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Abstract

Simulations of the microwave sky good to small angular scales are described.
Three physical effects are considered: initial temperature fluctuations corre-
sponding to photon density fluctuations located on the last scattering surface,
Doppler temperature fluctuations produced by the peculiar velocity field on
the same surface, and the gravitational Sachs-Wolfe effect. A gauge-invariant
formalism is used in order to study both sub-horizon and super-horizon scales.
The simulations are smoothed with a Gaussian beam function with beam width
0 =17 (Bppwuy ~ 0.67°). The bla,ckground is a flat Universe with reduced
Hubble constant A = 0.5. It contains cold dark matter plus a small quantity of
baryons (2, = 0.03). A scale-invariant initial spectrum of density fluctuations
is assumed. The initial, Doppler, and Sachs-Wolfe contributions are compared.
The total effect is also analyzed. The simulations are tested and their predic-

tions are compared with the observational data from the MAX experiment.

For Reference

Not to be taken from this room



Subject headings: cosmic microwave background—cosmology: theory—large-scale

structure of the universe



1 Introduction

Large scale simulations of the microwave sky are based on the expansion of the tem-

perature contrast in spherical harmonics,

Imax m=+l

%,:':(a,qs) =2 2 amYin(0,4). 1)

1=1 m=-1I

Typically l,,., < 40, since the number of coefficients, am, to be calculated is (1,0, +
1)> and there are questions of numerical accuracy in high order calculations. In
order to make high resolution maps — resolutions ~ 0.13°— l,haz must be of order
10° so that the number of coefficients to be calculated is of order 106 and the 10°
spherical harmonics must be evaluated accurately in roughly 10° locations. Thus,
for high angular resolution, the spherical harmonic expansion seems unsuitable even
with modern computing power. In order to make simulations on small angular scales
efficiently, a method based on the Fast Fourier Transform (FFT) is used.

The temperature contrast is expanded as follows:

T, 1 X 6T,
T(ﬂf) =73 >, e*F ?(k) (2)
Ilimn=-N

where the compﬁnents of the wavenumber & are (2! /L,2rm/L,2xn/L), L being the
size of a large enough cube (hereafter referred to as the elemental cube) located in
the 3-dimensional space at decoupling time. One of the faces of this cube is located
on the Last Scattering Surface (LSS). In this paper, comoving coordinates are used;
thus the k and Z components are adimensional. Our method can be divided into
three main steps: (i) the quantities %Z(I;) are numerically generated as described
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below, (ii) Eq. (2) is used to compute the required temperature contrast %,11(5), z
being the coordinates of a point of the LSS, and (iii) the angular coordinates of the
points located on the LSS are computed in order to obtain the angular distribution

of temperatures.

In this paper the universe is assumed to be flat. The temperature contrast % =

T—;:E- is defined with respect to the background temperature T,. The value of the
scale factor, a, at decoupling time is assumed to be a, =1. Hy =100h km s~ Mpc?
is the Hubble constant, and & the dimensionless reduced Hubble constant. 1, is the
density parameter of the baryonic component. Wé take 2, = 0.03 and A = 1/2. Units
are such that the speed of light is 1. The physical wavenumber ¢ and the comoving
wavenumber k are related by ¢ = k/a. Likewise, the cosmological time ¢ and the
conformal time 7 are related by dr = dt/a. An overdot stands for a derivative with
respect to 7. The signature (—,+,+,+) is used. Greek indices refer to space-time
coordinates (0,1,2,3) and Latin indices to spatial ones (1,2,3).

In a flat universe with 2, = 0.03, the decoupling takeé place at redshift Z, = 1170
and the angle subtended by the effective horizon at decoupling is ~ 0.84° (Kolb &
Turner 1994); therefore, if we consider any experiment with Ocwur ~ 0.5° and a
chop angle of the same order—as in the MAX experiment and the COBRAS /SAMBA
project—sub-horizon and super-horizon scales contribute to the measured anisotropy.

The fact that super-horizon scales are important suggests a relativistic gauge-invariant

study of the problem. From a theoretical point of view, a Newtonian study is only



admissible for sub-horizon scales. Before decoupling, the Universe can be considered
as a system formed by two decoupled gravitating fluids: the dark matter fluid and a
second fluid formed by radiation and baryonic matter. This system will be studied
by using the multifluid extension (Abbott & Wise 1984, Kodama & Sasaki 1984) of
Bardeen’s formalism (Bardeen, 1980); ba,ryonic matter and radiation evolve in ther-
mal equilibrium, while dark matter evolves decoupled. This last component only
influences the rest of the universe through the gravitational interaction. A fter decou-
pling, dark matter, radiation, and baryonic matter are considered as three decoupled
gravitating fluids.

