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Abstract 

We clarify the notion of Wilsonian renormalization group (RG) 
invariance in supersymmetric gauge theories, which states that the 
low-energy physics can be kept fixed when one changes the ultravio
let cutoff, provided appropriate changes are made to the bare coupling 
constants in the Lagrangian. We first pose a puzzle on how a quantum 
modified constraint (such as Pf(QiQj) = A2(N+1) in SP(N) theories 
with N + 1 flavors) can be RG invariant, since the bare fields Qi 
receive wave function renormalization when one changes the ultravi
olet cutoff, while we naively regard the scale A as RG invariant. The 
resolution is that A is not RG invariant if one sticks to canonical nor
malization for the bare fields as is conventionally done in field theory. 
We derive a formula for how A must be changed when one changes 
the ultraviolet cutoff. We then compare our formula to known exact 
results and show that their consistency requires the change in A we 
have found. Finally, we apply our result to models of supersymmetry 
breaking due to quantum modified constraints. The RG invariance 
helps us to determine the effective potential along the classical flat di
rections found in these theories. In particular, the inverted hierarchy 
mechanism does not occur in the original version of these models. 

*This work was supported in part by the U.S. Department of Energy under Contract 
DE--AC03:"76SF00098, in part by the National Science Foundation under grant PHY-95-
14797. NAH was also supported by NERSC, and HM by Alfred P. Sloan Foundation. 



1 Introduction 

The last two years have seen remarkable progress in understanding the dy
namics of supersymmetric gauge theories (for a review, see [1]). It is now 
worthwhile to consider model building implications of strong supersymmetric 
gauge dynamics, especially in the areas of composite models or dynamical 
supersymmetry breaking. Quantitative results are often required in many 
phenomenological applications. For instance, the exact vacuum structure 
and mass spectrum are needed for realistic models of dynamical supersym
metry breaking. Similarly, the Yukawa couplings must be determined in a 
realistic composite model. It is, therefore, useful to have a closer look at the 
quantitative results which follow from exactly solved supersymmetric gauge 
theories. 

Actually, a detailed look at these exact results leads to some possible 
confusions. For instance, the quantum modified constraint in SP(N) theories 
with N + 1 flavors: 

(1.1 ) 

appears inconsistent at the first sight. The left-hand side involves quantum 
fields which acquire wave function renormalization, while the right-hand side 
appears renormalization group (RG) invariant. 

It is the purpose of this paper to clarify possible confusions associated with 
the RG invariance of exact results. RG analysis always contains two steps. 
The first step is naive dimensional analysis which changes all dimensionful 
parameters by the same factor et ; it in particular changes the cutoff scale 
M where the theory is defined to et M. The second is the readjustment of 
the bare parameters in the Lagrangian as the cutoff scale is changed from 
et M back to M, keeping the low energy physics fixed. The first part is 
of course trivial. The second part requires care. We will show that the 
scale A actually changes when one changes the cutoff back to M, and hence 
is not RG invariant. We will discuss in detail why this is true and how an 
improved understanding helps to avoid possible further confusions. Although 
most of the essential ingredients in this paper are already contained in the 
seminal work of Shifman and Vainshtein [2], we hope that our paper will 
help in clarifying this subtle issue and in applying RG invariance to practical 
problems. See also other analyses in Refs. [3, 4]. 

The main result of the paper is quite simple. When one changes the 
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ultraviolet cutoff M to M' < M by integrating out a momentum slice, and 
keeps the same form for the Lagrangian, i. e. canonical kinetic terms for the 
bare chiral superfields,* one needs to replace the holomorphic gauge coupling 
constant t as . 

where bo = -3C A + Li T} is the one-loop ,a-function, T} is the ,a-function 
coefficient for a chiral multiplet T}8ab = TriTaTb, and Zi(M', M) is the coef
ficient of the kinetic term for the chiral multiplet i when the modes between 
M' and M are integrated out. Employing this formula, it is straightforward 
to check the consistency of various results. 

The above formula implies that the dynamical scale which appears III 

exact results: 
(1.3) 

is not RG invariant in theories with matter multiplets. Under the change of 
the cutoff and bare parameters, it changes to 

(1.4) 

This observation can solve possible confusions about the RG invariance of 
exact results and effective potentials. We point out that a naive argument 
(regarding A RG invariant) gives a qualitatively incorrect conclusion for the 
vacuum structure of a theory breaking supersymmetry dynamically. The 
result is interesting for model building: the naive understanding allows the 
inverted hierarchy mechanism to be realized in these models, whereas the 
correct understanding shows that this is impossible. 

*We stick to canonical normalization for chiral superfields simply because the first part 
of the RG analysis (naive scaling) preserves the normalization of the fields and therefore 
this choice makes the application of the RG analysis simpler. When one would like to keep 
the holomorphy of the gauge coupling constant manifest, one needs to keep track of the 
wave function renormalization in a different manner. The same results are obtained for 
physical quantities either way: see Section 4.7 for an example. 

t A holomorphic gauge coupling is defined by the coefficient of the WW operator in the 
Lagrangian with Wa = iJ2e- 2Vh Dae2Vh. We will explain how the holomorphic gauge cou
pling constant is related to the one in canonical normalization Wa = jj2e-2gcVcDae2gcVc 
used in the perturbation theory in Section three. 

2 



The paper is organized as follows. In the next section, we formulate the 
Wilsonian renormalization program in the context of supersymmetric gauge 
theories. We derive the formula Eq. (1.2) in this section. The same result is 
derived by perturbative calculations in section three. Section four describes 
various examples where our formula guarantees the consistency of known 
results. In section five, we apply our improved understanding to a particular 
model where one might naively expect the inverted hierarchy mechanism to 
work. A careful application of our formalism demonstrates that this is not 
the case. We conclude in section six. 

