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Abstract 

We review the construction of the multiparametric quantum group ISOq,r(N) 
as a projection from SOq,r(N + 2) arid show that it is a bicovariant bimodule 
over SOq,r(N). The universal enveloping algebra Uq,r(iso(N)), characterized 
as the Hopf algebra of regular functionals on I SOq,r(N), is found as a Hopf 
subalgebra of Uq,r(so(N +2)) and is shown to be a bicovariant bimodule over 
Uq,r(so(N)). 

An R-matrix formulation of Uq,r ( iso( N)) is given and we prove the pairing 
Ug,r(iso(N)) H ISOq,r(N). We analyze the subspaces of Uq,r(iso(N)) that 
define bicovariant differential calculi on ISOq,r(N). 

Subj. ind. class. 17B37 81R50 16W30. q-alg/9705023 

<> II Facolta di Scienze Matematiche, Fisiche e N aturali, sede di Alessandria 
e-mail: aschieri@theorm.lbl.gov, castellani@to.infn.it 



1 Introduction 

A noncommutative space-time, with a deformed Poincare symmetry group, is an 
interesting geometric background for the study of Minkowski space-time physics 
and, in particular, of Einstein-Cartan gravity theories [2], [3]. In this perspective it 
is natural to investigate inhomogeneous orthogonal quantum groups, their quantum 
Lie algebras and more generally their differential structure. 

In this paper we review the multi parametric R-matrix formulation of I SOq,r( N) 
as a projection from SOq,r(N + 2) [6] emphasizing the analogy with the classi
cal construction. We also show that ISOq,r(N) is a bicovariant bimodule over 
SOq,r(N), freely generated by the translation elements xa plus the dilatation el
ement associated to I SOq,r( N). We then construct and analize the universal en
veloping algebra Uq,r(so(N +2)), defined as the algebra of regular functionals [1] on 
the multiparametric homogeneous orthogonal q-groups. The projection procedure 
SOq,r(N + 2) ~ I SOq,r(N), initiated in [4] and developed in [3, 5, 6], is here ex
ploited to obtain Uq,r(iso(N)) as a particular Hopf subalgebra of Uq,r(so(N + 2)), 
and prove that it is paired to ISOq,r(N). A detailed study of Uq,r(iso(N)) and an 
R-matrix formulation is given. In complete analogy with the ISOq,r(N) case we 
also prove that Uq,r(iso(N)) is a bicovariant bimodule over Uq,r(so(N)) and give a 
basis of right invariant elements that freely generate Uq,r( iso( N) ). The up.iversal 
enveloping algebras of the inhomogeneous quantum groups IGLq,r(N), first studied 
with a different approach in [7], can be derived in a similar way. 

The quantum Lie algebras of ISOq,r(N) are subspaces (adjoint submodules) of 
Uq,r(iso(N)), and in the last section we examine two of them, obtained as "projec
tions" from the quantum Lie algebras of SOq,r(N + 2). The two associated bico
variant differential calculi are also briefly presented. The first has N + 2 generators, 
and is an interesting candidate for a differential calculus on the quantum orthogo
nal plane in dimension N. The second is obtained with the parametric restriction 
r = 1; in the classical limit r = q = 1 it reduces to the differential calculus on the 
undeformed ISO(N). This section does not rely on the technical parts of Section 
4 and 5; these may be skipped by the reader int~rested mainly in the differential 
calculi on ISOq,r(N). 

In this article, all the properties of the quantum inhomogeneous ISOq,r(N) 
group, its universal enveloping algebra and its differential calculus are derived from 
the known properties of the homogeneous "parent" structure. The main logical steps 
of this derivation are independent from the q-group considered, and the projection 
procedure may be applied to investigate more general quotients of the A, B, C, D 
q-groups, as for example deformed parabolic groups. 

2 SOq,r(N) multiparametric quantum group 

The SOq,r(N) multiparametric quantum group is freely generated by the noncom
muting matrix elements ya b (fundamental representation a, b = 1, ... N) and the 
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unit element I, modulo the relation detq,rT =I and the quadratic RTT and CTT 
( othogonality) relations discussed below. The noncommutativity is controlled by 
the R matrix: 

Rab re rt = Tb ra Ref ef c d f , e cd (2.1) 

which satisfies the quantum Yang-Baxter equation 

(2.2) 

a sufficient condition for the consistency oft he "RTT" relations (2.1 ). The R-matrix 
components Rab cd depend continuously on a (in general complex) set of parameters 
qab, r. For qab = r we recover the uniparametric orthogonal group SOr(N) of ref. [1]. 
Then qab --+ 1, r --+ 1 is the classical limit for which Rab cd --+ t5~t5S : the matrix entries 
ra b commute and become the usual entries of the fundamental representation. The 
multiparametric R matrices for the A, B, C, D series can be found in [8] (other ref.s 
on multiparametric q-groups are given in [9, 10]). For the orthogonal case they read 
(we use the same notations of [6]): 

Rab cd = t5~t5~[q:b + (r- 1)t5ab + (r-1- 1)t5ab'](1- t5an2) + t5~2t5~2t5~2t5;r 
+(r _ r-1 )[Oabt5~t5d _ oacrPa-Pcf5a'bf5c'd] 

(2.3) 

where (}ab = 1 for a > band (}ab = 0 for a ~ b; we define n2 = N~ 1 and primed 
indices as a'= N + 1 -a. The terms with the index n2 are present only in the Bn 
case: N = 2n + 1. The Pa vector is given by: 

( ) -·{ (~-1,~-2, ... ,~,0,-~, ... ,-~+1) forBn[S0(2n+1)] 
Ph ···PN - ( N 1 N 2 0 0 1 N 1) D [SO( )] 2 - ' 2 - ' ... ' 1' ' ' - , ... ' -2 + for n 2n 

(2.4) 
Moreover the following relations reduce the number of independent qab parameters 
[8]: 

r2 
qaa = r' qba = -; 

qab 

r2 r2 
qab = - = - = qa 1b1 

qab1 qa 1b 

(2.5) 

(2.6) 

where (2.6) also implies qaa' = r. Therefore the qab with a < b ~ ~ give a!l the q's. 

It is useful to list the nonzero complex components of the R matrix (no sum on 
repeated indices): 

a ::j:. b, a' ::j:. b 

a> b, a' ::j:. b 
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a> a' 
a> b, a' f. b (2.7) 

Remark 2.1 : The matrix R is upper triangular (i.e. Rab cd = 0 if [a= c and 
b < d] or a < c) and has the following properties: -

R;,~ = Rq-l,r-1 j (Rq,rtbcd = (Rq,r) cpd'a'b' j (Rq,rtbcd = (Rp,r)dcba (2.8)' 

where q, r denote the set of parameters qab, r, and Pab = qba· 

The inverse R-1 is defined by (R- 1 )ab cdRcd ef ===_ J:J} = Rab ciR-1 )cd ef· The first 
equation in (2.8) implies that for lql = lrl = 1, R = R-1

• 

Remark 2.2 : The characteristic equation and the projector decomposition of 
Rq,r, where flab cd = Rba cd are the same as in the uniparametric case [9, 6]; in 
particular the projectors read: 

1 A 1 N 
PA= _

1
[-R+rl-(r-r- )P0 ], 

r+r 
(2.9) 

Orthogonality conditions are imposed on the elements ra b' consistently with 
the RTT relations (2.1): 

(2.10) 

where the (anti diagonal) metric is : 

(2.11) 

and its inverse cab satisfies cabcbc = 8~ = Ccbcba. We see that the matrix elements 
of the metric and the inverse metric coincide: cab= Cabi notice also the symmetry 