The so-called secondary anisotropies are not st?udied in this paper. The Zel’dovich
Sunyaev effect, a possible reionization of the Universe, some topological defects and
some nonlinear gravitating objects could produce these anisotropies.

We are interested in the so-called primary anisotropy. Only scales larger than
~ 0.13°—namely, scales larger than the angular scale corresponding to the thickness
of the LSS (~ Th™' Mpc, Kaiser & Silk 1986)—contribute to this anisotropy. The
primary anisotropy is the superposition of three main effects: (1) the initial anisotropy
( 'STT);,, produced by photon density fluctuations on the LSS, (2) the Doppler anisotropy
(QTI)d produced by the radial component, v,, of the velocity field on the LSS, and (3)
the Sachs-Wolfe gravitational anisotropy ( éTl)sw appearing as a result of the motion of
- the CMB photons in the gravitational field of the energy density fluctuations. Scales

larger than 4.5° do not produce significant contributions to the effects (1) and (2)



and, consequently, these effects are simulated by using the FFT and angular scales
befween 0.13° and 4.5°. In the case (3), the effect produced by scales between 0.13°
and 4.5° is calculated in the same way as in cases (1) and (2); this effect appears to be
subdominant. The contribution of scales greater than 4.5° is separately computed by
using a standard code based on spherical harmonics. This splitting of scales becomes
possible because all the scales evolve independently in the linear regime (Bardeen,
1980).

It is not easy to give a general formula for each of the three above Veﬁ'ects applying
to both sub-horizon and super-horizon scales. Let us make some comments about
each of these scales:

a) In the case of sub-horizon scales, spurious effects produced by the gauge are
not important and, consequently, a Newtonian study suffices (Kolb & Turner, 1994).

The Doppler effect produced by sub-horizon scales is:
)
(Fha= =57, )

where ¥ is the peculiar velocity of the baryonic matter and 7 is the unit vector along
the line of sight of the observer. This velocity ¥ is created by the gravitational effect
of the total energy density contrast, plus the effect of pressure. In the sub-horizon

case, one obtains the following formula for the components of the peculiar velocity

field ¥ (Kolb & Turner, 1994):

v (F) = = > e—ik’iv,{' (4)



with
PLLYS (5)
(Peebles, 1980), where 6; is the Fourier Transform (FT) of the total density contrast
producing the peculiar accelerations and velocities. This formula is only valid in the
case of a flat background.

Formulae (4) and (5) include pressure effects if these effects are taken into account

in the calculation of oz

The initial fluctuations on the LSS are

6T, 1 .6p.  1,6p
(F)in = 3(7 b= 4(7

)v s (6)

where (épﬁ)b and (%),, are the baryonic and radiation density contrasts on the LSS,

respectively.

Finally, in the case of sub-horizon scales (Kolb & Turner, 1994), the FT of the

Sachs-Wolfe anisotropy is given by:

oT

(F)eal®) = ~3HE1+ 2,)87%; (7

This last formula follows from the well known Sachs-Wolfe relation

6T 1
(—TT)sw - §¢g (8)
and the equation
V3¢, = 4nGp (9)

which holds in the case of Newtonian sub-horizon scales.
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For sub-horizon scales, the three above effects are to be linearly superposed after
computations based on Egs. (3)-(9).

b) In the case of super-horizon scales, the peculiar velocities, the total density
contrast and the density contrasts of baryons and radiation strongly depend on the
gauge. Spurious gauge-dependent effects are very important. The above Newtonian
analysis does not apply and a gauge-invariant study is necessary. This study will be
based on the general gauge-invariant analysis of the CMB due to Abbqt and Schaefer
(1986), which is based on the gauge-invariant study of uncoupled gravitating fluids
due to Abbot and Wise (1984).

Our treatment of the CMB anisotropy is valid for both super-horizon and sub-
horizon scales. It is rigorous and general. Its main limitation a.ppea,ré as a result of the
assumption that recombination and decoupling are simultaneous and instantaneous
effects (Z,, = 1170) separating a fully opaque universe from a completely transparent
one. Future improvements should consider recombination and decoupling as coupled
processes lasting a finite nonvanishing time; in such a case, it is well known that
the LSS has a certain thickness. Here the anisotropies produced by scales smaller
than this thickness are neglected. This will not introduce significant error as we are
smoothing with a 17’ gaussian beam.