2 Wilsonian Renormalization Group 

In this section, we review the notion of Wilsonian Renormalization Group and 
apply it to supersymmetric gauge theories. Based on the Shifman-Vainshtein 
[2] result that the renormalization of the gauge kinetic term is exhausted at 
one-loop, and the anomalous Jacobian ofthe path integral under the rescaling 
of the quantum fields [5], we 'determine the correct readjustment of the bare 
couplings to derive Eq. (1.2). 

A field theory is normally defined by specifying the bare parameters A? 
and some cutoff scale M. All Green's functions can then be calculated as 
functions of A? and M. To work out Green's functions at energy scales much 
below the cutoff M, it is convenient to "integrate out" physics between f.L and 
M in a path integral and write down a new Lagrangian with a cutoff f.L which 
is close to the energy scale of the interest. It is a non-trivial fact (related to 
the renormalizability of the theory) that one does not need to specify infinite 
number of bare couplings for all possible operators: those for relevant (i. e. 
dimension:::; 4) operators are enough to define the theory. Therefore, one can 
define the RG flow of the finite number of bare parameters as one changes 
the cutoff gradually by "integrating out" modes. 

Practically, we determine the bare couplings from experiments. By mea
suring the amplitudes corresponding to the relevant operators at low energies 
E (which we refer to loosely as Ai(E)), we can work backwards and deter
mine what values of A? are needed to reproduce the measured Ai(E). If we 
work with a different cutoff M', but wish to reproduce the same observed 
values of the Ai(E), a different set of bare parameters A?' must be chosen. 
However, once this choice is made, the predictions for all other low energy 
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amplitudes are identical * whether we work with the theory based on (.\?, M) 
or ('\?', M'). 

We should emphasize that none of our discussions depend on the precise 
way in which the theory is cutoff at the scale M, nor the precise way of 
integrating out modes. The point is simply that it is possible to change the 
bare couplings .\? with the cutoff M while keeping the low-energy physics 
fixed. This is the formal definition of the "integrating out modes" procedure. 
The way in which the .\? must change with M, while keeping the low energy 
physics fixed, is encoded in Renormalization Group Equations (RGE's) for 
the .\?: 

d ° ° ° M dM\ = fJd.\ ). (2.1) 

All of the usual results of RG analysis follow from the above considera
tions. The procedure is always the same: for any quantity of interest, first, 
one rescales all parameters (including the cutoff) by naive dimensional analy
sis, then one changes the cutoff back to the original one while simultaneously 

Ichanging the bare couplings in accordance with Eq. (2.1). As an example, 
consider the IPI 4-point function r4 (Pi; .\0, M) for a .\0</>4/4! theory with 
cutoff M, and with all the (Euclidean) momenta IPil rv /1 « M. If we just 
compute r 4 in perturbation theory, we find 

4 ° 0· 3 02 M r (p .. .\ M) =.\ - -.\ In- + ... 
x, , 167r2 /1 (2.2) 

where ... stands for higher order terms in perturbation theory and non
logarithmic corrections which depend on Pi and /1. For /1 « M, the logarithm 
in the above becomes large and the I-loop term becomes comparable to the 
tree-level piece, making perturbation theory unreliable. Let us now apply the 
procedure outlined above for applying the Wilsonian RGE. First, we rescale 
everything by dimensional analysis: 

(2.3) 

• Actually, for the amplitudes for two theories with cutoffs M, M' to be exactly the 
same, an infinite number of higher dimension operators will have to be included in the 
definition of the theory with cutoff M'. However, it is always possible to absorb the 
effects of higher dimension operators into the relevant operators, up to calculable finite 
corrections suppressed by powers in ElM, ElM'. 
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Next, we use the Wilsonian RGE to bring the cutoff on the RHS of the above 
back from et M to M while changing .\0 appropriately: 

(2.4) 

where .\(.\0; t) is the solution of (d/dt).\ = -(30(.\) with .\(.\0; 0) = .\0. We 
then have 

(2.5) 

and if we choose t so that et J-l rv M, the logarithms on the second line of the 
above are small and the perturbation expansion is reliable. In particular we 
have the standard result 

r4 (pi;.\0,M) = .\(.\o,t rv InM/J-l) + small calculable corrections. (2.6) 

Let us now consider the Wilsonian RGE for supersymmetric gauge the
ories with matter. With some cutoff M, the theory is specified by the bare 
Lagrangian 

where Vi = VaTt, and Tt are generators in the representation of the chiral 
superfield (Pi. We are working with the holomorphic normalization for the 
gauge coupling 

(2.8) 

Actually, there is a hidden parameter in the above Lagrangian: the coefficient 
ofthe matter field kinetic term Zi(M). However, we have chosen to work with 
canonical normalization for the bare matter field kinetic terms and we have 
set Zi(M) = 1. There are two reasons for taking canonical normalization: 
(1) this is the conventional choice in field theory, (2) it is easy to compare 
Lagrangians with different cutoffs with fixed normalization of the bare fields, 
since the naive dimensional analysis part of the RG analysis preserves the 
normalization of the kinetic term. Now with this choice of the normalization, 
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when we change the cutoff from M to M', how should the bare parameters 
. be changed to keep the low energy physics fixed? Shifman and Vainshtein 

argued that, to all orders of perturbation theory, the couplings should be 
changed so that the Lagrangian with cutoff M' becomes 

£(M') = 

(2.9) 

That is, the holomorphic coupling receives only I-loop contributions. How
ever, the matter field kinetic terms do not remain canonical in going from M 
to M'. 