Cab= Cb'a'· 
The consistency of (2.10) with the RTT relations is due to the identities: 

C RA be (RA -l)cf C ab de = ad fe (2.12) 

(2.13) 

These identities hold also for R --t R_-I and can be proved using the explicit ex
pression (2. 7) of R. We also note the useful relations 

A ab . 1-N ccdRA ab = r1-Ncab CabR cd = r Ccd, cd , (2.14) 

and 
R ab cabc Raa' caa'c r cc' = cs' , cd = cd !Of a > c . (2.15) 
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The co-structures of the orthogonal multiparametric quantum group have the same 
form as in the uniparametric case: the coproduct .6., the counit c and the coinverse 
"' are given by 

.6. ( Ta b) = Ta b 0 Tb c 

c(Ta b)= ob 
"'(Tab) = cacrd cCdb 

(2.16) 

(2.17) 

(2.18) 

In order to define the quantum determinant detq,rT we introduce the orthogonal 
N-dimensional quantum plane of coordinates xa that satisfy the q-commutation re
lations P A a~dxcxd = 0. We then consider the algebra of exterior forms dx 1

, dx2
, ••• dxN 

defined by: Psa~ddxcdxd = 0 and Poa~ddxcdxd = 0 i.e. [use (2.9)]: dxadxb = 

-rRb~ddxcdxd. There is a natural action o of the orthogonal quantum group on 
the exterior algebra (that becomes a left comodule): 

o(dxa) = Ta c ® dxc; o(dxadxb ... dxc) = T~ dTb e ... Tc 1 ® dxddxe ... dxf. 

Generalizing the results of [11] to the multiparametric case, we find that any N
dimensional form is proportional to the volume form dV = dx 1 

•.• dxN, so that the 
determinant is uniquely defined by: 

o( dV) - detq,rT ® dV . (2.19) 

Using (2.10) as in [11] it is immediate to prove that (detq,rT)2 =I; moreover detq,rT 
is central and satisfies .6.( detq,rT) = detq,rT ® detq,rT. . 

To obtain the special orthogonal quantum group SOq,r(N) we impose also the 
relation detq,rT = I. 

Remark 2.3: Using formula (2.3) or (2.7), we find that the RABCD matrix for the 
SOq,r(N + 2) quantum group can be decomposed in terms of SOq,r(N) quantities 
as follows (splitting the index A as A=( o, a, • ), with a= 1, ... N): 

00 oe eo •• od •d co c• cd 
00 r 0 0 0 0 0 0 0 0 
oe 0 r-1 0 0 0 0 0 0 0 
eo 0 f(r) r-1 0 0 0 0 0 -Ccd>.r-P 

•• 0 0 0 r 0 0 0 0 0 
RAB ...!:..Jb _CD= ob 0 0 0 0 qob d 0 0 0 0 

•b 0 0 0 0 0 .J:..ob 0 >.ob 0 q.b d c 
ao 0 0 0 0 >.oa d 0 .J:..oa qao C 

0 0 

a• 0 0 0 0 0 0 0 _I_Ja 
qae c 0 

ab 0 -cba>.r-P 0 0 0 0 0 0 Rab cd 
(2.20) 

where Rab cd is the R matrix for SOq,r(N), Cab is the corresponding metric, >. 
T- T- 1 

1 p = ~ (rP =Ceo) and f(r)- )..(1- r-2P). 
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3 I SOq,r(N) as a projection from SOq,r(N + 2) 

Classically the orthogonal group SO(N + 2) is defined as the set of all linear trans
formations with unit determinant which preserve the quadratic form ( z0 ) 2 + ( z1 ) 2 + 
... (zN+I )2 or equivalently, since we are in the complex plane, the quadratic form 
z0 zN+I+z1zN + ... zN+Iz0 (use the transformation zA-+ (zA+izA')jJ2 for A::::; N/2; 

zA -+ (zA' -izA)jJ2 for A> N/2; zA unchanged for A= A'). The associated metric 
is therefore CAB =JAB' where A, B = 0, 1, ... N + 1 and B' = N + 1- B. 

We consider the ISO(N) subgroup of SO(N + 2) defined as follows. Select the 
subset of matrices in SO(N + 2) whose components TAB read: 

Tao = T• b = T• o = 0 . (3.1) 

The product of two such SO(N + 2) matrices gives a SO(N + 2) matrix with the 
same structure: 

( 

T
0 

0 y z ) ( T'
0 

0 y' z' ) ( T
0 

0 T'
0 

0 y" · z" ) 
0 T x · 0 T' x' = 0 T · T' x" 
o o T· • o o T'·. o o T· • T'•. 

(3.2) 

where XC= Tc., Ya- T 0 a' z- T 0 
., x" = xT'·. + Tx' andy"= T 0 oY' + yT'. These 

matrices form a subgroup of SO(N + 2). If we further set Too _..:__ T•. = 1 this 
subgroup becomes ISO(N). 

The conditions (3.1) and TAB E SO(N+2) (i.e. TABCAcT0 v = CBD, detTAB = 
1) are equivalent to: 

Tao = T• b = T• o = 0 ' 

Ta bCacTc d = Cbd , detTa b = 1, 

To b = -Ta bCacTc .Too ' To • = -~Tb .CbaTa .Too ' 

As expected, there are no constraints on XC = Tc •. 

(3.3) 

(3.4) 

Too= (T• .)-1
• (3.5) 

Remark: Classically there is an easier way to recover ISO(N), namely starting 
from SO(N + 1). At the quantum level the R-matrix of SOq,r(N) is only contained 
in SOq,r(N + 2), see Remark 2.3. This explains why we have considered this bigger 
group. 

Since ISO(N) is a subgroup of SO(N + 2) the algebra Fun(! SO(N)) of regular 
functions from ISO(N) to C will be obtained from Fun(SO(N +2)) as a quotient, 
whose canonical projection we name P. Let us now consider the elements TAB as 
functions on the SO( N + 2) group manifold: they define the fundamental represen
tation of SO(N + 2). Since \fg E ISO(N) , Ta o(g) = T• b(g) = T• 0 (g) = 0 , we 
can write 

Fun(ISO(N)) = Fun(SO(N + 2)) 
, H 

(3.6) 
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where Fun(SO(N + 2)) is generated by TAB and H is the left and right ideal 
generated by the functions Tao ; T• b ; T• o • Therefore Fun( I SO( N)) is gener
ated by the functions P(TA B) where P is the canonical projection associated to 
H : P(Ta 0 ) = P(T• b) = P(T• 0 ) = 0; more explicitly it is generated by the 
elements TAB modulo the relations (3.3)-(3.5)., 

The above construction can be carried over to the quantum group level. In this 
case the elements TAB are abstract generators of SOq,r(N +2) = Funq,r(SO(N +2)) 
and we have ISOq,r(N) = Funq,r(ISO(N)) = SOq,r(N + 2)/ H because the ideal 
H is a Hopf ideal i.e. 

i) H is a two-sided ideal in Sq,r(N + 2), 
ii) H is a co-ideal, i.e. 

~N+2(H) ~ H 0 SOq,r(N + 2) + SOq,r(N + 2) 0 H; £N+2(H) = 0 (3.7) 

iii) His compatible with "-N+2: 

(3.8) 

where the suffix N + 2 refers to the costructures of SOq,r(N + 2). It should be clear 
that I SOq,r(N) is not a subalgebra, nor a Hopf subalgebra of SOq,r(N + 2); that 
is why we distinguish with a suffix between the costructures of ISOq,r(N) and of 
SOq,r(N + 2). 

