 

M (2.1.
24

) lim {x02!i.Pftexp [-21i 
1

~-Yodx (p + ~)] Y51i.A}; (A.5.7) 
xo,yo-+O+ X X- 1 

xo 

3 

the contributions of the central terms -2 1 ~ , - ~ 1°
3 
0n to the integral are cancelled 

by the corresponding contributions from x0ht12
, ygt23

, in the limit x0, y0 -+ o+. Since 

aa is an 'eigenvector' both of A and P, the path-order P becomes redundant and 

we find that M acts trivially on M: 

Maa = aa lim {x~21i.exp [-21i 
1

~-y
0

dx (±.!. ± n-
2
)] y~21i.(n-2)} 

xo,Yo-+0+ X X - 1 
xo 
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= aa lim (1 - Yo)::r21i(1 - x 0)±21i(n-2) = aa. 
xo,Yo-+0+ 

(A.5.8) 

Therefore MPM aa = ± aa, Q.E.D. Similarly one proves eq. (A.5.3). 

In order to prove eq. (A.5.4) it is con_venient to recast M-1 V M in' a more 

manageable form. Permuting the second and third tensor factor in eq. (2.1.17)(1), 

we find 

(A.5.9) 

whence 

M -1 v M- PM-1 ±l+..L+pd®2(l.)M (2.1.211_(5.1.6) p A+P 1" -2BJ( ) -A - 21 q N 2 - q Im X X q , 
x-+0+ 

(A.5.10) 

where f is the o-(Usl(N))[[h]]-valued N 2 x N 2 matrix satisfying the differential 

equation and asymptotic conditions 

f'=2n(B +~)! 
x x-1 

lim f(x)(1- x)-2
A = 1 

x-+1 
(A.5.11) 

[the latter are obtained from eq. (2.1.19) by permuting the second and third tensor 

factor and by getting rid of the central terms involved in (p 0 p 0 a) ( tij) (formulae 

(5.1.6)) since, as in formula (A.5.7}, the latter cancel with each other in the limit 

X---"* 0). 
It is convenient to introduce in A±,g,p[[h]] a grading g, by setting g(b) = l E Z iff 

[n, b] = lb, bE A±,g ,p[[h]]. Since g(Jva) = -1, and Jviaj is a doubly contravariant 

tensor, its most general expansion is 

f(x)va = avfi(x) + vafz(x) + aa(a+ ·v)fs(x), (A.5.12) 

where /i are invariants with g(Ji) = 0; therefore fi = fi(n). Thus we find 

wa+ · (M-1 V M) va 
(A.5.5),(A.5.10) · + A+P }" -21iBj( ) -A = a w q 1m x x q va 

x-+O+ 

(A.5.5),(A.5.6) l" ::;:21i(n-1) [ ::;:1 + ± q±n -, q=F1 ( ) + +] (/{ ) ) . ::r(n-1) - 1m x q a w w·a a a · x va q 
x-+O+ n + 1 

(.4.5.12) ::r(n-1) 1" ::;:?fi(n-1) t =F1 + ± q±n_q=F1 ( ) + +] = q 1m x - q a w w·a a a · 
x-+O+ n + 1 

· [avf1(x)+vafz(x)+aa(a+·v)fs(x)] 

= q=F(n-1) lim x=F 21i(n-1) {q=F1(w·v)(nfi =F fz) + (w·a)(a+·v) [q=F1(nh ±h) 
x-+O+ 
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q±n _ q=f-1 l} 
+n n+ 1 (it±h+(n+1)h) 

= q'<'• { (w·v) h + (w·a)(a+·v) [z, + n q±~~; 1 z.]}, (A.5.13) 

where we have defined 

l1 ·- lim x=r-2h(n-1)(nft(x) =F h(x)) 
x-+O+ 

l2 lim x=r-2h(n-l)(n!J(x) ± h(x)) 
x-+O+ 

h ·- lim x=r-2h(n-1
) [ft(x) ± h(x) + (n+1)h(x)]. 

x-+0+ 
(A.5.14) 

To evaluate the limits li let us consider the linear system of first order differential 

equations satisfied by fi· l,From (A.5.11) we find 

!{ 1i ± -- + -- !1 - -[ ( 1 n- 1) hl 
1-X X X 

(A.5.15) 