One can easily understand that the change of 1 / g~ is exhausted at 1-
loop in perturbation theory as long as the change is holomorphic. This is 
because holomorphy and periodicity in e demand that one can expand the 
dependence in Fourier series of exp( -87[2 / g~), 

-; + Lan (:,) exp (-n ~(~)). 
gh n~O gh 

(2.10) 

The sum is limited to the positive frequencies n 2:: 0 to ensure that the 
theory has a well-defined weak coupling limit g~ ---+ O. The terms with n > 0 
can never arise in perturbation theory, and we drop them. The function 
ao(M/ M') must satisfy the consistency condition ao(M/ M') + ao(M' / M") = 
ao(M/M"), and hence it must be a logarithm. This proves the one-loop law 
of the change in holomorphic gauge coupling constant. 

The point is, however, that the change in l/g~ is holomorphic only when 
the normalization for the matter field kinetic terms (which is manifestly 
non-holomorphic, being only afunction of g) is allowed to change from 1 to 
Z(M,M'). 

In order to go back to canonical normalization for the matter fields, one 
simply redefines cjJ = Z(M, M')-1/2cjJ'. However, the path integral measure 
DcjJ is not invariant under this change, D(Z(M, M,)-1/2cjJ') i= DcjJ'; there is 
an anomalous Jacobian [5]. In our case, Z(M, M') is positive and real, but 
it is sensible to look at D(Z-1/2cjJ') for a general complex number Z since cjJ' 
is a chiral superfield. When Z = eiOt is a pure phase, the field redefinition is 
a chiral rotation on the fermionic component of cjJ' and the Jacobian is the 
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one associated with the chiral anomaly. This Jacobian is exactly known [5] 
and is cutoff independent: 

D( e-ia/2 cjy')D( e+ia/2 cjy't) 

= Dcjy'Dcjy't exp (~f d4 y f d2eT;;~) In(eia)WaWa + h.C.). (2.11) 

In the case where Z is a general complex number, the Jacobian will in general 
have F terms and D terms (such as Re(ln Z)W*W*WW). However, since 
R symmetry is at least good in perturbation theory, the F terms can only 
contain wawa, and its coefficient is the same as in Eq. (2.11) with lneia re
placed by In Z. The D terms are all higher dimensional operators suppressed 
by powers of the cutoff and can be neglected. t 

Therefore, if we wish to keep canonical normalization for the matter fields 
in changing the cutoff from M to M', the Lagrangian at cutoff M' must be 
given by 

(2.12) 

where 
1 1 bo M " TF(cjyi) , 

12=2"+-8 2 In M'-L. 8 2 InZi(M,M). 
gh gh 7r i 7r 

(2.13) 

We can rephrase the above results in terms of the scale A(M, l/g~) (see 
Eq. (1.3)). If we change the cutoff from M to M', and always work with 
canonical normalization for the matter fields, we have 

(2.14) 

So far we have considered the case with zero superpotential, but the 
extension to the general case is obvious. For instance, suppose we add a 

tIn a general non-supersymmetric theory, it is not possible to simply throwaway higher 
dimension operators suppressed by the cutoff, since loops with these operators may con
tain power divergences which negate the cutoff suppression; what can be done is to set 
the operators to zero with an appropriate modification of the renormalizable couplings. 
However, in supersymmetric theories, the non-renormalization theorem makes it impos
sible for the higher dimensional D terms to ever contribute to the coefficient of wawa 
which is an F term, and so the higher dimensional D terms really can be dropped [6] 
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superpotential term of the form f d20W = f d20)...ijk <Pi<Pi¢)k. Then by the 
non-renormalization theorem, )...ijk stays the same if we allow non-canonical 
kinetic terms We, however, insist on working with canonical kinetic terms, 
and we must have )...'ijk = Z·(M M')-1/2 Z·(M M')-1/2 Z (M M')-1/2 )...ijk t, J' k, . 

3 Perturbative Derivation 

In this section, we rederive the result obtained in the previous section by 
perturbative calculations. We first review how one can relate perturbative 
results to the exact results, and. then discuss how we change the bare pa
rameters as we change the ultraviolet cutoff. The final result is the same as 
Eq. (1.2).* 

Comparison of the perturbative results to the exact results is a somewhat 
confusing issue. The so-called anomaly puzzle is one famous example of such 
a confusion. In supersymmetric theories, the U(1)R current belongs to the 
same supermultiplet as the trace of the energy-momentum tensor, and hence 
the chiral anomaly and the trace anomaly are related. On the other hand, 
the chiral anomaly is exhausted at one-loop (Adler-Bardeen theorem) while 
the trace anomaly is not in N = 1 theories. Shifman and Vainshtein made 
a breakthrough on this question by discriminating two definitions of cou
pling constants: "canonical" and "holomorphic". t The holomorphic gauge 
coupling gh runs only at one-loop, while the canonical gauge coupling gc 
has higher order ,B-functions. There is a simple relation between them, the 
Shifman-Vainshtein formula, 

8K2 8K2 2 

-2 = -2 + CAlngc ' 
gh gc 

(3.1) 

*Note that the analysis in this section is not independent from the one in the previous 
section; it is simply a reanalysis in a different language. The one-loop exhaustion of the 
renormalization of wawa used in the previous section and NSVZ ,a-function used in this 
section are closely related [6]. 

tWe find the terminology by Shifman and Vainshtein rather confusing. In our under
standing, what they call "lPI" coupling constant is not what appears in IPI effective 
actions; they are still coupling constants in Wilsonian effective action. The only difference 
between them is that one employs canonical normalization for gauge field kinetic term 
in "lPI" couplings while holomorphic normalization in "Wilsonian" couplings. We will 
rather refer to them as "canonical" and "holomorphic" gauge coupling constants in this 
paper. We will discuss more on this issue in our forthcoming paper [6]. 
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where red ped = CA 6ab • The difference CA Ing2 appears due to an anoma
lous Jacobian in the path integral when one rescales the vector multiplet Vh 

which appears in the field strength Wa = jj2 e - 2Vh Dae2Vh to the one in canon
ical normalization Vh = ge Vc. The Lagrangian written in terms of Vh does 
not need the gauge coupling constant in the exponent, and hence does not 
need to separate the e angle from the gauge coupling constant. This normal
ization of the vector multiplet therefore keeps holomorphicity of the gauge 
coupling constant manifest (holomorphic normalization) while the canonical 
one requires an explicit dependence on the gauge coupling constant in the 
exponent. 