Following [6] the projection P : SOq,r(N + 2) -t SOq,r(N + 2)/ H is a Hopf 
algebra epimorphism, and defining the projected matrix elements tAB = P(TAB), 
where TAB are the SOq,r(N + 2) generators, we have the: 

Theorem 3.1 The quantum group ISOq,r(N) is generated by the matrix entries 

P(y) P(z) ) 
P(Ta b) P(x) 

0 P(T• .) 
and the unity I 

modulo the "Rtt'' and "Ctt" relations 

RAB tE tF B tA REF EF C . D = t F E CD ' 

CBC A D CAD C A C C t Bt C = i ACt Bt D = BD , 

(3.9) 

(3.10) 

(3.11) 

where R and C are the multiparametric R-matrix and metric of SOq,r(N + 2), 
respectively. The co-structures are the same as in (2.16)-(2.18), with TAB instead 
of Tab· ODD 

Relations (3.10) and (3.11) explicitly read: 

· Rab Te · TJ = Tb ra Ref ef c d J e cd 
Ta bcbcTd c = cad I 

Ta bCacTc d = Cbdi 

6 
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Tb xa = _!:__nab xeTJ 
d q ef d 

d• 

p;,_b cdxcxd = 0 

T b qb• Tb dv = -v d. 
qd. 

b b XV= qb•VX 

uv = vu =I 
b b ux = qb.x u 

T b _ qb•rb u d-- du 
. qd. 

Yb = -rPTa bCacXcU 

1 be a z = - -N N X baX U 
(r-2 + r2-2 ) 

(3.15) 

(3.16) 

(3.17) 

(3.18),_ 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

where we have set P(To o) = u, P(T• .) = v and, with abuse of notations, Tab = 
P(Ta b), x = P(x) y ;:= P(y), z = P(z), and where %• are N complex parameters 
related by qa• = r2 /qa'• , with a' = N + 1- a. The matrix PA in eq. (3.16) 
is the q-antisymmetrizer for the orthogonal quantum group, see (2.9). The last 
two relations (3.22) - (3.23) are constraints, showing that the tAB matrix elements 
are really a redundant set. This redundance is necessary if we want an R-matrix 
formulation giving the q-commuations of the ISOq,r(N) generators. Remark that, 
in the R-matrix formulation for IGLq,r(N), all the tAB are independent [4, 5]. Here 
we can take as independent generators the elements 

(a= 1, ... N). (3.24) 

In the commutative limit q --+ 1, r --+ 1 we recover the algebra Fun(ISO(N)) 
described in (3.6). 

Note 3.1 : From the commutations (3.20)- (3.21) we see that one can set u =I 
only when %• = 1 for all a. From %• = r 2 fqa'•' cf. eq. (2.6), this implies also 
r=l. 

Note 3.2 : eq.s (3.16) are the multiparametric orthogonal quantum plane com
mutations. They follow from the (a.b.) Rtt components and (3.23). 

Note 3.3: The u, v = u- 1 and xa elements generate a subalgebra of ISOq,r(N) 
because their commutation relations do not involve the Tab elements. Moreover 
these elements can be ordered using (3.16) and (3.20), and the Poincare series ofthis 
subalgebra is the same as that of the commutative algebra in theN+ 1 symbols u, 
xa [1]. !).linear basis of this subalgebra is therefore given by the ordered monomials: 
(i.:.:... uio(x1 )i1 ••• (xN)iN with io E Z, it, ... iN EN U {0}. Then, using (3.15) and. 
(3.21), a generic element of ISOq,r(N) can be written as (iai where ai E SOq,r(N) 
and we conclude that ISOq,r(N) is. a right SOq,r(N)-moduie generated by the 
ordered monomials (i. 

One can show that as in the classical case the expressions (i ai are unique: 
(iai = 0 ::::} ai = 0 V i, i.e. that ISQq,r(N) is a free right SOq,r(N)-module; 
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moreover (at least when Qa• = r Va) ISOq,r(N) is a bicovariant bimodule over 
SOq,r(N). The proofs of these statements follow the same steps as those given after 
Note 5.4, and are left to the reader. Similarly, writing ai(i instead of (iai, we have 
that ISOq,r(N) is the free left SOq,r(N)-modul~ generated by the (i. 

4 Universal enveloping algebra Uq,r(so(N + 2)) 

We construct the universal enveloping algebra Uq,r(so(N + 2)) of SOq,r(N + 2) as 
the alge'bra of regular functionals [1] on SOq,r(N + 2). 

It is the algebra over C generated by the counit c and· by the functionals £± 
defined by their value on the matrix elements TAB : 

L±A (Tc ) _ (R±)AC B D - BD' 

L±AB(I) = 8~ 

with 
(R+)ACBD = RCADB ; (R-)ACBD = (R-l)ACBD. 

To extend the definition (4.1) to the whole algebra SOq,r(N + 2) we set 

( 4.1) 

( 4.2) 

( 4.3) 

L±A8 (ab) = L±Ac(a)L±c8 (b) Va,b E SOq,r(N + 2). (4.4) 

From (4.1), using theupper and lower triangularity of R+ and R-, we see that £+ 
is upper triangular and L- is lower triangular. 

The commutations between L±AB and L±cD are induced by (2.2) : 

R12L~ Lt = Lt L~ R12 , (4.5) 

R12Lf L! = L! Lf R12 , ( 4.6) 

where as usual the product L~ Lt is the convolution product L~ Lt _ (L~@ Lt)~. 

The L±AB elements satisfy orthogonality conditions analogous to (2.10): 

CABL±CBL±DA = CDCc 

CABL±8 cL±AD = Cvcc 

( 4.7) 

( 4.8) 

as can be verified by applying them to the q-group generators and using (2.12), 
(2.13). They provide the inverse for the matrix£±: 

( 4.9) 

The co-structures of the algebra generated by the functionals £± and c are 
defiried by the duality (4.4): 

(4.10) 
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so that 

c'(L±As) = L±As(I) 

~'(L±As)(a) = L±AB(~(a)) 

~'(L±AB) = L±AG 0 L±GB 

E
1(L±AB) = 0~ 

~'(L±AB) = [(L±)-l]AB = cDA L±C vCsc 

(4.11) 

( 4.12) 

(4.13) 

( 4.14) 

( 4.15) 

From ( 4.15) we have that~' is an inner operation in the algebra generated by the 
functionals L±AB and£, it is then easy to see that these elements generate a Hopf 
algebra, the Hopf algebra Uq,r(so(N + 2)) of regular functionals on the quantum 
group SOq,r(N + 2). 

Note 4.1 : From the CLL relations ~'(L±As)L±Bc = L±As~'(L±Bc) = O~E'si we 
have, using upper-lower triangularity of£±: 

As a consequence det£± = L±o 
0
L±1

1L±2 
2 ... L±NN£±• • =E. In the Bn case we also 

have L±n~2 =E. 

Note 4.2 : The RLL relations imply that the subalgebra U0 generated by the 
elements L±AA and E is commutative (use upper triangularity of R). Moreover, 
from (4.13) the invertible elements L±AA are also group like, and we conclude that 
U0 is the group Hopf algebra of the abelian group generated by L±A A and E • In the 
classical limit U0 is a maximal commutative subgroup of SO(N + 2). 

