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Abstract 

In this thesis, we present some works in the direction of studying quantum effects in 

locally supersymmetric effective field theories that appear in the low energy limit of 

suprestring theory. After reviewing the K~i.hler covariant formulation of supergravity, 

we show the calculation of the divergent one-loop contribution to the effective boson La­

grangian for supergravity, including the Yang-Mills sector and the helicity-odd operators 

that arise from integration over fermion fields. The only restriction is on the Yang-Mills 

kinetic energy normalization function, which is taken diagonal in gauge indices, as in 
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DE-AC03-76SF00098, and the National Science Foundation under grant PHY-95-14797. 



models obtained from superstrings. We then present the full result for the divergent one­

loop contribution to the effective boson Lagrangian for supergravity coupled to chiral 
" and Yang-Mills supermultiplets. We also consider the specific case of dilaton couplings 

in effective supergravity Lagrangians from superstrings, for which the one-loop result is 

considerably simplified. We study gaugino condensation in the presence of an interme­

diate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry 

of the effective supergravity theory. Furthermore, we include in the Kahler potential 

the renormalization of the gauge coupling and the one-loop threshold corrections at the 

intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new 

running behaviour of the dilaton arises which we attribute to S-duality. We also discuss 

the effects of the intermediate scale, and possible phenomenological implications of this 

model. 
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Chapter 1 

Introduction 

Amongst the theories of physics, beyond the Standard Model (SM), supersymmetry 

[1,2]' despite the present lack of its present experimental observation, appears to,be the 

strongest candidate. The phenomenological predictions of supersymmetry for physics 

beyond the SM have been argued to be within experimental reach in the foreseeable 

future [2, 3]. If realized in nature, supersymmetry must be broken, and phenomenological 

consistency requires that it is broken at a scale of order 1 Te V [3]. 

From the low energy point of view (where by 'low' we mean lower than the scale 

at which supersymmetry is broken), requiring supersymmetry beyond the electroweak 

scale has the following theoretical merits. First, supersymmetric theories suffer from 

perturbative divergences much less than non-supersymmetric theories. This is by the 

virtue of the cancellations of the boson and fermion contributions to the loop correc­

tions. More specifically, the precise cancellation of the quadratically divergent graphs 

of fermion loops and boson loops that contribute to the masses of scalars results in 

the stabilization (i. e., protection against radiative corrections) of the hierarchical mass 

scales that unfold as one goes across the energy scales (namely, the electroweak scale, 

Mp/, and possibly MCUT which is a mass associated with a grand unified theory ,much 

higher than Mw). In other words, supersymmetry provides a partial solution to the 

gauge hierarchy problem, so that once the origin of the mass scales is explained, super­

symmetry makes sure that their relative ratios remain unchanged perturbatively. This 

merit of supersymmetry is a direct consequence of the nonrenormalization theorems. 

The other motivating feature of supersymmetric extension of the SM is that the 

renormalization group running of the three gauge couplings of SU(3) x SU(2) x U(l), 

(0:3,0:2,0:1), in the supersymmetric SM unify at about 1016GeV [4]. In contrast, in the 

nonsupersymmetric minimal SM, the renormalization group equations running of the ex­

perimentally measured gauge couplings approach at around 1015GeV but do not meet 

at the same point, instead there is a notorious mismatch of a few standard deviations. 

In other words, the MSSM value of sin Ow(Mz) obtained by using the supersymmetric 

RGEs and assuming unification, agrees remarkably well with the experimental value. 
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The standard nonsupersymmetric GUT models were .disfavoured because their predic­

tions for proton lifetime is well below the observed lower bound", 1032 years. Also, 

GUT without supersymmetry occurs at about 1015 GeV. One would need to keep the 

scalars of EW theory massless below this scale. Such a mass is generally generated by 

loops. It should be mentioned that the unification of the couplings has more theoretical 

motivation than experimental. However, the experimentally inferred near unification is 

quite suggestive. 

As we go higher energy scales and approach Mpz, the gravitational effects become 

stronger. The moment we include gravity, if we insist on having supersymmetry, the 

physics can nolongerbe described by a globally supersymmetric theory. Within the 

framework of General Relativity, supersymmetry must be gauged, since the algebra of 

supersymmetry charges contains the momentum vector PIl' i.e., one of the generators 

(spacetime translations) of the Poincare group. 

This brings us to the motivation for supersymmetry but from the point of view of high 

energies. Supergravity (locally supersymmetric) theories, as fundamental theories, are 

nonrenormalizable. However, as effective theories of a more fundamental theory (which 

presumably contains a consistent description of quantum gravity) they are completely 

sensible. Currently the only consistent theory of quantum gravity is string theory, which 

requires supersymmetry for consistency. Furthermore, it provides a unified theory, with 

the scale of unification of gauge and gravitational couplings at Mst '" 2 X 1017
. This 

differs from the MSSM value by a factor of '" 20. There are numerous approaches in 

attempt to account for this apparent discrepancy, and perhaps the most realistic and 

promising one is the presence of extra massive states in the low energy effective theory of 

superstrings (a generic feature of most orbifold models) and thus introducing threshold 

corrections to the running of the gauge couplings. 

The recent string duality revolution has taught us that all the superstring theories 

that used to be thought of as different theories in fact correspond to different regions of 

the moduli space of one and the same theory (which in addition contains the 11 dimen­

sional M theory) where a perturbative expansion is possible. In other words, what used 

to be thought of as different superstring theories, are regions in the moduli space where 

there exists some definition of weak coupling; although this weak coupling may corre­

spond to strong coupling of another region. These regions, in which the description of 

physics varies from one to another (say the number of supersymetries, gauge structure, 
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or even spacetime dimensions) are mapped into one another by some duality symmetry; 

for example S duality (strong-weak duality which in extended supersymmetric gauge the­

ories often translates to a generalization of electric-magnetic duality in electrodynamics 

with magnetic monopoles) or T duality (which translates to the duality of a theory 

compactified on a large space to one on a small space.) The remarkable property that 

is central to all of the string duality development has been supersymmetryl - without 

it none of them hold. But that is not the high energy motivation for supersymmetry 

in four dimensions that we have in mind. If we take superstring theory seriously as a 

unified fundamental theory which describes the physics beyond Mp/, and assume that 

the theory is compactified to four dimensions not too far below that scale, then local 

supersymmetry in four dimension is forced upon us, because the low energy effective 

field theories of the superstring in four dimensions are also supersymmetric. 

Tpe most phenomenologically successful string theory is the £8 x £8 heterotic string 

theory, whose effective field theory in 4D is N = 1 supergravity coupled to super Yang­

Mills and matter, with a gauge group that accommodates the SM gauge structure. In 

addition, the second factor of £8 provides a 'hidden' gauge group. The hidden sector 

can be of great phenomenological importance, namely the strong coupling dynamics of 

an asymptotically free gauge group of the locally supersymmetric theory in the hidden 

sector can lead to the breakdown of supersymmetry at a high scale, where the effective 

theory is still supergravity. The hidden sector can only couple to the observable sector 

via gravitational-strength interactions or by anomalous U (1) interactions, and through 

these, a set of soft supersymmetry breaking terms in the observable sector are generated 

which lead to the breaking of supersymmetry at a scale comparable to the electroweak 

scale. 

In practice, however, making contact between superstring theory and phenomenology 

has proven extremely difficult. This is mostly due to the vast number of superstring 

vacua, thereby introducing a huge arbitrariness So on the one hand, superstring theory 

provides a framework in which there are no arbitrary parameters (all the parameters and 

couplings are determined by the vevs of the modulus fields - the fields parameterizing 

the vacuum manifold of the superstring) which is in principle f~lly predictive. On the 

other hand, the theory can have a multitude of vacua which limits its predictive power. 

IThe duality in four dimensional SYM with N = 2 supersy'mmetries [5] and N = 1 [6] also rely 

heavily on holomorphy arguments that are direct consequences of supersymmetry. 
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The vacuum selection, which boils down to lifting the degeneracy of the vacuum states 

is a problem which gets added to the problem of "how is supersymmetry broken?" in 

the phenomenological study of superstrings. These problems have long been expected -

to be one and the same, as it is very suggestive that supersymmetry breaking can 

lift the flat directions of the theory (or stabilize the moduli fields), and some of the 

recent developments indicate that this is in fact the case. Closely related to this issue 

is the notorious 'dilaton runaway' problem, in which, if we assume that the string is 

weakly coupled, and do not include any nonperturbative effects with a stringy origin, 

we can expect that the potential that arises for the dilaton (the modulus field whose 

vev determines the YM gauge coupling in the effective field theory) has its only stable 

minimum in the extreme weak coupling, supersymmetry preserving limit. 

Since the early days of superstring phenomenology, it has been apparent that in 

order to make contact between the underlying theory and the effective field theory it 

would be necessary to include quantum corrections in both. An early example is the 

string threshold effects and the loop corrections to the- gauge coupling of the locally 

supersymmetric effective theory giving the moduli dependence of the latter, and the 

connection with the modular invariance (exact in string theory) of the effective theory. 

Modular symmetry is anomalous in the effective supergravity theory. To fully restore this 

iIivariance in the effective theory, i.e., to determine the counter-terms which cancel the 

anomaly, requires the understanding of the divergences in the locally supersymmetric 

effective field theory. The renormalization of the Kahler potential is also relevant in 

- lifting certain flat directions in (a supergravity effective theory. The determination of the 

full loop corrections may also have nontrivial effects in the study of gaugino condensation 

as a mechanism for supersymmetry breaking. 

In this thesis, we shall describe many of the above issues in supergravity effective 

theories in detail. In particular, we shall describe some works which are in the direction 

of including quantum effects in the locally supersymmetric effective field theories which 

include YM gauge fields as well as matter, with field dependent gauge couplings, i.e., 

superstring inspired supergravity. We shall discuss the calculation of the divergent one 

loop corrections to the above system. VVe shall also discuss non-perturbative corrections 

in the context of a specific model of gaugino condensation in the hidden sector, which 

also includes perturbative corrections to the Kahler potential as well as non-perturbative 

effect, which is S duality imposed as an approximate symmetry. 
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The organization of the thesis is as follows. In Chapter 2 we give a rather brief 

review of the Kahler covariant formulation of supergravity which is the framework used 

here essentially throughout. In that chapter we also recall some basic facts of life about 

superstrings and the effective quantum field theories which they give rise to upon com­

pactifications, with heavier emphasis on the heterotic strings which are the most relevant 

for our applications. Chapter 3 essentially sets the notation and outlines the strategy 

used in calculation of the one loop effectivfe Lagrangian of the supergravity, YM, matter 

system. This calculation is discussed thoroughly in Chapter 4. In Chapter 5 we first 

present a brief discussion of gaugino condensation in the hidden sector, and also of du­

ality symmetries (modular invariance and S duality) . We then examine a superstring 

inspired toy model of gaugino condensation which incorporates certain radiative correc­

tions to the Kahler potential, as well as S duality and modular invariance as underlying 

approximate and exact symmetries, respectively . 
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Chapter 2 

(Classical) Background Material 

2.1 Kahler Covariant Formulation of Supergravity (A Review) 

As was first pointed out by Zumino [7], supersymmetric O'-model has Kahler sym­

metry, i.e., the complex scalars of the matter supermultiplets parameterize a Kahler 

manifold [10]. This Kahler symmetry is an invariance of the mater coupled to super­

gravity system, provided that the fermions undergo a chiral (and field dependent) phase 

transformation [11]. 

In the Kahler covariant formalism [13] Kahler transformations have a geometrical 

interpretation at the superfield1 level, as they appear in the structure group on equal 

footing with Lorentz transformations. 

In the following, a brief description of supergravity in the Kahler covariant for­

mulation is given, following mainly reference [12]. After constructing the superspace 

action, eventually, we outline the essential steps in obtaining the component tree level 

Lagrangian for supergravity, super Yang-Mills (YM) and matter system. 

The 2-component spin or notations used here in this chapter are those of ref. [12] 

which are more or less standard in supersymmetry [10]. We do not list them here 

because the intention of this chapter is not to discuss the details of the formalism, but 

to give an overview of the structure of the Kahler superspace and to sketch out how 

one obtains the component form of the Lagrangian. In Chapter 3, where We discuss the 

I-loop effective Lagrangian (which also uses slightly different notation than here), we 

shall be much more explicit about our notation. 

First, Kahler transformations K(cp,cp) ~ K(cp,cp) + F(cp) + F(cp) (where cp is any 

chiral superfield) is accompanied by the transformation 

n ~ ne -;i wlrnF , (2.1 ) 

where w is the chiral U (1) weight of the superfield n under Kahler transformations. 

1 We assume that the reader is familiar with the basics of superspace and supersymmetry, at the level 

of the introductory chapters of the text by 'Wess and Bagger [10]' as well as with General Relativity and 

differential geometry [8, 9]. 
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Furthermore, the superspace covariant derivative is also covariant with respect to Kahler 

transformation, as we shall see. Let us introduce the superspace coordinates zM '" 

(x m , BJ.l, B;.), and the local frame coordinates (x a, Ba, Be.) such that 

(2.2) 

where M = (m, j.L, ji,), A = (a, a, 6:), and Da and De. are the ordinary spinorial derivative 

operators, for example, 

D a .jj (-m)e. a 
a = aBa + zue. (j f a ax"' . (2.3) 

Here 0-0 = (j0 and 0-1,2,3 = _(j1,2,3 The derivatives DA satisfy DCDB - (-l)bcDB DC = 
-TcB ADA with b = 0,1 for vectorial and spinorial index B, respectively (likewise for 

c); TCB A are the components of the torsion in superspace. In equation (2.2), EA M is 

the inverse super-vielbein which in the flat spacetime limit reduces to: 

(2.4) 

The torsion two-form is then given by: 

(2.5) 

where EA = dzM EM A and 4>B A = dzM 4>MB A(z) is the Lorentz gauge connection. The 

last term in (2.4) corresponds to covariantization with respect to Kahler transformations: 

A = dzM AM is the connection one-form for the Kahler transformations. The Kahler 

weights w(EA)"is given by w(Ea) = 0, w(Ea) = 1, and w(Ee.) = -1. The superspace 

one-form A is given by (see [13]) 

Aa lEa M aM K( <p,~) 

Aa = -lEe.MaMK(<p,~) 
. . 

':(VaAe. + Ve.Aa) = -.: [Va, Vc,] K, 
2 8 

(2.6) 

where Gac, = (j~aGa is an auxiliary field which is related to the spinorial component of 

the UK(l) field strength (namely, Pi = 3((jaf)3Ga). The other objects of interest are 

the superfields ~ a and xc, given by: 

(2.7) 

7 



The chiral superfield R will be discussed momentarily, but let us first reexpress the X 

fields as (see [12]): 

-i]( _(j'aw'JlV mkV ,,,k + ~]( -Damk pk. 
2 kk aT aT 2 kk T 

(2.8) 

It follows from the definitions of Xa and Xa that they satisfy: 

(2.9) 

In the component form of the action, we shall find that the lowest components of the 

superfields Xa and Xa will appear. Also relevant to the construction of the component 

field action are the chiral superfields Rand Rt (with w(R) = -w(Rt) = 2), whose 

P-components involve the Riemann tensor, and satisfy: 

(2.10) 

where T::'t, and Tcbrj; are the components of the torsion superfield, and (acb)a {3 =~( aC(j'b_ 

ab(j'C)a {3 Applying the Bianchi identity along with taking another spinorial derivative in 

(2.10) imply that: 

INTRODUCING YANG-MILLS FIELDS 

The YM connection is 

where the indices T are the Lie algebra indices. The YM field strength two-form 

F = ~EA EBFBA = FTTT 

is given by the usual expression in terms of the YM connection: 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

where the coefficients C;q are the structure constants of the Lie algebra. Spinorial com­

ponents of F satisfy the covariant constraints: 

Ta(3 = 0, T 0 -ra 0 J Ja{3 = , J{3 = , (2.15) 
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which together with the Bianchi identities constrain the other components of :F as 

follows: 

(2.16) 

where Wa = W~Tr and wa = wraTr are the Yang-Mills superfields of Kahler weight 

+ 1 and -1, respectively. They satisfy, as a result of the Bianchi identities and the 

constraints, the well known equations: 

(2.17) 

It should be noted, especially as we have not been terribly explicit, that solving the YM 

Bianchi identities makes use of the complete structure of the U K( 1) Kahler superspace, 

i.e., the derivatives are covariant with respect to YM as well as Lorentz and UK(l) gauge 

transformations [12]. In the presence of YM fields, the previous discussion is modified, 

and the appropriate modification of eq. (2.7) and (2.8) leads to 

X = -i F a V kVa- k I}," V k pk W r D a T \HO'aa a<P <P + 2" \kk a<P + a r 

(2.18) 

The Kahler D-term that appears in the r.h.s. of eq. (2.11) is: 

_ J( -1) ,,,kVa;-;:J _ !.. J( _O'a. (va l,.,kV V aTi5) + Va;-;:JV Va ,,,k) kJ a r 'r' 4 kJ 0<0< r a r 'r' a r 

where 

+ T.," pkp-k + 1 R -na kD j-n -k-na;-;:J 
I\kk 16 jjkk V <P a<P Va<P V 'r' 

.T.," v-kwr-na k .J'" vkwr-na-k l(-nawr)D -2I\kk r a V <P - 2 \kk r a V <P - 2" V a Tl 

R a !:IB" R"kk}'" }," iij)= ivt j)- \{k,j \ki,j, 

(2.19) 

(2.20) 

where, Vrk and V/': are the holomo~phic (antiholomorphic) generators of the gauge sym­

metry defined by variations of the coordinates of the Kahler manifold, 

8a<pk = -arY, <pk r , 8 -I<: rv,-I<: a<P = -a r<P, 

Vr 
k a 

Vr (<p) a<pk ' 
- -k- a 
Vr = Vr (<p) atpk 

Vk r -i(Tr<p )k, Vk '(T -)k r = -2 r<P . (2.21) 
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the generators satisfy the underlying Lie algebra commutation relations [VTl Vs ] = Crs tv; 
(likewise for V's, and [Vr' Vsl = 0). Furthermore, the Killing potentials (i.e., solutions of 

the Killing equations for the metric) Dr( ((), ep), are given locally in terms of the generators 

and the Kahler metric ](-_ = 8
2 
K( <p,~) in : 

tJ 8<pk8~k 

T.",_v- j _ . oD( ((), ep) 
1\. tJ r - Z >l' , u<pt 

}".v i - .oD(<p,ep) 
\.tj r - -z 09' . (2.22) 

The Killing potentials Dr are in turn solved for in terms of the holomorphic and antiholo­

morphic functions Fr and Fr which arise as the Kahler transformation induced by the 

action of the gauge symmetry generators on the Kahler potential: (Vr + Vr)K = Fr + Fr. 