There still remains the question how the canonical gauge coupling con~ 
stant ge in the Wilsonian action is related to the perturbative definitions of 
the running coupling constant in popular schemes such as DR. We are not 
aware of a complete answer to this question,:j: even though one can work out 
the relation between the two coupling constants at each order in perturbation 
theory [7]. . 

There is a known "exact", ,6-function in supersymmetric gauge theories 
by Novikov-Shifman-Vainshtein-Zakharov (NSVZ) [8]. Our understanding 
is that this exact ,6-function applies to the canonical gauge coupling constant 
in a Wilsonian action and is hence appropriate for our analysis [6]. Therefore 
we employ the NSVZ ,6-function for our perturbative analysis to determine 
the necessary change of the bare parameters to keep the low-energy physics 
fixed as we change the ultraviolet cutoff. The exact NSVZ ,6-function is given 
by 

2 4 .) 
f-lr!!L =,6 = _L 3CA - Li TF(l -,i , (3.2) 

df-l 87r2 1 - C Ag2 /87r2 

with Ii = (f-ld/df-l) In Zi(f-l, M). Of course the ,6-function for the gauge cou
pling constant is the same up to two-loop order in any schemes. From the 
strictly perturbative point of view, one can regard our analysis as a two
loop analysis in, say, DR. The RGE can then be integrated with the NSVZ 
,6-function, and one finds that 

t At least in some models, one can define a regularized Wilsonian action of the the
ory and compare the canonical gauge coupling constant in the Wilsonian action to the 
perturbative definition [6]. 
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(3.3) 

The combination in the bracket runs only at one-loop, and the wavefunction 
renormalization factors are by definition unity at the cutoff scale, Zi(M, M) = 

1. The ,B-function coefficient is given by bo = -3C A + L,i Tj... 
Now the strategy is to change the bare parameters M and g~(M) while 

keeping the low-energy physics (g~ (J.l)) fixed. Naively, the change required 
appears to come from bo In( M / J.l) in the right-hand side, and the change 

( 
871'2 2( ,) (871'2 2)' M ( g~(M') + CA lnge M) = g~(M) + CA Inge(M) + bo In M' 3.4) 

might appear to be enough. However, this is not correct, because the wave 
function renormalization factor Zi(J.l, M) in the left-hand side also depends 
on M implicitly due to the boundary condition Zi(M, M) = 1. 

The trick is that the wave function renormalization is multiplicative: 

(3.5) 

Then Eq. (3.3) can be rewritten as 

(g~~~) + CAlng~(J.l) + ~Tj"lnZi(J.l,M')) 

( 
871'2 2 () (M' M ) "" i (') = g~(M) +CAlnge M) +bo In-;+ln M' -7TFlnZi M ,M. 

(3.6) 

It is now clear that the correct change of the bare parameters is 

( 
871'2 2( ')) g~(M') + CAlnge M 

= (g:t:1) +CAlng~(M)) +boln :' - ~Tj"lnZi(M"M), (3.7) 

which keeps the low-energy physics (g~ (J.l)) fixed. 
The final step is to rewrite the above relation in terms of the holomorphic 

gauge coupling gh using the Shifrrian-Vainshtein formula Eq. (3.1), 

871'2 871'2 . M . 
-2 (M') = -2 (M) + boln M' - 2:: TF In Zi(M', M) (3.8) 
gh gh i 
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This is indeed the same relation as obtained in the previous section. 
If a chiral superfield has a coupling >..ijk in the superpotential, it is renor

malized only due to wave function renormalization because of the non-re
normalization theorem. The low-energy coupling is given by 

>..ijk( ) = >..ijk Z-:-1/2( M)Z-:-1/2( M)Z-1/2( M) 11 ,11, J 11, k 11, . (3.9) 

By using the multiplicative property of the wave function renormalization 
again, the change of the bare parameter is 

)..'ijk = >..ijk Zi-1/2(M', M)Zj-l/2(M', M)Z-,;t/2(M', M) 

to keep >..ijk(ll) fixed when one changes the cutoff. 

4 Examples 

(3.10) 

In this section, we apply our result Eqs. (1.2,1.4) to many examples. The RG 
invariance is checked usually with two steps, (1) naive dimensional analysis, 
and (2) the change of cutoff parameters. For simplicity of the presentation, 
we do not discuss the first part .since it is rather trivial. The non-trivial part 
of the analysis is the correct application of the change of bare parameters as 
derived in previous sections. 

4.1 Quantum Modified Moduli Space (I) 

In SP( N) theories with N + 1 flavors, Intriligator and Pouliot found the 
quantum modified constraint [9] 

( 4.1) 

Dine and Shirman [3J correctly emphasized that the fields in the left-hand 
side are bare fields in a Wilsonian action with an ultraviolet cutoff M. The 
Lagrangian of the model is simply 

(4.2) 

in terms of bare fields. 
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As explained in Section 2, a Wilsonian RG allows the change of ultraviolet 
cutoff while keeping the low-energy physics fixed by appropriately changing 
the bare coupling constants in the theory. With the same Lagrangian given 
at a different cutoff M', a coupling constant gL and bare fields Q'i, we must 
find 

( 4.3) 

if A were a RG invariant quantity. Note that we need to keep the form of 
the Lagrangian the same no matter how we change the cutoff; therefore the 
fields Q' must have canonical kinetic terms as Q do. 