The plan of this paper is as follows: the multifluid extension of the Bardeen’s
formalism is briefly described in Sec. 2. The application of this formalism to the

study of the CMB anisotropy is considered in Sec. 3. Initial conditions at equivalence



and decoupling are discussed in Sec. 4. Simulations of the anisotropy effects are
described in Sec. 5. Results and comparisons with observations are presented in Sec.

6, and Sec. 7 contains a general discussion.

2 The multifluid extension of Bardeen’s formalism

In this paper we are only interested in scalar fluctuations, which couple to density
fluctuations (Bardeen 1980). Vector and tensor perturbations are not considered.

Abbot and Wise (1984) extended Bardeen’s formalism to the case of several un-
coupled gravitating fluids. Let us give a brief summary of the approach. For scalar
ﬂpctuations, the quantities describing the spacetime and the fluids are expanded in
terms of the solutions of the scalar Helmholté'equation: the so-called scalar harmon-
ics Q(Z). In the case of a flat background, plane waves satisfy the scalar Helmholtz
equation and, consequently, Fourier’s expansions appear.

By using the quantities Q; = —%0:Q, and Q;; = %0,0;Q + 16;;Q, the metric

tensor g,p is expanded as follows

goo = —a’[1 4+ 2AQ)] , (10)
goi = —a’BQ; , (11)
9i; = az{[l + 2HLQ]5ij + QHTQij} ) (12)

and the components of the energy-momentum tensor g~ are:

T5° = —pa(1 + 6.Q) , (13)



5" = —(pa +pa)an;' : (14)

= (Pa+ pa)(va — B)Qs , (15)

T3 = pal(1 + 73 Q)8 +72Q3 (16)

where the index a labels the fluids, p, and p, are the unperturbed energy density and
pressure, and the functions A, B, H,, H,.,6,,v,, 77 and 77 define the perturbations.

These functions depend on the time and the wavenumber k; from them, the following .

gauge-invariant quantities can be defined:

1. 1la 1, . a .-
o, =A+ ;B+Z;B—E(HT+ZHT), (17)
o, =H, +iH,+1%p_Lay (18)
- 3 ka k2
_ (Pa+pa)la
€a=06,+3 o ha v, — B) (19)
a 1
Vg :Ua"EHT . (20)

Inside the horizon, quantity %-3 is smaller than 1 and, consequently, €, ~ 6,.
Abbot and Wise gave the equation governing the evolution of the quantities E, =
pa€aa®. In the case of a dark matter fluid (Fy) plus a radiation fluid (E,), we easily

obtain the following evolution equations for E; and E.:

d2Ed d.Ed 12rGH 8 dEd dE',Y
T Tt e Gt gpw){?,”" @ g
—8rGpa(E. + 7“) =0, (21)
d’E,, dE., 12rGH dE, 4 dE,
dtz + 3 dt + q? +127rG'(pd+3p7){pd dt —3-'077}
KE, 4AnG
+ - —_(4va +4p,Eq — 3paE,) =0, (22)
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where ¢ = k/a. Since the subdominant baryonic component is neglected, Egs. (21)
and (22) lead to an evolution equation for the tofai density contrast € ~ €, + €.
These equations will be important in order to evolve the quantities €, €, and €
from equivalence to decoupling. ;From recombination to decoupling, Silk damping
erases initial temperature fluctuations on small angular scales (photon diffusion); this
phenomenon is not described by Egs. (21) and (22). Our simulations model the Silk
damping by introducing a cutoff at the angular scale subtended by the thickness of

the LSS.

3 The FT of the total anisotropy

The FT, %(E), of the total anisotropy %(a’:’) can be easily obtained from previous
computations due to Abbott and Schaefer (1986). These authors obtained 8L(%) as
an expansion in terms of the scalar harmonics Q(Z, I;) In the flat case considered
in this paper, this reduces to Fourier’s expansion. After eliminating any monopolar
contribution and the dipole produced by the motion of the observer, Eq. (26) of

Abbott and Schaefer (1986) can be rewritten as follows:

5T — 1 1 d s 2 sr= T _ik. T0 . . —ik.
?(x) = {Z'E’Y + (I)A - ;;v—y - Ev*/(n . k)}e k?,_*_/f (¢A - q)H)e Hedr ) (23)

where the sums over the components of k—or over m,n,l—have been omitted for the
sake of briefness. All the terms involved in the last equation have been written in
terms of gauge-invariant variables. It is worthwhile to analyze these terms in some
detail.
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The last term is negligible because it is well known that potentials &, = —®,, are
quasi-constant in the case of a flat background. This term was derived and studied
by Martinez-Gonzilez, Sanz, & Silk (1990). It is only important in the presence of
nonlinear gravitating objects.

