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Abstract 

We present a class of supersymmetric models in which flavor symmetries 

are broken dynamically, by a set of composite flavon fields. .The strong 

dynamics that is responsible for confinement in the flavor sector also drives 

flavor symmetry breaking vacuum expectation values, as a consequence of 

a quantum-deformed moduli space. Yukawa couplings result as a power 

series in the ratio of the confinement to Planck scale, and the fermion 

mass hierarchy depends on the differing number of preons in different flavor 

symmetry-breaking operators. We present viable non-Abelian and Abelian 

flavor models that incorporate this mechanism. 
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1 Introduction 

Symmetry is a powerful tool for understanding the physical world, even when 

the symmetry in question is known to be broken. However, many candidate 

fundamental theories are incomplete, or flawed, because we do not know how 

their symmetries are broken - the origin of symmetry breaking is perhaps the 

greatest gap in our understanding of nature. 

The spontaneous breaking of approximate light-quark flavor symmetries in 

QCD, leading to light pions and kaons, is the only case in nature where we know 

the underlying theory of symmetry breaking [1]. The origin of SU(2)LxU(1)y 

electroweak symmetry breaking, leading to theW and Z masses, and of the U(3) 5 

flavor symmetry breaking, leading to the quark and lepton masses, is unknown. 

There are only a few candidate field theory mechanisms for such symmetry break

ings. Symmetries are apparently easily broken by the vacuum expectation values 

of elementary scalar fields [2], but this alone is unsatisfactory, as it does not pro

vide an understanding for the mass scale of the associated symmetry breaking. 

Without such information, we do not have an understanding of the basic mass 

scales of nature. 

The only known way to generate symmetry breaking mass scales in quantum 

field theory is by dimensional transmutation, frequently, but not always, involving 

strongly interacting dynamics. Examples of such dynamical symmetry breaking 

are provided by QCD, and by theories of dynamical supersymmetry breaking. 

In supersymmetric theories, once soft scalar masses are induced from supersym

metry breaking, gauge and global symmetries may be broken by having further 

interactions which evolve these squared masses negative, thus dynamically gen

erating new symmetry breaking [3]. For example, the large top Yukawa coupling 

has been used to drive the Higgs mass-squared negative, breaking electroweak 

symmetry. Much model building has centered around this two stage breaking of 

symmetries: first supersymmetry is broken to generate the soft squared masses, 

then further, non-gauge interactions give radiative corrections so that the squared 

masses become negative. 

In view of the importance of symmetry breaking, it is striking that certain 

strong supersymmetric gauge interactions necessarily force a direct breaking of 

symmetries [4]. This does not require supersymmetry breaking, nor any other 
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interactions beyond the supersymmetric gauge interactions. t For example, in su

persymmetric QCD with an equal number of flavors and colors, the strong gauge 

interaction forms bound state mesons and baryons, T and B, and induces vevs for 

some of their scalar components. This direct forcing of symmetry breaking offers 

a new avenue for exploring the origins of gauge and flavor symmetry breaking. In 

this paper, we use this strong dynamics to construct realistic theories of flavor. 

In supersymmetric extensions of the standard model, flavor symmetries are in 

general broken by squark and slepton mass matrice::;, m 2 , as well as by Yukawa 

matrices, h, which generate the quark and lepton masses. In this paper we study 

theories where the form of both m 2 and h are governed by some fundamen

tal global flavor symmetry group, Gp, and its breaking pattern. We take the 

preons, p, and the bound states, T and B, of some new strong gauge force to 

transform non-trivially under Gp. The theory contains the most general set of 

interactions which are gauge and G F invariant, both F and D terms, including 

non-renormalizable operators, scaled by inverse powers of the cutoff M*, which 

we take to be the reduced Planck scale Mpzf.JSi:::::::: 2.4 x 1018 GeV. In the fun

damental theory, the scalar mass and Yukawa matrices can be written as field 

dependent polynomials, m 2(p/M*) and h(p/M*), where pis a preon field. At the 

scale A of the new strong force, these matrices become polynomials in the meson 

and baryon fields, 
2- 2 (AT AN-lB) 

m -m M2' MN 
* * 

(
AT AN-lB) 

h- h M2' MN ' 
. * * 

(1.1) 

(1.2) 

where N is the number of preons in a baryon. The new strong force constrains 

T and B to acquire vevs ~o that these fields become flavon fields, spontaneously 

breaking the flavor group Gp. However, there is a large vacuum degeneracy, so 

that m 2 and h become functions on the moduli space. The main phenomenologi

cal problem is to lift this vacuum degeneracy, so that for a certain choice of T, B 

and Gp, (1.1) and (1.2) give realistic masses. 

In the next section we elaborate on the framework for symmetry breaking 

and solving the vacuum alignment problem. In Sections 3 and 4 we give explicit 

tin certain other theories, symmetry breaking can occur by the combination of supersym

metric gauge interactions and superpotential interactions. These have recently been used to 

study the breaking of grand unified symmetries [5). 
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SU(N) SU(N)p SU(N)p- U(1)B U(1)R 

p 0 0 1 1 0 

p El 1 0 -1 0 

pp 1 0 0 0 0 

PN 1 1 1 N 0 
-N p 1 1 1 -N 0 

Table 1: SU (N) with N flavors. 

realistic theories of flavor, based on non-Abelian and Abelian GF, respectively. 