The relation between the bare fields in two different Lagrangians, Q and 
Q' can be calculated. When one integrates out modes between M' and M, 
the original bare fields Q acquire corrections to the kinetic terms by a factor 
ZQ (M' , M). The bare fields Q' have canonical normalization in the La
grangian with the cutoff M', and hence they are related by 

( 4.4) 

Therefore, the left-hand sides of the constraint equations are related by 

( 4.5) 

and hence the right-handed sides must also differ by Z~+l. Then Eq. (4.3) 
is inconsistent. 

Our result (1.4) says that the dynamical scale of the theory with cutoff 
M' is related to the original one by 

(4.6) . 

with TF = 1/2 and bo = -2(N + 1). Now it is easy to see that the quantum 
modified constraint holds hetween the primed fields and the primed dynam
ical scale: 

(4.7) 

This is a consistency check that the quantum modified constraint is RG 
invariant. 
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4.2 Quantum Modified Moduli Space (II) 

It is amusing to see how the quantum modified constraints are RG invariant 
in more complicated cases. Let us look at SU(2k + 1) models with one 
anti-symmetric tensor A, three fundamentals Qa (a = 1,2,3) and 2k anti
fundamentals Qi (i = 1, ... , 2k) [10j. The moduli space can be described by 
the gauge invariant polynomials 

( 4.8) 

z 
and the quantum modified constraint 

~ Z PfX A4k+2 . (4.9) 

By following Eq. (1.4), we find 

(4.10) 

with bo = -(2k+1). The quantum modified constraint is indeed RG invariant 
as we change the cutoff from M to M', replacing all fields by primed fields 
(with canonical kinetic terms) and the dynamical scale A by A'. 

4.3 Matching Equations (I) 

When there is a massive chiral superfield, the gauge coupling constants in a 
theory with a massive field (high-energy theory) and the other theory where 
the massive field is integrated out (low-energy theory) are related by match
ing equations. For SU(N) gauge group with a single massive vector-like pair 
in the fundamental (Q) and anti-fundamental (Q) representations, the holo
morphic coupling constants in high-energy (g~,HE) and low-energy (g~,LE) 
theories are related by 

(4.11) 
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where m is the bare mass of the field. This form can be completely fixed 
(up to a possible constant) by the holomorphy in 87[2 / g~ and m, and the 
anomaly under the chiral U(l) rotation of the matter fields. We drop the 
possible constant in the following equations, and it can be easily recovered if 
necessary. 

Under the change of the cutoff, we rewrite the left-hand side as 

87[2 87[2 . M 
-- = -- + boLEln- - L TtlnZi(M',M) 
gh~LE g~,LE ' M' i=/:Q,Q 

(4.12) 

where the sum does not include the massive field Q, Q which are integrated 
out in the l~w-energy theory. The coupling in the high-energy theory is also 
rewri tten as 

(4.13) 

but here the sum includes the massive field. The ,a-functions are related as 
bO,HE = bO,LE + 1. Now the matching equation reads as 

87[2 M 1 ( ') (')) M 
-12- - In M' + - In ZQ (M ,M + In ZQ M , M + In -
~~ 2 m , 

87[2 M' 
--+In- (4.14) g,2 m' 

h,HE 

with m' = ZCjl/2(M', M)Z~1/2(M', M)rn. Therefore, the matching equation 
takes the same form with the new cutoff and bare parameters. 

One can also check the consistency with the perturbative calculations on 
matching of canonical gauge coupling constants. For instance in DR scheme, 
the one-loop matching equation* is simply g~,LE( mr) = g~,HE( m r), where 
mr is the renormalized mass of the chiral multiplet. By using the Shifman
Vainshtein relation (3.1) between the canonical and holomorphic gauge cou
plings and NSVZ exact ,a-function (using the integrated form Eq. (3.3)), the 

*Recall that one-loop matching is required when one employs two-loop RGE. We are 
not aware of DR calculations of two-loop matching which can tell us whether mr must be 
the on-shell mass or DR mass where the latter is more likely. 

14 



matching condition betw~en the canonical gauge couplings for high-energy 
and low-energy theories can be obtained as 

87r2 P 
2 () + In -(-) . 

gc,HE I-l m I-l 
( 4.15) 

Therefore the gauge coupling constants can be matched at the renormalized 
mass of the heavy field I-l = m(p) = mZQ1/2(p, M)Z~1/2(1-l' M) as expected. 

4.4 Matching Equations (II) 

When a chiral superfield acquires an expectation value and the Higgs mech
anisms occurs, the gauge coupling constants in a theory with the full gauge 
group (high-energy theory) and the other theory only with unbroken gauge 
group (low-energy theory) are related by matching equations. For SU(N) 
gauge group with an expectation value of a single vector-like pair in the 
fundamental and anti-fundamental representations Q and Q, they can ac
quire an expectation value along the D-flat direction Q = Q and the gauge 
group breaks down to SU(N - 1). The holomorphic coupling constants in 
high-energy (gl,H E) and low-energy (gl,LE) theories are related by 

87r2 87r2 M2 
-2-- = -2-- - In --
gh,LE gh,H E QQ 

(4.16) 

where Q, Q are the bare fields. This form can be completely fixed (up to a 
possible constant) by the holomorphy in 87r2 

/ gl and Q, Q, noon-anomalous 
vector U(1) symmetry, and and the anomaly under the chiral U(1) rotation of 
the matter fields. We drop the possible constant in the following equations, 
and it can be easily recovered if necessary. 