!~ 1i --=F --+- h [ It (n- 1 1) l 
1-x 1-x x 

(A.5.16) 

!~ 1i =F-- +- =F ---- (n-1)13 [ It !2 ( 1 1) l 
1-x x 1-x x 

(A.5.17) 

and the asymptotic conditions 

lim It ( x) = 0 = lim h ( x) 
x-+1 x-+1 

lim h(x)(1 - x)=r-2h(n-1) = 1. 
x-+1 

(A.5.18) 

The first two equations can be solved separatly, since h doesn't appear in them; 

then the third will yield !3 in terms of ft, h just by an integration. Actually one 

of the combination we are interested in, [ft (x) ± h(x) + (n + 1)!J(x)], satisfies a 

completely decoupled equation, 

d
d [!1(x)±h(x)+(n+1)!J(x)] = ±21i(n-1) [.!:. + -

1-J [!l(x)±h(x)+(n+1)!3(x)], 
X X X -1 

which [taking conditions (A.5.18) into account] is easily integrated to 

!l(x)±h(x)+(n+1)h(x) = ±[x(1- x)]±2
h(n-

1
). 

This will yield therefore h in terms of ft, f2. 
Dividing (A.5.15) by ft, (A.5.16) by h we find 

f ' 2 

h 

21i ± -- + --. - --[ ( 
1 n- 1) 1 hl 

1- X X X /1 

?fi [ 1 It (n- 1 1 )] 
~ (1-x) /2 =F 1 - x + ~ 
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(A.5.19) 

(A.5.20) 

(A.5.21) 

(A.5.22) 



taking the difference of the two, one finds a Riccati equation in the unknwon u := j;-: 

(A.5.23) 

this should be supplemented with the condition u x-41 0. To get rid of its nonlinear

ity one can transform it into a (linear) second order equation in an unknown y(x) 

by a standard substitution, which in this case takes the form 

the new equation will read 

y' (1-x) 
u =- ')i< ;

y -It 

y"(1- x)x- y'(x ± n2n) + (21i) 2y = 0. 

(A.5.24) 

(A.5.25) 

We recognize the hypergeometric equation (see formula (A.4.1) in the Appendix) 

with parameters 

a= ±2n b = =r:2n c = =r:2nn. (A.5.26) 

Its general solution can be expressed in the form (A.4.3), in terms of the hypergeo

metric function F. Imposing the condition limx-+l y'~~;) = 0 one finds that it must 

be 5 = 0, implying 

/1 _ _ 1 -X ..!!:_ [ ') ') . _ l 
12 

- u-
2
n dx In F(±-n, =r:-n, 1±2nn, 1 x) . (A.5.27) 

We can now replace this result in the RHS in eq. (A.5.22): 

d
d In(/2) = dd In [F(±2n, =r:2n, 1±2nn; 1-x)] =F 2n (n-

1 + 2.); 
X X 1-X X 

(A.5.28) 

taking into account the condition (A.5.18), the latter is integrated to 

f2(x) = x=F21i(1 - x)±21i(n-1) F(±2n, =t:2n, 1 ±2nn; 1-x). (A.5.29) 

Finally, we find 

!I(x) = u(x)h(x) =-
1

t< F'(±2n, =t:2n, 1±2nn; 1-x)x=F21i(1- x)l±21i(n-1). (A.5.30) 
2n 

L,From properties (A.4.5),(A.4.6) we can easily read off the asymptotic behaviour 

of /2, /1 for X -t O+: 

h(x) 
(A~.7) =F21i (1 )±21i(n-1) [ B(l±21in,l±21in) 

X . - X B(l±21i(n+l),l±21i(n-1)) F(±21i;f21i;f21in;x) 
1±21in B(l±21in.-1=t21in) . J + X B(±21i,=F21i) F(l±2(n+l)li,1=F21i(n-1),2±21in;x) , 

=F21i r(l±21in) r(l±21in) . 
x r(l±21i(n-tl)) r(1±21i(n-1))' 
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h(x) 
(A~.6) 

-...1LF(1±?.1i 1:r-21i 2±21in·1-x)x=F2h(1- x) 1±Zh(n-l) 
1±2hn ~ ' 1 ' ' 