We simply quote the result that the solutions to the equations (2.22) is: Dr = ](i(Tr({))i. 

LOCAL SUPERSYMMETRY TRANSFORMATIONS 

In the following we shall outline the construction of the supersymmetric Lagrangian 

for supergravity coupled to Yang-Mills and (chiral) matter fields with the above ingre­

dients. The matter fields parameterize a Kahler manifold. The transformations of the 

objects EA (the superspace frame, or super-vielbein), matter superfields, <pk and epk 

and the YM connection one-form Ar = dzM AM under the superspace diffeomorphisms, 

Lorentz and YM gauge transformations (~M' AB A, and a r
, respectively) are: 

8EA Lf,EA + EB AB A - ~w(EA)EAIm(F( <p) - ar Fr( <p)) 

8<pk Lf,<pk - arVrk(<p) 

8<pk = Lf,epk - arVrk(ep) 

(2.23) 

where Lf, = if,d + dif, is the Lie derivative in superspace and if, and d are respectively 

the interior product with respect to the superspace vector ~A and the exterior deriva­

tive. The compensating ~-dependent Lorentz and YM transformations correspond to 

AB A = if,<PB A = if,dxC <PCB A and ar = -if,Ar [12, 10]. The above local supersym­

metry transformations can then be cast into the following form which will prove more 

convenient later when we derive the transformations of the component fields: 

ABC A 1 (A) A B ( . k ' -"-.1.) DM~ + EM ~ TCB - 4'w E EM ~ likDB<P -likDB({) 

iw(E)EM Ae (12Gb + at' Kk'kDOI<PkDo,epk) 

10 



o,l = ~AD A rpk, O(ii- = ~AD A rpk 

or = xiADAr -lw(r)re (KkVArpk - KkVArpk) 

iw(r)r~b (12Gb + o-rcx KHVcxrpkVe.rpk) 

(2.24) 

where r and uk are generic superfields which are assumed to have the following trans­

formation laws: 

L uk _ aJ)Vrk( rp) u€ 
< orp€ 

or '/, -

L<dr - 2"w(r) rIm(F(rp) - ar Fr(rp)). (2.2.5) 

The reason for introducing these generic fields will become dear later in our discussion 

of the component field supersymmetry transformation. 

INVARIANT SUPERFIELD ACTIONS 

Invariant actions are obtained by integrating superspace densities over all directions 

(commuting and anticommuting) of the superspace. Remarkably, the supergravity plus 

matter action is simply the integral over the volume element of the superspace con­

structed above: 

:.csugra+rnatt = -3 J E == Lsugra + eVmatter , (2.26) 

where the integration over d4 xd4 () is understood. E is the super-determinant of the 

superspace vielbein EM A , e = det em a, and Dmatter is the terms induced by Kahler 

superspace structure and contains the matter field contributions: 

(2.27) 

where the vertical bars denote the projection to the lowest component of the superfield. 

We shall discuss the matter contributions to some detail later on. The Yang-Mills and 

superpotential contributions are: 

r J E () rcx s J E j- (-) r wse. J..-YM = 8Rirs rp W Wcx + 8Rt rs rp We. (2.28) 

and 

1JE K 1J E K--
Lsp = 2" R e W(rp) + 2" Rt e W(rp). (2.29) 

11 



Where the gauge kinetic function, irs and the superpotential Ware holomorphic func­

tions of the chiral fields. The Kahler invariance is verified by recalling that the Kahler 

weights of Rand Rt are +2 and -2, respectively, and since w(Wa.) = -w(Wa) = 1, 

for the YM action to be U K( 1) invariant, the gauge kinetic function, irs must have 

·zero Kahler weight. Furthermore, w( eK / 2W) = 2 = -w( eK / 2W), hence Lsp is Kahler 

invariant. 

As for gauge invariance, the YM term is invariant provided that the gauge kinetic 

functions satisfy 

(2.30) 

and the superpotential term is invariant if 

(2.31) 

Finally, since the action is directly written in superspace, supersymmetry is auto­

matic by construction. 

Do the Lagrangians in (2.26)-(2.29) correctly describe the dynamics of supergrav­

ity, matter, and Yang-Mills system? The justifications are the superfield equations of 

motion, and also the component-field actions corresponding to the superfield actions 

(2.26)-(2.29). For details of the former approach (i.e., the derivation of the equations 

of motion) we refer the reader to ref. [12]. Here we shall discuss the component fields, 

mainly because the starting point of our calculation of the I-loop effective Lagrangian 

of supergravity, YM and matter system is the component-field tree-level Lagrangian for 

the system, which we shall construct next. 

COMPONENT FIELDS 

The supergravity multiplet consists of the vielbein em a, the gravitino, ('I/J~, 1/;mix), 

and two auxiliary fields, M (complex scalar) and vector field ba' These are given by the 

() = e = 0 components of the supervielbein, EM A (in the Wess-Zumino gauge (see [10], 

for example)) and of Rand Ga superfields: 

1 RI = --M. 6 . 

12 

in/.a 
2'f'm 

o 

1 - ) 2'I/Jmix 
o , 

8t; 
a 

(2.32) 

(2.33) 



where 'the vertical bar indicates projection to the lowest component (() = B = 0) of 

the superfield. For the components wmB A of the connection (4)B A = dXmWmB A) and 

torsion TM N A and TCB A which are related by 

(2.34} 

The lowest component projection of the superfields X O'. and Xa of eq. (2.18) are thus 

obtained using: 2 

<pi I A\ 1)0'. <pi I = v'2x~, 1)0'.1)0'. <pi I = -4Fi, 

Ami iam, W.BI = i)...B, 1)O'.WO'.I = -2D, 

E' MT! il _ ( m'T'\ i 1 mA/.O'. f:/J.'T'\ i)1 a L/M<P - ea L/m<p - 2ea'f'muO'.L//J.<P 

m(T! Ai 1 01,0'. i) ea L/m - y'2 'f/mX O'. . (2.3.5) , 

Then it is straightforward to show that 

X - i 1.,0 _ m -ka (T! Ak 1 01,/3 k) 1 1.-" _ kF-k '\TD 
0'.-- y'2I\kk CTO'.aX L/m - y'2'f/mX/3 + y'2I\kkXO'. -ZAO'. T' (2.36) 

Now let us consider the superfield -!1)O'. X O'. , as given in eq. (2.19). Using: 

(2.37) 

one obtains: 

-~DO'.X I 2 0'. 
, -- Z ' -' 

_lC_gmn1) At1) AJ ~ -K'-Xw CTm.1) X-JO'. 
tJ m n 2 tJ 0'.0'. m 

i ' . - ' -- 1 ' - -
+ 2(DmXO'.')CT:aKiJXO'.J + KiJF' FJ + 2 KiJgmn ( 1/JmX')( 1/JnxJ) 

+ 1R (i j)(-1:-J) + v'2( i)..T)}",i/:3+v'2(-J)..T)}"'Vi 4' i1:jJ X X X X X \ 'J T X \ 'J T 
. . 

+ DTD Z (:" -m i) 1..° p-J Z (01, m -J) 1.,0 pi T - /0 'f/mCT X I\iJ - /0 'f/mCT X I\iJ 
2y2 2y2 

1 - - - - ,1, 
2y'2( 1/Jm(jnCTm

XJ -1/JmXJg
mn

)KiJ(1)nA' - y'21/JnX') 

1 (01, n -m i 201, i mn) 1.'0.-lT! A-J 1 01. -J) 2V2 'f/mCT CT X - 'f/mX 9 1\ i)\ L/n - V2 'f/nX . (2.38) 

Hence, one obtains for the matter contributions in equation (2.26) and (2.27): 

2The complex conjugate expressions of the lowest component fields omitted here for brevity. 
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+ ~(DmXai)(j:a](ijXaj + ](ijpi pj - ~](ij9mn( 1/;mXi )( ~nXj) 
1 .. -- 1 '-+ 4Ri,jj(XtXJ)(xtXJ) - "2](ij(Xt(ja XJ)ba + Dr Dr 

1 . -- 1 - - . 
(.1, n-m t)}., "T'I AJ (.1, -n m-J)},' 1) At V2 '¥m(j (j X \.ijvn - V2 '¥m(j (j X \.ij n 

](ij [(~mi7mnxj)(1/;ni) + (1/;m(jmnXi)(~n:e)] 

V2](ij [(Xi Ar)"v! + (xj~r)Vri] + ~(~mi7m Ar 
- 7fJm(jm ~r)Dr' (2.39) 

where the covariant derivatives are given by: 

(2.40) 

and (see [12]) 

. In the above equations, Dr is the Killing potential, not to be confused with the gauge 

auxiliary field Dr = -~DaW~I. 

The supersymmetry transformations of the component fields can be derived by start­

ing with the superspace transformation laws of the supervielbein and a (Lorentz invari­

ant) generic field r as given in eq. (2.22) with 

(2.42) 

this is a laborious procedure and has been worked out to great detail in ref. [12]. For 

instance, the lowest component ofthe transformation of the supergravity multiplet gives: 

i~(ja~m + i~i7a1/;m 
. . 

'/, '/, -
2Dm~a - 3(~(jai7m)aba + 3(~i7m)a M 

1 .1,a(}"Ci }'e-') 2V2 '¥m \i<:.X - \,<:.X (2.43) 

where Dm~a = [)m~a + eWm{3 a + ~a Am and the Kahler connection Am = ~ ](/JmAj -

~](j[)mAj - ~em aba + ~a~Dr + ~lCjXi(jmXj. The transformations of the auxiliary com­

ponents, and all the other component fields in the theory are found in [12]. 
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CONSTRUCTION OF AN INVARIANT ACTION 

Given a chiral superfield r with w( r) = 2 (which cancels the Kahler weight of the () 

integration) and components: 

(2.44) 

The supersymmetry transformation laws for the components of r can be found and they 

are given by: 

bs 

/02 cOt 1 (l" C i l" C -t) y..::<" POt - V2 .L\i<"X - .L\t<"X 

= V2~Ots + iV2(crm[)Ot('Dmr - ~'ljJmP + iem abar) 

l/OPOt(Kk~Xk - Krll), 
2y2 

-iV2([a-mt'DmPOt - i([a-m'ljJm)s + ([a-mcrn'ljJm)('Dnr - ~'ljJnP + ien abar) 

V2 - 2V2 - - -' + 3M(~p) - -3-(~a-mp)ba + 2r~oXOt. (2.45) 

These can be used to show that the Lagrangian density 

(2.46) 

(where e = det em a) has the desired transformation property that b£ is a total diver­

gence, and therefore is a supersymmetric action: 

(2.47) 

Referring back to the discussion of the superfield action for supergravity, SYM and 

matter, with superpotential W, where w,e have: 

K" 1 
r = -3R + e . W + - fTsWOtTW~" 

4 
• 

(2.48) 

Recall from equations (2.26)-(2.29) that the first term gives the £sugra+matter with the 

canonically normalized Einstein term, and the second and third terms give £sp and £YM. 

For the sake of an example, let us consider the construction of £sp from the second term 

in (2.48); i.e., let us start with r = eKW which gives: 

IS 



1 1 [K/2 " k] PQ y'2'DQr l = y'2 e (AkW + Wk)'DQ<p I 

eK/2(J(kW + Wk)X~, 
s -~'DQ'DQrl = eK/2(J(kW + Wk)pk - ~eK/2(J(ij - ](lr1j + ](i](j)W 

1 K/2 k'.' , 
2"e (Wij - Wkrij + 2WiA j )(XtXJ ), (2.49) 

which using (2.46) gives: 

!LSp = eK/2[pk(J(kW + Wk) - MW + ~(~mO'rnXk)(J(kW + Wk) 
e . v 2 

~[(](ij - ](lr1j + ](i](j)W + (Wij - Wkr7j + 2WJ(j)](Xi X
j
) 

~mO'mn~nW] + h.c. 

Lsugra+matter and LYM are similarly obtained are are given by: 

Lsugra+matter 

(2 . .50) 

(2 . .51) 

. where 'Dmatter was given in eq. (2.40) containing the complete matter dependence other 

than the superpotential. The YM Lagrangian is: 

1 
-LYM = 
e 

!f [!pTmn F S + !..EmnpqFT FS + 2i>/O'mv ,\S 4 TS 2 mn 4 mn pq m 

DTDs _ PIT O'a AS)ba - iPTmn( 'l/JmO'n'\s + ~mO'nAS) 

+ ~Emnpq P~n( 'l/JpO'q'\s - ~pO'qAS) + ~(AT AS)(3~m~m + 2~mO'mn~n) 

+ ~(,\T,\S)(3'I/Jm'I/Jm + 2'I/JmO'mn'I/Jn) 

1 --2"(gmPgnq - gmqgnp _ iEmnpq)('l/JmO'nAT)('l/JmO'nAT)] 

~ ~~: [V2(XiO'mn AT)P~n - iV2(XiAT)DS + pi(AT AS) 

iV;(ATAS)(~mO'mXi) - iV2('l/JmO'n,\T)(XiO'm~As)] 

+ 1[ (PiTS rl 8i TS ]( i j)(ATAS)' h 8 8AiAj - ij 8Al X X + .c. (2 . .52) 

In the above equations, p:nn = 8ma~ - 8na~ - C~ta~a~ are the bosonic components of 

the YM gauge field strength. Solving for the auxiliary fields in the Lagrangians (2.37), 

(2.48)-(2 . .50) we find: 

(2 . .53) 
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(2.54) 

(2 .. 55) 

(2.56) 

It can be verified that these equations are precisely the lowest components of the equa­

tions of motion of the superfield action of (2.26)-(2.29). 

2.2 The Heterotic String and Compactifications 

In this section, we shall briefly review some relevant facts about heterotic string, it's 

effective field theory in 10 dimensions, and the compactifications to four dimensions. 

We shall not go into any details of the world sheet theory because we are concerned with 

the physics in the low energy effective field theory in four dimensions. 

It is well known that the negative-norm ghost states of the 26 dimensional bosonic 

string theory are removed by world-sheet supersymmetry [14]. This supersymmetric 

theory has ten spacetime dimensions. In addition, in the spacetime supersymmetric 

theory the so called GSa projection [1.5] eliminates the potential tachyonic ground state. 

If all the heavy modes of the superstring are 'integrated out' (or in practice, the 

theory is truncated which means the massive modes are discarded), the effective theory 

is described by the massless modes in ten dimensions. For example, anticipating the 

case of heterotic theory (with one supersymmetry) these modes are: 

• 9MN, Th 10-dimensional metric (symmetric and traceless) corresponding to the gravi­

ton. In terms of the string states, this mode is given by:3 

(2.57) 

• BMN Antisymmetric tensor, corresponding to: 

(2.58) 

• t.p, Scalar field (dilaton) corresponding to: 

(2.59) 

3 a!; 'and ex;: are the oscillators in the mode expansions of the string right- and left-moving coordi­

nates, X~, and Xi, and m, n ~ -1 correspond to the creation operators in the Fock space of the string 

states [14]. 
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and their superpartners, which are gravitino 'l/JM, Majorana fermion X (dilatino). To the 

above fields one must add the YM gauge potential AM and gaugino AT. 

These are exactly the contents of the physical spectrum of 10D supergravity coupled 

to YM gauge theory. Ten dimensional supergravities are thus the low energy limits of 

superstring theories. 

The field contents of type I, type IIA , and type lIB supergravities in ten dimensions 

corresponding to open string with N = 1 susy (I), and closed superstring with N = 2 

supersymmetries in which the left and right moving fermions are of opposite (IIA) and 

the same (lIB) chiralities are as follows: 

Type I: 

bosons: Graviton, dilaton, antisymmetric rank 2 tensor, YM vector potential, 

fermions: Gravitino (spin 3/2), spinor (dilatino), gaugino. 

Type IIA: 

bosons: Graviton, dilaton, anti symmetric rank 2 tensor, vector, antisymmetric rank 3 

tensor, 

fermions: 2 Gravitinos( with opposite chiralities), 2 spinors, 

Type IIB: 

bosons: Graviton, dilaton, antisymmetric rank 2 tensor, 2 scalars, selfcdual antisymmet­

ric rank 4 tensor, 

fermions: 2 Gravitinos (with the same chirality), 2 spinors, 

The presence of the antisymmetric tensors in the 10-D supergravities has far reaching 

consequences in the developments in string-string dualities [16]. 

THE HETEROTIC STRING 

The heterotic string [17] is constructed using the fact that in closed string theo­

ries, left- and right-moving modes are decoupled, and the left-moving modes can be 

of different type from the right-moving modes. In particular, one can take the right­

moving modes to be the superstring modes (this introduces supersymmetry and therefore 

fermions, and also removes the tachyon), while taking the left-moving modes to be the 

bosonic string modes and left-moving fermions which arise from the fermionization of 
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the extra left-moving bosons. More explicitly, the action that describes this type of 

construction is as follows: 

(2.60) 

where o± = ~ (tr ± too), and T and (J are the time and spatial coordinates of the 

worldsheet. The fields 'lj;J.L and ).A are Majorana-Weyl fermions. The right-moving parts 

of XI-' together with 'Ij;~ are the right-moving modes with critical dimension· D = 10. 