Under the change of the cutoff, we rewrite the left-hand side as 

87r2 87r2 M 
-'-2 - = -2- + bo,LEln M' - L Tj.,lnZ;(M',M) 
gh,LE gh,LE i#Q,Q 

(4.17) 

where the sum does not include the massive field Q, Q which are integrated 
out in the low-energy theory. The coupling in the high-energy theory is also 
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rewritten as 

87r2 87r2 M . 
-,-2- = -2-- + bo,HEln M' - L:TplnZi(M', M), 
9h,HE 9h,HE i 

( 4.18) 

but here the sum includes the massive field. The ,8-functions are related as 
bO,HE = bO,LE - 2. Now the matching equation reads as 

87r2 M 1 M2 
9h~HE + 2ln M' + 2"(1n ZQ(M', M) + In ZQ(M', M)) -In QQ 

87r2 MI2 
- -- -In -_ - (4.19) 

9 ,2 Q'Q' h,HE 

where the primed fields are defined by 

Q' = Z~2(M', M)Q, Q' = Z;j2(M', M)Q. ( 4.20) 

Therefore, the matching equation takes the same form with the new cutoff 
and bare fields. 

One can also check the consistency with the perturbative calculations 
on matching of canonical gauge coupling constants. For instance in DR 
scheme, the one-loop matching equationt is simply 9~,LE(mv) = 9~,HE(mv), 
where mv is the renormalized mass of the heavy gauge multiplet. By using 
the Shifman-Vainshtein relation (3.1) between the canonical and holomor
phic gauge couplings and NSVZ exact ,8-function (using the integrated form 
Eq. (3.3)), the matching condition between the canonical gauge couplings for 
high-energy and low-energy theories can be obtained as 

87r2 

. 2 () + (N - 1) Ing;,LE(fl) 
9c,LE fl 

87r2 fl2 1 
2 () + Nlng;,HE(fl) -In --- + -(In ZQ(fl, M) + InZQ(fl, M)), 

9c,HE fl QQ 2 
(4.21 ) 

and hence 

( 4.22) 

tHere again we are not aware of DR calculations of two-loop matching which can tell 
us whether mv must be the on-shell mass or DR mass. 
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Here, the renormalized gauge boson mass mv is defined by 

m~(p) - gc,LE(p)gc,HE(P)Zfj\p, M)Z¥2(p, M)QQ. ( 4.23) 

The matching is particularly simple: g;,LE(P) = g;,HE(P) at the renormalized 
gauge boson mass p = mv( mv) as expected. 

4.5 AfHeck-Dine-Seiberg superpotential 

In SU(N) gauge theories with N j < N, a non-perturbative superpotential is 
generated, 

Under the change of the cutoff, we find 

N(3N-Nf) = A (3N-Nf ) ZQNd2 Zl'!d2 

Q ' 

and the superpotential becomes 

( 4.24) 

( 4.25) 

N(3N-Nt )/(N-Nf ) A(3N-Nf )/(N-Nf )(Z Z - )Nd2(N-Nf ) 
W' = _ _ Q Q / = W. 

(detQ,iQ,j)1/(N-Nf ) (detQiQj)1/(N-Nf )(ZQZCj)Nf 2(N-Nf) 

( 4.26) 
The Affieck-Dine-Seiberg superpotential is RG invariant. 

4.6 Gaugino Condensate 

When. all chiral superfields are massive, they can be integrated out from 
the theory and the low-energy pure Yang-Mills theory develops a gaugino 
condensate. After matching the gauge coupling constant at the threshold, 
the size of the gaugino condensate is a function of the bare mass of the chiral 
superfields and the bare gauge coupling constant. 

If there are N j chiral superfields with the same mass m coupled to SU(N) 
gauge group, the size of the gaugino condensate can be calculated as 

(4.27) 

using holomorphy and U(l)R symmetry up to an overall constant. Under the 
change of the cutoff and bare parameters, the scale A changes to 

( 4.28) 
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Here, bo = -(3N - N j ). The corresponding change of the bare mass param-
eter is 

I _ Z-1/2 Z -1/2 
m - m QQ. ( 4.29) 

It is easy to see that the gaugino condensate is invariant under these changes. 

4.7 N = 2 theories 

An application of our formalism to N = 2 theories requires care because 
of a difference in conventions. Take N = 2 supersymmetric QCD with N j 

hypermultiplets in fundamental representation. In N = 1 language, the par
ticle content of the theory is the vector multiplet V, a chiral multiplet in 
the adjoint representation <p, N j chiral multiplets Qi and Qi (i = 1, ... , N j ) 

in fundamental and anti-fundamental representations, respectively. The La
grangian in the conventional normalization of fields in the N = 2 context 
is 

.c J d4() ( Re (:~) 2Tr<p~e2v <P2e-2V + Q!e2V Qi + Q!e-2VT Qi) 

+ J d2() (4~~ wawa + J2Qi<PQi) + h.c. (4.30) 

Note that the normalization of the <P kinetic term is not canonical. Here we 
use the notation 1/ g~ to refer to the gauge coupling constant in this normal
ization. Correspondingly, we refer to the adjoint field in this normalization 
as <P2. In this normalization, singularities (e.g., massless monopoles/dyons, 
roots of the baryonic branch) occur on the Coulomb branch of the theory 
where a symmetric polynomial of the eigenvalues of the adjoint field <p takes .
special values proportional to the dynamical scale A2 in N = 2 normalization: 

(4.31 ) 

where we used bo = -(2Nc - N j ), and Ck are appropriate constants. 
One can ask the question whether the locations of such singularities are 

RG invariant. They are indeed RG invariant in an obvious manner in N = 2 
normalization. First of all, we never need to change the normalization of 
the adjoint field <p because the normalization always stays 1/ g~ automati
cally due to the N = 2 supersymmetry. Therefore, the left-hand side of 
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Eq. (4.31) is RG invariant. Moreover, there is no Z</> contribution to 1/ g~ 
when one changes the cutoff from M to M'. Second, there is no wavefunction 
renormalization for the hypermultiplets [11, 12]. Therefore, there is no ZQ, 
ZQ contribution to 1/ g~ either. As a result, A is RG invariant, the right-hand 
side of Eq. (4.31) is also RG invariant, and hence Eq. (4.31) remains the same 
under the change of the cutoff and bare parameters trivially. 