2h ::r2h ( 1 ) 1±2h( n-1) [ B(2±2hn;±2hn) 
1±2hn X -X [B(1±2h(n+1),1±2h(n-l)) F(1±2h,l::r2h,l=F2hn;x) 

±2hn B(2±2hn,::r2hn) · J + X B(l±Zh,l=FZh) F(1±2(n+l)h,l::r2h(n-1),1±2hn;x) , 

2h ::r2h [ B(2±2hn;±2hn) ±2hn B(2±2hn,:;:'2hn) J 
1±2hn X . B(1±2h(n-H),1±2h(n-l)) +X B(1±2h,l=F2h) 

(A.4.10)jA.4.8) x=F2h [± 1 r(1±:2hn)r(1±2hn) + ?.1i,x±2hn r(1±2hn)r(::r2hn)] 
n r(1±:2h(nt1))r(1±:2h(n-l)) ~ r(1±2h)r(l:r2h) 

For the combination nfi =t= fz we thus find 

x-tO 
:::::::: 

The limits li are thus given by 

1 
=t=

[n]q 

±1 

2
1ix±Zh(n-1) f(1 ±21in)f(+21in) 

f(1 ± 21i)f(1 =F 21i) 
±Zh(n-l) f(±21in)f(+21in) 

=t=nx r(±21i)f(=t=21i) ' 
-1 

=F q - q x±Zh(n-1) 
qn _ q-n 

1 =t=- x±Zh(n-1) 

[n]q 

_!!_z3- -
1
-Z1 = ±_!!__ (1 + -

1
-) , 

n+1 n+1 n+1 [n]q 

which plugged into eq. (A.5.13) give 

(A.5.31) 

wa+- (M-1 V M) va q=Fn [- (w-v) + (w·a)(a+·v)-n- (-1- + q±(ntl))]' 
[n]q n + 1 [n]q 

q=Fl ( )( + ) ..,... 1 (n+l)q±2 n =t=-- ± w·a a ·v q• · 
nq±2 . (n+l) nq±2' 

(A.5.32) 

eq. (A.5.4) is manifestly satisfied once we replace the latter result in it. D 

A.6 Proof of Theorem 2 

We need to show that equations (5.0.1-5.0.3) are fulfilled. To do the proof one 

follows the same strategy adopted in the proof for g = sl ( n). 

To make computations more expedite we again get rid of indices by intro

ducing an analogous vector notation. One can easily check that (Pd1 @ Pdk @ 

O")hz, tz3] ah ak = 0, at aj(Pd10Pd{00")[t1z, tz3] = 0; this implies that the path order 
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P in the definition of ¢m becomes ineffective, so that M aa = aa, a+ a+ M = a+ a+ 

and therefore M aa = aa, a+a+ M = a+a+. Hence eq.'s (5.0.1), (5.0.2) are proved. 

For the proof of eq. (5.0.3), which we omit, it is convenient to use the basis of 

generators at=r:, a~ instead of ai .at. The following properties turn out to be useful. 

The "eigenvectors" at=r:, a~ satisfy the 'orthogonality relations' 

+ i a:i,::r:a± 0 i + a:±a:i,'f 

a7 aT cii Z,'f J,'f - 0 O:~O:~Cij; (A.6.1) 

the above quantities indeed must vanish because they must have commutation re

lations with l which at the same time are trivial (since they are invar:}ants) and 

nontrivial [because of eq. (5.2.9)]. 

Moreover, a direct computation shows 

Finally 

+ i a:i,±a:± 

a7 aT cii 
z,± J,=t= 

a:~~Cij 

[a· a, a~] 

[a+· a+ a+ ] ' z,± 

0 

0 

[a:~,~] 

[at±' a},±] 

[a:~, at±J 

[a:~, ci.] 

[at+' a),_] 

N 
(l=F1)(2l±2=FN)(n-1+ 

2 
±l) 

(a+ ·a+)(l=F 1 )(±N=F2- 2!) 

-(l±1)[2l =F 2 ± N]a ·a 

[a· a, at±] 

[a+· a+, a~] / = 

0 

0 

0 

-2Cij~ 
- ?cii ,..,,+ 
~ '-"J,'f 

2(zii- ciiz)a ·a 

2(zii- ciiz)a+ ·a+. 
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(A.6.2) 

(A.6.3) 

(A.6.4) 

(A.6.5) 

(A.6.6) 

(A.6.7) 
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