The right moving fields have supersymmetry: bXJ.L = e¢~ and b'lj;~ = fO+XI-' where 

f has + chirality only. The left-moving modes are the left-moving parts of XI-' and 

the fermions ).A. The latter are singlets under the Lorentz group, and there is no 

supersymmetry amongst the left-movers. Depending on whether all ).A obey the same 

boundary condition, they carry an 50(32) or E8 X E8 symmetry, which indeed turns 

out to be a gauged symmetry (for discussion, see for example [14]). 

To give a feeling for how the gauge symmetry arises, let us simply remark that be­

cause the right-movers are in 10 spacetime dimensions, while the left-movers are in 26 

dimensions, 16 of the left-mover coordinates, Xf are toroid ally compactified on a 16 

dimensional torus, giving rise to extra massless states which turn out to be vectorlike, 

and are associated with gauge fields of 50(32) or E8 x E8. The details are found in stan­

dard references [14, 18, 19]. Remarkably, anomaly cancellation in the ten dimensional 

supergravity and superYM theory requires precisely the choice of 50(32) or E8 x E8 

gauge groups [20]. 

The ten dimensional effective field theory of heterotic string theory is N = 1 super­

gravity coupled to super-YM in ten dimensions. This is because the truncation of the 

theory (i.e., discarding all the string modes except the massless ones) leaves us with the 

following spectrum: 

bosons: 8~ X (8v + 1adj(G))R 

fermions: 8~ X (8v + 1 adj(G))R 

1 + 28 + 35v + 8vadj(G) 

85 + 565 + 8cadj(G) 

and (1 + 28 + 35v )Bose (corresponding to a scalar, second rank tensor, and the graviton, 

respectively) + (85 + .565)Fermi (corresponding to a Majorana-Weyl fermion, and grav­

itino, respectively) constitute the N = 1 supergravity multiplet in 10 dimensions and 

(8v +8c )adj( G) correspond to the super-YM multiplet, where G is the either the E8 X E8 

or the 50(32) gauge group, which are both rank 16, and 248 dimensional groups. 

19 



This should make the phenomenological appeal of the heterotic string apparent. 

Type IIA is unsuitable because it is non-chiral, and type lIB has the undesirable fea­

ture that all of its massless states are contained in the N = 2 supergravity multiplet, 

therefore there are no nonabelian gauge fields in the effective 10-dimensional field the­

ory. Type I is also unsuitable because the gauge group (50(32)) does not admit any 

complex representations. Heterotic string on the other hand has an effective theory 

which accommodates chiral fermions and also provides a large gauge symmetry which 

can contain the gauge structure of the Standard Model. 

COMPACTIFICATION FROM lOD DOWN TO 4D 

The different string models in four dimensions correspond to the choice of the com­

pact space J( in the decomposition of the 10d spacetime RIO = R4 X J( and on the choice 

of boundary conditions imposed along the compactified directions. Let us start with the 

simplest case in which we compactify only one direction on a circle of radius R, z.e., 

RIO = R9 X 51. Then along the compact direction the momenta are given by: 

m 
PR = --nR 

2R 
m 

PL = 2R + nR (2.61) 

and mass formula M2 = :;:2 + n 2 R2 + (N R + N L - 2) where m and n are integers 

corresponding to the quantization of momenta along the compact direction and the 

winding of the string around the circle n times, respectively. Notice that the latter is 

purely of stringy origin. The mass formula exhibits another stringy property, namely 

the invariance of the spectrum under the duality transformation: 

m-n, 
1 

R-·-2R· (2.62) 

This is a manifestation of modular invariance in string theory about which we shall say 

more in this and subsequent chapters. It exchanges, simultaneously, the Kaluza-Klein 

momentum states with the winding states and large R with small R. Modular symmetry 

holds to all orders of perturbation in string theory. 

TOROIDAL COMPACTIFICATION 

In compactifying supergravity theories from ten dimensions to a lower dimension, the 

general scenario is that one ends up with extended supersymmetries. This is certainly 
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the case in toroidal compcatifications which generically leads to N = 4 theories in four 

dimensions [14]. However, in order to obtain a chiral model in four dimensions, and to 

make contact with phenomenology, at most N 'F 1 should be required. However, we can 

still learn some lessons from considering the relatively simple case of toroidal compact­

ification. Especially, since they are in some sense fundamental to the interesting case 

of orbifold compactification. We shall see shortly that requiring N = 1 supersymmetry 

in four dimensions puts certain constraints on the compact 6-dimensional manifold K. 

But before that, we consider the compactification on T2. 

We identify the compact dimensions by vectors of the defining lattice of the 2-torus. 

The compact metric has three independent components: 9MN --;. 9mn,9n,912,922 and 

the antisymmetric tensor has only one independent 'compact component': BMN --;. 

Bmn, B12 · From the compact components of these we can build two complex moduli 

fields: 

u = 912 + i yg 
922 922 , 

T B12 + iyg (2.63) 

where 9 is the determinant of the 2D metric on the torus (= 911g22 - g;2). U is usually 

referred to as the 'complex structure modulus', and T as the 'Kahler modulus'. Note 

that 1m T = yg gives the size of the torus. Here the left- and right-moving momenta 

are: 

(2.64) 

Once again, the mass formula which depends on ph + pi is invariant under a modular 

symmetry, in this case under two copies of S L(2, Z): 

T-modular transformations: T ---;. ~j$~, ad - be = 1, 

U d la trans~ rat· U a'U±b' a'd' - b'e' -- 1. -mo u r 10 m IOns: ---;. c'U±d" 

The T-duality is the analogue of the large-small radius duality in the previous case. It 

also requires exchanging the momentum quantum numbers m1 and m2 with the winding 

numbers n1 and n2. The duality symmetries imply that T and U each live in the funda­

mental domain of the complex plane [14]. In other words, the space ofthese moduli is not 

the product of two complex planes SL(2, R)jO(2) X SL(2, R)jO(2) ;; 0(2,2, R)j(O(2) X 
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0(2), but the subset with which all the points ofthe product complex space are identified 

under the action of the duality group S L(2, Z) x S L(2, Z) ;:; 0(2,2, Z). 

For the d-dimensional torus, the above result immediately generalizes to the follow­

ing. The moduli space ofthe torus is M = Oed, d, R)jO(d) x Oed) with points identified 

by the duality group, O( d, d, Z). In particular for the heterotic string which has 16 extra 

left-moving coordinates, the moduli space is M = O(d+ 16, d, R)/O(d+ 16) x Oed) with 

points identified under the action of the duality group O( d + 16, d, Z). In this case, for 

d = 6 (six dimensional torus) PL and PR are defined on the so-called Narain lattice [21], 

an even, self-dual lattice A 22 ,6 (a generalization of the A 2 ,2 lattice of the T2 compactifi­

cation, characterized by the integers m}, m2, nl, n2 of eq. (2.64)). The dimension of the 

moduli space of the d-torus on which the heterotic string is compactified is d( d + 16) or 

132 for T6. This corresponds exactly to the number of independent components of 9mn, 

Bmn , and A!n (m,n = 1,···,6, and 1= 1,···,16). 

As noted above, toroidal compactifications result in extended supersymmetries [14] in 

4 dimensions (generically, N = 4). But the lessons which can be learned from them, for 

our purposes, are the presence of modular symmetry amongst the moduli, and that the 

latter are expected to show up as degrees of freedom in the four dimensional compactified 

theory. 

Requiring N = 1 supersymmetry in the 4D theory turns out to be somewhat restric­

tive on the compact space. It can be shown that the necessary and sufficient condition 

for one supersymmetry in four dimensions is that the compact 6-fold must have 'holon­

omy group SU(3) (or equivalently, has vanishing first Chern class), which in turn implies 

that the compact 6-fold is a Kahler manifold with Rij = 0 (for details, see [22] or [14]). 

These manifolds have been studied extensively, and are called Calabi-Yau (CY) man­

ifolds. Compactification of the E8 x E8 heterotic string on a CY manifold yields the 

gauge group E6 x E8 in the 4D theory [22]. We shall not discuss CY compactification in 

any further detail here. Instead, we turn to orbifold compactifications which are easier 

to study phenomenologically [23]. 

ORBIFOLD COMPACTIFICATION 

Actually, orbifolds can be thought of as singular limits of CY manifolds. In our 

discussion of compactification, we have so far not considered the possibility of twists in 

the boundary conditions along the compact directions, although we have used identifica-
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tions corresponding to the shift symmetries of the lattice defining the underlying torus 

of compactification. For instance, if in the 2-torus example, we identify Xi and _Xi 

(i.e., mod out by Z2 corresponding to a rotation by IT), we end up with the orbifold 

T2 / Z2 = n z / Az/ Zz, with four singularities at the fixed-points of the rotation. In order 

to be explicit, let us discuss the case of the heterotic string compactification on a Z3 

orbifold to four dimensions. In this case, the point group (discrete group of rotations) 

is Z3 acting on the lattice of the underlying 6-torus. Let us take the following complex 

coordinates for the six-dimensional compact manifold: 

Zl _1_(y3 + iy4) 
J2 

ZZ _1_(y5 + iy6) 
v'2 

Z3 ~(y7 + iy8). (2.6.5) 

The lattice for the underlying torus is defined by identifying (0: = 1,2,3): 

ZQ == ZQ + 1 (2.66) 

and 

(2.67) 

z.e., 
3 

Z == Z + Z)m>.e>. + n>.j;') (2.68) 
>'=1 

where m>. and n>. are integers, and the basis vectors of the lattice are defined as follows: 

- (1 0 0) - (0 1 0) - (0 0 1) j- Z1ri/3-e1 = " , ez = " , e3 = " , >. = e e>.. (2.69) 

The generator for the point group is: 

(2.70) 

The 50(6) rotation group (acting on the real coordinates yk, k = 3·· ·8) has a subgroup 

5U(3). The coordinates Z provide a 3-dimensional representation of this 5U(3), and 

n is a finite element this 5U(3). Note also the action of n on the basis vectors of the 

lattice 

(2.71) 
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Thus the discrete group generated by n is a symmetry of the torus. The orbifold is 

constructed by identifying the points on the torus that are mapped into one another 

under the point group generated by n. The fixed points of the combined action of n 
and lattice translations by L:l=l(m,\e,\ + n,\!-;') turn out to be of the form: 

(2.72) 

hence there are 27 fixed points (singularities) altogether. As mentioned earlier, n is in 

fact a finite element of SU(3). If we associate with n an action on the gauge degrees 

of freedom, for example, by taking n to be an element of SU(3) subgroup of an E6 x 

SU(3) x E~ C E8 X E~ (this is called the 'standard embedding') the theory turns out to be 

at the tree-level modular invariant [14]. The states of the toroidally compactified theory 

do not necessarily correspond to the states of the orbifold, because one has to select 

the states that are invariant under the action of the point group, and its embedding in 

the gauge group. Even then, these point group invariant states are only a part of the 

story, they correspond to the 'untwisted sector'. These are obviously a subset of the 

states of the underlying toroidal compactification. The additional states, or the 'twisted 

sector', are obtained by imposing twisted boundary conditions, i.e., satisfying boundary 

conditions along the compact directions up to the action of the point group (in our case, 

rotation by 27r /3). Let us now briefly discuss the massless states. It can be shown [18,23] 

that point group invariant compactified theory indeed has N = 1 supersymmetry. The 

embedding of the point group into the gauge group reduces one of the E8 factors to 

E6 x SU(3). The adjoint representation of E8 (which is 248 dimensional) decomposes 

under E6 X SU(3) as: 

248 = (78,1) + (1,8) + (27,3) + (27,3), 

and requiring point group invariant states eliminates the (27, 3) and (27,3) and leaves 

only the adjoint of E6 , (78,1), and the adjoint of SU(3), (1, 8). Note that 8 is n­
invariant because it is contained in 3x3, and 3 and 3 have opposite phases under n 
transformation. The matter fields in the compactified theory are obtained from right­

movers which transform as 3 of the SU(3) subgroup of SO(6) of the spatial degrees of 

freedom of the compact manifold, together with the left-movers in (27,3). The former 

transform with a phase e21ri / 3 and the latter with e-2r.i/3 under n, and so these are point 

group invariant. Likewise, right-movers which transform as 3 of SU(3) are linked with 
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the left-movers in (27, 3). In this way, three copies of point group invariant 27 and 27 

of E6 are generated (one for each index Q in (2.66). These are three copies of chiral 

superfields in (27,3) of E6 x SU(3) and their antiparticles. In addition, in the untwisted 

sector there are a set of point group invariant E 6-singlets (moduli) whose expectation 

values are related to the size and shape of the underlying torus. There are two 'twisted 

sectors' of the Z3 orbifold compactification which are not discussed here. The E6 gauge 

symmetry of the heterotic string's observable sector (and likewise, the hidden E8 ) can be 

further broken and additional matter can be generated by adding Wilson lines [23, 24] 

which amounts to the full embedding of the lattice translations (of the underlying 6D 

torus) as well as the rotations by the point group in the gauge degrees offreedom. This 

further increases the possible consistent models based on heterotic strings. 
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Chapter 3 

Supergravity Coupled to YM and. Matter at One Loop 

3.1 Introduction 

Understanding the structure of the divergences in supergravity is a necessary step 

in determining the counterterms [25], [26], [29] that are needed to fully restore modular 

invariance in an effective supergravity theory from superstrings. The determination of 

these loop corrections may also provide a guide to the construction of an effective theory 

for a composite chiral multiplet that is a bound state of strongly coupled Yang-Mills 

superfields, which in turn could shed light on gaugino condensation as a mechanism for 

supersymmetry breaking. 

The paper [30] (hereafter referred to as I), gives the divergent contributions to the 

bosonic Lagrangian in a general supergravity theory coupled to chiral matter, in a general 

bosonic background, averaged over quantum fermion helicities. That work extended the 

results of several earlier calculations [37]-[40] on loop corrections to supergravity. In 

particular, using specific choices of the gauge fixing and of the expansion of the action, 

the authors were able to cast the results in an especially simple form in which most of 

the one-loop corrections can be interpreted in terms of renormalizations. More recently, 

the authors of I and myself extended and completed these results to incorporate the 

Yang-Mills sector [41], including helicity-odd operators that arise from integration over 

quantum fermions. This work appears in ref. [31] (hereafter referred to as II) and is 

combined with the results of I in a short letter in [32]. Our results are completely general, 

except that we assume that the tree-level gauge kinetic energy normalization function 

fez) [42], where z represents the complex scalar fields of the theory, is proportional to 

the unit matrix. This is the case for all known theories derived from superstrings, up 

to possible multiplicative constants for different factor gauge groups that correspond to 

higher affine levels [43]. This modification is easily incorporated into our formalism, as 

explained in Section 4.5. 

The generalization of the results of I to the more general case considered here can 

be summarized as follows. We define an operator of dimension d as a Kahler invari-
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ant operator whose term of lowest dimension is d, where scalar and Yang-Mills fields 

are assigned the canonical dimension of unity. The~, among the ultra-violet divergent 

terms generated at one loop, all operators of dimension 6 or less (as well as many op­

erators of dimension 8) that involve neither the Kahler curvature nor derivatives of the 

gauge kinetic function can be absorbed by field redefinitions, interpreted as renormal­

izations of the Kahler potential, or take the form Fab(Z, z) (WaWb) F + h.c., where wa 

is a chiral Yang-Mills supermultiplet, the subscript denotes the F-component, and the 

matrix-valued function Fab(Z, z) is not in general holomorphic. The remaining terms 

of dimension 8 and higher must be interpreted as arising from higher order spinorial 

derivatives of superfield operators. 

As noted in Ii the effective cut-off for effective theories derived from superstrings 

is field dependent [29], [44], [4.5]; moreover the field dependence is different for loop 

corrections arising from different sectors of the theory [29], [45]. As in I we use here 

a single cut-off and neglect its derivatives; terms involving derivatives of the cut-off 

have a different dependence on the moduli and must be considered together with terms 

that are one-loop finite. Our results, some of which are collected in the appendix, are 

presented in such a way that the contributions from different sectors can be isolated and 

the corresponding Pauli-Villars contributions can easily be evaluated. 

This chapter only serves as a synopsis of the calculation of the one loop effective 

Lagrangian by giving a rather brief overview and outlining some general strategies and 

gauge fixing procedures. Also, in the subsequent sections of this chapter we establish 

our notations and conventions (which are somewhat different from the notations that 

we used in the introd uction to the subject in Chapter 2.) 

3.2 ' Conventions 

Our space-time metric signature is (+ - --). We use uppercase notation (R, f) for 

derivatives ofthe Kahler metric, and lowercase (r, I) for those of the space-time metric. 

Our sign conventions for, respectively, the Riemann tensor, Ricci tensor and curvature 

scalar are as follows: 

(3.1) 
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aildcovariant differentiation is defined by 

(3.2) 

The scalar field redefinition covariant quantities are defined identically with 

9JJ.// ---+ ZIJ, ,---+ f, r ---+ R, V' JJ. ---+ DJ 1= i, 2, (3.3) 

where zi, zm = (zm) t are the scalar partners of left and right handed Weyl fermions, 

respectively. Because the scalar metric is Kahler, there is only one type of nonvanishing 

element of the Riemann tensor, namely 

Rnjkm = Rnkjm = Rmjkn = Rmkjn 

= - Rnjmk = - Rnkmj = - Rmjnk = - Rmknj . (3.4) 

Note that since R~kf. = 0, [Di' Dj] = 0, and the tensors 

(3 .. 5) 

are symmetric in all indices. It follows from the Bianchi identities that DiRjmk is totally 

symmetric in {ij k}. 