If one employs·N = 1 language, the analysis is far less obvious. First 
of all, the holomorphic gauge coupling gr in N = 1 language differs from 
g~ because one scales the adjoint field to make it canonically normalized 
CPI = g:;ICP2' and the anomalous Jacobian [5] gives 

87r2 87r2 

-2 = -2 + Nclng~. 
gi g2 

( 4.32) 

The dynamical scale Al = M e-87r2 
/ gf(2Nc-Nf) in N = 1 normalization is then 

related to that in N = 2 normalization by 

Al = A2(g~tNc/(2Nc-Nf). (4.33) 

When one changes the cutoff from M to M', the adjoint field CPI receives a 
wave function renormalization 

2 

Z</>(M', M) = g;2. 
g2 

( 4.34) 

such that the superpotential coupling f d2(),j2giJCPI Q is always related to 
the gauge coupling constant as required by N = 2 supersymmetry. 

The locations of singularities are now written as 

cP~ = ckgzk (AI(g~)Nc/(2Nc-Nf))k . (4.35) 

N ow this form is RG invariant under the same analysis as we did before. 
Under the change of the cutoff and bare parameters, the left-hand side is 
replaced by 

J/k - Z (M' M)k/2.+,.k 
'f"1 - </>, 'f"1' 

while the right-hand side by 

g~-k (A~ (g~)Nc/(2Nc-Nf)) k 

( 4.36) 

_ ,-k (A ZNc/(2Nc-Nf ) ZNtf2(2Nc-Nf ) ZNtf2(2Nc-Nf ) ( I2)Nc/(2Nc-Nf)) k 
- g2 I </> Q Q g2 . 

( 4.37) 
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The Eq. (4.35) remains invariant with ZQ = ZQ = 1 and Eq. (4.34). 

5 Inverted Hierarchy 

In this section we apply our understanding of the RG in supersymmetric 
gauge theories to a model of dynamical supersymmetry breaking, where such 
an understanding is necessary to resolve puzzles about the correct vacuum 
structure of the theory. The theories we consider are vector-like SP(N) mod
els with N + 1 flavors studied by Izawa, Yanagida [13] and by Intriligator, 
Thomas [14]. The question we ask is whether the so-called inverted hierarchy 
mechanism [15] operates in these models. The inverted hierarchy refers to 
the situation where dynamics forces the expectation value of a scalar field to 
be exponentially large compared to the energy scale of the potential. This 
occurs in O'Rafeartaigh type models of supersymmetry breaking where the 
scalar field is a classical flat direction. The effective potential is modified by 
perturbative corrections both from the gauge coupling and Yukawa coupling. 
The potential minimum arises where the two corrections balance against each 
other. 

The particle content of the SP(N) models consists of 2(N+1) SP(N) 
fundamentals Qi and singlets Sij. The superpotential is given by 

(5.1) 

The equation of motion for Sij demands that QiQj = 0, which is in conflict 
with the quantum modified constraint Pf(QiQj) = A2(N+1), and supersym
metry is broken. For non-zero Sij, the flavors become massive and can be 
integrated out of theory. The resulting low-energy theory is pure SP( N) with 
a dynamical scale depending on Sij. This theory exhibits gaugino condensa
tion and generates an effective superpotential for Sij 

(5.2) 

If we expand Sij around Sij = a Jij / J N + 1 where Jij is the symplectic 
matrix, all components of Sij other than a become massive. The effective 
potential for a is then 

(5.3) 
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The a equation of motion shows that supersymmetry is broken, while the 
tree-level potential for a is 

(5.4) 

and the vev of a is undetermined at this level. Since supersymmetry is 
broken, we expect that some nontrivial potential will be generated for a at 
higher orders in perturbation theory. In [16], it was argued that the potential 
V(a) is "RG improved" as V(a) = I)'A212 -t 1).(a)A212, where ).(a) is the 
running value of A, which receives contributions from both the Sij and Qi 
wavefunction renormalizations ).(a) = Zsl/\a)ZQ(a)--:l).. If this conclusion 
is correct, it is possible to realize the inverted hierarchy mechanism in this 
model: a could develop a stable vev much larger than A, since the Zs factors 
depend on ). and tend to make the potential rise for large a, whereas the 
ZQ factors depend on asymptotically free SP(N) gauge coupling and tend to 
make the potential rise for small a. 

On the other hand, a host of arguments indicate that this conclusion can 
not be correct. For instance, the superpotential for a is exact, and so the 
potential is only modified by the Kahler potential for a, which at one loop 
only depends on ).. Alternately, Fq = )'A2 generates a non-supersymmetric 
spectrum for the Qi but not for the gauge multiplet. If we simply look 
at the I-loop effective potential, the only contribution comes from the non
supersymmetric Qi spectrum and again depends only on )., and the potential 
is monotonically increasing with a. 

In order to resolve this puzzle, we must carefully consider how the po
tential is "RG improved". As we will show explicitly in the remainder of 
the section, the solution is that not only ). but also A runs; the correct 
RG improvement of the potential is V(a) = 1).(a)A(a)212, and all the ZQ 
dependence cancels in the product ).(0")A2(a). . 

Let us go back to the start and carefully define the problem. With cutoff 
M, the Lagrangian is given by 

.c = ! d4
() (Qite2VQi + ~TrStS) + ! d2() (412 wawa + ~),SijQiQj) + h.c. 

. gh 
(5.5) 

In the functional integral, we would like to integrate out the Qi and the gauge 
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multiplet and be left with an effective Lagrangian for Sij: 

. with 

£eff(S) = f d4
() (lTrStS + <5K(AS, AtSt)) + f d2()Weff(AS) + h.c., (5.7) 

where both <5K and Weff depend further on the gauge coupling and the cutoff, 
(1/ g~, M), or equivalently on (A, M). 