Our vacuum alignment mechanism results in all non-zero vevs of T and B being 

of order A. The flavor group is broken at a single scale - there is no hierarchy 

of symmetry breaking scales - so that all the small parameters of m 2 and h 

are derived from A/ M*. For example, a term in (1.1) or (1.2) involving ny 

meson fields and nB baryon fields leads to a dimensionless coefficient of size 

(A/ M* )2nr+NnB. The hierarchy of quark and lepton masses arises because of the 

small value of A/M*, because mesons and baryons contain different numbers of 

preens, and because the G F quantum number assignments lead to interactions 

with differing numbers of mesons and baryons. 

2 Framework 

In this section we outline our general approach for breaking flavor symmetries 

dynamically in models with composite flavon fields. We give explicit examples of 

viable models that incorporate this mechanism in the following section. 

The sector of the theory that is responsible for confinement is a supersymmet

ric SU(N) gauge theory with N flavors. The nonanomalous global symmetries'of 

the theory are G =SU(N)pxSU(N)p-xU(1)BxU(l)R, where the first U(1) factor 

is the analog of baryon number in ordinary QCD, and the second U(1) is an R
symmetry. The transformation properties of the preens and their bound states 

under the global symmetri~s G are shown in Table 1. Notice that there are N 2 

meson fields with zero baryon number, transforming as an (N, N) under the two 

global SU (N) groups, and a baryon-antibaryon pair that are singlets under the 

two SU(N)s. 

This confining theory has two features that are particularly relevant to model 
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building. First, an SU(N) gauge theory with N flavors has no dynamically gen

erated superpotential. This follows from the fact that all the preons in Table 1 

have R-charge 0, so that it is not possible to write down an invariant combination 

of the fields that have R-charge 2. Secondly, the vacuum manifold of the theory 

is distorted by quantum mechanical effects so that the origin of field space is 

excluded [4]. Classically, we have the identity 

(2.1) 

which we can rewrite in terms of canonically normalized meson and baryon fields 

as 

detM- AN-2BB = 0. (2.2) 

Quantum mechanically, this relation is modified, and becomes 

detM- AN-2BB =AN . (2.3) 

Notice that there is no symmetry which prevents the right-hand side of Eq. (2.3) 

from becoming nonzero. Furthermore this modified constraint is necessary if 

we are to properly recover the Affieck-Dine-Seiberg superpotential [6] when we 

decouple one flavor, beginning with the SU(N) theory with equal numbers of 

flavors and colors. 

We learn from Eq. (2.3) that some of the meson and baryon fields acquire 

vevs, breaking the original global symmetry G. If the preons transform nontriv

ially under a flavor symmetry group GF, then meson and baryon vevs may break 

the flavor symmetry as well. If we interpret G as an accidental symmetry of the 

sector responsible for confinement, while GF is respected by all the interactions of 

the theory, then some of the mesons and baryons may couple to ordinary matter 

and serve as flavon fields. Yuka'wa couplings may arise via Planck-suppressed op

erators, as described in Section 1, so that the small parameter that characterizes 

flavor symmetry breaking is the ratio of the confinement scale A to the reduced 

Planck mass M*. 

The ambiguity that must now be resolved is the precise set of composites that 

actually acquire vevs. For example, Eq. (2.3) is satisfied by a point in field space 

where the baryons B and B acquire confinement-scale vevs, while the mesons 

remain at the origin. This vacuum would not be particularly useful if we were 

to construct a model in which only the mesons coupled to ordinary matter. In 
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a viable model, we must sufficiently reduce this vacuum degeneracy so that the 

flavor symmetry breaking fields which couple to ordinary matter are forced to get 

vevs. The models that we present in the next section achieve this in two steps: 

First, we introduce additional fields Xj (j = 0, 1, 2, ... ), that couple to the 

preens via nonrenormalizable superpotential interactions. Since the preon fields 

have U(1)R charge 0, we will take the fields X to haveR-charge 2. We impose 

the U(1)R symmetry so that all of the preonic operators involve one of the X 

fieldst. We will assume that X 0 is a singlet under the non-R symmetries shown 

in Table 1, while the remaining Xj transform nontrivially under GF. The X 

fields will be responsible for restricting the moduli space such that the desired 

set of mesons and baryons develop vacuum expectation values when the scalar 

potential is minimized. 

The F-flatness conditions for the X fields significantly reduce the original 

supersymmetric vacuum degeneracy. Consider the superpotential interactions 

for the field X 0 • In the models of interest, these will be of the form 

( 
1 )2N-2 ( A )N [ ] 

Wo = M* M* ~Gj + AN-
2
BB X 0 (2.4) 

where the Gi represent all possible flavor-group invariant combinations of the 

meson fields involving 2N preens. In the models we will consider, these inter

actions will be the ones of lowest order in 1/ M* that are allowed by the flavor 

symmetry. Other interactions, such as direct GF-invariant couplings between the 

baryons and mesons, will arise at higher order, and will be suppressed. Note that 

we have omitted a Planck-scale linear term for X 0 , which can be forbidden by 

imposing an anomalous discrete symmetry, as we will see explicitly in the next 

section. Notice that the F-flatness condition for X 0 together with the quantum

modified constraint (2.3) yield two restrictions on the set of invariants Gi, BB. 