We work in the Kahler covariant formalism [13], which differs from that of Cremmer 

et al. [42] by a phase transformation on the fermions that removes phases proportional to 

1m (W/W) , where W is the superpotential. In this formalism the fermion U(1) Kahler 

connection is just 

(3.6) 

where DJJ. is the gauge covariant derivative. It is convenient to introduce the notation 

K - K-
A = e W, A = e W. (3.7) 

Then the classical potential is V = V + D, where 

With these conventions the tree level Lagrangian [42], [13] for the case f(Z)ab = oabf(z) = 

Oab[X(Z, z) + iy(z, z)] is 
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The tree-level supergravity Lagrangian [42, 13] (also see Chapter 2) we adopt, with 

J(z) = x + iy (which is trivially generalized to Jab = 6abkaJ, ka = constant, and so 

includes all known string models), is} 

_1_£ 
yI9 

where 

+ 2; ~ fJ-X + iKim (xt fJxi + xk fJxY{) 

+e-K
/
2 (l J;Ai~R~L - AijXkx{ + h.c.) 

1 - 1 -
+ 41/JIl,lI(i fJ + M),Il1/JlI - 41/JIl,Il(i fJ + Mhll1/JlI 

[
X o/' lip Il \ Fa +./, 17\-m l", ilL i 1./' Il \ aTl + './' ilL i '+ h ] - -'I-'Il<7 , Aa liP 'l-'Il 'rZ 1l~m' X -'I-'Il' ,5A Va 2'1-'Il' X m, .c. 8 ,4 

(
.\a [ l,' (T -)m 1 fTl 1 Fllllf] i h ) + 2AR 2I~im aZ - 2x iVa - 4<71l1l a i XL + .c. 

+4 fermion terms, (3.9) 

m ' - e-K / 2 A' 'Z - oz· (3.10) 

K(z, z) is the Kahler potential, W(z) is the superpotential, T a is a generator of the 

gauge group, and 

(3.11) 

with Di the scalar field reparameterization covariant derivative, and Kim the inverse 

Kahler m~tric. 

In the notation of [37] [see eq.(3.91)]' the masses operating on the left-handed grav­

itino and chiral fermions are 

m'I/J = e-K / 2A, (3.12) 

These are related to the elements of Me in (3.38), below, by (see [37]) 

M m - ymie-K/2A __ - e-K/ 2 Am 
J - ~ 'J - J . (3.13) 

1 Here we have slightly departed from the notation of Section 2.1 to a more conventional notation, 

with indices fl, V,'" for spacetime (rather than m, n, ... ) and a, b,'" (rather than T, s, t,·· ,) for the 

gauge indices, Also we denote the chiral fields by Zi and ZT with scalar components zi and iT instead 

of <pi with the scalar field component Ai, Furthermore, we switch to the use of four component Dirac 

spinors. The conventions regarding the fermions are summarized in the next section. 
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Note that the normalization of our chiral fermions is the same as in [42], which differs 

by a factor .J2 from [13]. The covariant derivatives Dp. include the spin connection, 

the gauge connection, the Kahler connection (3.6), the affine connection, and the field 

reparameterization connection for chiral fields. For fermions: 

['V p. + ~/V ('V P.I
V

) + iJsr p.] 1/J, 

[Vp. + ~/V ('V P.I V
) - iJsr p.] Xl + VP.ZJr)KXK. (3.14) 

[The gauginos have the same Kahler weight as the gravitino, and an additional connec­

tion (see below).] Operating on a function of scalar fields, Dp. = Vp.zI D], where Vp. is 

gauge and general coordinate covariant. 

3.3 Dirac algebra 

We work in the Weyl representation for the Dirac matrices; for a flat metric: 

(3.1.5) 

To evaluate the fermion determinant, we note that an arbitrary 4 x 4 Dirac matrix M4 

can be written as 

M4 = RAR + LBL + RCL + LDR, (3.16) 

where A, B contain an even number of Dirac matrices IV, C, D contain an odd number, 

A, B, C, D have no explicit Is-dependence, and L = ~(1 - IS) and R = ~(1 + IS) are 

the helicity projection operators. Then TrM4 = TrRA + TrLB = TrMs, where Ms is 

the 8 X 8 matrix 

(
RAR RCL) 

Ms= LDR LBL ' 
(3.17) 

and Trf(M4) = Trf(M 8 ), where f is any function that can be expanded in a Taylor 

senes. Writing M4 == M 4( IS), we have 

RBR + LAL + RDL + LCR, 

1 1 (A C) - (TrA + TrB) = -Tr . 
2 2 D B 

(3.18) 
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Similarly, if I is an arbitrary function of M 4 , 

~ {Trl [M4( 15)] + Trl [M4( -'S)]} = ~Tr/(P), P = (; ~). (3.19) 

Setting M4 = -i #' + Me, I(M 4) = In M 4, (3.19) gives the trace T+ that has been 

evaluated previously2 [30, 37, 38, 39, 40]. To evaluate the determinant T_ we define 

(3.20) 

which is a 4 X 4 matrix in Dirac space that we write [37] in terms of the 2 X 2 Pauli 

IT-matrices as 

( ~ C) 
b iIJ ' 

~ lT~dt = lT~ [bt - L~(lT_,lT+)], 

!l lT~d-;' = lT~ [b-;. - L~ (IT+, IT_)] , 

(3.21) 

The matrix elements in M4 are defined, up to the 15 ambiguity noted in [4.5], in terms 

of those appearing in the fermionic part of the quadratic quantum action (4.71) by: 

(3.22) 

The matrix-valued derivative operator b~ is defined in (3.14) ofI, the additional gaugino 

connection L~ is given in (B.19) of the Appendix, and the elements of the mass matrix 

Me = 1\1 R+ M L are given in (2.16), (2.17), (A.11) and (B.10) of I, together with (C.15) 

below. The tilde operation on ~,!l, C, D amounts to the interchange IT+ ...... IT_. Thus 

$.L (~ ~~) , $.R = ( 0_ 
-~ 

~) , 
M R (j>+.ft ,\ v p tj) 2 R - R #,2 R - 24 f ,\vptjllll - , 

i4!l L (j>-.ft ,\ v p tj)2 L _ L#,2L - 24 f'\vptjl I I I - , (3.23) 

where the appropriate zero's in the transition from 2 X 2 to 4 x 4 matrices is implicit in 

the last two lines. More, generally, products of lT~ can be converted into products of ,~ 

2The contributions from the terms MJ.wuJ.'l/ were not fully included in [37]. 
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by 

(O"+O"_to"+ --+ _L,2n+1R, (O"_O"+to"_ --+ _R,2n+1L, 

(O"+O"_t --+ L,2nL, (O"_O"+t --+ R,2nR. (3.24) 

Then defining 

~ [Tr In M 4 (M, 5) ± Tr In M 4 ( -M, -5)], 

-C~ :) =M4(-M,-75ho, (3.2.5) 

(3.23-24) immediately gives: 

S+ = ~Trln [M4( -M, -5)M4(M, 5)] 

1 (-R[P~ + M M]R -R[i P+ M - Mi P-]L) 
-Tr In _ _ _ 
2 -L[i P- M - Mi P+]R -L[P:' + M M]L 

~Trln(-p2-M~+i[p,Me]) = ~Trln(-D2-H~). (3.26) 

where D = De and He, defined in (4.31-32), are the operators that appear in the 

quantum Lagrangian, as we shall see shortly .. Although the matrix in (3.26) is 8 x 8, 

the helicity projection operators L, R project out half the elements, so the counting of 

states is unchanged when we take the Dirac trace. Since TrlnM(M) = TrlnM(-M), 

we have S± = T±, and (3.26) is equivalent to (3.19), up to the ambiguity described 

in [45]: terms even and odd in ,5 can be interchanged using ,5 = (ij24)f./J-vPO"/J-'v'p'O'. 

The next step is to cast S _ = T _ in the form of (4.35), below, and to take its 

Fourier transform to obtain an expression of the form (4.36), but before performing the 

p-integration we write 

M-1[M(,s)- M(-,s)] = M-1M01 Mo[M(,s) - M(-,s)] 

= 2 (D2 _ ~O"~L1/G/J-v + iD/J-M/J-) -1 iDvNv, 

where Mo is3 the matrix (3.25) with 

C = D = 0, 

(3.27) 

3It might seem more efficient to take instead Me = M4( -M, -?) but this form turns out to introduce 

a spurious quadratic divergent term involving M).4I/. To explicitly regulate ultraviolet (or infrared) 

divergences, one should introduce a regulator mass matrix J.le and set Me -> Me + J.le; see the discussion 

in Section 4.3. 
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1 2 [M( IS) - M( -IS)] 

(3.28) 

and 

_ (-RI/J. /f R RI/J.MIL) 
N/J.- , 

-LI/J.MIR LI/J. /f L 
(3.29) 

We then redefine the integrand by [48] 

T(p, x) -* UT(p, x )U-I, U = exp ( -id . :p) exp (i8. :p) , (3.30) 

which leaves the (properly regulated) integral unchanged. In the absence of background 

space-time curvature, the 8 X 8 matrix valued operator d/J. is simply 

(3.31) 

In the presence of space-time curvature, one has to expand [40] the action at x' = x + y 

in terms of normal coordinates, (/J. = y/J. + ~I~v( x )yPyV + O( e): 

(3.32) 

where I~v is the affine connection, and the full connection a/J.(x,O includes terms that 

depend on the affine connection and its derivatives. The expansion of (3.27) for this 

case is determined in [40]. We t.hen obtain: 

with 

T(p,x) 

A-I 

-~Trln [1 + 2A(X,p)p2R s(x,p)] , 

_T/J.v A/J.Av + h + X + (pV + CV) P/J.vM/J., 
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(3.33) 

6. = (1 + R)-1(2p-2) = I) -Rt( _p-2) (3.34) 
n=O 

to obtain the expression (4.40), where we have set Po = O. 

Once all these manipulations have been performed we can simplify the expression 

for the fermion connection by using simply 

(3.3.5) 

The point is that the part of the gaugino connection arising from the dilaton has been 

included in the "vector" (..7:): 

(3.36) 

rather than in the "axial vector" (..7J1.) part of the connection. 

We conclude this section by listing some Dirac traces that are useful in the evaluation 

of T _ and of the ghostino and fermion determinants: . 

0123 -1 ._1 ( = -g (0123 = 9 2, 

Tr(-YSCTQ:.6,"YCTb!,-/) = 4i[(C>'.6"Ybg !C + (C>'.6!"YlC + (Q:.6 b!g"YC + (C>'.6Cbg"Y! + (C>'.6!Cg"Yb], 

Tr('sCT C>'.6 CT "Yb,!,C) = 4i[(C>'.6"Ybg !C + (C>'.6!"YlC + (Q:.6"YCl! + (C>'.6b!g"YC + (C>'.6(bg"Y!], 

T J1.//FPI7Fb - 8FJ1.//Fb 
rCTp17 CT a J1.// - a J1.//' 
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Tr (-yll(i . A,v (i . B) 

Tr (,Il, .. t (i. A(i . B) 

Tr (Zllv,ll(i . A,v (i. B,s) 

8 (gllV A BP(!' + 2AIlP B v + 2A v BIlP) P(!' P P , 

8 (gllV A BP(!' + 2AIlP B v - 2A v BIlP) P(!' P p' 

8ir~ (AvP B IlP - AVP BIlP ) , (3.37) 

where (i . A = (i ilV AilV, etc., and Z IlV = i,p,O' r P(!'Vil is the field strength arising from the 

spin connection (note that, Il,VZIlV = ~r). To evaluate the last trace in (3.37) we used 

the relations (k14) and (B.25) of the Appendix. 

3.4 Quantum Lagrangian and Gauge Fixjngs (A Summary) 

The one-loop effective action is determined from the quadratic quantum action: 

1-1 - J ( K ) £quad(<P, e, c) = 24> 4> &lih + (AJ)J ilK 5 + £gj + £gh = 

1 T <1>(-2 ) 1- e -2<P Z D<1> + H<1> <p + 2ez- (i f/Je - Me) e 

+~cze (.b~ + He) C + O(¢cl), (3.38) 

where 4>1 = <pI, e1, &1 = & / &4>1, and the column vectors, 

if..T (h A-a -i -m) '*' = IlV , ,z ,z , eT (.1. \ aim ) . = 'i-'Il,/I ,XL,XR,a, 

represent the boson, fermion and ghost quantum degrees of freedom, respectively, with 

a = -Co? an auxiliary field introduced [30] to implement gravitino gauge fixing. The 

connection (AI)} in (3.38), which is defined explicitly in [30, 31], is chosen so as to 

preserve all bosonic symmetries, and also to simplify matrix elements involving the 

graviton. In particular the quantum variables ii, zm are normal coordinates in the 

space of scalar fields: (Ai)j = f7j is the affine connection associated with the Kahler 

metric Kim, giving a scalar field reparameterization invariant expansion. In (3.38) ¢cl 

represents background fermion fields that we set to zero; that is, we calculate only the 

one-loop bosonic action. 

For the boson sector, we use a smeared gauge-fixing: 

(3.39) 

The Yang-Mills gauge-fixing term: 

C a = D"1l A~ + JxKim [(Ta)m zi - (Ta)i zm] , 
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preserves off-shell supersymmetry [33] in the limit of global supersymmetry and coincides 

with the string-loop result [34] for chiral multiplet wave function renormalization. The 

graviton gauge-fixing term: 

-I2c J1. = (\7 11 hJ1.11 - ~ \7 J1.h~ - 21) J1. Z 1 ZlJ zJ + 2F:II.A~ ) , 

is the one originally introduced by 't Hooft and Veltman [35], generalized [30] to include 

the Yang-Mills sector. The script quantum and classical Yang-Mills fields and field 

strengths are canonically normalized [41]: 

where 1Jj.L is the gauge and general covariant derivative, and 1)~ = 1JJ1. - oJ1.x/2x, 1)~ = 
1J J1. + OJ1.x /2x. In the earlier literature two gravitino gauge fixing procedures have been 

used: a) a Landau-type gauge [36, 37] , .1jJ = 0, implemented by the introduction of 

an auxiliary field, and b) a smeared gauge [39] £ - £ - PM F, F = , . 1jJ, M = 

~ (i.f!J + 2M'Ij;) supplemented with Nielsen-Kallosh ghosts. Here we use an unsmeared 

gauge G = 0, with the gauge-fixing function [30] 

G = -,II(i.f!J - M)1jJ1I - 2(1JziICmRXm+ 1)zm](imLXi) 

x liP).. Fa 2' I 1) ).. a +2"0" a lip + zmIX -,5 a , (3.40) 

where DJ1. contains the spin and chiral Kahler connections. The quantum Lagrangian 

is obtained by the introduction of an auxiliary field a: 8( G) = fda exp (iaG) , and a 

shift in the gravitino field: 1jJ' = 1jJ + ,a,1/;' = 1/; + cq, so as to diagonalize the gravitino 

kinetic energy term. The ghost and ghostino determinants are obtained in the usual 

way as, respectively: 

A,B =a,f..l, 

where D j.L is related to 1) J1. or D J1. by additional connections. With these choices the 

one-loop bosonic action takes a very simple form: 
. . 

Sl ~ Tr In (.o~ + H <p) ~ ~ Trln (-i .f!Je + Me) 

(3.41) 

where 

2Tr In (.0; + He) - 2Tr In (.0; + He) 
Co: Ca,1-' 
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which just reduces to determinants of the form of those for scalars and spin-~ fermions. 

Moreover the ghost and non-ghost sectors have separately supersymmetric quantum 

spectra, except for the Yang-Mills fields: 

1 2 (Tr l)e = (Tr 1)~ - 2Nc = 2N + 2Nc + 10. (Tr l)ca = 4, (Tr 1) c = 4 + N C, 
a,b 

where N(Nc) is the number of chiral (gauge) supermultiplets. To evaluate (3.41) we 

separate [37, 31] the fermion determinant into helicity-even and -odd parts: 

. . 
-~Trln(-iJO+ Me) == -~TrlnM(15) = T_ +T+, (3.42) 

where here Dp, contains all fermion connections, and 

2 -4 [TrlnM(15) - Trln M( -15)], 

2 = -4 [Trln M(J5) + Tr In M( -IS)] , 

IO( -i JO + Me) = (O"~Dt M+), 
M - P,D-

. 0"- p, 

O"± = (1,±5). (3.43) M 

Then defining 

b~ + He == (-i JOe + Me)(iJOe + Me), 

The one-loop bosonic action (3.41) reduces to: 

The helicity-odd term T_ is at most logarithmically divergent, and is finite [30, 31] in 

the absence of a dilaton, that is, for f( Z) = g-2 + ie /87r 2 = constant. As discussed 

in [45, 31] there is an ambiguity in the separation (3:43) of the fermion determinant into 

helicity-even and -odd contributions, because terms that are even and odd in 15 can be 

interchanged by the use of the identities: 

(3.44) 

In most cases the choice is dictated by gauge or Kahler covariance. However supersym­

metry must be used to fix the off-diagonal gaugino-a and gaugino-dilaton mass terms: 

(3.45) 
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and the dilaton-dependent gaugino connection: 

(3.46) 

(3.45) and (3.46) are precisely the choices that allow Pauli-Villars regularization of the 

quadratic divergences [4.5]. The choice (3.46) further insures the nonrenormalization [58] 

of the topological charge () = 87r 2 y, and is consistent with linear-chiral multiplet dual­

ity [60] for the dilaton supermultiplet. 

The above summarizes our conventions and choices of gauge. We present further 

details of these gauge fixings and the calculation of the one-loop corrected effective 

Lagrangian of supergravity coupled to SYM and matter in the following chapter. 
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Chapter 4 

The One Loop Calculation 

4.1 Introduction 

In this chapter we present the calculation of the one-loop effective Lagrangian for 

N= 1 supergravity, Yang-Mills, and chiral matter system. In Section 2 we discuss 

gauge fixing and the definition of the action expansion in more detail than outlined in 

Chapter 3, and in Section 3 we evaluate the helicity-odd fermion loop contributions. 