Note 4.3: When qAB = r, the multiparametric R-matrix goes into the unipara
metric R-matrix and we recover the standard uniparametric orthogonal quantum 
groups. Then the £± functionals satisfy the further relation: 

VA, ( 4.17) 

indeed L+AAL-AA(a) = c(a) as can be easily seen when a= TAB and generalized to 
any a E SOq,r(N + 2) using (4.4). In this case [1] we can avoid to realize the Hopf 
algebra Ur(so(N +2)) as functionals on SOr(N +2) and we can define it abstractly 
as the Hopf algebra generated by the symbols £± and the unit E modulo relations 
(4.5),(4.6),(4.7),(4.8), and (4.17). 

As discussed in [1] in the uniparametric case, the Hopf algebra Ur(so(N + 2)) of 
regular functionals is a Hopf subalgebra of the orthogonal Drinfeld-Jimbo universal 
enveloping algebra Uh, where r = eh. In the general multiparametric case, relation 
( 4.17) does not hold any more. Here we discuss the generalization of ( 4.17) and 
the relation between Uq,r(so(N + 2)) and the multiparametric orthogonal Drinfeld-

Jimbo universal enveloping algebra uf'"). This latter is the quasi triangular Hopf 
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algebra ufF) = (Uh, ~(J=), S, R(:F)) paired to the multiparametricorthogonal q-group 

SOq,r(N + 2). It is obtained from Uh = (Uh, ~' S, R) via a twist [9]. U~:F) has 
the same algebra structure of Uh (and the same antipode S), while the coproduct 
~(F) and the universal element R(:F) belonging to (a completion of) Uh 0 Uh are 
determined·by the twisting element :F that belongs to (a completion of) a maximal 
commutative subalgebra of Uh 0 Uh. We have 

v 4> E uh, ~(F>(¢) = :F~(<P):F- 1 
; n(F) = :F21n:F-1 ; n(:r->(r 0 T) = Rq,r. 

(4.18) 
The element :F satisfies: (~(:F) ®id):F = :F13:F23, ( id® ~(:F) ):F = :F13:F12, :F12:F21 = 
I, :F12:F13:F23 = :F23:F13:F12, ( c 0 id):F = ( id 0 c ):F = c, ( S 0 id):F = ( id 0 S):F = 
:F-1

, ·(id 0 S):F = ·(S 0 id):F = ·(id 0 id):F = c; we explicitly have 

(4.19) 

where F~~ is the diagonal matrix 

F =d. (ff-11 ff-12 ~NN) zag , , ... 
r r r 

(4.20) 

It is easy to see that the definition of the L± functionals given in the beginning of this 
section is equivalent to the following one: L+A8 (a) = R(:F)(a®TA8 ) and L-A8 (a) = 
R(:r-)-\TA8 0 a). From (~(:F) 0 id)R = R13R23, (id 0 ~(:F))R = R13R12, we 
have ~(:F)(L±A8 ) = L±Ac®L±CB and therefore ~(:F)=~' on Uq,r(so(N +2)). From 
(id 0 S)(R) = (S 0 id)(R) = n- 1 it is also easy to see that S =~,on Uq,r(so(N + 
2)) and we conclude that the algebra of regular functionals Uq,r(so(N + 2)) is a 
realization [in terms of functionals on SOq,r(N + 2)] of a Hopf subalgebra of U~:F) 
with r = eh. The generalization of (4.17) lies in U~:F) and not in Uq,r(so(N + 2)), 
and it is given by 

VA ( 4.21) 

This relation holds with£± considered as abstract symbols. It can easily be checked 
when£± are realized as functionals: indeed L+AAL-AA(a) = :F4 (TAA ®a) as can be 
seen when a= TA8 - [use P(TA A 0 b) = :F(TA A 0 b1):F(TA A 0 b2 )] and generalized 
to any a E SOq,r(N + 2) using :F(TA A 0 ab) = :F(TA A 0 a):F(TA A 0 b). 

In order to characterize the relation between the Hopf algebra of regular func
tionals Uq,r(so(N + 2)) and U~:r-), following [1], we extend the group Hopf alge
bra U0 described in Note 4.2 to U0 by means of the elements 1 .e±A A = ln L±A A. 
Otherwise stated this means that in U0 we can write L ±A A = exp( .e±A A) where 

A A A AC A A . 
f± A E U0

• [Explicitly £± A(T0 v) = ln(R± JC) o£, f± A(/) = 0, f± A(ab) = 
.e±A A(a)c(b)+c(a).e±A A(b) and ~'(f±AA) = -f± A]. It then follows that :F belongs 
to (a completion of) U0 0 U0

• The corresponding extension Uq,r(so(N + 2)) of 

1 In the classical limit c±A A are th_e tangent vectors to a maximal commutative subgroup of 
SO(N + 2). They generate a Cartan subalgebra of the Lie algebra so(N + 2). 
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Uq,r(so(N + 2)), defined as ·the Hopf algebra generated by the symbols L± and 
f± modulo relations (4.5)-(4.8) and (4.21), is isomorphic - when r = eh - to 
uf"") : Oq,r(so(N + 2)) s:! uf"). This relation holds because it is the twisted 
version of the known uniparametric analogue Or_(so(N + 2)) ~ uh [1, 13]. 

The elements L± [or r-~- 1 (L±AB- J~c)] may be seen as the quantum analogue 
of the tangent vectors; then the RLL relations are the quantum analogue of the 
Lie algebra relations, and we can use the orthogonal C LL conditions to reduce the 
number of the L± generators to (N +2)(N + 1)/2, i.e. the dimension of the classical 
group manifold. 

This we proceed to do; we next study the RL± L± commutation relations re
stricted to these (N + 2)(N + 1)/2 generators and find a set of ordered monomials 
in the reduced L± that linearly span all Oq,r(so(N + 2)). . 

We first observe that the commutative subalgebra U0 is generated by (N + 2)/2 
elements (N even, N = 2n) or (N + 1)/2 elements (N odd, N = 2n + 1), for. 
example £-0

0 , £~\ ... f_-nn· For the off-diagonal L± elements, we can choose as free 
indices (C, D)= (c, o) in relation (4.8), and using L-o 

0
L-•. = c, we find: 

( 4.22) 

If we choose ( C, D) = ( o, o) we obtain 

L-• = -( - 2C + C )-1 C L-b ·L-a L-• 
0 r •o o• ab 0 0 • • (4.23) 

Similar results hold for L +o d and L +o •. Iterating this procedure, from CabL -b cL-ad = 
Cdc£ we find that L-~ (with i = 2, ... N- 1) and L-N1 are functionally dependent 
on L-i 1 and L-NN· Similarly for L+l i and L+l N· The final result is that the ele
ments L-a J with J < a < J' and L +a J with J' < a < J - whose number in both ± 
cases is ~N(N + 2) for N even and ~(N + 1)2 for N odd- and the elements f_-oo, 

£-\ ... f_-nn generate all Uq,r(so(N +2)). The total number of generators is therefore 
(N + 2)(N + 1)/2. 

Notice that in this derivation we have not used the RLL relations (i.e. the 
quantum analogue of the Lie algebra relations) to further reduce the number of 
generators. We therefore expect that, as in the classical case, monomials in the 
(N + 2)(N + 1)/2 generators can be ordered (in any arbitrary way). We begin by 
proving this for polynomials in L+AA, L+aJ with J' <a< J, and for polynomials in 
L-\, L-aJ with J <a< J'. 