Thus, we have succeeded in reducing the vacuum degeneracy by one degree of 

freedom. The X0 field orients the vacuum so that at least some of the mesons 

have non-vanishing vevs. 

Now we introduce additional fields Xj, that transform nontrivially under the 

twe assume that this symmetry is spontaneously broken in the hidden sector, so that we 

generate gaugino masses, trilinear scalar interactions, etc. 
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flavor group GF. These lead to additional superpotential couplings of the form 

(2.5) 

where the G~ represent all possible baryon and meson interactions with the ap

propriate quantum numbers to couple to Xj. We have absorbed powers of A 

and M* into the definition of the G~ for notational convenience. In a successful 

model, we introduce enough nontrivial constraints in this way such that the flavor 

invariant combinations of the mesons and baryons shown in brackets in Eq. (2.4) 

acquire vevs individually, 

BB rv A2 

G1 rv AN 

G2 rv AN 

etc. (2.6) 

while all the X field vevs vanish. This result should remain valid provided that the 

Kahler metric is positive definite in the region of field space where we have located 

the minimum. Since the Kahler potential is not calculable for field amplitudes of 

the same order as the confinement scale, we take this positivity requirement as 

a mild assumption. Note also that if too many F-flatness constraints are added, 

it is possible that the resulting superpotential may break supersymmetry. This 

would lead to direct, flavor-dependent couplings of fields with large F components 

to ordinary matter, which would not be desirable. In all the models we consider, 

supersymmetry will remain unbroken after the effects of the X fields are taken 

into account. 

Once we have arranged for each gauge invariant combination of the mesons 

and baryons to acquire vevs, we must lift the remaining vacuum degeneracy. 

Notice that given any point in the moduli space defined by ~q. (2.6), we can 

reach another point by transforming the fields under the complexification of the 

flavor group. If we include posit,ive soft supersymmetry-breaking squared masses 

for the the composite flavon fields, the complexified symmetry will be broken, 

and this last flat direction will be lifted. (We justify this procedure below.) To 

make this point concrete, imagine we have a theory with three flavons, </>0 , <f>+ and 

<f>_, where the subscript indicates the charge under some U(l) symmetry. Now 

assume that the moduli space is constrained such that </>5 rv A3 and <Po 4>+4>- rv A3 . 
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The remaining flat direction corresponds to a rescaling of 4>+ and <j>_, which 

is generated by the complexification of the U(l) symmetry. The complexified 

symmetry is explicitly broken by the soft mass terms Vsoft = m;oft( l</>ol 2 + 14>+ 12 + 
1</>-12

), and minimization of the full potential then yields <i>+ "' </>- "' </>0 "' A, as 

desired. 

This last step may be questioned since the form of the soft supersymmetry 

breaking interactions in the confining theory are not determined by any symmetry 

argument. However, we may justify our qualitative result by considering the 

behavior of the theory in the limit of large field amplitudes. Our constraints 

on the gauge-invariant products of the fields Gi rv AN imply that varying any 

moduli field away from A forces some field to acquire a vev greater than A. In 

the limit of large field amplitudes, this corresponds to at least some of the preons 

p acquiring large expectation values as well, p > A. In the same limit we expect 

there will be soft supersymmetry breaking squared masses for the preon fields, so 

Vsoft "'m;oftiPI 2
. Again assuming positive m;oft' the potential grows as we take 

any p larger than A, and we conclude that our previous result is energetically 

favored. This conclusion is consistent with the assumption made in Ref. [7) that 

minimization of a potential that includes soft supersymmetry breaking masses 

for the composite fields should lead to correct qualitative results, even when field 

amplitudes are of the same order as the confinement scale. Therefore, for the 

purpose of calculation, we will assume soft masses for the composite fields, but 

the reader should keep in mind that the results are supported by this more general 

argument. 

Finally, we will make the simplifying assumption that trilinear scalar interac

tions (A-terms) can be neglected in the potential. Any minimum of the potential 

that we find in the absence of A-terms will remain at least a local minimum for 

small but nonvanishing A parameters. This will be sufficient for our purposes. 

We will not attempt to find the explicit conditions implied by vacuum stabil

ity on the possible trilinear scalar interactions in the flavor sector when the A 

parameters are large. 

After taking into account both the F-flatness conditions for the X fields, and 

the effect of soft supersymrnetry-breaking scalar masses, it is often the case that 

the desired co~posite fields will each be forced to acquire a vev of order A. We 

will now present two complete models that successfully incorporate the flavor 

symmetry breaking mechanism described in this section. 
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3 Non-Abelian Model 

The models we present in this and the next section are based on SU(3) supersym

metric QCD with three flavors. The global symmetries of the strong interaction 

are 

G = SU(3)p X SU(3)p X U(1)B X U(1)R (3.1) 

and 

(3.2) 

where GA is the anomalous U(1) symmetry corresponding to axial phase rotations 

on p and p. In each of the models we present, the action of the flavor group Gp 

on the preon fields will be isomorphic to a subgroup .of G x GA. However, one 

should keep in mind that the ordinary fermions will transform under G F even 

though they do not transform under the global symmetries of the confining flavor 

sector. 