Of course, when we integrate out the Q, V multiplets in perturbation 
theory, we never-generate any effective superpotential. However, a superpo
tential is generated non-perturbatively, and its form is completely determined 
by a non-anomalous R symmetry under which ASij has charge +2, an anoma
lous U (1) symmetry under which ASij has charge -2 and A has charge + 1, 
and the non-anomalous SU(2N +2) flavor symmetry. Together, these dictate 
(up to an overall constant) the exact effective superpotential Eq. (5.2). One 
finds an effective potential along the Sij= 0' Jij / J N + 1 direction: 

(5.8) 

The corrections to the Kahler potential <5 K (AS, At st) are certainly gen
erated in perturbation theory. For instance, at I-loop there is a contribution 
from the loop of Q's, which yields (at the leading-log) 

<5K(AS,At St ) = ~21~2(AO')*(AO')lnl~r (5.9) 

along the 0' direction and we find: 

2 2 [ N A 
2 

( 1 AO' 12) 4] V(O';A,A;M)=IAAI 1 + 2167r2 In M2 +4 +O(A). (5.10) 

For 0' « M, the large logs in the above expression make perturbation 
theory unreliable. However, we can use the same technique as in Sec. 2 to 
deal with this problem. We are interested in V( 0'; A, A; M). First, we rescale 
everything by naive dimensional a,nalysis 

(5.11) 
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Next, we bring the cutoff back from et M to M by appropriately changing 
the couplings. Since the form of the tree potential is known with canonical 
normalization for the superfields Q, S, we would like to keep them canonical. 
Hence, as we have argued in Sec. 2, not only ,X but also A must be changed: 

V( eto"; A, etA; et M) = V( eto" Z1/2(t); ,XZe/(t)ZSl/\t), etAZQ(t)1/2; M), 
(5.12) 

where ZQ(t) = ZQ(M, et M), Zs(t) = Zs(M, et M). However, we can choose 
etlO"I rv M, then the logarithms in the perturbative expansion of the RHS are 
small and the tree value of the RHS vtree(O";'x, A; M) = I,XA212 is an excellent 
approximation. Doing this and combining with Eq. (5.11), we find 

V(O";'x, A; M) rv 1('xZQl(t)Zsl/2(t))(A~cY2(t)?I:~ln(,\q/M) 
ZSl(,XO", M)I'xA212. (5.13) 

As promised, when the RG improvement is done consistently, the ZQ depen
dence drops out and we are left with a monotonically rising potential (from 
the Zs factor) which does not realize the inverted hierarchy. 

One can also formally check that the effective potential V (0"; A, A; M), or 
equivalently the effective Lagrangian Eq. (5.7), is RG invariant, i.e. indepen
dent of the choice of the cutoff M as long as one changes the bare couplings 
appropriately. First of all, the effective superpotential Eq. (5.2) is invariant 
by itself, because 

. N(PfS:
j
)1/2(N+1) A'2 

= ,XZQl(M', M) ZS l/2(M', M)(PfS;j)1/2(N+l) Z1/\M', M)(AZcY\M', M)? 

= ,X(PfS;j)1/2(N+l)A2. (5.14) 

The Kahler potential along the 0" direction 

(5.15) 

is also RG invariant which can be seen as follows. First, the Zq factor must 
depend on the renormalized effective mass of Q, mQ - AO"ZQ1(mQ' M) 
because it is generated from integrating out the massive Q field. This 
combination can be easily seen to be RG invariant. Second, it is multi
plicative, Zq(mQ, M) = Zq(mQ, M')Zq(M', M). With the definition 0"' = 
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Z;'/2(M', M)(j, the Kaller potential is RG invariant. Since the change of the 
field variable (j to (j' is given by a field-independent constant Za(M, M'), the 
auxiliary equation for the Fa changes only by an overall factor Za(M, M'). 
On the other hand the quadratic term of Fa also changes the the same factor 
and hence we conclude that the effective potential (5.8) is RG invariant. 

We have demonstrated that the inverted hierarchy mechanism does not 
work in these models, contrary to the naive argument of RG improvement 
[16]. In order to achieve the inverted hierarchy mechanism as favored from 
the model building point of view, one needs to make the fiat direction fields 
Sij gauge non-singlet, as was recently done in [17, 18]. 

6 Conclusion 

In this paper, we studied the renormalization group invariance of the exact 
results in supersymmetric gauge theories. We first clarified the notion of 
Wilsonian renormalization group (RG) invariance in supersymmetric gauge 
theories. It is a non-trivial statement that the low-energy physics can be kept 
fixed when one changes the ultraviolet cutoff with appropriate changes in the 
bare coupling constants in the Lagrangian. We derived the formula for the 
changes of bare couplings using two methods: one using strictly Wilsonian 
actions and holomorphic gauge coupling, the other using the perturbative 
NSVZ ,B-function. We used canonical normalization for the chiral superfields 
because it allows the most straightforward application of the renormalization 
group. We find that the scale A is not RG invariant. We then compared our 
formula to known exact results and showed that they actually require the 
changes in A we have derived. 

Finally, we applied our result to models of supersymmetry breaking due 
to quantum modified constraints, namely SP(N) models with N + 1 fiavors. 
These models have a classically fiat direction, and the crucial question is 
in what way the fiat direction is lifted. The RG invariance allowed us to 
determine the effective potential along the classical fiat direction. A naive 
application of RG improvement of the potential would tell us that the po
tential along the fiat direction is modified perturbatively both by the SP(N) 
gauge interaction and the superpotential interaction, and hence that the fiat 
direction may develop an expectation value exponentially larger than the 
supersymmetrybreaking scale (inverted hierarchy mechanism). How~ver, a 
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careful application of our method demonstrates that the inverted hierarchy 
mechanism does not occur in these models. 
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