In order to interpret the remaining terms, they must be rewritten in an appropriate
form. In the case of super-horizon scales, the use of the synchronous gauge leads to

easy interpretations. In this gauge, the following relation holds:
€ ~ b, (24)
and, for super-horizon scales, one gets:
: a
o = =6 . 25
=2, (29)

On account of Egs. (24) and (25)—which are justified in Sec. 4—the following inter-
pretations become straightforward:

(1) By using Eq. (24), the term €, can be rewritten in terms of é,; the resulting
term is formally identical to the right hand side (r.h.s) of Eq. (6). This fact sug-
gests that the Ferm -}e,, accounts for the initial temperature fluctuations. The same
conclusion is achieved in the case of sub-horizon scales, in which Eq. (24) is also valid.

(2) Taking into account Eqs. (24) and (25) plus the relations (Abbott and Schaefer

1986):
3 €
¢, =5 H", (26)
vy~ vy~ (27)



and

(28)

one easily finds:

la, 1H
O gy~ s &l (29)

-g-vf, becomes formally identical to the r.h.s. of Eq. (7) and,

Lalled

hence, the term &, —

consequently, this term allows us to estimate the Sachs-Wolfe effect.

(3) From Egs. (24), (25) and (28), the term —fv3(n?.k’) can be rewritten as
-7 - (—i%;’é@:); hence, according to Egs. (3) and (5), this term accounts for the
Doppler effect appearing as a result of the peculiar motions of baryoﬁic matter on

the LSS.

Taking into account Eqgs. (23) and (28) plus the above discussion, the formula

l\

a4
~—
Il

1 3e,a, la, i, -
1973 Pt st (30

gives the FT of the total anisotropy.

The physical meaning of each term has been elucidated by considering particular
cases. The above discussion about the terms involved in Eq. (23) leads to the following
remarkable conclusion: If the super-horizon scales are studied in the synchronous
gauge, Egs. (3), (6) and (7) apply. Note that these equations were initially obtained

for sub-horizon scales.
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4 Conditions at equivalence and decoupling

For fluctuations due to cold dark matter on scales greater than ~ 7Th=! Mpc, the
power spectrum at equivalence, | §(k) |?, is (Peebles 1983, Bond & Efstathiou 1984,

Davis et al. 1985, Kolb & Turner 1994 ):

A L3 kl+6a

§(k) =
o) (1+ B9+ wg'® +v¢*)?

(31)

where: = 1.7(Qh?)~! Mpc, w = 9.0(Qoh?)~15 Mpc!®, 4 = 1.0(Qph?)~2 Mpc?, and
q = k(1 + Z,) is the present value of the physical wavenumber in units of Mpc!
In the case of sub-horizon scales, this spectrum is valid whatever the gauge may be;
however, for super-horizon scales, the above form corresponds to the synchronous
gauge (A = B =0, Kolb & Turner 1994, Bond & Efstathiou? 1984).

The quantities €(k), €,(k)—at decoupling time—are necessary in order to compute
the total anisotropy by using Eq. (30). The computation of these quantities can be
divided into two main steps: (1) At equivalence, the quantities e(k) and €,(k) are
calculated—as detailed in Sec. 4.1—from the power spectrum | §(k) |? given by Eq.
(31), and (2) from equivalence to decoupling, these quantities are evolved by using

Egs. (21) and (22). The resulting values are shown in Sec. 4.2.

4.1 INITIAL CONDITIONS AT EQUIVALENCE

In the first step, the spectra | e(k) |* and | €,(k) | are computed at equivalence.

Since we are interested in adiabatic fluctuations, the equalities

6a=6=25,=2s (32)



apply at equivalence, 6 being the density contrast of the total energy density. This
equation leads to an evident relation between the initial spectra | §(k) | and | §,(k) |?
at equivalence; hence, our attention is hereafter focused on | §(k) |2.