The flavor group of the first model is 

GF = SU(2)F x U(1)F x U(1)F' x z2 (3.3) 

The transformation properties of the MSSM superfields (as well as those of the 

composite states discussed later) are shown in Table 2. The lighter two genera

tions of the matter fields (Qi, Ui, and Di, with i = 1, 2) transform as doublets 

under SU(2)F, while the third generation fields (Q3
, U3

, and D3
) are singlets. 

The 2 + 1 representation structure provides a natural degeneracy between squark 

masses of the first and second generations in the flavor symmetric limit [8]. This 

leads to a suppression of flavor changing neutral current effects when the flavor 

symmetries are broken. The remaining group factors, U(l)pxU(1)F', are used to 

obtain realistic Yukawa textures. The fields Qi, Ui, Di, and D3 transform non

trivially under the two flavor U(1) factors, while Q3
, U3 and the ordinary Higgs 

fields are G F invariant. The top quark Yukawa coupling is invariant under the 

flavor symmetry, and hence can be of order one, while the other Yukawa elements 

will be suppressed by the ratios of flavon vevs toM*. 

If we consider the preonic sector alone, the flavor symmetry can be identified 

with a subgroup of G x GA. We first decompose each SU(3) factor into its 

SU(2) xU(1) subgroup: 

SU(3)p X SU(3)p X U(1)B--+ [SU(2) X U(1)]p X [SU(2) X U(1)]p X U(1)B 
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MSSM Fields 

GsM GF 
Qi (0, o, i) (D,-1,2,-) 
Q3 (D, 0, i) (1,0,0,+) 
Ui (El, 1, -~) (D,-1,2,-) 
u3 (El, 1, -~) (1,0,0,+) 
Di (Ei,1,k) (El, -1, 2,-) 
D3 (Ei, 1, ~) (1,2,2,-) 

Composite Fields 

GsM GF 

<Pi (1, 1, 0) (D, 1, -2,-) 

<Pi (1, 1, 0) (D,-2,1,-) 
A (1,1,0) (1,1,1,-) 

sij (1, 1, 0) (DJ,1,1,-) 
(j (1,1,0) (1 -2 -2 -) ' ' ' 
B (1, 1, 0) (1,1,-2,-) 
B (1,1,0) (1,-1,2,+) 

Table 2: The transformation properties of the quarks and the composite states 

under the standard model gauge group GsM =SU(3)cxSU(2)LxU(1)y and the 

flavor symmetry Gp =SU(2)pxU(1)pxU(1)p X z2. Here, i = 1, 2 is the SU(2)F 

index. Note that the Higgs fields H1 and H2 are invariant under GF. 
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The flavor SU(2) is simply the diagonal subgroup of SU(2)p xSU(2)15• The two 

flavor U(1) factors are different linear combinations of U(1)B, U(1)p and U(1)15• 

The charges under the flavor U(1)s are defined by 

and (3.4) 

where Qp and Q:p are the eigenvalues of the T 8 generators of SU(3)p and SU(3):p, 

respectively. 

The quantum numbers of the preons p and p under SU(3)xGp are given by 

p' 
4 2 

(3.5) (D 0 - -- -) 
' '3' 3' 

5 2 
(3.6) p rv (D, 1, -3, -3,-) 

- 1 5 
(3.7) p' rv (D, D, --, -, +) 

3 3 
- 1 4 

(3.8) p rv (D, 1, -3, 3' + ). 

Notice that the Z2 factor is a symmetry under which all the preons are odd and 

all anti-preons are even; this is a discrete subgroup of U(1)AxU(1)B· Once the 

SU(3) gauge group becomes strong at the scale A, the preons form composite 

states: 

Sij rvA-1 (PiPj + pjpi), 

A"' A-1 Eij(PiPj), 

</>i '""A - 1 (PiP), 

~i "' A - 1 (PPi), 

(7 rv A - 1 (pp), 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

where i and j are SU(2)p flavor indices. The composite fields have been given 

canonical mass dimension by including appropriate powers of A - 1 . The trans

formation properties of the composite states under the flavor symmetry are also 

summarized in Table 2. 

Given these quantum number assignments, and our assumption that Planck

scale physics induces all operators that are consistent with the symmetries, some 
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of the composite states above can serve as fiavon fields. The G p-allowed couplings 

that can contribute to the Yukawa matrices are summarized as follows: 

h. ~ ( -:
2 ~;:2 ~2 ) 

h, ~ ( + 1;:2 ~~q ) 

(3.16) 

(3.17) 

We have not shown couplings to ¢1 , since we will always work in a basis where 

the ¢1 vev vanishes. We have also temporarily suppressed the factors of A and 

M* in each entry, which depend on the dimensionality of the original preonic 

interaction. Note that if a composite field above acquires a vev of order A, then 

the size of the corresponding Yuka:wa entry will be (AjM,.)n, where n is the total 

number of preons involved in the preonic higher-dimension operator. To obtain 

a realistic theory we need only lift the vacuum degeneracy such that B, ¢and (j 

are all forced to acquire vevs of order A. There may be many ways to accomplish 

this; below we provide an explicit example. 