Lemma 4.1 Consider the RL± L± commutation relations 

RABEFL±FDL±Ec = L±AEL±BFREFCD. ( 4.24) 

For C ::f. D they close respectively on the subset of the L+a J with J' <a::; J and 
on the subset of the L-a J with J ~ a < J'. For C = D they are equivalent to the 
q-1-plane commutation relations: 

( 4.25) 
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where PA(J'-J+l) is the antisymmetrizer in dimension J- J' + 1 (Compare with 
(2.9)). In particular 

pAb cd£ -d 
0
L -\ = 0 . ( 4.26) 

or equivalently [ ( PA) q-t,r-1 ]a~d L -c 0 L -d 0 = 0 which coincide, for r -+ r-1 and q -+ 
--q- 1 , with the N-dimensional quantum orthogonal plane relations (3.16). 

Proof: The proof is a straightforward calculation based on (2.15) and on upper 
or lower triangularity of the R matrix and of the £± function<;tls. ODD 

Lemma 4.2 Uq,r(so(N)) is a Hopf subalgebra of Uq,r(so(N + 2)). 
Proof: Choosing SOq,r(N) indices as free indices in (4.24) and using upper or lower 
triangularity of the £± matrices, and (2.7) or (2.20), we find that only SOq,r(N) 
indices appear in (4.24); similarly for relations (4.6)-(4.8), and for the costructures 
( 4.13)-( 4.15). DOD 

Now we observe that in virtue of the RL+£+ relations the£+ elements can be 
ordered; similarly we can order the L- using the RL-L- relations. This statement 
can be proved by induction using that Uq,r(so(N)) is a subalgebra of Uq,r(so(N +2)), 
and splitting the SOq,r(N +2) index in the usual way [some of the resulting formulas 
are given in (5.9)-(5.12)). 

It is then straightforward to prove that the elements L +a J with J' < a ::; J can be 
ordered; indeed we can always order the L +a J L +.6 K with J' < a::; J, K' < j3::; K and 
J # f{ since their commutation relations are a closed subset of ( 4.24) [see Lemma 
4.1]. Then there is no difficulty in ordering substrings composed by L+a J and 
L +!3 J elements because ( 4.25) are q-1-plane commutation relations, that allow for 
any ordering of the quantum plane coordinates [1]. More in general the L +A A and 
L+aJ with J' <a< J can be ordered because of L+AAL+Bc=(qBAfqcA)L+BcL+AA. 
Similarly we can order the L-A A and L-a J with J <a< J'. It is now easy to prove 
the following 

Theorem 4.1 A set of elements spanning Uq,r(so(N + 2)) is given by the ordered 
monomials 

where Po, Ph ···Pn E N U {0}, n = N/2 (N even), n = (N- 1)/2 (N odd) and 
Mon(L+aJ;Y<a<J), [Mon(L-aJ;J<a<J')] is a monomial in the off-diagonal 
elements L+aJ with J' <a< J [L-aJ with J <a< J'] where an ordering has been 
chosen. ODD 

Note 4.4 Conjecture: the above monomials are linearly independent and there
fore form a basis of Uq,r(so(N + 2)). 
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5 Universal enveloping algebra Uq,r(iso(N)) 

Consider a generic functional f E Uq,r(so(N + 2)). It is well defined on the quotient 
ISOq,r(N) = SOq,r(N + 2)/ H if and only if f(H) = 0. It is easy to see that the 
set Hj_ of all these functionals is a subalgebra of Uq,r(so(N + 2)) : if f(H) = 0 and 
g(H) ~ 0 then fg(H) = 0 because D..(H) ~ H ® Sq,r(N + 2) + Sq,r(N + 2) ®H. 
Moreover Hj_ is a Hopf subalgebra of Uq,r(so(N + 2)) since His a Hopf ideal [19]. 
In agreement with these observations we will find the Hopf algebra Uq,r(iso(N)) 
[dually paired to ISOq,r(N)] as a subalgebra of Uq,r(so(N + 2)) vanishing on the 
ideal H. 

Let 
IU [L-AB,L+ab,L+oo,L+•.,c] ~ Uq,r(so(N +2)) (5.1) 

be the subalgebra of Uq,r(so(N + 2)) generated by L-AB, L+ab, L+o 0 , £+• ., c. 

Note 5.1 : These are all and only the functionals annihilating the genera
tors of H: Tao , T• b and r• o • The remaining Uq,r(so(N + 2)) generators 
L +o b , L +a. , L +o • do not annihilate the generators of H and are not included 
in (5.1). 

We now proceed to study this algebra IU. We will show that it is a Hopf algebra 
and that IU ~ Hj_; we will give an R-matrix formulation, and prove that IU is a 
free Uq,r(so(N))-module. This is the analogue of ISOq,r(N) being a free SOq,r(N)
module. We then show that IU is dually paired with ISOq,r(N). These results lead 
to the conclusion that IU is the universal enveloping algebra of ISOq,r(N). 

Theorem 5.1 IU is a Hopf subalgebra of Uq,r(so(N + 2)). 
Proof: IU is by definition a subalgebra. The sub-coalgebra property D..'(IU) ~ 
IU 0 IU follows immediately from the upper triangularity of L+AB: 

and the compatibility of D.' with the product. We conclude that IU is a Hopf
subalgebra because "''(IU) ~ IU as is easily seen using ( 4.15) and antimultiplica
tivity of"''· ODD 

We may wonder whether the RLL and CLL relations o(Uq,r(so(N + 2)) close 
in IU. In this case IU will be given by all and only the polynomials in the 
functionals L-AB,L+ab,L+0

0 ,L+•.,c. This check is done by writing explicitly all 
q-commutations between the generators of IU: they do not involve the functionals 
L +o b , L +a. , L +o • . Moreover one can also write them in a compact form using a 
new R-matrix R 12 = £+2 (tt), where .c+ is defined below. Similarly the orthogonal
ity conditions (4. 7)-( 4.8) do not relate elements of IU with elements not belonging 
to IU. We therefme conclude 
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Theorem 5.2 The Hopf algebra IU is generated by the unit c and the matrix entries: 

0 . 0 ) 
L+•. ' 

(5.3) 

these functionals satisfy the q-commutation relations: 

R12L"2 L! = L! L2 R12 , (5.5) 

R12£+ 2L! = L! c+ 2R12 , (5.6) 

where 

R12 - c+ 2(t1) that is R~~ = R~~ ; R1~ = R1~ and otherwise R~~ = 0 

and the orthogonality conditions : 

cAB c+c Bc+D A= cDCC; CAB,e+B cc+AD = CDcc; 

C ABL-e L-D - cDC c • c L-B L-A - c c B A - '-' ' AB C D - DC<-- , 

(5.7) 

(5.8) 

The costructures are the ones given in (4.13)-(4.15) with L+ replaced by£+. DOD 

Note 5.2 We can consider the extension lu C Uq,r(so(N + 2)) obtained by 
including the elements g±A A (f±A A = ln L±AA, see the previous section). Then lu 
is generated by the symbols L-AB, c+AB, g±A A modulo the relations (5.4)-(5.8) and 
( 4.21) [( 4.17) in the uniparametric case]. Equivalently, from ( 4.22)-( 4.23), we have 
that (U is generated by Uq,r (so( N)), the N elements L-ao (satisfying the quantum 
plane relations) and the dilatation e-0

0 • All the relations are then given by those 
between the generators of Uq,r(so(N)) -listed in (4.5)-(4.8), (4.21) with lower case 
indices- and by the following ones 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

where R± is defined in (4.3). The number of generators is N(N- 1)/2 + N + 1. 

Note 5.3 : When qao = r Va, then L -o 
0 

= L +• • , L -:-• • = L +o 
0 

and, in complete 
analogy to (3.24), IU is generated by Uq,r(so(N)), L-a 

0
, L-o 

0 
and L-• • = (L-o ot1. 