Our result for the one-loop corrected effective action is given in Section 4, and applied 

to generic models from string theory in Section 5. We summarize our results and discuss 

applications in Section 6. 

In Appendix A we specify our Yang-Mills sign conventions and list relations among 

the covariant scalar derivatives of the Kahler potential J(, the superpotential Wand the 

gauge field normalization function f that follow from gauge invariance of these functions 

and that are useful in evaluating traces. Appendix B contains the matrix elements of 

the operators that appear in the one-loop effective action and the traces that needed to 

evaluate the divergent contributions [equations (4.72-75) below]. 

4.2 Gauge Fixing and the Expansion of the Action 

The S-matrix is independent of gauge fixing and also of shifts in the propagators 

that are proportional to £A = 8£j8</JA where </JA is any field. However, certain choices 

can lead to an effective Lagrangian that better displays the symmetries of the theory. 

For example, we expand the action 5 in terms of normal scalar coordinates [47,48] zI: 

(4.1 ) 

where D I is the field redefinition covariant derivative and interpret the determinant of 

the second term in (4.1) as the one-loop effective action for a scalar theory. This is differ­

ent from that of a standard Taylor expansion by terms of the form FJL(z)r(Z))K(DIS)z, 

where r) K is the connection associated with the covariant derivative D I, and FJ L is an 

arbitrary matrix-valued function of the background scalar fields. Such terms vanish by 
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the classical equations of motion for the background fields z: DIS/z = OIS/Z = 0. The 

expansion (4.1) yields a manifestly field redefinition invariant effective action. It there­

fore preserves nonlinear symmetries among the scalar fields, up to quantum anomalie~. 

Supersymmetry is also a nonlinear symmetry in supergravity theories, even when 

auxiliary fields are used. We have no formal argument by which we can determine the 

gauge fixing and expansion prescription so as to yield an effective action that is mani­

festly supersymmetric.1 Instead, we adopt a pragmatic approach, and use prescriptions 

that give the most boson-fermion cancellations, and/or simplify the calculation. We 

find that with our prescription the operators of dimension six or less can be interpreted 

as renormalizations of the tree Lagrangian, except for those that depend on the scalar 

curvature tensor. Additional operators of dimension eight can be isolated into terms of 

the form FJLr)KD1S/ z , which do not contribute to the S-matrix. It turns out that the 

gauge fixing prescription with these properties yields an effective quantum Lagrangian 

that is of a particularly simple form: all the propagators are the same as those of 

standard scalar or spin-~ fermions. It is possible that this feature contributes to the 

enhanced cancellations. 

4.2.1 Gauge-fixing the gravity supermultiplet 

We set background fermions to zero, and use unhatted symbols for quantum fermion 

fields ('ljJ, X, A). The commonly used gauge fixing for the graviton [35, .50, 37, 39], when 

generalized to include the YM sector, is defined by 

1 
I:- -+ I:- + -C GJl. 2 Jl. , 

GJl. = ~ (\1l/hJl.l/ - ~\1 Jl.h~ - 21YJl. Z I ZIJiJ + 2XF:l/A~) , (4.2) 

where ZIJ(z, z) is the scalar metric, i, A are the quantum scalar and gauge fields, and 

the symmetric tensor hJ.Ll/ is the quantum part of the gravitational field. The gauge 

fixing (4.2) leads to a Lagrangian of the desired form, (3.38). 

For the gravitino, two types of gauge fixing have been used: the Landau gauge [36,37] 

" 'IjJ = 0, which is implemented with the aid of an auxiliary field, and the smeared gauge 

1 Since we set background fermions to zero, our effective action cannot be. manifestly supersymmetric. 

However supersymmetry constrains [42, 13] the bosonic part of the action; by "manifest supersymmetry" 

we are referring to these constraints. 
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fixing [39] £ -+ £ - P MF, F = , . 'Ij;, M = t (i fJ + 2M.p) , which requires Nielsen­

Kallosh ghosts. Neither of these has the feature that the quantum Lagrangian reduces 

to the simple form (3.38). In addition, while the Landau gauge propagators have the 

correct poles for constant background fields, the smeared gauge fixing propagators do 

not. Here we adopt an unsmeared gauge which satisfies both requirements. 

In a supergravity theory in which the Yang-Mills normalization function satisfies 

Refab = 6abX, the part of the Lagrangian that depends on the gravitino 'lj;1-' is [42, 13] 

where 

£.p = ~~I-',V(i.(!J + Mhl-''Ij;v - ~~I-',J.I(i fJ + Mhv'lj;u + [~~I-'O"VP,I-'AaF:p 

-~I-' '!Jzm Kim,l-' LXi + ~~I-',I-"SAaDa - i~J.I'J.I Lximi + h.c.] 

+four - fermion terms. 

M = (M)t = eK
/

2 (WR+ WL), ,R,L = ~(1±,s) 
_ - t _ -K/2 . K mn - (mfi) - e D.(e W), 

We take the Landau gauge condition G = 0, where 

G 
- x 

_,V( i fJ - M)'Ij;v - "2O"vp AaF:p 

-2(JpZiKimRXm+ Jpzm KimLXi) + 2imIxI -,sDaAa 

( 4.3) 

( 4.4) 

( 4.5) 

which we implement by inserting a 6-function in the functional integral over J. Writing 

6[G] = J da exp (iaG) , 

and defining 

'Ij;' = 'Ij; + , a, ~'= ~ + ii" 

We obtain 

£ -~~'I-'(i fJ - M)'Ij;: + ~ii,l-'(i fJ - Mhl-'a + matter terms 

-~~/I-'(i fJ - M)'Ij;: - ii(i fJ + 2M)a + ii (~O"VPAaF:p + 2imIxI -,SVaAa) 

-ix~: f'~Aa - 2~:(Dl-'zm Kim LXi + Vl-'iKimRXm). (4.6) 

Note that 'Ij; is C-even: 'Ij; = C~T, then 'Ij;' = C~'T requires a = -CiiT , i.e. a is C-odd; 
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note also that 0:: has negative metric. 2 All the terms remaining in the Lagrangian (4.6) 

are of the form of either a mass or a connection; that is, (4.6) is of the form (3.38). 

To obtain the ghostino determinant we use the supersymmetry transformations [42] 

to obtain 

·1· . 
i6X' = 2 (1Jz' R - im: L )E, 

i6Xm = [~(1Jzm L - immR)] E, mf = ](immm, mm = ](immi' 

i6)..a = [_i,J1.,1J Fa - ~1)a] Eo 4 J1.// 2x ' 

DJ1. DJ1. - ~,J1.,IJ[DJ1.' DIJ]- i[.p, M]- 2M M + mimi + 1) 

+2imm 1Jzm L + 2imi 1Jzi R + ~O"O"pF:p[lO"J1.1J F:1J + ~'51)a] 
1) iE' 1)J1.-m 1 [J1. 1J]1) -m F"· 1) i - J1.z \.,m Z + 2'5' " J1.Z \.,m IJ Z ' 

For constant background fields the ghostino propagator becomes 

(4.7) 

( 4.8) 

(4.9) 

where V is the potential. When we evaluate this at a ground state with a flat background 

metric, the vacuum energy necessarily vanishes: V = 0, so the (4-fold) ghostino pole is 

at p2 = _D2 = M2 which is the correct pole for unitarity. If the cosmological constant 

is nonzero the curvature is also, and there are additional terms in all the masses. 

4.2.2 Yang-Mills Gauge Fixing 

) 

We first discuss the simpler case of flat SUSY Yang-Mills, where a similar g?-uge 

fixing dependence arises [33], and where a "supersymmetric gauge" can be found. 

In background field calculations of the effective one-loop action, the Landau gauge 

fixing condition 1)J1. AJ1. = 0 has frequently been used [37, 41, 40]. For W= 0 (i.e., no 

superpotential), the dimension four operators of the resulting supergravity Lagrangian 

for the gauge nonsinglet scalars can be interpreted in terms of two renormalizations: 

2In the notation of (3.1), Zoo = -2; including the contribution proportional to DetZoo we get a 

quartically divergent term proportional to In 2 which cancels a similar contribution from the graviton 

ghost [37]. 
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the renormalization of the gauge kinetic function, xb(z, z) = ReJ(z)b, and that of the 

Kahler potentia] K( z, z). Here (and throughout) we consider the case xb = 8b'x at tree 

level, for which the results are: 

(4.10) 

where Ta represents the gauge group on the scalar field zn = (zn) t, and 

(4.11) 

where C~) is the Casimir of the adjoint representation and the field redefinition covariant 

scalar derivative Di is defined in Chapter 3. The fact that (4.11) is not the real part of 

a holomorphic function has been discussed elsewhere in the literature (see, e.g., [26]). 

In the flat SUSY limit x --+ constant, Kim --+ Oim, and the renormalizations reduce to 

constants that depend on the Casimirs of the matter representations R: 

8X b = 8a InA
2 

Tr(Ta)2 = 8a InA
2 

"ca. 
a b 16r.2x b 16r.2x ~ R 

When a superpotential is included, the results obtained in the Landau gauge can no 

longer be interpreted in terms of these renormalizations. This is similar to the result 

found in [33]. However, if we use a smeared gauge fixing prescription defined by 

( 4.12) 

the results can once again be interpreted as above, with, instead of (4.10), 

(4.13) 

where Aij is defined in Section 3.2; in the flat SUSY limit it reduces to the second 

derivative of the superpotential W: 

K -" K =ij 
e- A' -A') --+ e W"W 

') '). 

Note that the gauge-dependent term in (4.13) differs by a factor of two from that in 

(4.10). The result (4.13) agrees with the chiral matter wave function renormalization 

found in [33] and in a recent string loop calculation [34]. 
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Unlike the Landau gauge, the smeared gauge fixing (4.12) gives a quantum La­

grangian of the simple quadratic form. The field-dependent masses as we have seen 

have the correct poles for unitarity when evaluated at the ground state configuration for 

the background fields, i.e., Vp,z;= Ap, = {}i V = 0, where V is the scalar potential [30J. 

We will use gauge fixing prescriptions for supergravity that share this feature. 

In the general supergravity Lagrangian [42], the function fab(Z), where a, b are gauge 

indices, that determines the inverse squared gauge coupling constant, is matrix-valued. 

Throughout this calculation we set 

fab(Z) = Dabf(z) == Dab (x + iy). 

The Yang-Mills gauge fixing prescription is modified when x ::J constant, and, since 

we are now including background as well as quantum Yang-Mills fields, gauge-graviton 

ghost mixing must be included. We discuss only gauge fixing of the bosonic sector in 

this section. The fermion sector gauge fixing is unchanged from that defined in I, and 

is summarized in Appendix B.2. Our gauge sign conventions are those of [42J and are 

defined in Appendix A. 

The gauge-fixed Lagrangian (incorporating also the gravity gauge fixing (4.2)) is 

defined by 

(

Dab 
Z= 

o 
o ), C = (Ca), 

-gP,// Cp, 

Ca = V"p, A~ + JxKim [(Taz)mzi - (Taz)izm] , 

hcp, = (\l//hp,// - ~\lp,h~ - 2Dp,zI Z/JzJ + 2F://A~) , (4.14) 

where hatted variables refer to quantum fields and unhatted ones refer to background 

fields, hp,// is the quantum part of the space-time metric whose classical part is gP,//' and 

Kim is the Kahler metric, which here is a function ofthe background fields. Following [41J 

we have introduced canonically normalized Yang-Mills fields: 

( 4.15) 

and we have adopted the shorthand notation 

v' = 1) _ {}p,x 
p, p, 2x' 

1)" - 1) {}p,x 
p, - p,+ 2x ' ( 4.16) 
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where V J1.. is the gauge and general coordinate invariant derivative. Under a gauge 

transformation with parameter {3 = Ta{3a and fixed background fields we have, neglecting 

terms of order i, A: 

(4.17) 

If we implement the gauge fixing condition in the usual way, the ghost determinant 
1 

contains a factor Det 2" x that translates into a quartically divergent term proportional to 

Tr In x in the effective action. Note however that we have rescaled the quantum Yang­

Mills fields [41J [see (4.15) aboveJ and the quantum gaugino fields [37J (see Appendix 

B.2 below) in order to canonically normalize their kinetic energy. If we rescale the gauge 

parameter in the same way as the Yang-Mills supermultiplet, and take, instead of {3, the 

gauge parameter 

we get 

( 4.18) 

and no Tr In x term is generated in the ghost determinant. We therefore adopt the 

prescription (4.18). 

Under a general coordinate transformation x - x' = x + f, we have 

which is general coordinate, but not gauge, covariant. To obtain a manifestly gauge 

covariant result, we add acorn pensating gauge transformation with parameter l'a ( fJ1.) = 
-fJ1. A~, giving 

( 4.19) 

Then, relabelling the gauge parameter as fa == la, the ghost determinant M is 

obtained in the usual way as 

( 4.20) 

where the variation 8C is determined from 

'A' a = ".,1 £a + £u 'La 'h 'r7 £ + 'r7 £ 
V J1. vJ1.<- <- J U J1.' v J1.// = V//<-J1. VJ1.<-//. ( 4.21) 
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This gives a contribution to the gauge-fixed Lagrangian: 

qf = 

eB Mgc~ == eZ (b 2 + Hgh) c 

eb [CD:D'Il)b + qjqt] ca - ell J2 [D"1l F:!L + qj (Dllzl)] Ca 

_ell [\7 2gll11 - r llll - 2 (Dllzl) ZIJ (DllzJ) + 2F:pFa/] Cll 

-eaJ2 [ (D Ilzl) qal - Fa IlII D'II ] cll , cg = ca, cri = -J2cll , 

( 4.22) 

The rescaling of the graviton ghost in order to canonically normalize the ghost kinetic 
1 1 

energy yields a factor Det-'22 in the functional integration that cancels a factor Det'22 

from the gravitino auxiliary field [37], [30]. The matrix elements of Hgh and of the 

covariant derivative b are given in (4.26), (B.29) and (B.30). 

Finally, we modify the graviton propagator by adding terms that are proportional 

to £A = fJ£j fJ</JA, where </JA is any field. This modification, which is equivalent to a 

nonlinear redefinition of the quantum variables, does not change the S-matrix and can 

lead to simplifications as well as enhancing manifest covariance under the symmetries 

of the theory [46]. We define the graviton propagator by 

~-1 IlII,pu 

and by 

-1 ). I [ ] -. ~1l1I,PU - 2PIlII,PU£). - 2" gllllLpu + gpuLlL1I 

I 
+ 2" [gllpL llu + gllP£llu + gllu£IIP + gllu£IlP] , 

~ (DIDILIIS - ~91lIlD1S) , 

rU _ upr _ fJ r 
/.....a - 9 /.....ap - fJAa /...... 

u 

The spin-2 projection operator is defined as: 

( 4.23) 

( 4.24) 

( 4.2.5) 

It should be emphasized that the propagator modifications that we use have been chosen 

purely for convenience; they considerably simplify the matrix elements that are listed 

in Appendix B.I, and are not necessarily derivable from a generalized metric [46]. A 
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natural choice3 for this metric would be GAB = V9 (Zq, )AB' where A, B run over all bose 

degrees of freedom and the metric Zq, is defined in (4.26) below. Then defining ~:41 = 
£AB - r~B£C, where r~B is the Christoffel connection derived from the metric GAB, 

the propagator corrections would be precisely half the ones used here (with additional 

corrections to scalar propagator ~IJ and the vector propagator ~;;:,bO' proportional to 

£P.II,pO'). It is possible that the use of this generalized metric would reduce the need for 

field redefinitions as described in Section 4 [see (4.81-83)]' but its use would make the 

intermediate calculations more cumbersome. 

Once the above prescriptions have been implemented, the quadratic quantum La­

grangian for the bosonic sector takes the general form: 

_~~T [Zq, (D2 + M~) + {Dp.,X~}] ~ 

+~c [Zgh (1)2 + M;h) + {1JP.,X;h}] c, 

where ~ = (hp.II,Aa,zi,zm), Dp. is covariant under scalar field redefinitions as well 

as gauge and general coordinate transformations, and the Xp. connect fields of different 

spin; in addition, there is a vector-vector connection [41] in X~. Following the procedure 

described in [41], we introduce off-diagonal connections in both the bosonic and ghost 

sectors, as well as an additional connection for the gauge fields, so as to cast the quantum 

Lagrangian for the full gauge-fixed bosonic sector in the form 

(ZVp.)a,6.all 

(VP.)all,i 

iJ9h 
p. 

_~~TZq,(iJ~ + Hq,) ~ + ~CZ9h (iJ;h + Hgh) C, 

oily 
Dp. + Vp., (VP.)ap,bO' = -bab€pp.O'II 2x ' 

1 
(VP.)all,a,6 = 4 (Fa,6J.L9all + Faap.9(311) ' 

(VP.)i,all = [(Vp.)"allr = 4~fi (Fap.1I - iFaJ.LII) , 

1 
1Jp. + Bp., (Bp.)all = (Bp.)lIa = - .J2Fallw ( 4.26) 

This introduces corresponding shifts in the background field-dependent "squared mass" 

matrices: 

( 4.27) 

The elements of M~ were evaluated in [41J; here they are somewhat modified by the 

3This choice for GI-'I/,pU coincides with that of Fradkin and Tseytlin [46] for the case of supergravity 

with their parameter t = 1, which corresponds to >. = -1/2 in their pure gravity case. 
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different Yang-Mills gauge fixing and action expansion. These modified matrix elements 

are listed in Appendix B.1 below. 

As explained in Sections 3.3 and 4.3, we evaluate the fermion determinant by first 

writing it in two-component notation, separating it into helicity-even and -odd contribu­

tions, and then recasting these two contributions in Lorentz covariant four-component 

notation. As discussed in [45], this separation is not uniquely defined. The choice 

that respects supersymmetry as well as manifest gauge and Kahler covariance allows a 

consistent Pauli-Villars regulation. We follow that choice here; the corresponding ma­

trix elements are given in the Appendix B. The contribution from fermion loops to the 

effective action is evaluated (see Sec. 3.3) by introducing [37] the 8 X 8 matrices 

( 4.28) 

that operate on an eight component fermion fT = (fL, fR = fL). The helicity averaged 

contribution of the fermion determinant is then 

. . 