Since the confining sector of our model is of the type described in Section 2, 

the moduli space of the composite states is restricted by a quantum-modified 

constraint [4]. The important point is that the origin of field space is excluded, 

so that the flavor symmetries are guaranteed to break. The constraint is realized 

by a dynamically generated Lagrange multiplier term in the superpotential 

Wdyn = 17 [cM3(Eii Acj;;Ji + A2(j + Eii<:klS;kcPiJt 
.. kl - 3] 

+E'JE S;kSjt(j) + CBBABB- A ' (3.18) 

where 17 is the Lagrange multiplier field, and C's are 0(1) coefficients that arise 

from the dynamics of confinement. 

As we described in Section 2, the constraint equation alone leaves us with 

a rather large vacuum degeneracy, and the possibility that we will not obtain a 

viable pattern of flavor symmetry breaking. We will remove most of these fiat 

directions by introducing several X fields, to place additional constraints on the 

composite states. Perhaps the simplest set of X fields is given by 

Xo "' (1,0,0,-) 
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X1 "' (1,1,1,+) 

X2 "' (rn,-1,-1,-), (3.19) 

where we have shown the transformation properties under GF in P<l:rentheses. We 

can now write down the following interaction terms for the preons: 

Wo = ~4 Xo[( EijPiPj )ck1(Pk.P)(ppz) + ( EijPiPj ?(pp) + Eij ck1(PiPk + PkPi)(pjp)(ppz) 
* 

+cikcj1(PiPj + Pj.Pi)(PkPZ + PZPk)(pp) + (cijPiPjP)(ck1PkPz.P)] (3.20) 
1 .. .. 

M2 X 1 [ ( E~J PiPj) (pp) + E13 (PiP) (ppj) l 
* 

ik jzx ( - + - ) 
E E 2,ij PkPI PIPk ' 

(3.21) 

(3.22) 

where we have omitted unknown 0(1) coefficients. Notice that there is no linear 

term in Xo due to the discrete Z2 symmetry. Without this symmetry, the inter

action M: X 0 would also be allowed, and the ·argument presented below would 

break down. Note that the Z2 symmetry has no significant effect on the mass 

matrix textures that we obtain in either of our models. 

After confinement, F-fiatness conditions for the Lagrange multiplier field 'rJ 

and the fields Xj give us the following four equations of motion for composite 

states: 

. . - 2 - 3 
CM3C~J Ac/Yi</Jj + CM3A (j + CBBABB- A = 0, 

C~ct>Jcij Ac/Yi~j + C~2uA2(j + C~13ABB- A3 = 0, 

c;Jcij cPi~j + c~O"A(j =· o, 
Sij = 0. 

(3.23) 

(3.24) 

{3.25) 

(3.26) 

Here the C' a,nd C" are also 0(1) coefficients§. Note that we have dropped the 
" terms which depend on Sij in Eqs.(3.23) - (3.25) by using eq.(3.26). We can 

easily solve eqs.(3.23) - (3.25), and we obtain 

A2r7"' A3, 
. . - 3 

E~J A¢icPj "' A ' 

BE"' A2 

' 

(3.27) 

(3.28) 

(3.29) 

§In writing down the low energy description of the operator X 0 (pppppp]j M,;, we have in

cluded a linear term X 0 A6 /M!. This term can be justified by treating A as a spurion under 

the anomalous axial U(l) symmetry of the dynamical sector, and including the most general 

set of invariant interactions. However, nothing in our analysis changes if such a term is absent. 
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neglecting the possibility of accidental cancellations. 

At this stage, the remaining flat directions correspond to rescaling of the com

posite fields, since only their products are constrained by Eqs. (3.27) - (3.29). 

One might suspect that these flat directions can be lifted by including yet higher 

order corrections to the superpotential. However, this can never be the case be

cause the remaining flat directions are protected by a symmetry that is respected 

by all F-term contributions to the potential in the supersymmetric limit. Since 

our model has an SU(2)FxU(1)FxU(1)p global symmetry, and the superpo

tential is holomorphic in the fields, the actual symmetry of the superpotential 

before supersymmetry breaking is the complexification of the flavor group. Since 

SU(2)xU(1)xU(1) has 5 generators, this symmetry corresponds to 5 complex 

degrees of freedom in the moduli space. We began with 9 meson and 2 baryon 

fields, and imposed 6 F-flatness conditions (for the fields ry, X 0 , X1, and the three 

components of X2 ) leaving 5 complex degrees of freedom. Thus, we have lifted 

all the flat directions that are not protected by the complexified symmetry. 

To lift the flat directions defined by Eqs. (3.27) - (3.29), we include the soft 

supersyr;nmetry-breaking scalar masses for the composite states, 

(3.30) 

with m;oft > 011. We now minimize the potential above subject to the constraints 

(3.27) - (3.29). The qualitative result is easy to understand. We first use the 

SU(2)F symmetry to work in the basis where ¢1 = 0. In this basis, ~2 appears 

in Eq. (3.30), but not in any of the constraints, and is therefore driven to zero. 