With abuse of notations we will consider IU generated by these elements also for 
arbitrary values of the parameters qao; this is what actually happens in {U. 
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Note 5.4: From the second equation in (5.4) applied tot we obtain the quantum 
Yang-Baxter eq~ation for the matrix R. 

Following Note 3.3, using (5.9), (5.10) (quantum plane relations] and then (5.11) 
and (5.12), a generic element of IU can be written as r/ai where ai E Uq,r(so(N)) 
and 'T}i are the ordered monomials: 'T}i = (L- 0

0
)io(L-1

0
)i 1 ••• (L-~)iN with io E Z, 

it, ... iN E N U {0}. Therefore IU is a right Uq,r(so(N))-module generated by the 
ordered monomials 'T}i. We now show that as in the classical case the expressions 'T}i ai 
are unique: 'T}iai = 0::::} ai = 0 'v' i, i.e. that IU is a free right Uq,r(so(N))-module. 
To prove this assertion we show that, at least when qao = r 'v'a, IU is a bicovariant 
bimodule over Uq,r(so(N)). Since any bicovariant bimodule is free2 (14] we then 
deduce that, as a right module, IU is freely generated by the 'T}i. 

Theorem 5.3 Consider IU (with the parameter restriction qao = r 'v'a) as the 
right Uq,r(so(N))-module r = {rJiai} [ai E Uq,r(so(N))] generated by the ordered 

. 1 i (L-o )io (L-1 )i1 (L-N )iN 'th . E Z . . E N U {0} monom1a s 'T} = 0 0 ••• 0 WI Zo , Zt, ... ZN · . 

a) r is a bimodule with the left module structure trivially inherited from the algebra 
IU. 

b) r is a right covariant bimodule with right coaction 0 R : r -+ r ® Uq,r (so( N)) 
defined by 

c) r is a left covariant bimodule with left coaction 0£ 
defined by 

(5.13) 

r -+ Uq,r(so(N)) ® r 

oL(L-oo)=c:®L-oo; oL(L-ao)=L-ab0L-bo (5.14) 

0£( aL-a 
0
L -{3 

0 
... L -'Y 

0
b) = fl'( a )oL( L-a 

0
)0L( L -{3 

0
) ••• 0£( L -'Y 

0
)fl'(b) (5.15) 

where a= (o, a), f3 = (o, b), 1 = (o, c). 

d) r is a bicovariant bimodule 

(5.16) 

e) r is freely generated by'the right invariant elements 'T}i . 

Proof: 
a) is immediate since, from Note 5.3 and Lemma 4.2, Uq,r((so(N)) is a subalgebra 
of IU. 

2The results of (14] apply to a general Hopf algebra with invertible antipode. This can be 
shown by checking that all the ,formulae used to derive the results of (14] -they are collected in 
the appendix of (14]- hold also in the general case of a Hopf algebra with invertible antipode. 
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b) Consider the linear map Or: IU--+ IU 0 IU defined by 

(5.17) 

and extended multiplicatively on all IU. This map is obviously well defined on 
.. Uq,r(so(N)) because it coincides with the coproduct on Uq,r(so(N)) [Uq,r(so(N)) is 

a Hopf subalgebra of IU]; it is also well defined on all IU since it is multiplicative 
and compatible with (5.9)-(5.12). We check for example (5.12) with qao = r 'Va: 

Or(L-aoL±b d)= L-a OL±b c0L±c d = (R±)baejL-e CL-fo0L±c d = or((R±)baefL±e d£-Io). 

This shows that OR : r--+ r 0 Uq,r(so(N)) is well defined since r is IU seen as a 
Uq,r(so(N))-bimodule and the actions of Or and OR on r coincide. 

It is now immediate to show that r is a right covariant bimodule, i.e. that 

c) We proceed as in the previous case, defining the linear map Oz : IU--+ IU 0 IU, 

Oz(L-a 
0

) = L-\0L-b 
0

; .Oz(L-o 
0

) = L-o 
0
0L-o 

0
; Oz(a) = Ll'(a) \Ia E Uq,r(so(N)) 

(5.19) 
which is extended multiplicatively on all IU. As was the case for Or, it is well 
defined on Uq,r(so(N)) and it is also well defined on all IU because it is multi
plicative and compatible with (5.9)-(5.12). For example, the compatibility of Oz 
with relation (5.10) holds because P(leJL-f dL-e c = L-b 1L-a ep~fcd [a consequence 

of (R)±1 L~ Lt = L~ Lt(k)±1 and the fact that PA is a polynomial in R and fl-l, 
see (2.9)]. This is in complete analogy with the compatibility of the left coaction 
o(xa) = yab® xb with the q-plane commutation relations. 

To prove that r is a left covariant bimodule, notice that 

(c0id)oz(L-a
0

) =L-ao, (Ll'0id)oz(L-\) = L-ad0L-db0L-bo = (id00t)Oz(L-ao), 
(5.20) 

and similarly for L -o o. Now since Oz (a) = Ll' (a) if a E Ur (so( N)), and since Ot is 
multiplicative, we have on all IU 

(c 0 id)oz = id; (L:l' 0 id)oz = (id 0 oz)Oz 

d) The bicovariance condition (5.16) follows directly from: 

(id 0 Or )Ot(L -a 
0

) = L-\ 0 L-b 
0 

0 c = (oz 0 id)or(L-a 
0

) 

(id 0 or)ot(L-o o) = c 0 L-o o 0 c = (ot0 id)or(L-o 0 ) 

(5.21) 

(5.22) 

(5.23) 

e) We now recall that a bicovariant bimodule is always freely generated by a basis 
of finv, the space of right invariant elements of r [14]. We also know that the r/ are 
right invariant. Now, since they generate r, they linearly span finv, and since they 
are linearly independent , they form a basis of finv· We conclude that r is freely 
generated by the r( r/ai = 0 =? ai = 0 'Vi. ODD 
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It is now easy to prove that the 'f/i freely generate IU also without the restriction 
qao = r Va. [Hint: recall the definition of L- as: L -A8 (c) = RJ:F)-\TAB ®c) V c E 
SOq,r(N +2), and use FE U0 ®U0 to show that L-AB differs from the uniparametric 
L-AB (obtained with R instead ofR(-1)) by a fac~or belonging to U0 and invertible.] 

Duality Uq,r(iso(N)) +-+ ISOq,r(N) 

We now show that IU is dually paired to SOq,r(N + 2). This is the fundamental 
step allowing to interpret IU as the algebra of regular functionals on ISOq,r(N). 

Theorem 5.4 IU annihilates H, that is IU ~ Hl... 
Proof: Let£ and I be generic generators of IU and H respectively. As discussed 
in Note 5.1, £(1) = 0. A generic element of the ideal is given by alb where sum of 
polynomials is understood; we have (using Sweedler's notation for the coproduct): 
£(alb) = £(1)(a)£(2)(1)£(3)(b) = 0 because £(2)(1) = 0. Indeed £(2) is still a 
generator of IU since IU is a sub-coalgebra of Uq,r(so(N + 2)). Thus .C(H) = 0. 
Recalling that a product of functionals annihilating H still annihilates the co-ideal 
H, we also have IU(H) = 0. DOD 

In virtue of Theorem 5.4 the following bracket is well defined: 

Definition ( , ) : IU ® ISOq,r(N) ---+ C 

(a', P(a))- a'(a) Va' E IU, Va E SOq,r(N + 2) (5.24) 

where P : SOq,r(N + 2) --+ SOq,r(N + 2)/ H = I SOq,r(N) is the canonical projec
tion, which is· surjective. The bracket is well defined because two generic counter
images of P(a) differ by an addend belonging to H. 