Since € is gauge-invariant, the initial spectra | ¢(k) |*> can be calculated in any
gauge from Eq. (19). This equation involves the quantities § and v. For super-horizon
scales—in the synchronous gauge—the peculiar velocity v only has a decaying mode
(Kolb & Turner 1994); hence, this velocity can be neglected at equivalence and the
equality € ~ § holds in the synchronous gauge (see Sec. 3, where this conclusion was
used). Since the same equality applies in the case of sub-horizon scales (in any gauge),
we conclude that the relation | e(k) |~| (k) | is valid for any scale and, consequently,
Eq. (31) defines the initial spectrum | €(k) |? at decoupling. The same argument
applies for | e,(k) |?> and the spectrum | 6,(k) |? defined by Egs. (31) and (32).

i From the above discussion, it follows that the initial spectra | e(k) |* and | €2(k) |
can be calculated from Egs. (31) and (32), but €(k) and ¢,(k) are complex numbers
whose phases must be also defined. The assignation of phases is studied in the next

Section.

4.2 FROM EQUIVALENCE TO DECOUPLING

Let us now focus our attention on the phases of ¢(k) and ¢,(k). These numbers must
satisfy two coupled equations, which can be easily obtained from Egs. (21) and (22)
and the relation ¢; ~ € — €,. In order to find a complex solution of these equations, it

is useful to put € = ge* and €, = g,¢*7, where g and g, are real numbers and 3 and
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B, are phases. It is evident that the equations are satisfied if: (a) the real numbers
g and g, satisfy the same formal equations as € and ¢, (b) the phases B and 3, do
not depend on the time but only on k, and (c) the phases of € and €, are identical for
any I;; namely 3 = f, for any k. The phases are fixed in the next section according
to these considerations.

It i1s worthwhile to point out that, a priori, the real numbers g and g, may be
negative at any time. If the initial conditions at equivalence g =| € | and g, =| ¢, | are
assumed, then at decoupling, the integration of Egs. (21) and (22) give the functions
g(k), g(k) and g,(k) displayed in Figs. 1, 2, and 3. ;From these Figures, it follows
that g is positive for any k, while g, (k) and g,(k) appear to be negative for some k
values. This is a result of the fact that Eqgs. (21) and (22) are not equations for the

evolution of the spectra.

It follows from the above considerations that the initial phases assigned to g =| € |
(see Sec. 5) must also be assigned to g, g,(k) and §,(k) at all times, in particular,
at decoupling time. In this way, a proper superposition of the terms involved in Eq.

(30) is achieved.

4.3 NORMALIZATION

For @ = 0 and small k values (large spatial scales), the spectrum (31) reduces to the
scale-invariant Harrison-Zel’dovich spectrum | 6(k) |>= AL3k, where the normaliza-

tion parameter A evolves as a®. This is the key for our normalization of the spectrum

(31). Since the COBE quadrupole (Q, ., ,s = 17+ 5 pK, Smoot et al. 1992) is
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produced by very large features (Harrison-Zel’dovich part of the spectrum), the value

of the parameter A at equivalence appears to be:

9672 _
A5 = Szt + Ze) " Qeons (33)

where Z, denotes the value of Z at equivalence. Eq. (33) can be easily obtained from
Eq. (9.144) in Kolb & Turner, 1994.

For super-horizon scales—small k¥ values—and arbitrary o values, the parameter
A evolves as a? and the spectrum has the form | §(k) |>= AL3k**5*. On account of

these facts, Eq. (25) can be easily derived.

For light neutrinos (hot dark matter), the power spectrum at equivalence—in the

synchronous gauge—is (Bond & Szalay, 1983):
I (5(’6) |2= AL3k1+6ae—4.61(k/k.,)1'5 (34)

where k, = 0.16(m, /30eV) Mpc~!, m, being the neutrino mass. This equation can
be used in the same way as Eq. (31). In other cases, such as a mixing of cold and
hot dark matter with adiabatic fluctuations or cold dark matter with isocurvature
perturbations, formulae playing the same role as (31) and (34) are available in the

literature (Kolb & Turner 1994, van Dalen & Schaefer 1992).

5 Simulations

In order to simulate ££(Z) by using Eq. (30), the complex numbers ¢(k) and e, (k) are

necessary. Let us begin with the number e(E) This number is the three-dimensional
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(3D) FT of the total density contrast. It is usually assumed (Peebles, 1980) that, if

the function €(Z) is expanded in the form:

J 1 N —ik. 7
(%) = I3 ST e * (k) (35)
limn=-N

the complex numbers e(z) have the following features: (1) they satisfy periodic
boundary conditions, (2) | (k) | has the same values for any realization of (%),
(3) e*(k) = e(—Fk) for any ¥, and (4) the phases of any pair of ¢(k) complex num-
bers either are related according to condition (3) or they are statistically independent
random numbers. The distribution of these independent phases is uniform.
Condition (1) can be assumed because the size of the elemental cube is larger than
the significant scales of the considered effects (no correlations at scales comparable
with the cube size). Since the two point correlation function is the FT transform of
the power spectrum, the condition (2) means that every realization of (%) has the
same two-point correlation function. Condition (3) ensures that the imaginary part
of €(Z) vanishes and, finally, the central limit theorem plus condition (4) imply that
the distribution of ¢(Z) is approximately Gaussian; in fact, according to Eq. (35), ¢(Z)
is the superposition of a large number of statiétically independent variables e(l;)
Our code is based on the simulation of a set of ¢(k) numbers satisfying conditions
(1)-(4). The moduli of these numbers are fixed from the chosen spectrum computed at
decoupling time (see Sec. 4.1). For adiabatic fluctuations, the form of | ¢(k) |* depends
on the nature bf dark matter, the ratio between baryonic and dark matter abundances,
and the form of the primordial spectrum. In this paper, only the spectrum (31) is
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used. Other spectra will be considered elsewhere. Simulations of e(E) are lengthy but
straightforward.
According to the discussion of Sec. 4, after the phases of the e(l;) are fixed, the

phases of the remaining complex numbers involved in Eq. (30) also become fixed.

5.1 GEOMETRY OF THE SIMULATION

As stated before, 2£(&) is computed on the FFT elemental cube. Since a face of this
cube is assumed to be located on the LSS, it is evident that we are identifying a face
of the cube with a part of the LSS; hence, we are neglecting the spatial curvature
of this part. This restricts our simulations to small parts of the microwave sky.
Regions of ~ 20° x 20° (or ~ 1% of the total sky) will be mapped; in one of these
regions, the assumption of flatness would produce a deformation of the true maps, but
this deformation is not expected to hide their main features. Hereafter, the spatial
coordinates are chosen in such a way that the equation of the face located on the LSS
is z = 0.

All the FT considered until now are 3D, but we are going to see that, in order to

compute a physical quantity {(z,y, z) on the face z = 0, the original 3D FT can be

reduced to a well defined 2D FT; in fact, by using the 3D FT one easily obtains:

1 8 2(eim
é(x’ y)LSS = f(z" y70) = E Z e~ L (=t y)f(kxakyy kz) =
Iimn=—N
]. N 2ms 1
LY e k) ()
lym=-N
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where

N
E0(kerky) = 7 3 Elkerky k) (37)

n=—N

This means that, on the LSS (z = 0), the quantity £(z,y),. can be considered as
the 2D inverse FT of the function £®(k,,k,), which can be easily calculated from
the corresponding 3D function ¢ by using Eq. (37). On account of this fact, we can
compute 2L by using Eq. (30) and the 2D FFT.

Since the F'T involves periodic boundary conditions, our simulations are not phys-
ically significant in all the points of the elemental square. Only the simulation of the
central regioﬂ is physically admissible; on account of this fact, Fourier transforms are
performed in a big ~ 40° x 40° square and the resulting simulation is only considered
valid in the central ~ 20° x 20° region. The curvature could be important in order
to get a physically significant mapping of the big square; however, such a square is
only an auxiliary element without any physical significance. The number of points
on each edge of the big square is taken to be 2N=512. Similar simulations have been
obtained by using a ~ 80° x 80° square and 1024 points per edge; hence, the use of
a number of points greater than 512 is not necessary.

In order to obtain the angular distribution of the temperature contrast on the
LSS, one must take into account that, in a flat background, the relation between a
small angle’ A and the distance on the LSS, Dy, subtended by this angle is

1
Dy

—1/2 :
Tz 0+ Z)7 = 110 (38)

This relation allows us to assign angular coordinates to the points of the mapped
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region of the LSS. In the absence of lens effects, only small deformations should be
produced by the neglecting of the curvature of small (~ 20° x 20°) regions.
Simulations of larger regions are being studied. Such a region could be considered
as a curved surface located inside the Fourier elemental cube; but this assumption
would compel us to use the 3D FT and interpolations inside the elemental cube
for particular points on the surface; hence, the numerical cost would increase. A
mosaic of well matched ~ 20° x 20° regions would be preferable from the point of
view of the numerical cost. However, the matching of neighboring regions seems to
be problematic. Even if the values of the complex numbers %(E) are taken to be
identical on the common edges (phase space), large discontinuities are expected on
the borders (physical space) and, consequently, some kind of smoothing would be
necessary. In this paper, only realizations of a ~ 20° x 20° region are considered.
These realizations suffice for comparisons with the data from experiments—such as

MAX—which measure small regions of the sky.