- ±Trln( -i -fl> + Me)+ = -iTrln (-fl>2 + M~ - i[-fl>, Me]) , ( 4.29) 

Because the fermion mass matrix and connection contain the terms (TJ.LV MJ.Lv and iLJ.L'Y5, 

respectively, they do not commute with 'YJ.L; thus 

-fl>2 D2 + ~ ['YJ.L, 'YI/] GJ.LV + ~ {Dv, 'YJ.L [DJ.L' 'YV]} - ~ [Dv, 'YJ.L [DJ.L' 'YV]], 

[-fl>, Me] ~ bJ.L' DJ.L Me} + ~ {DJ.L, ['YJ.L' Me]} + ~[Me, [DJ.L, 'YJ.L]], 

DJ.LMe _ [DJ.L,Me]. (4.30) 

Therefore, in analogy with the boson case discussed above, we write 

( 4.31) 

He M~ - ~bJ.L,DJ.LMe} + ~ bJ.L,Me] bJ.L,Me] - ~[Me,[DJ.L,'YJ.L]] + ~bJ.L''YV]GJ.LV 

-~'YJ.L [DJ.L,'Yvb P [Dp,'Yv] - ~ [~v''YJ.L [DJ.L''YV]] + ~{bJ.L, Me] ,'Yv [Dv,'YJ.L]}' 

iJ~ DJ.L - ~ ['YJ.L' Me] + ~'Yv [Dv, 'YJ.L]' (4.32) 
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4.3 Helicity-Odd Fermion Loop Contributions 

In this section we determine the helicity-odd operators that arise from integration 

over fermionic degrees of freedom. They are particularly relevant to the evaluation of 

anomalies [26], [29], in effective supergravity theories, which is currently of special in­

terest in attempts to extract physics from string theory. We show that these terms are 

finite, except in the presence of a Yang-Mills sector with a nontrivial kinetic normal­

ization function f( z), in which case there are logarithmically divergent contributions 

that are invariant under chiral U(1)R transformations, i.e., under Kahler (or modular) 

transformations up to a possible dependence of the cut-off on the Kahler potential. We 

also indicate how the finite contributions to the effective action can be obtained. 

4.3.1 General formalism 

The fermion loop contribution is given by 

( 4.33) 

To evaluate the determinant (4.33), we write 

T = Tr In M = T + + T _, 
1 

T± = 2 [Trln M(-ys) ± Trln M( -/s)]. (4.34 ) 

Only T+ has been calculated previously for supergravity [30]-[40]. Here we will evaluate 

the additional contribution, T_: 

1 -1 1 {-I } T_ = -2Trln M( -/s)M (-ys) = -2Trln 1 - M [M(/s) - M( -IS)] 

= ~Tr f ~{M-l[M(-ys) - M( _/s)]}n. 
n=l 

( 4.35) 

U sing the techniques described in [48], [37], we can write the trace in (4.35) as (seeSection 

3.3) 

J J d4p 
T_ = d4xT(x), T(x) = (27r)4T(P, x), ( 4.36) 

and then expand T(p, x) as 

00 2n 00 

T(p, x) = Tr L 2n {2:)-nlRs}n, 
n=l £=0 

( 4.37) 
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where R, Rs are defined in (3.33-34): 

( 4.38) 

The operators appearing in (4.38) are defined in Section 3.3 as power series of the form 

Ln cn(O)(D·a/ap)no, where DJ1. = Dt R+D~ L is the fully covariant derivative defined 

in (3.22) of the Appendix, and the operator 0 is a function of the background bosons. 

The coefficients cn ( 0) are constants with, in particular, co( G) = 0 in the expansion of 

C;; more specifically 

fl!± = -vJ1.C: C± lC± a + 0 ( a
2 

) 
'f' '.- J1. ="2 VJ1. apv apap' (4.39) 

Thus we have to evaluate the following contribution to the effective one-loop Lagrangian: 

(4.40) 

where now the trace is over only Dirac indices and internal quantum numbers (and 

Lorentz indices for the gravitino). 

To keep the integrals finite, the integration should be performed including Pauli­

Villars regulator masses J.lo: _p-2 _ (-p2+J.l6)-1 in the derivative expansion. However, 

as shown below, T _, when suitably defined, contains no quadratically divergent terms. 

Once the integrals are properly regulated-including the appropriate definitions ofT±-the 

coefficients of log divergent terms are independent of the regularization scheme. On the 

other hand, if one wishes to evaluate finite terms, one has either to expand around an in­

frared regulator mass J.lo or, alternatively, to resum the derivative expansion [.51] [.52]. In 

particular, the ultra- violet finite terms include the standard chiral anomaly. We explic­

itly evaluated this term for the vector-vector-axial vertex induced by Dirac fermions with 

a common mass J.lo, and recovered the large mass limit of the Adler-Rosenberg formula 

[.53]; the complete expression for this formula requires a resummation of the derivative 

expansion which will be presented elsewhere [.52]. We emphasize that, because of the 

anomaly, Kahler invariance is broken at the quantum level. Classically, this invariance 

permits a choice [42] of Kahler gauge such that the classical Lagrangian is derivable from 

only two functions of the scalar fields, the (in general matrix-valued) gauge normaliza­

tion function fab(Z) and the generalized Kahler potential 9(z, z) = K(z, z) + In IW(zW, 
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where ]( and Ware the Kahler potential and the superpotential, respectively. For the 

purpose of calculating the anomaly [26], [29], one has to undo the Kahler rotation of 

Cremmer et ai. [42], by performing a phase transformation [13] on the fermion fields. 

We work throughout in this Kahler covariant formalism. 

As was discussed in [4.5], the separation (4.34) of T into helicity-odd and -even parts 

is not uniquely defined because we can interchange terms that are even and odd in IS 

using IS = (i /24 )€J1.//po' I J1.I//1 PlO' and similar identities. In most cases the correct choice 

is dictated by gaugeor Kahler covariance. The remaining ambiguities are.resolved by 

supersymmetry. A fully SUSY-invariant result for the quadratically divergent terms 

requires the introduction of Pauli-Villars regulator fields [40], [49]; there is a unique 

definition of the matrix elements that allows a supersymmetric Pauli-Villars regulariza­

tion [4.5]. Specifically, this fixes the forms of the fermion mass matrix and connection 

matrix: 

M m + (QaF;// + if3alSF;// ) (J'J1.//, FJ1.// = ~€J1.//pO' FpO', 

DJ1. 
1) TIL A//pO' . 

J1. + z J1.IS - 24 J1.€ IAI//IPlO', (4.41) 

where r J1.' LJ1.' m, and Q, f3 are proportional to the unit matrix in Dirac space. 1)J1.' which 

contains the spin· connection, is the gauge and general coordinate covariant derivative, 

r J1. is the Kahler connection, FJ1.// is the Yang-Mills field strength, and LJ1. is an additional 

axial connection for gauginos arising from the non canonical form of the kinetic energy 

term. T± are defined by (4.34) using the explicit Is-dependence in (4.41). Then the 

operators appearing in the derivative expansion of (4.38-39) take the form: 

( 4.42) 

where r J1. is the Kahler connection and r~ is an off-diagonal >'-'ljJ connection. We consider 

only the case where the gauge field normalization function J(z) is diagonal in gauge 

indices; then, since r J1. is diagonal, LJ1. commutes with J//, and we have 

( 4.43) 
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Note that the spin connection in D J.1. drops out of the covariant derivatives D J.1.M. This 

is because we have taken the vierbein, and therefore 1J.1.' to .be covariantly constant [.54]: 

[DJ.1.,'v] = O. The spin connection is even in IS and therefore contributes to DJ.1.M 

through the commutator which vanishes [see the definitions (4.59) below]. 
, 

To identify the ultraviolet divergences, we have to study the large p behavior of 

the integrand in (4.40) and keep terms up to O(p-4). A priori R, Rs '" p-l, so the 

ultraviolet divergent part of (4.39) can occur only in terms with n ::; 4, .e ::; 4 - n. Aside 

from terms involving LJ.1.' by construction, the integrand is odd in IS, and we need at 

least four I J.1. 's to get a non vanishing trace: 

( 4.44) 

so TrRs = O. Finally, we note that G; in (4.39) vanishes except when sandwiched be­

tween functions of p, and is of order p-l in power counting. Once all p-differentiations 

have been performed, surviving terms must have at least three I/s that are not con­

tracted with pJ.1. because of antisymmetry. After integration over p, the tensor AJ.1.vpO' in 

(4.44) can be constructed only from the four-vectors JJ.1. and LJ.1.' the tensors MJ.1.v, G;v, 

the Riemann tensor, and their covariant derivatives Dw Each factor of G;v and of DJ.1. 

reduces the apparent divergence of a given term by one power of p. Furthermore, in the 

covariant derivative expansions (3.33-34) of the operators 0 appearing in (4.37) the in­

dices Jli ... Jln in D J.1.i ... D J.1.n 0 are automatically symmetrized, so at most one derivative 

of each operator can contribute to AJ.1.vPO' in (4.44). 

4.3.2 Quadratically divergent contributions 

By construction, T_ is antisymmetric under IS -+ -'s. Therefore we can evaluate, 

instead of (4.37) 

( 4.45) 

where T_( -'s) is obtained from T-Cls) by the substitutions 

+ - - - +-(D ,D ,M,M,J,MJ)-+(D ,D ,M,M,-J,-MJ). 

The matrices R, Rs are defined in (3.33-34). Since J d4pTrRs = 0, the potentially 

quadratically divergent contribution to T_ is 

( 4.46) 
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with N//, M// given In (3.29). Under Lorentz invariant integration, with M m + 
O"J1.//MJ1.//, we have 

It follows that there are no quadratically divergent contribution involving the mass ma­

trix. The averaging procedure (4.45) eliminates a residual spurious quadratic divergence 

proportional to Tr JIJ. J J1.. This divergence would vanish identically if a Pauli-Villars reg­

ularization were used with P-V masses that leave all classical symmetries unbroken. 

However this is not in general possible for the classical Kahler symmetry.4 Moreover, 

in the Pauli-Villars regularization described in [45], there are no P-V fields that can 

regulate quadratic divergences proportional to MJ1.//MJ1.//, so the integrals, which are ill­

defined unless they are explicitly regulated, must be defined in such a way that these 

divergences do not appear. Note that no quadratically divergent contribution to T_ 

arises if (4.35), as defined by (3.20), is expanded without performing the the transfor­

mation (3.30) that makes use of partial integration, which is ill-defined if the integrals 

are not finite. However this transformation renders many terms explicitly covariant and 

thereby considerably simplifies the derivative expansion. 

4.3.3 Logarithmically divergent contributions ... 

In the remainder of this section, T_ is understood as the average (3.45). Since we 

encounter only logarithmic divergences, after symmetric integration we may make the 

replacements: 

( 4.47) 

To evaluate the terms with p-derivatives, we write 

. 1 J1.G a 
--2P //J1.~ -+ 0, 
-p up// 

J1.G alp 1 J1.G p// p //J1.~--2P -+ --2P //J1.9 , 
up// -p -p 

( 4.48) 

where the first line is obtained by partial integration over p, and it is understood that 

operators multiplying the first (second) line on the left (right) are independent of p. 

4 A detailed discussion of Pauli-Villars regularization of T_ will be given elsewhere [52). 
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Similarly 

( 4.49) 

where the last line is obtained by partial integration. 

It is easy to see that the nonvanishing terms in T_ involve the connection LI-' and/or 

the off-diagonal mass MI-'I/. In the absence of these contributions, since El-'l/PCTrl-'l/PT = 0, 

the only helicity-odd terms are: 

( 4 . .50) 

where 

D e _ 1 (+ -) _ !:I , 
I-' - 2 D J1. + D I-' = UI-' + JI-" GA(V) - ~[G+ - ( )G-] 

1-'1/ - 2 1-'1/ + 1-'1/. 

The firs~ term in (4 . .50) can be written 

~EI-'I/P<7Tr [D~ (JI/JpJ<7)] = ~EI-'I/P<7 01-'(Tr[JI/JpJ<7]), 

where we used cyclj.c permutations in the trace together with the relation 

Tr[D~(J J J)] = Tr{ ol-'(J J J) + i[J~, J J J]} = 01-' Tr(J J J). (4 . .51) 

Note that if a field-dependent ultraviolet regulator mass A is present one cannot drop 

the total derivative on the right hand side of (4.51), but integrating by parts gives 

8ln A = oAf A which is finite for A -t 00. For the second term in (4.50), defining 

D; = 01-' + r;, we have 

( 4.52) 

By the above argument the Dr terms give finite contributions, so we are left with 

EI-'I/P<7Tr[(r+r+ - r-r-)(r+ - r-)(r+ - r-)] = 0 I-' 1/ I-' 1/ P P <7 <7 , 

again using cyclic permutations of the trace. Since EI-'I/P<7 D~[D~, D~] vanishes by virtue 

of the Bianchi identity, the third term in· (4.50) reduces (up to a total derivative) to the 

same form as the first term: GV 
-t [J, J]. 
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First consider the terms quartic in R, Rs. To obtain the logarithmically divergent 

piece, we drop all p-derivatives: 

1 
R-+ --p M'" 

2 '" , -p 
(4.53) 

We note that F/:I/ FipF~ p and F/:I/ FipF~ p vanish if any two of the indices a, b, care 

equal; there are therefore no terms cubic in Mo-. Then using ,,,,M,'" = 4m, together 

with eqs. (3.37) and (A.12-13) and cyclic permutivity of the trace, w~ obtain: 

-+ 16i 4T (M"'I/:J, M2 :JP - M"'I/ :J, M2 :Jp) 3 P r 1 1/ "'P 1 1/ "'P , 

Tr(pMl pM2 p /I p /1,5) 

-+ 4p4Tr [(Mil/m2 - mlMfl/) :J",:JI/] 

+ ~ip4Tr [(M~pMfl/ - Mil/ M;p) {:JP,:JI/}] ' 

-F'(M4, M}, M2, M3) == Tr (pMl pM2 pM3 pM4,s) 

-+ 16ip4Tr (M"'I/ MPo- M3 M4 _ M"'I/ MPo- M3 M4 ) 
3 1 2 "'1/ po- 1 2 "'1/ po-

( 4.54) 

where Mi = M, M, MI, Mr = ~€"'I/Po-(Mi)po-, and the traces on the right hand sides 

are over internal indices only. In evaluating these expressions we used the fact that since 

Tr (M;M;M;M;,s) = Tr (M;M;M;M;,s), these terms do not contribute to 

% [F'(Ml , M2, M3, M4) - F'(M4, M}, M2, M3)] = F'(Ml, M2, M3, M4). 

Finally, since the expression (4.38) for Rs is odd in ,5: [Rs( ,sW = + [Rs( -'5)]4, it 

follows that Tr(Rs)4 does not contribute to T(,s) = -T( -'5). The logarithmically 

divergent contributions from the quartic terms in (4.40) are therefore given by: 

( 4.55) 

For the terms quartic in M we obtain 

, 1, - -
T4 = -"4F (M, M, M, M) 

( 4.56) 
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and for the terms quadratic in M, we find: 

Then 

Trnn~ 

T" 4 

T~" 

2 1 -
-+ 0, Tr(RRs) -+ -sH(M, M), 

p 

2 1 1 [ - ) -)] 1 (" III) = TrnsR ns -+ p82 F(M,M - F(M,M = p4 T4 +T4 , 

TrnsnR~ = Trn~nns -+ p~ ~ [H(M, MI) + H(M, MI) 

-F(M, MI) - F(M, MI) + F(MJ, M) + F(MI, M)] 

1(" III) 11 ( -) IT = 4 T4 + T4 - 8" -2 H M, M = - 2 4 4, 
P P P 
Tr ([ {in, MJlV} - {m, MJlV}] [JJl' Jv]) 

~iTr [({MJlP,M
JlV

} - {MJlP,MJlV}) {JP,Jv}]. 