Note that when we use the bracket ( , ), a' is seen as an element of IU , while 
in the expression a'( a), a' is seen as an element of Uq,r(so(N +2)) (vanishing on H). 

Theorem 5.5 The bracket (5.24) defines a pairing between IU and ISOq,r(N) : 
Va',b' E IU, VP(a), P(b) E ISOq,r(N) 

(a'b',P(a)) =(a'® b', ~(P(a))) 
(a', P(a)P(b)) =(~'(a'), P(a) ® P(b)) 

(K'(a'), P(a)) =(a', K(P(a))) 

(I, P(a)) = c:(P(a)) ; (a', P(I)) = c:'(a') 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

Proof: The proof is easy since IU is a Hopf subalgebra of Uq,r(so(N + 2)) and P 
is compatible with the structures and costructures of SOq,r(N + 2) and ISOq,r(N). 
Indeed we have 

(a', P(a)P(b)) =(a', P(ab)) = a'(ab) =~'(a')( a® b)= (~'(a'), P(a) ® P(b)) 

(a'b', P(a)) = a'b'(a) = (a'®b')~N'+2 (a) = (a'®b', (P®P)~N+2 (a)) = (a'®b', ~(P(a))) 
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(K'(a'), P(a)) = K1(a')(a) = a1(KN+2(a)) =(a', P(KN+2(a))) = (a', K(P(a))) 
ODD 

We now recall that IU and I SOq,r(N), besides being dually paired, are free right 
modules respectively on Uq,r(so(N)) and on Sbq,r(N). They are freely generated 

·by the two isomorphic sets of the ordered monomials in L -o 
0

, L-a 
0 

and u, xa., 
respectively [cf. the commutations (5.9), (5.10) and (3.20), (3.16)]. We can then 
call IU the universal enveloping algebra of ISOq,r(N) 

Uq,r(iso(N)) - IU (5.29) 

in the same way Ur(so(N)) is the universal enveloping algebra of SOr(N) [1]. 

Note 5.5: Given a *-structure on ISOq,r(N), the duality I SOq,r(N) H Uq,r(iso(N)) 
induces a *-structure on Uq,r ( iso( N)). If in particular the *-conjugation on I SOq,r ( N) 
is found by projecting a *-conjugation on SOq,r( N + 2), then the induced * on 
Uq,r(iso(N)) is simply the restriction to Uq,r(iso(N)) of the* on Uq,r(so(N + 2)). 
This is the case for the *'"structures that lead to the real forms I SOq,r( N, R) and 
ISOq,r(n + 1,n -1) and in particular to the quantum Poincare group [12, 3, 6]. 

6 Projected differential calculus 

In the previous sections we have found the inhomogeneous quantum group I SOq,r(N) 
by means of a projection from SOq,r(N +2). Dually, its universal enveloping algebra 
is a given Hopf subalgebra of Uq,r(so(N +2)). Using the same techniques differential 
calculi on ISOq,r(N) can be found. -

Projecting Woronowicz ideal 

Following Woronowicz [14], we recall that a bicovariant differential calculus over 
a generic Hopf algebra A is determined by a right ideal R of A. This ideal has 
to be included in ker.s (i.e. its elements have vanishing counit) and must be ad
invariant that is, adA(r) E R 0 A Vr E R where adA(r) is defined by adA(a) = 
a2 0 KA(a1)a3 Va E A ; the index A denotes the costructures in A and we have 
used Sweedler's notation for the coproduct. For any such R one can construct a 
bicovariant differential calculus. In the following we show that , given a quotient 
Hopf algebra A/ H (with canonical projection P : A -+ A/ H = P(A)), P(R) is 
a right ad-invariant ideal in P(A); therefore it defines a bicovariant differential 
calculus at the projected level. Moreover the space of tangent vectors on P(A) is 
easily found as a subspace of the tangent vectors on A. The explicit construction 
of the ~xterior differential d, and of the bicovariant bimodule r of one-forms is then 
straightforward. 

Theorem 6.1 If R E ker.s is a right ad-invariant ideal of A then P( R) is inCluded 
in ker.s and is a right ad-invariant ideal of P(A). 
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Proof: The only nontrivial part is ad-invariance. From adA(r) = r2 0 ,..;A(rt)r3 E 
R 0 A 'Vr E R, applying P 0 P we obtain P(r2) 0 P(,..;A(rt))P(r3) E P(R) 0 P(A) 
'VP(r) E P(R). Now 

P(r2)0P(,..;A(rt))P(r3) = P(r2)0,..;(P(ri))P(r3) -= P(r)20,..;(P(rh)P(rh = ad(P(r)) 
(6.1) 

where we have used compatibility of the projection with the costructures of A 
and P(A); ,..; denotes the antipode in P(A) and, after the second equality, the 
Coproduct of P(A) is understood. Relation (6.1) gives the ad-invariance of P(R): 
'VP(r) E P(R) ad(P(r)) E P(R) 0 P(A). ODD 

The space of tangent vectors on a quantum group P(A) is given by [14]: 

T {x: P(A) -t c I X linear functionals, x(I) = 0 and x(P(R)) = 0} . (6.2) 

Remark: the vector space T defined in (6.2) is given by all and only those functionals 
:X corresponding to elements x of the tangent space TA on A that annihilate the 
Hopf ideal H. Indeed if x annihilates H, then :X defined by :X : A/ H --+ C with 
x(P(a)) = x(a), 'VP(a) E P(A) is a well defined functional on P(A) [see (5.24)]. 
From x(R) = 0 we Qbtain x(P(R)) = 0 i.e. :X E T. Viceversa a functional :X E Tis 
trivially extended to a functional x ETA. · 

Recall [14, 17] that the deformed Lie bracket is given by [Xi, Xi]( a) = (Xi 0 
Xi)adA(a) where Xi, Xi are functionals on A. For the "projected" q-Lie algebra we 
have: 

Theorem 6.2 The q-Lie algebra on P(A) is a closed subset of the q-Lie algebra 
on A. 
Proof: Let Xi(H) = Xi(H) = 0. We have, using (6.1) in the second equality-

[:Xi, Xi](P(a)) = (:Xi0Xi)ad(P(a)) = Xi0Xi(P0P)adA(a) = (Xi0Xj)adA(a) =[Xi, Xi](a) 

in particular [:Xi, :Xi](P(R)) = [Xi, Xi](R) = 0 and this proves the theorem. ODD 

In virtue of Theorem 6.2 the following corollary is easily proved. 

Corollary Consider the structure constants Ci/ defined by [Xi, Xi] = Ci/Xk, 
where {Xi} will henceforth denote a basis of TA containing the maximum number of 
tangent vectors vanishing on H. The subset of the structure constants correspond
ing to the functionals Xi that annihilate H is the set of all the structure constants 
of P(A). ODD 

The exterior differential related to this projected calculus is given by: 

'Va E P(A) · da =(Xi* a)d (6.3) 

where Xi* a- (id 0 Xi)~a, and wi are the one-forms dual to the tangent vectors Xi 
(14, 18]; they freely generate the left module of one-forms r = {aiwi, ai E P(A)}. 
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The right ~odule structure is given by the Pi functionals, obtained applying the 
coproduct 6.' to the Xi= 

(6.4) 

The spacer of one-forms on P(A) can be studied by projecting the one-forms on A 
into one-forms on P(A). For this we introduce the projection P acting on r A (the 
space of one-forms on A) as follows: 

Definition p rA --t r 
aiwi t---7 P ( ai )1;;i 

(6.5) 

(6.6) 

where wi = 0 if Xi(H) =/= 0. We now show that P is a bicovariant bimodule 
epimorphism and that it is compatible with the differential calculi. Trivially P 
is a left module epimorphism because fA and f are free left modules generated 
respectively by the one-forms {wi} and {wi}. It is also easy to see [use (6.4)] 
that Yp E fA , Ya E A P(pa) = P(p)P(a), which shows that P is a bimodule 
epimorphism. 