The non-vanishing elements (¢2 , ~1 , A, a, B, and B) must all be of O(A), so 

that the constraints (3.27) - (3.29) are satisfied and Vsort rv m;oftA 2 • If any of 

the fields were to-have a vev smaller than A, the constraint equations assure that 

another composite have a vev larger than A, and we would obtain Vsort > m;oftA2
• 

Therefore, up to an SU(2)F rotation, the minimum is at 

¢ ~ u ) , ~ ~ u ) , A ~ u ~ B ~ f3 ~ A, S;; = 0 (3.31) 

This result can be verified by explicit minimization of the potential, taking into 

account all the order one parameters. However, the estimate in Eq. (3.31) will 

be sufficient for our purposes. 

11'Here, we do not assume universal soft supersymmetry-breaking masses. The m;oft in 

Eq. (3.30) is understood to be different for each of the terms shown. 
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The vevs in Eq. (3.31) are exactly what we require to obtain viable textures 

from Eqs. (3.16) and (3.17). If we fix the ratio 

A 
A= M* < 1, (3.32) 

we obtain 

(3.33) 

All the elements in the Yukawa matrices are predicted in terms of one small 
; 

parameter A, up to unknown coefficients of order one. As we will see below, 

Eq. (3.33) results in· a realistic pattern of the quark masses and mixing angles, if 

A "' 0.2 - 0.3, and the unknown 0(1) coefficients are chosen appropriately. 

We will now consider the pattern of quark masses and mixing angles more 

carefully, beginning with the up sector. The largest element in the up quark 

Yukawa matrix is the (3,3) entry, which is of order 1, while the other elements 

are suppressed by powers of A. Thus, hu has an eigenvalue close to one which 

we can identify with the top quark Yukawa coupling. Next, we consider the 2-3 

block, since the remaining elements are much more suppressed. The determinant 

of this block is of 0(A4
) indicating there is an eigenvalue of the same order, which 

we identify as the charm quark Yukawa coupling. The rotation angle involved in 

the diagonalization of this block is 0(A2
), and hence Vcb "' A2 , if the up sector 

gives the dominant contribution. Finally, we see that det hu "' 0(A12 ), which 

implies that the smallest eigenvalue is 0(A8
). We identify this with the up quark 

Yukawa coupling. Thus, in our model we find 

(3.34) 

As far as the mass ~igenvalues and "Vcb are concerned, the result for hu in our model 

works fairly well. The only problem is that the mixing between first and second 

generations, i.e. the Cabibbo angle, is 0(A2
), which is too small if A "'0.2- 0.3. 

(Vub on the other hand would be 0(A4 ), which is acceptable.) Thus, the Cabibbo 

angle should have its origin in the down sector. We will come back to this point 

later. 

We may now analyze hd in the same way. From the 2-3 block, we obtain the 

two larger eigenvalues of hd, which are 0(A2
) and 0(A4

). We identify these as the 

14 



Yukawa coupling of the bottom and strange quarks, respectively. Notice that, 

with the choice of tan ,8 ,....., 2, we obtain the correct value of the ratio of mb/mt. 

The 2-3 mixing angle is again 0(>.2
), and is consistent with the value of Vcb for 

.\ ,....., 0.2- 0.3. Finally, we must evaluate the down quark Yukawa coupling as well 

as the 1-2 mixing. Our results in Eq. (3.33) imply naively that the down quark 

Yukawa coupling is of 0(.\8
) and the the 1-2 mixing angle of 0(.\2), both of'which 

are too small to be consistent with observation. To fix this problem, we must 

take into account the possible fluctuations of the unknown order one coefficients. 

If we allow the couplings giving the (1,2) and (2,1) elements of Eq. (3.17) to 

be enhanced by a factor of 1/ v0: ,....., 2, and tlie (2,2) and (3,2) elements to be 

suppressed by the same amount, we will obtain a Cabibbo angle of 0(.\), and a 

down quark coupling (.\6 v0:). Note that the predicted ratio md/mb ,....., .\4 VA is 

consistent with recent lattice estimates of the down quark mass [9]. 

With this choice for the 0(1) coefficients, the Yukawa matrix elements are 

given more accurately by 

(3.35) 

We will diagonalize the results shown in Eq. (3.35) when we need to evaluate a 

squark mass matrix in the quark mass eigenstate basis. 

Finally, we present the textures for the squark mass matrices. The soft 

supersymmetry-breaking masses originate from D-terms interactions, which are 

not required to be holomorphic functions of the fl.avon fields. For example, the 

leading contributions to the left-handed squark masses are given by the operators 

VQQ• ,....., m2 [eolQ112 + eo1C?I 2 + c3IQ3l2 

A2 __ -· A_2 _ -· _ -· 

+ M4 ( <PiQZ)( </YjQJ)* + M4 ( <PiQZ)( </YjQJ)* 
* * 

A2 
·-· k-1 A2 

-·-· -k-1 + M 4 (Eij<P*zQ3)(tkl¢* Q )* + M 4 (Eij</Y* 2Q3)(tkl¢* Q )* 
* * . 