5.2 SMOOTHING

After the FFT is used and angular coordinates are assigned to the points of the
LSS, the resulting distribution of the temperature contrast is smoothed by using a

Gaussian beam having beam width o. The resulting temperature contrast is given

by

6T ds’ 1 29,2101
—_ = | = (-02/20%] 72 (=~
( T )(7 (7) r? 27r026 T (7") (39)

where 0 is the angle formed by the directions 7 and 7"
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The beam width used in this paper is ¢ = 17’; on account of the relation o =
0.4250 ., ,;\,» the chosen o value corresponds to 6,,,,,,, = 0.67°. This choice is suitable
in order to compare our predictions with the latest results obtained in the MAX
experiment, in which the values 6, . ~ 0.55° and 0, ., ~ 0.75° are used (Clapp
et al. 1994). Since (-‘2%)(7 cannot be calculated on the edges—or too near the edges—of
the ~ 20° x 20° regions, the simulations of (%),7 are extended over slightly smaller

parts of the microwave sky (~ 17° x 17°).

6 Results and comparisons with observations

Plots 4-8 correspond to ~ 17° x 17° regions of the sky. The true distribution of ££(7)
has been smoothed with a Gaussian beam having ¢ = 17". Plots 4, 5, and 6 only
involve the contributions produced by structures having angular scales between 0.13°
and 4.5°. Fig. 4 is a simulation of the initial anisotropy. Fig. 5 corresponds to a
subdominant part of the Sachs-Wolfe effect (small scales). Fig. 6 is a simulation of
the Doppler anisotropy produced on the LSS. Fig. 7 is a simulation of the Sachs-Wolfe
effect for scales larger than 4.5°. This contribution has been computed by using a
code based on Eq. (1). Fig. 8 is a simulation of the total primary anisotropy, which
is the superposition of the effects described in Figs. 4-7.

In Figs. 4-8, the maxima (minima) of the positive (negative) (££), fluctuations
are shown; these values only appear in some scarce points of the maps and they

change from simulation to simulation. These changes are particularly relevant when
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we are dealing with large scales (Fig. 7) producing large spots which could have a size
comparable to that of the simulated region. For comparisons with the observational
data, the most appropriate quantities are the temperature differences corresponding
to a separation angle ( between two observation directions. These differences are
denoted A—TT~; they can be calculated from the ( %), values obtained in the simulations.

For the five simulations displayed in Figs. 4-8, 13500 temperature differences, éTl,
between pairs of points separated by the angle ( = 1.4° have been computed; these
pairs have been randomly placed in the simulated region. In the case of Fig. 8 (total
primary anisotropy), the rms value of the computed differences is ~ 3.67 x 10~5.
The frequencies of the differences have a nearly gaussian distribution in each case;
for the sake of briefness, only the frequencies corresponding to the simulation of
the total anisotropy (Fig. 8) are given in Fig (9); however, the rms values and the
maximum and minimum % differences are given for all the cases corresponding to
Figs. 4-8; this information is contained in Table 1. As expected, the contributions
of the partial effects of Figs. 4-7 to the total anisotropy couple in a complicated way
(strong cancellation) and the rms value of the total anisotropy is much smaller than

the sum of the rms values of the partial contributions. The phases involved in Eq.
(30) determine this coupling (see Secs. 4 and 5). As it can be seen in Table 1, the
rms values of the initial and Doppler anisotropies are similar, while the rms values
corresponding to the Sachs-Wolfe effect on scales smaller and larger than 4.5° are

subdominant. Since the angle 0,,,., ~ 0.67° and the separation angle ( = 1.4°
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are near the angle corresponding to the so-called Doppler peak, the rms value of
the Doppler contribution appears to be significant. Although these angles have been
chosen with the essential aim of maximizing the Doppler effect, the contribution of

the initial anisotropy is also important.

7 Conclusions and discussion

Small scale simulations of the microwave background are expected to be very useful in
order to analyze observational data from both current and future experiments. The
mathematical and physical foundations of the simulations presented in this paper
have been rigorously studied. A gauge-invariant formalism is used. The theoretical
limitations of the discrete Fourier transform are taken into account in order to define
the region where our computations are significant. The resulting simulations have
been tested by computing the temperature differences %.I- for ( = 1.4°; the order of
the rms calculated from these differences is 10~° and the distribution is very similar
to a Gaussian one.