To prove that P is compatible with the exterior differentials dA on A and d 
on P(A), consider the generic one-form a dAb = a(Xi * b)wi [see (6.3)]; we have 
P(a dAb)=P(a)P(xi * b)wi=P(a)[xi * P(b)]wi =P(a)dP(b). 

Since the exterior differential d induces the comodule structure on r by the 
definitions: 

Ya,b E P(A) 
6.L(adb) = 6.(a)(id 0 d)6.(b) , 
6.R(adb) = 6.(a)(d 0 id)6.(b) , (6.7} 

Finally Pis a comodule homomorphism: 6.L(P(p)) = (P 0 P)6.LA(P); 6.R(P(p)) = 
(P 0 P)6.RA(p), Yp ETA where 6.LA (6.RA) is the left (right) coaction of A. 

From ~Awi = I 0 wi and 6.RAWi = wi 0 M/, where M/ defines the adjoint 
representation on A, we obtain an explicit expression for /j.L and 6.R: 

(6.8) 

Application: ISOq,r(N) differential calculi 

We now apply the above discussion to the quantum groups A = SOq,r(N + 2) 
and P(A) = I SOq,r(N). The adjoint representation for SOq,r(N + 2) is given by 

(6.9) 

and the x functionals explicitly read 

(6.10) 
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see [15] and references therein (see also [16]). Decomposing the indices we find: 

a . 1 [J. ca /)a ] X b = r _ r_1 c b- be: 

Xa
0 

= 1 ·J. ca 
r- r-1 c o 

• 1 f. •• 
X b = _1 • b r-r 

X
0
o = 

1 
-1 [fo 

00 
o- c:] 

r-r 

x·o = 
1 f. •• 

r- r-1 • o 

x·. = r -1r-1 [f •••• - c:] 

terms annihilating H 

1 + -1 f. •a b r-r 
(6.11) 

, 1 J. •a + -1 • 0 r-r 
(6.12) 

+ 
1 

-1 [f/0 
b + f:o b] 

r-r 
(6.13) 

1 J. •a + r-1 • • r-
(6.14) 

(6.15) 

1 + -1 [fc coo + f. eo oJ 
r-r 

(6.16) 

1 
+ r- r-1f• •o.• (6.17) 

(6.18) 

(6.19) 

where using Theorem 5.4 and Note 5.1 we have indicated the terms that do and do 
not annihilate the Hopf ideal H. We see that only three of these functionals, namely 
x•b, x•o and x•., do vanish on H. The resulting bicovariant differential calculus 
contains dilatations and translations, but does not contain the tangent vectors of 
S09,r(N), i.e. the functionals Xab· The differential related to this calculus is given 
by 

Va E IS09,r(N) da = (x\ * a)w.b + (x·. * a)w: + (x•o * a)w.O (6;20) 

where w.b, w •• and w. 0 are the one-forms dual to the tangent vectors x\, x·o and x-. [14, 18] (with abuse of notation, we omit the bar over the elements of the 
projected calculus). The q-Lie algebra is explicitly given by3 

Pab • • 0 q.a A cdX bX a = 

A combination of the above relations yields: 
N 

• \ • • \ -r2 1 • cdb • 
X 0 + AX oX • = A 2 N -x b X d 

r + r qd• 

3We thank A. Scarfonefor the derivation of (6.24). 
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(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 



Notice the similar structure of eq.s (3.23), ( 4.23) and (6.25). 

The bicovariant bimodule of one-forms is characterized by the functionals 

f. oe J. ae J. •• J. a• J. •• J. •• 
e. O' eO' eO' e b' e b' e .• (6.26) 

that appear in the comultiplication of x·b, x·o and x-. [use upper (lower) triangu"' 
larity of£+ (£-)],and by the elements 

(6.27) 

that, according to (6.9) and (6.8), characterize the right coaction of ISOq,r(N) on 
w. b, w. • and w. 0 • They explicitly read 

P(M•o• d)= 0 
P(M•b. d)= vr;,(Tdb) 
P( M•./) = vr;,( xd) 

P(M•o. •) = 0 
P(M•b:) = 0 
P(M•.:) =I 

(6.28) 
Notice that only the couples of indices (•o), (•b) and (••) appear in (6.20)-(6.28): 
these are therefore- the only indices involved in the projected differential calculus 
on ISOq,r(N). 

The functionals xa b cannot be good tangent vectors on IS 0 q,r ( N) b~cause of the 
functionals f. •a b appearing in (6.11): these do not annihilate H. We see however 
that limr-+1 r-~- 1 J:a b(a) = 0 Va E SOq,r(N + 2) ; for this reason we consider 
in the following the particular multiparametric deformations called "minimal defor
mations" (twistings), corresponding to r = 1. 

As shown in ·[16] in the r -+ 1 limit the x functionals are given by: 

A · . 1 [ AA ) X A = hm \ fA A - £ r-+1 1\ 
XAA' = 0 

A · 1 AA 
X B = hm \ fA B' A > B r-+1 1\ 

A · 1 BA 
X B = hm\ fB B' r-+1 1\ 

. where A r- r-1, and close on the q-Lie algebra 

Not all of these functionals are linearly independent because: 

B' A 
X A' = -qAB X B • 

A<B 

(6.29) 

(6.30) 

From (6.30) we see that a basis of tangent vectors on SOq,r=1(N + 2) is given by 

{XAB, with A+B > N +'1, A,B: 0 = o,1,2, ... ,N,N + 1 = •}. (6.31) 
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They define a bicovariant differential calculus on SOq,r=l (N + 2). The projected hi
covariant calculus on I SOq,r=l ( N) is therefore characterized by the basis of tangent 
vectors 

a l" 1 [ f ca 1;a ] X b = lm \ Jc b- ubc ' 
r-tl A 

wi_th a + b > N + 1 ; 

• 1" 1 f •• • 1" 1 [ f •• ] X b = 1m \ J • b ; X • = 1m \ J • • - c; , 
r-tl A r-tl A 

(6.32) 

(6.33) 

indeed Theorem 5.4 assures that these functionals annihilate H, while from Note 
5.1 it is not difficult to see that the remaining functionals xa • . t f. •a • do not 
vanish on H. The q-Lie algebra, in virtue of Th~orem 6.2, is a q-Lie subalgebra of 
SOq,r=!(N + 2) . It follows that the xc~2 , ib

2 
q-commutations read as in eq. (6.29) 

with lower case indices: they give the SOq,r=I(N) q-Lie algebra. The remaining 
commutations are [see (6.29)]: 

(6.34) 

(6.35) 

(6.36) 

where we have defined Xa = x•a . The exterior differential reads, Va E ISOq,r(N) 

(6.37) 

where nab, n.b, and n.· are the one-forms dual to the tangent vectors (6.32) and 
(6.33). Notice that the tangent vectors Xab and Xb close on the q-Lie algebra (6.34), 
(6.35) and (6.29) with lower case indices. This suggests a reduction of the hi
covariant calculus containing only the x\ and x\ tangent vectors. An explicit 
formulation, in agreement with [3], is given in [16]. 
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