+ ~:0 { ( <PiQi)( Ejk¢*J Qk)* B*2 + h.c.} 
* 

As { . -k -3 -* } + MB (Eij</Y*3Q )Q *BE + h.c. 
* 
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(3.36) 

where m is the typical scale of the squark masses. We have only shown order 

one coefficients explicitly in the flavor-invariant terms ( c0 and c3 ) to remind the 

reader that the first two generation scalars are degenerate in the flavor symmetric 

limit, while the third generation scalar is unconstrained. After flavor symm~try 

breaking, the operators above lead to the texture 

(3.37) 

where the powers of ,\ indicate the correction to the flavor invariant resuit with 

0 ( 1) coefficients suppressed. It is straightforward to repeat this analysis for the 

right-handed squarks, and we obtain 

(do+ A' 
vo 

A' ) (Jft;J ~R "' m 2 vo c~ + ,\4 ,\2 

,\8 _.\2 c' 3 

(3.38) 

and 

( c'~ +A' ,\10 AlO ) 
(MJ)~R"' m2 .A1o c~ + ,\4 ,\4 . 

,\10 ,\4 c" 3 

(3.39) 

We may now consider the bounds from flavor changing neutral current pro

cesses. We define the parameters 

(8fj)xx = I(M;)xX,iil/m2 (X= L, R), 

bfj- {(8fj)LL(8{j)RRP 12 , 

(3.40) 

(3.41) 

where q = u, d. Note that the absence of the superscript 0 above M indicates that 

the scalar mass matrices are to be evaluated in the quark mass eigenstate basis. 

The 8 parameters corresponding to 1-2 and 1-3 scalar mass matrix elements are 

constrained by neutral pseudoscalar meson mixing to be less than 10-1 - 10-3 , 

depending on the superparticle mass spectrum. Typical upper bounds are given 

in Table 3. 
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( 8f2)LL ( 8f3)LL ( 8f2)LL 
Exp. upper bound 4.0 X 10-2 9.8 X 10-2 1.0 X 10-1 

Prediction of the model ).5 ).3 ).6 

"-' 5.2 X 10-4 "-' 1.1 X 10-2 "-' 1.1 X 10-4 

( 8f2)RR ( 8f3)RR ( 8f2)RR 
Exp. upper bound 4.0 X 10-2 9.8 X 10-2 1.0 X 10-1 

Prediction of the model ((- 1)).2 ((- 1)>.3/2 ).6 

"-' 1.5 X 10-2 "-' 3.1 X 10-2 "-' 1.1 X 10-4 

6~2 6~3 F;2 

Exp. upper bound 2.8 X 10-3 1.8 X 10-2 1.7 X 10-2 

Prediction of the model J(=1>,7/2 J(=1>,9/4 ).6 

"-' 2.7 X 10-3 
rv 1.8 X 10-2 

rv 1.1 X 10-4 

-q 
Table 3: Upper bounds on (8{j)LL,RR and 8ij [10]. Here, we take all the squark 

and gluino masses to be 500 Ge V. For comparison, we also show the prediction 

of our model with ). = 0.22 and ( = c~j c~ = 1.3. 

We see that the off-diagonal elements are small enough to satisfy the exper

imental constraints, with the parameter ( = c~j c~ = 1.3. This ratio is not con

strained by the flavor symmetry, and must be mildly adjusted (at the 30% level) 

because of the large right-handed 2-3 mixing angle in the down quark Yukawa 

matrix. This tuning is so mild, we will not let it concern us further. However, 

one should keep in mind that ( may be naturally close to one if the model is 

embedded into a larger non-Abelian flavor group at a high scale. Finally, we note 

that the constraint on 2-3 mixing from b --t S/ is very weak; ( 8g3)LL,RR "' 0(1) 

is allowed [10]. We conclude that the non-Abelian model presented in this sec

tion is consistent with the flavor changing neutral current constraints. Note that 

the model can be extended trivially to the lepton sector by choosing the lepton 

transformation properties to be identical to those of the down quarks. Then 

the differences between the down quark and lepton masses can be explained by 

fluctuations in the order one coefficients. 
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4 Abelian Model· 

We have seen that it is possible to construct models with non-Abelian flavor 

group factors in which flavor symmetries are broken via the dynamics of confine

ment. Non-Abelian theories greatly alleviate the supersymmetric flavor-changing 

problem by imposing a natural degeneracy between the first two generation scalar 

masses in the flavor symmetric limit. In this section, we show that models based 

on Abelian flavor symmetries can also incorporate om mechanism. Such models 

solve the supersymmetric flavor problem by arranging an alignment of the quark 

and squark mass matrices, so that the squark masses are nearly diagonal in the 

quark mass eigenstate basis. The alignment is strongest in the down quark sec

tor, where the phenomenological constraints are most powerful, and the Cabibbo 

angle originates in the up quark sector. In this section, we will not present 

an exhaustive phenomenological analysis, but simply show that our symmetry

breaking mechanism can be combined with the prototypical alignment models of 

Nir and Seiberg [11]. 