The main assumptions of this paper are: adiabatic Gaussian energy density fluc-
tuations with a spectrum of the form (31) normalized according to COBE data; a
flat background having A = 0.5 and no cosmological constant; a LSS corresponding
to Z, = 1170; vanishing contributions of angular scales smaller than 0.13°; vanish-
ing contributions of scales greater than 4.5° except in the case of the Sachs-Wolfe

effect; a beam width o0 = 17" and a chopping angle { = 1.4° for the computation of
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temperature differences.

Since the dominant dark matter component does not undergo any Silk damping,
the estimation of the Sachs Wolfe effect does not require any cutoff at 0.13°. Since
the electron velocities are altered by the photon diffusion, thé Silk damping influences
the Doppler effect; however, only scales larger than 0.13° would produce significant
Doppler contributions and, consequently, the cutoff at 0.13° is not expected to be
very effective. The initial anisotfopy is erased at scales smaller than ~ 0.13° as a
result of the photon diffusion; hence, the estimate of this anisotropy requires either
a cutoff at ~ 0.13° or a more detailed study of the recombination-decoupling period.
This study is in progress.

According to the above comments, only the initial anisotropy could undergo some
modifications when an accurate code based on a rigorous description of the Silk
damping is used; these modifications could be particularly significant for 0, ,, ~
0.13° however, in the MAX case (0, ~ 0.67°), the initial anisotropies on scales
smaller than ~ 0.13° are averaged and a detailed description of the Silk damping
should not produce important improvements on our results.

Under the above assumptions, relative temperature differences corresponding to
¢ ~ 1.4° have a rms value 3.67 x 10~3. This value is very similar to the rms values
obtained from the latest measurements of the MAX experiment (Clapp. et al. 1994).

Several simulations similar to those of Figs. 4-8 have been obtained. The rms

value and the Gaussian character of the temperature differences are very stable; they
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do not undergo significant changes from simulation to simulation. In a IBM 30-9021
VF, the CPU time of each simulation is ~ 50 minutes.

If the normalization is not performed according to the COBE quadrupole, but
according to the usual prediction (| az,, [?)*/? = 2 x 107, (Kolb & Turner 1994), the
above rms value is magnified by a factor ~ 2. In such a case, detection would be
easier, but the resulting anisotropies would be too large to be compatible with the
observational values reported by Clapp. et al. 1994. In other scenarios corresponding,
for example, to other spectra, the situation could be different. 'Variations of the

spectra and the free parameters involved in our simulations are being studied.
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Figure Captions

FIG. 1.-Plot of the quantity g x 10°, at decoupling, as a function of the wavenumber

k. The FT of the total density contrast is € = ge®.

FIG. 2.-The same plot as in Fig. 1 for the quantity g, x 10°. The FT of the radiation
density contrast is €, = g, e™*.
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FIG. 3.-The same plot as in Fig. 1 for the quantity g, x 10%.

FIG. 4.-Simulation of the initial (£F), fluctuations in a 17° x 17° region of the LSS.

Only the first term of the r.h.s. of Eq. (30) is taken into account.

FIG. 5.-Simulation of the Sachs-Wolfe (4 ), fluctuations produced by scales between

0.13° and 4.5° in a 17° x 17° region. Only the second and the third terms of the r.h.s.

of Eq. (30) are considered.

FIG. 6.-Simulation of the Doppler (%)g fluctuations in a 17° x 17° region. Compu-

tations are based on the fourth term of the r.h.s. of Eq. (30).

FIG. 7.-Simulation of the same effect as in Fig. 5 for scales larger than 4.5°. Spherical

harmonics are used.

FIG. 8.-Simulation of the total (2£), fluctuations in a 17° x 17° region. All the

terms of the r.h.s of Eq. (30) and all the significant scales are considered.

FIG. 9.-This plot shows the frequency f of the AT—T differences in two cases. The
dotted line corresponds to ~ 13500 temperature differences numerically obtained from
the simulation of Fig. 8. The solid line is a Gaussian distribution with the same rms

as the set of numerical differences. The chopping angle is { = 1.4°

27



TABLE 1

TEMPERATURE DIFFERENCES 4L FOR ( = 1.4°

simulation rms minimum maximum

value difference difference

Fig. 4 2.54 x10™° —9.00 x 10~> 8.68 x 10~°
Fig. 5 1.47 x 107°> —5.38 x 10~° 5.78 x 1075
Fig. 6 2.25x10=° —7.86 x 10~°> 8.16 x 10~°
Fig. 7 3.68x 107 —1.18 x10~% 1.17 x 1073

Fig.8  3.65x107° —1.25x10"* 1.28x10~*

28