T4 = -2 (T" + T"') + ~H(M M) = -2T" - t 4 4 p4 ' - 4 4 

( 4.57) 

= -2T~' - ~iTr ({JP,MJlP}{Jv,MJlV} - {.JP,MJlP}{Jv,MJlV}). (4.58) 

To evaluate the cubic and quadratic terms, we use a shorthand notation according 

to which the covariant derivatives imply the matrix products: 

( 4.59) 

where here M is any mass matrix. Using the Dirac traces in (3.37), the first identity in 

(A.12), and the additional identities 

Tr ([A, B]C) 

[dt,MMI] 

Tr({A,B}CD) 

- - - - - + (DJlM)MI + M DJl MI, [dJl' M MI] = (DJlM)MI + M DJl MI, 

Tr(B{A,CD}) = Tr(B{A,C}D) - Tr(BC[A,D]), 

( 4.60) 

together with the facts [see (3.37)] that Tr(o-·A'Jlo-·B,v) and Tr(o-·A'Jlo-·B,v's) 

are symmetric in {Il, v}, and that [LJl' Jv] = 0, we obtain 

Trn2Rs -;. :4 Tr{ - 2iX!:.V(M,M)iJt.Jv:- 2iX!:.V(M,M)iJ~Jv - L(M,M) 

+ [X!:.V(MI' M) - X!:.V(M, MI) + Xr(M, MI)] atv 
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+ [X~V(MI' M) - X~V(M, MI) + X~V(M, MI)] G;'v 

+i [X+(M, M) + X-(M, M)] + 2 (mMI'V - mMI'V) Ll'v 
3 

-Ll'v [X~V(MI' M) + X~V(MI, M)] }, 

TrRR; + TrRsRRs --t ;4 Tr{ - 4i [X~V(MI' M) - X~V(M, MI)] iJt Jv 

+4i [X~V(MI' M) - X~V(M, MI)] iJ;. Jv - 2L(M, MI) + 2L(MI,M) 

-~ [X+(M, MI) + X-(MI, M) - X+(MI' 1"W) - X-(M, MJ)] 

+ [X ~v ( M I, M I) - 2X ~v ( M I, M I)] (Gtv - G;'v) }, 

TrR~ --t ;4 Tr{ 6iX~V(MI' MI) (iJt Jv + iJ;. JV) 

-4 [X+(MI' MI) + X-(MI, MI)] + 3L(MI' MI)}, (4.61) 

where 

(iJ± MM M2 - iJ± MI'P M2 + Ml b~ MI'P - Ml iJ~ MM) "TV P 1 I'V P 1 I'V I'V P 2 I'V P 2 ..J, 

Ml'v ± Ml'v Xl'v = ~£I'VP(7 X± 
1 m2 ml 2 ± 2 PO" 

2{LI" ml}{Jv, m2} + i{LI" MiV}{Jv, M;v} 

+~ ({LI" MiP}{Jv, M;v} + {LV, MiP}{JI" M;v}) . ( 4.62) 

Again, the traces on the right are over internal indices only. Here and throughout the 

remainder of this section, G-;v is understood as one fourth of the Dirac trace of [iJ-;, iJ;;=], 

and has no contribution from the spin connection, and the derivative operators iJ I' are 

understood to operate only on the object to their immediate right. The expressions 

(4.62) can be simplified further using the relations 

Xl'v (bt Jv + iJ;. JV) 

Xl'v (iJt Jv - iJ;. JV) 

that follow from the definitions (4.42) and (4.59). Defining 

Xl Tr [X+(M, M) + X-(M, M)], 

X2 Tr [X+(MI' M]) + X-(M], M])] 
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= iTr (D+U MI D- M PJ1- _ D+u MI D- MPIJ.) UIJ. P I UJ1- pI' 

X3 iTr [DU MUJ1-D; MjJ1- - DU MUJ1-D; MjI1-

D+u MI D MPJ1- + D+u MI D M PJ1-] UJ1- P UJ1- P , 

X 4 Tr [X+(M, MI) + X-(MI, M) - X+(MI' M) - X-(M, MI)] 

-Xl + X3 - iTr (DU MUJ1-DpMPJ1- - DU MUJ1-DpMPJ1-) , (4.64) 

where we dropped total derivatives, we obtain 

( 2· 2 4 3) 1 ( 4 8 .,,) T3 Tr R Rs - RRS - RsRRs + 3Rs -+ p4 3X3 - 3X2 + t4 + 2T1 

-34i4 Tr (DU MUJ1- DpMP J1- - DU MUJ1- DpMP J1-) 
. p 

+ ;4 Tr{ X~V(M, M)Gtv - X~V(M, M)G;v + 2 (mMIJ.V - mMJ1-V) 

- [X~V(MI' M) + X~V(MI' M)]LJ1-v + X~V(MJ, MJ) (Gtv - G;v) 

- [X~V(M, MJ )Gtll + X~V(M, MJ)G;v] - L(M, M)}, (4.6.5) 

where t4, T~' are defined in (4 .. 57-58), and 

( 4.66) 

Finally, to obtain the logarithmically divergent parts of TrRRs and TrR~, we use (4.4 7-

49), giving 

TrR~ 

TrRRs 

8 2 1 - (-+ -) 
-+ 3 4 X2 - 4L(MJ, MJ) + 4X~V(MI,MJ) GJ1-V - G;v , 

p p p 

-+ 3;4 X3 + 3~4 Tr ({LU, MUIJ.HL p, M
P

J1-} - {LU, MUJ1-HL p, MPJ1-}) 

- 14 Tr [i ({LP, m}Dpm - DPm{Lp, m})' + L(M, M) + 2L(MI, MJ)] 
p 

- 3~4 Tr ({LP, MUJ1-}DpMUJ1- - DP MUJ1-{Lp, MUJ1-}) 

+ 3~4 Tr ({LU, MUJ1-}D pMPJ1- - DU MUJ1-{L p, MPIJ.}) 

- 3~4 Tr (LuP{MUJ1-, MpJ1-}) - ;4 Tr (LJ1-V [X~V(M, MJ) + X~V(M, MJ)]) 

+~Tr [X~V(M, MJ )Gtll + X~V(M, MJ )6;v] 
p 

z J1-T (MVPM- MVPM-) I d· . +4TlI r J1-P - J1-P + tota envatlve. 
p 

(4.67) 
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Inserting these results in (4.39) gives 

t 
--T 2 -

1 In A 
2 

( I 2) 
9'2 327r2 T4 + T4 + T3 - TrRRs + TrRs 

lIn A 
2 

{' [ - IJ.I/( - - + - IJ.I/( - )G-- ] 92327r2Tr T4+ X_ M,M)GIJ.I/- X _ M,M IJ.I/ 

- 4i (1YM D- M- pIJ. - 1Y M iJ MPIJ.) 3 (7IJ. P (7IJ. P 

-irlJ. (MI/p M - MI/P M ) 1/ IJ.P IJ.P 

+ [1IJ.1/' m]MIJ.1/ - [1IJ.1/' m]MIJ.1/ + i ({LP, m}Dpm - iJPm{Lp, m}) 

4i ({ (7 }{ --:=-PIJ.} {(7 .0 }{ -PIJ.}) -""3 L ,M(7IJ. Lp,M - L ,M(7IJ. Lp,M 

- 8i ({L(7 M }iJ MPIJ. - iJ(7 M {L MPIJ.}) 3 ,(7IJ. P (7IJ. P' 

2i [LP ({o - - (7IJ.} {iJ (7IJ. M }) +""3 M(7IJ.' DpM - pM , (7IJ. 

+21IJ.I/{MIJ.P, MI/p}]}. 

( 4.68) 

To evaluate (4.68), we note that the connection is block diagonal in the X-,X-o: sector, 

and the axial part is diagonal in the ,X and 0: sectors, with :1>.>. = -30/0/. Using the 

reality and symmetry properties of the off-diagonal 'x-o: masses: 

(4.69) 

it is easy to see that there is no contribution that involves only these masses. For the 

off-diagonal ,X-X masses: 

(4.70) 

It follows from these relations that the last line in (4.68) vanishes. 

Using the fermion matrix elements given in Appendix B.2, we obtain the nonva­

nishing contributions to T _. The contributions to the mixed chiral-gauge sector are 

listed in Appendix B.5. All other contributions maybe found in Appendix C of II. Note 

that these expressions are fully covariant, although the expansion (4.49) of T_ is not. 

This ilOncovariance is necessarily the case since T_ contains the chiral anomaly that 

breaks classical Kahler invariance. However, the logarithmically divergent contributions 

are Kahler invariant, up to a possible dependence of the effective cut-off on the Kahler 

potential [44, 29, 45]. 
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The ghostino determinant also contains helicity-odd contributions, but since it has 

the same form [30] as that of a four-component scalar, its evaluation is straightforward; 

the result is given in Appendix B. 

4.4 The One-Loop Effective Action 

The quantum action obtained by the prescriptions [30, 31] defined in I described in 

Section 4.2 above takes the form 

(4.71) 

The last two terms are the ghost and ghostino terms, respectively, iI> = (hl-'v, Aa, zi, zm) 

is a 2N + 4Na + 10 component scalar, e = ('l/JI-',)...a,XI = LXi + RX', ex) is an N + 
Na + 5 component Majorana fermion, where N is the number of chiral multiplets, 

Na is the number of gauge multiplets, and the matrix valued metrics Zq, and Ze are 

defined in Appendices B.l and B.2 below. We set background fermion fields to zero, 

so 'l/JI-" )...a, Xl are the quantum gravitino, gaugino and chiral fermions, respectively, and 

ex is the auxiliary field introduced to implement the gravitino gauge fixing condition. 

The matrix-valued covariant derivative DI-' is defined as in Section 3.2, and DI-' includes 

additional terms in the connections that are given in (4.26,32) above. 

The one-loop contribution to the effective action is 
. . 
2 ' 2 2 
iTr In(D + Hq,) - 2" Trln ( -i.p + Me) 

+iTrln(D2 + Hah) - iTrln(.b2 + Hgh). (4.72) 

The general results obtained in [48], [40], [37], [55] give for the bosonic determinant: 

(4.73) 

and for the fermionic determinant we have 
. . . . 
2. 2 2 '2 2 

- -Trln( -2.p + Me) = -- (T+ + T_) = --Trln[D + He]- -T_. 
2 2 8 2 ' 

(4.74 ) 

where in (4.74) D I-' and He are the 8 x 8 matrices defined in (4.29-32). The helicity­

averaged part, T+, of the fermion trace is -~ times (4.73) with the substitutions Hq, -0-
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H 8, G!v ~ G~v and the trace includes a trace over Dirac indices., so 

1 4 (Tr 1)8 = (Tr 1)<1> - 2NG = 2N + 2NG + 10. 

Similarly, the ghost and ghostino contributions are equivalent to, respectively, -2 times 

the contribution of a (4 + N G)-component scalar and +2 times the contribution of a 

four-component scalar. For bosons, H<1> and DIl- are defined in Section 4.2; the matrix 

elements of H and of 

(4.7.5) 

are given in Appendix B, and the helicity-odd contribution, T _, of the fermion determi­

nant that was evaluated in Section 4.3, eq. (4040). The traces in (4.73-4.74) are given 

explicitly in Appendix C of II and in Appendix B of I. Here (see Appendix B .. 5) we list 

only the contributions to the matter and YM sector, involving background Yang-Mills 

fields and/or integration over the quantum Yang-Mills supermultiplet that were omitted 

in I. 

If £(g, J() is the standard Lagrangian [42, 13] for N = 1 supergravity coupled to 

matter with space-time metric gil-v, Kahler potential J(, and gauge kinetic normalization 

function lab = bab( X + iy), then the logarithmically divergent part of the one-loop 

corrected Lagrangian is 

where the classical Lagrangian £(g, K) is given in eq. (3.9) and also in Appendix B 

below, £0 is the one loop correction found in I after renormalization of g, K [eq.(3.6) of 

IJ, and 

L = [Wab (3CGbab - Di(TbZ)j Dj(Taz)i) + h.c.] - 24e-K aiL1) 

N +.5 [(wab W ab ) 'n 'n (Fa. 'F-a ) (FPV 'F-pv) 'n i1)1l- -m }.' ] +-6- + VaVb - X PIl- - t PIl- a + t a VvZ Z \.im 

+ N:.5 [X2WabWab + 21)2 -1) (J(im1)p zi1)pzm + 2V + 41)MJ)] 

+14x2WabWab + 12 (wab + W ab) 1)a1)b + 221)2 + 21) (11 V + SKim1)pzi1)pzm) 

+X (W + W) (Kimppzi1)pzm - 2Mf - 2V) + 41) (27MJ + 7Mn 

. - 2· - .-
-26i1) zJ1) zm!C_1)aFll-v + -1) zt1)ll- zmR-·_·1) DJ(Tazt 

Il- V tm a X Il- ntmJ a 

-K 
+2'n -KRk j A A-nD (Ta)i e 'n [(Ta )iR j kA-CA + h ] -;;Vae ni k j Z + -x-va Z i C jk .c. 
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D '(T Z)i [ ( . - " 2) . -] + t 6: .41)a 1)J.lzJ1)J.l zm ]{jm + V + 3M-.j; - 21) + 13iF:vKmj1)J.lzJ1)v zm 

+~ (!; + /Pi) V (aJ.lxaJ.l x + aJ.lYaJ.l y ) - (!; + 3/Pi) aJ.lyavx1)a F::v 

- 4~ (1 + 3x2 pipi ) (apxaV x + apyaVy) (F:v + iF:v) (F::P - iF::p) 

-5 {[~ (F:J.l - iF:J.l) + 9;;1)a] (avx + iOvy) Kim(Taz)i1)J.lZm + h.C.} 
-/pi {[ix (F:J.l - iF:J.l) + 9vJ.l1)a] (avx + iOvy) J(im(Ta z)i1)J.l Zm + h.c.} 
+2ix2/Pi1)J.lzjVvzm Kim1)a F::v + 2x2pipi1) [8M~ + M'J.. + 2V - 2e-K aa] 

2 . [2 -ab ( 2') ( -) -x ptPi 2x WabW 1 - x ptPi - 4x W + W 1) 

+ (wab + W ab ) 1)a1)b + 21)2] + 2x2pipi1)1)J.lZi1)llzm Kim 

3 

+ :"'-p.pi (Fa _ iFa ) (FPV + iFPv) V zi1)J.l zm K·-2 t Pil pJ.l a a v tm 

+2x [4Pij(Ta z)i(Tbz)jWab + i1)vzm(Taz)ipmij (F::v - iF::v) vllzj + h.c.] 

+ {Pij1)IlZj [~(aJ.lX - iaJ.ly)(Taz)i1)a - ~i W(aJ.lx + iOIlY)] + h.C.} 
+ {W [2x3/PiM'J.. + pai(a - A)e-K - x2pij (AjikAk - AijA) e-K] + h.c.} 

+ { (e- K Aj Am + 1)J.lzj1)1l zm) I4pmij(TaZ)i1)a - (pmij + 1; Pij ) Pv] + h.C.} 
Z F ['T\V ::;;m (T )i 'T\V i (T -)m] [f-i 'T\P j (Fa 'F-a ) + h ] -2.l\.im L/ '" aZ - L/ Z aZ PijL/ Z pv - Z pv .c. 

+ ~; [Kkm(Tazl1)J.lzm + ~ (avx + iavY) (Fvll - iFVJ.l) + h.C.] 
X (Pij1)J.lZi Ji + h.c.) 
- [Wab Pij/ (Ta z )j1)b + x 2V pi 1)P zj (2Pij W - Rnimjpmnw) + h.c.] 
+2x2PijP!m1)1)pzi1)pzm + X 4 pijpijWW, 

Lg x6 (/pif WW - 2M1 + 3MJ - 2M~M'J.. + V2 + 1)2 + 6e-KaaM~ 
+2V (2M~ - MJ.. + e-Kaa) - e-K (aiA + h:c.) (V + M~) 

(4.77) 

+e-2K aiAiaj Aj - 2e-2K (a i AiaA + h.c.) + X2Pij1)J.l Zi1)ll z j Pnm1)v zm1)v zn 

+ -K'T\ i'T\ll-m[( A)(- A-)+ 2 A-kjA +lmfi_] e L/ J.lZ L/ Z ai - i am - in x Pik Pm j 4x2 aa 
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+e-K {1)llzi1)llzj [(ai - A) (;~ a - XPjn An) 

- ;~ aiA - fi (a - A)pjkAk] + h.C.} 
-K 

+ e
2X 

{1)llzi1)llzm fm [2aai - xPik(a - A)Ak] 

+ filj V ll z
iVll z ja(2a - A) + h.c.} 

2x 

+X (Pij1)llziVllzj + h.c.) (MJ - V) 
+e-K [XPij1)llzi1)llzj (akA k - 2Aa) + h.c.] 
+ I6IX4 I(ollx + iolly) (OIlX + iolly)12 - x3pipi (W + W) (MJ + V) 
+x3 pkPk [W (xPij1)lliVIl zj + e-K Aiai - 2e-K aA) + h.c.] 
+~ KimKjn (41) IlziVIl zj1)vzm1)v zn + V Ilzi1)1l zn1)vzm1)v zj) 

1 ( . . - ) 2 2 -ab I ( -) b -3 1)llz'Vllzm Kim + x WabW + 2 Wab + Wab 1)a1) 

-~ v2 + ~M~ (1) i1)1l zm 1(- - - 2V) 3 3 A Il .m 

_ (OIlXOVX + OIlYOVY) }".-1) i1)ll-m 
2 \'.m vZ Z 

X 

+~VV i1)ll-m l,',_ + (OV XOVX + OvYOvy) (21) i1)ll-m},', _ _ V) 
3 Il Z Z I\'.m 6X2 6X2 Il Z Z \'.m 

+ (F:1l + iP:Il ) (F:V - iF:V) (OIlXOvX 4: ollyovY - ~ Kim VvziVIl zm ) (4.78) 

Our notation is defined in Appendix A below. Here W = W:, where 

W a = ~ (Fa p'IlV _ . Fa P,IlV) _ _ 1_1)a1) 
b 4 IlV b Z IlV b 2X2 b (4.79) 

is the bosonic part of the F-component of the composite chiral supermultiplet con­

structed from the Yang-Mills chiral superfield wa(o) = AI, + 0(0). The renormalized 

Kahler potential is 

and the renormalized space-time metric is given by 
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(4.81) 

where the superscript 0 refers to the result of I. The terms in (4.76) proportional to LA 

can be removed by field redefinitions: 

with 

( 4.82) 

Nc 1 ( 2 i) 
4x2yglifih' Xal-l,bl/ = - x..j1j 7 + x PiP Oabgl-ll/, 

(Xi)* = 4e-K A:iA + ~ (2 + x2pjpj) Da(Taz)i 

. . - 8 x . 
-4xDp' - 2P'iiJTaz)mDa - Nc : Dl-l z' 

+Nc :; [x3pj Pj W + XPjkVl-lzjDl-lzk + e- K (0,1 Aj - 2aA) - V - MJ] , 

.; (16 + 2x2/Pi) Kiih [(TaztDI-IZih - (TaZ)ihDI-IZi] 

. ( -) 8Py - 8Px 
+XPiP' 8PxFapI-I + BPyFapI-I + 3---;;-FapI-I + ---;;- (7 - Nc) FapI-I 

1 [(F. 'p-) 'riP i I-j h ] (5 2 i ) 81-1 Y
'rl +2 apI-I - Z apI-I v Z Pij + .c. - + x P Pi --;zva. ( 4.83) 

The terms in (4.77-78) of the form g(z, z)WW are the bosonic part of the effective 

Lagrangian (in the' notation of [13]) 

J 4 - 2 
LIWl4 = d O£g(Z, Z)IWWI . ( 4.84) 

It should be possible to write the remaining terms in superfield forms [up to total 

derivatives and field redefinitions of the form (4.81-83)]' and thus to extract the fermionic 

5Note that Fi = _e- K / 2 Ai and M = _3e- I{/2 A are the bosonic parts of auxiliary fields of the chiral 

superfield Zi and the gravity superfield, respectively. It is easy to show that calculating the one loop 

corrections before or after elimination of the auxiliary fields in terms of their classical solutions gives 

the same result to the loop order considered. Our results are expressed in terms of these auxiliary fields . 

in [32]. 
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part of the Lagrangian for these higher dimension operators. However, there may be 

additional fermionic terms, e.g, those of the form [56] 

.cW 2n = d OEg(Z, Z)(Wwt + h.c., J 4 - >1 (4.85 ) 

that cannot be obtained in this way, as they have no purely bosonic components. The 

determination of such terms requires retaining fermionic background fields [57], [40], [49]. 