The important feature of the models of Ref. [11], as well as similar models in 

Ref. [12], is the presence of two ±lavon fields, that transform under two indepen

dent U(1) flavor symmetries: 51 ( -1, 0) and 52 (0, -1). These fields are assumed 

to acquire vevs 

and ( 4.1) 

Two models using these flavons are presented in Ref. [11] (models A and B) which 

differ only in the flavor quantum number assignments of the matter fields. We 

will explicitly consider model A below. 

The most elegant way of embedding this flavor sector into the SU(3) theory 

described in the previous section is to choose 51 to be one of the meson fields, 

and 52 to be one of the baryons. Since the baryon 52 has one additional preon, 

its symmetry breaking effect will be suppressed relative to the meson 51 by one 

factor of A/M*. If we again choose this ratio to be the Cabibbo angle .\, we 

account for Eq. (4.1) in a natural way. The two U(1) factors can be taken such 

that 

QI = .J3Qp 

Qn = -Qs 
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where the charges Qp and Q B are defined as in the previous section. We can then 

make the identification 

51(-1,0) = (J 

52(0, -1) = B (4.3) 

The remaining composites 5, A, </J, J and lJ, also have flavor quantum numbers, 

and may alter the Yukawa matrices slightly from the form presented in Ref. [11]. 
However, we will now show that the quark-squark alignment remains unaffected. 

We will assume that the flavor SU(2) of the previous section is a good flavor 

symmetry (even though the matter fields are SU(2) singlets). Since the matter 

fields will have integral charges under the two U (1) factors, the lowest order 

combinations of the remaining composites that can contribute to the Yukawa 

textures are: 

( 4.4) 

Note that we have neglected terms involving 5 which does not acquire a vev at 

lowest order. The combination (<P¢) 2
,....., (-1,0) couples in the same way as 5 1 , 

., 

but is of higher order in 1/M* and can also be neglected. In model A, the matter 

fields are assigned charges 

QI(3,-1,+) Q2(1,0,-) Q3(0,0,+) 

UI(-3,3,+) U2(-1,1,+) U3(0,0,+) 

D1( -3, 3, +) D2(1, 0,-) D3(1, 0,-) (4.5) 

where the third entry is the charge under our anomalous Z2 factor, defined in the 

previous section. The original textures for Model A in Ref. [11) 

('' ,, 0 ) u 0 

~) hu ,....., ; E: E1 hd,....., E2 ( 4.6) 1 

0 0 1 EI E1 

become 

( <l 
E2 ,f,, ) ( ,, 7 ,; ,, ) 1 

hd ,....., Ei:~ 
E1 E2 

hu,....., E{E~ E2 E1 E2 E2 (4.7) 1 1 

E9E3 5 1 E9E3 E1 E1 1 2 E1 E2 1 2 
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The scalar mass matrices are not holomorphic functions of the flavon fields, so 

their textures remain unchanged: 

-( ,t,, 
2 3 

) ( ,,1,, 
€2€2 ,3,3) 

CMi)£L €1€2 €1 E2 
(M~YkR 1 2 1 2 

1 €1 rv 1 E1E2 
ffi2 ffi2 1 2 

€1 1 €3€3 E1E2 1 €1 E2 - 1 2 

(kfJ)~R ( 
1 €4€3 ,.,3 ) 1 2 1 2 

€4€3 1 1 (4.8) 
ffi2 1 2 

€4€3 1 1 1 2 

If we now go to the quark mass eigenstate basis, all the rotations on the left

handed quark fields that are induced by the additional entries in Eq. ( 4. 7) do not 

alter the order of magnitude of any off-diagonal squark mass matrix elements. 

Only the 1-2 rotation in the right-handed down sector is large enough to change 

the (1,2) entry of (MJ)RR from t:{E~ to t:it:~ ,....., 10-9 . The bound on this entry 

from flavor changing neutral currents is of order 10-2
, and is still easily satisfied 

in the modified model. 

Thus, the presence of additional flavons implied by our symmetry-breaking 

mechanism does not disturb the quark-squark alignment. One can easily verify 

that the same is true for Model B of Ref. [11) as well. 

5 Conclusions 

Supersymmetric theories have two sets of small dimensionless flavor parameters: 

one describes the quark and lepton mass ratios and mixing angles, while the 

other describes squark and slepton non-degeneracies and mixings, which are con

strained from flavor-changing processes. We have described a general framework 

of theories with a flavor symmetry, and given two explicit realistic models, where 

• Flavor symmetry breaking is forced by strong supersymmetric gauge inter

actions. 

• All non-zero vevs have a magnitude of order the A parameter of the new 

strong gauge force. All flavor symmetry breaking occurs at a single scale, 

and there is a single small dimensionless parameter, A/M*, where M* is the 

cutoff for the theory. 
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• The flavor symmetry allows certain higher dimension F and D operators 

coupling quarks (q), Higgs (H) and preons (p), 

generating small entries in the quark and squark mass matrices of order 

(A/M*)n and (A/M*)m respectively. 

• While flavor symmetry breaking is forced, there is a large vacuum degener

acy - the quark and squark mass matrices are functions on moduli space. 

This degeneracy can be lifted in a favorable direction by the combined use 

of the X fields and soft, positive supersymmetry breaking squared masses. 
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