Notice that the coefficient of In A 2 FJ1.V FJ1.v is not a holomorphic function, except in 

the limits of a flat Kahler metric (Di ~ Vi) and flat space-time (Mpi ~ 00, in which case 

operators of dimension greater than four are suppressed). This nonholomorphicity is dis­

tinct from from the holomorphic anomaly [2.5, 58] that arises from the field-dependence 

of the infrared regulator masses. In other words, when the Kahler and/or space-time 

metric is not flat, there are corrections that correspond to D-terms as well as the usual 

F-terms. 

The quadratically divergent contributions to the one-loop Lagrangian are given by 

(B.33-B.35). The Pauli-Villars regularization of these terms was given in [4.5]; they 

contribute additional renormalizations of the metric and the Kahler potential that are 

determined by the field-dependent squared masses of the Pauli-Villars regulator fields 

that play the role of effective cut-offs. The field dependence of the effective cut-offs 

in the logarithmically divergent contribution to the renormalized Kahler potential will 

generate additional terms in the effective Lagrangian proportional to 

D I A2 = 2 D I A I . 
I n A' = t,2, 

that do not grow with the cut-off, and therefore have to be considered together with the 

finite terms that we have not evaluated here. 

4.5 The String Dilaton 

In effective supergravity from superstring theory, the classical Kahler potential 

K(z, z), superpotential W(z) and Yang-Mills normalization function !ab(Z) take the 

forms 

K(z, z) 

!ab(Z) ( 4.86) 

Although we have restricted our analysis to the case Jab = Dab!, it is equally applicable 

to the case Jab = Dabka!, ka = constant, provided we make the substitutions F:v ~ 

65 



1 1 1 1 

k!F:v, A~ ---+ k!A~, Ta ---+ k-;2Ta. Cabc ---+ k-;2 Cabc , (Cabc:f. 0 only if ka = kb = kc) in 

all the relevant equations. Our results are therefore applicable to all known effective tree 

Lagrangians from superstrings, including those where the integers ka ~ 1 correspond to 

higher affine levels [43]. In this case the operators a, Pij, 1 - X 2pipi, and their covariant 

derivatives vanish identically. In particular M1 = M:J == M2, and (4.76) reduces to 

_ In A 2 
( AB A) In A 2 

Lejj L (gR, liR) + Lo + 327r2 X LALB + X LA + y'g 327r 2 (L + NGLg), 

L = (wab + W ab
) (3CGOab - Di(TbZ)jDj(Taz)i) + 2V (1317 + 9KimVIl-ZiVll-zm) 

+ N1~ ·5 [(s + S)2WabWab + 2 (wab + W ab
) VaVb + 8V2 - 8 (V + 2M2) V] 

- N 1~ .5 [( s + s) (F:1l- - ii':Il-) (F:v + iF:v) + 4g~V] VvziVIl- zm Kim 

+~(s + S)2WabWab + 11 (wab + W b
) VaVb + 20V2 + 1.54M2V 

+ (s + s) (W + W) (IC - V ziVP zm _ 217 + 2V) - 24iV ziV zm K· _Va Fll-v 2 zm P J.L v zm a 

( 4.87) 
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with, instead of (4.10), 

( 4.88) 

Here we have considered only the standard chiral multiplet formulation of supergrav­

ity. Their is reason to believe [26], [29], [59] that the dilaton in the effective field theory 

from superstrings should be described, in fact, by a linear multiplet, which is dual to 

the chiral multiple used here. It has been shown [60] that a variety of classically dual 

theories remain equivalent at the quantum level. In [4.5] it was observed that once the 

ambiguous matrix elements (4.41) have been fixed in a supersymmetric way that ad­

mits Pauli-Villars regularization, the axion y of the dilaton supermultiplet appears only . 

through its dual hVpu = fVPUP.[}p.y/4x 2 . This suggests that the properly regulated chiraI' 

supergravity theory also remains equivalent to the linear multiplet version for the dila­

ton at the quantum level. Some loop corrections using the linear multiple formulation 

have been carried out in [61]. 

Further simplifications occur in specific models, such as the untwisted sectors from 

orbifold compactifications where the scalar Riemann tensor is covariantly constant and 

the Ricci tensor is proportional to the Kahler metric for each untwisted sector. 

4.6 Here Is Where The Action Is. 

In this section we recapitulate the results of the calculations of paper II (as described 

in the previous chapters) put together with the results ofl, and present the full one-loop 

bosonic effective action of supergravity plus YM and chiral matter: 

A2 In A2 
£(K) + £l-!oop = £(KR) + yg 3211"2 La + yg 3211"2 (Ll + L2 + NGLg) , 

La ~ (NG - 1) + 2Kim (1)p.i1)p. zm + 5pipm) - 81) + 29
8 

M £1 

+2N (Kim pi pm - ~M£1 -~) +2x-11)aDi(Taz)i 

~ (NG~~~ + 2Rim) (pi pm + 1)p.zi1)p. zm) , 

= N
2
; 5 [Kim (2pipm _1)p.z i1)p. zm) M £1 - j(M £1)2] 

+ N: 5 J(imB:jn (1)p.zj1)p. zm pj pn + 1)p.zj1)p. zi1)v zm1)vzn) 

+8 (J(jn pj pn - jM £1) [Kim (pipm + 1)p.i1)p.zm) - jM £1] 
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-4 (1)Il-Zm1)ll-ziKimf - 81)ll-zj1)ll-zi1)vzm1)vZ'n](inKjm 

- (1)Il- Zi1)ll- zm + pi pm) [~KimRjn (1)ll- zj1)ll- zn + pj pn) + 4Rnimjpn pj] 

+~1)Il-Zi1)vzmKim (Rjn - 2Kjn) (1)ll- z j1)v zn _1)v zj1)ll- zn) 

- {(1)Il- Zi 1)ll- zm + pipm) [e- K RjnkiAjkA'$'n + e-K/2(DmRjnki)Ajkpn] + h.c.} 
_e- K/2 [~R~~Akl (M1)ll-zi1)ll-zj + M pi pj) 

+1)ll-i1)ll-zj pm (R~~AikC - R~~AmkC) + h.C.] 
+Rk/iRnkmC (1)ll-zj1)ll-zi1)vzn1)vzm - pjpipnpm) 

+R~- oRi_ (1) zj1)ll- zm1) zC1)v zn + 21) zj1)ll-;;;mpCpn + .. pjpmpcpn) Jmt Cnk Il- v Il- '" 

+'1"\ j'1"\ -mRk '1"\1l- C'1"\v;;;nRi '1"\ j'1"\ :;;mRk '1"\V.,,c'1"\Il--nRi vll-z vvz imjV Z v '" knC - vll- Z VV~ imjV ~ v z knb 

L2 [wab (3CGDab - Di(TbZ)j Dj(Taz)i) + h.c.] + 2M M1) + 221)2 

+ N + 5 [2Re W ab1) 1) _ X (pa\ _ ipa ) (FPV + iFPv) 1) ~i1)1l- zm Ko _] 6 a b PIl- PIl- a a v'" tm 

+ N + 5 [x2W W ab + 21)2 -1)](-- (1) zi1)pzm + 2pi pm) + ~1)M M] 3 ab tm P 9 

+24Re W ab1)a1)b + 2xRe W [~M M + Kim (1)p zi1)pzm - 2pi pm)] 

-4x Re W ab1) + 21) Kim (81) pzi1)P zm + 11pi pm) - 26i1) Il- zj1)vzm ](im 1)a P/:v 

14 2W W ab 
('1"\ i1)ll--m pip-m) [2R 0 0'1"\ Dj(Ta-)n 4'1"\Ro] + x ab + V Il- Z Z + -;- ntmJ va Z + 3" v tm 

+ Di~Z)i {41)a [( 1)ll- zj1)ll- zm + pj pm) Kjm - 21)] + 13iP:J(mj1)ll-z j1)v zm] 

o 0 . -K/2 0 0 0 

+2iF:vDj(Taz)t R~mk1)1l- zk1)v zm - ~1)a [(Ta z)t R// pc Ajk + h.c.] 

+~:~ (pipm + 191)ll- i 1)ll- zm) 1) -1) (4 + ~~k) (~ piM + h.C.) 
- -k -

+fm!i pmpj (W + W) + fkf fmfj1) (1) zm1)ll-z j _ pm pj) 
2x 8x4 Il-

_ fifm [~(pa + ipa ) (Fll-p _ iFll-p) 1) i1)v zm + Hi 1) ~i1)v zm1)a Pll-v] 
X 4 Il-V Jl.V a a P 2x Il-" a 

_ (5 + ~~k) {[~ (p;Jl. _ iP;Il-) + g;: 1)a] !i1)vzj Kim (Taz)i1)Il- Zm + h.c.} 

_ 3fkJk fdm [ (pa + °P-a ) (Pll-P _ °P-Il-p) '1"\ i'1"\v;;;m 16x4 X Il-l/ ~ Il-l/ a ~ a V pZ V '" 

+2i1)Il-Zi1)vzm1)a p/:v] 
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+ P Ii IC _ [D (D ziDJl. zm + 2pi pm) + iD zjD zmDa pJl.v] 2x2 tm Jl. Jl. v a 

-~~ [8x(W+W)V+ (4x 2-Pfj) W abW
ab

+2 (wab+ W
ab

) DaDb] 

+ fdi [x (pa _ iPa ) (. FPv + iPPv ) D ziDJl. zm IC __ 4D2] + x4p. opijWW 8x2 PJl. pJl. a a v tm tJ 

+ {(FiE'''' + vpziv"r) [4P""i(T.Z)'V. - (pm'; + J; Pi,) J'V] + hoC.} 

+e-K
/
2 {W [x2/j (AjikPk - ~AijM) + fi?j pk Aij] + h.C.} 

+2x [4Pij(Taz)i(Tbz)jWab + iPmijVp.zjDvzm(Taz)i (P:v - iP:v) + h~co] 

+ {PijDJl.zj [~f~VJl.Zm(TaZ)iVa _ {i W/iDJl. zj] + h.C.} 

z}o' [Dv-m(T)i DV i(T )m] [f-i DP j (pa op-a) + h ] - 2 \ im z aZ - Z aZ Pij z pv - Z pv .c. 

Va [}O' DJl. -m(Ta)k i j- -n -m (pVJl. 0p-VJl.) h ] ( -n if-j + h ) + 2x \km z z + 2 mVvZ - Z + .c. PijVJl.Z .c. 

- [wabpij]i(Taz)jVb + x2DpziDPzj (2PijW - Rnimjpmnw) + h.c.] 
+2x2po opj_ VD iVPzm tJ m P , 

K 

Lg = :~2 (DJl.iDJl.zm + pipm) AijA':nfkP + ~M M (PijVJl.ZiVJl.zj + hoc.) 
-K/2 

- e 8x3 [PAijpk fk1m (DJl.iDJl.zm - pipm) + h.c.] 
K/2 

- e~x3 {{P Aijpk!k [V Jl.Zi f.eDJl. z.e - 43
X 

pi M] + h.C.} 

- e-;/2 {PAk.e [:~DJl.ZmDJl.z.eM - PijDJl.Zi (pjDJl.zk - pkDJl.zj)] + h.C.} 

+2~2 {DJl.ZiPi riM (21mDJl. zm - /iDJl.zj) + /ipj 1m DJl.zm] + h.C.} 

+ 4~2 [DJl.ZiDJl.zj fiJj (~MM + 4~2!kpk 1m pm + 6~!kpk M) + h.C.] 

- {f~2~m [(DJl.ziDJl.zm + 2pipm) pj M - 2DJl.ZiDJl.zj pmM] + h.C.} 

- 4~ {PijPP.eDJl.Zi[fk (pjDJl.zk + pkDJl.zj) 

+ 1npjDJl.zn + 43
x 

DJl.zj M] + h.c.} 

+fkP {W[XPijDJl.ZiDJl.zj _ e-
K

/
2 

fjA!npm _ 1mf2j pj pm _ fi piM ] + hoc.} 
4x 2x 4x 3x 

-~ICmJ(jn (DJl.ZiVJl.zmDvzjDvzn + pipmpjpn - pjpnVJl.ziDJl.zm) 
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+ ~l(- - J( --1) zi1) Zm (41)JJ. zj1)// zn + 1)// zj1)JJ. zn) - ~ (M M)2 + ~1) M M 
6 tm In JJ. // 27 9 

+ (~M M -l1)) J(im (2Fipm _1)JJ. zi1)JJ. zm) + ~1)2 + X2W abW
ab 

+ ( Fa + iPa) (FP// - iFP//) (film _ ~J(--) 1) zi1)JJ. zm + (fiji) 2 

WW 
PJJ. PJJ. a a 4x 2 tm // 4x 

+x2 Pijpnm (1) JJ.zi1)JJ. zj1)//zm1)// zn + 1) JJ. zi 1)JJ. zm Fj pn) 

+ fdjJmJn (1) zi1)JJ.zj1) zm1)//zn _ Fi Fj pm pn _ 21) zi1)JJ. zm Fj pn) 
16x4 JJ. // JJ. 

+ {~~~ Fj pn [J(im (1)JJ. i 1)JJ. zm - 2Fi pm) + 2M M - 21)] 

+ fjJn1) zj1)//zn [](-- (21) i1)JJ. zm _Fipm) + ~MM -1)] 
6x2 // tm JJ. 2· 

- f~:~ J(jn (1) JJ. zi 1)JJ. zj1)//zm1)// En + 1) JJ. zi1)JJ. zn1)//zm1)// zj) 

+~ (Wab + Wab) 1)a1)b ( 4.89) 

where Fi = _e-K / 2 Ai is the bosonic part of the F-component of the chiral super­

multiplet Zi, M = _3e-K / 2 A is an auxiliary field in the gravity supermultiplet (see eq. 

(2.53-56)). The results of [30, 31] were calculated using the classical Lagrangian (1) that 

is obtained after elimination of the auxiliary fields, and are expressed in those papers 

as functions of the boson fields and their covariant derivatives. It is easy to show that 

calculating the one loop corrections before or after elimination of the auxiliary fields in 

terms of their classical solutions gives the same result to the loop order considered. Here 

we use the auxiliary fields to present the results in a form that lends itself more easily 

to an interpretation in terms of superfield operators. 

The real function J(R(Z, .2), given in eq. (4.80), contains logarithmically divergent 

contributions to the the renormalized Kahler potential. In L 2 ,g we have also introduced 

scalar field reparameterization invariant covariant derivatives (pij, Pmij) of the variable 
\ 

p, defined as the squared gauge coupling P = X-I = 92 • 

In effective supergravity from superstring theory, the classical Kahler potential 

J((z, z), superpotential W(z) and Yang-Mills normalization function fab(Z) take the 

forms given in eq. (4.86). In this case 1 - (4x )-2 Ji fi = A + (2x t l Ji Ai = 0, and 

Pi = DiP = _(2X2)-1 fi is covariantly constant: Pij = Pmij = ... = 0. Then L2 and Lg 

reduce to: 
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N + 5 [ 2 -ab (ab -ab) 2] 7 2 -ab +~ (S+S) WabW +2 W +W VaVb+8V +2"(s+s) WabW 

_ N: 5V [Kim (2Fipm + VIl-ZiVll-zm) _ ~M M] + 11 (wab + W ab
) VaVb 

+ (S; 05) (W + W) [~M M + ]{im (VpziVpzm _ 2Fi pm) + 2V] + 20V2 

N+2( -)(Fa 'F-a ) (FPIl 'F-PII)'T'I iToIl--m},' 154MM-'T'I -~ s+s PIl--2 PIl- a +2 a VIIZV Z \im+ g v 

+21(im (13Fipm + 9VIl-ZiVllzm) V - ~e-K~~ Va [(Taz)iR/l k FlAjk + h.c.] 
S+S . 

_ [iVR '. + Va (R.'~ 'Dj(Taz)fi _ i K ,. D'(Taz)j)] 3 lm (s + 05) mmJ 3 l.m J 

X (Fi pm + V ziVll-zm) + 28i ail-salis va FilII 
Il- (S + 05)2 a 

( 4.90) 

with now: 

M 

where the second line follows from the tree level equations of motion. 

In addition, in the untwisted sector of orbifold compactifications, the Riemann ten-
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sor is covariantly constant and its elements are related to elements of the Kahler met­

ric. Moreover in many models there are global symmetries that impose RimjnWij = 
RimjnWijk = O. In this case Ll can be expressed entirely in terms of Fi,DlJ.zi,M, their 

complex conjugates, and the Kahler metric; an explicit example is given in [30J. 

4.7 Conclusions 

In this chapter we have shown the calculation and the result of the divergent loop 

correction [31J to supergravity and superstring effective models, including the gauge 

sector. 

Some comments on the implications and applications of our results are In order. 

It has already been shown [45] that, using the gauge fixing and expansion procedures 

defined here, the one-loop quadratic divergences, as well as the logarithmic divergences 

in the flat space limit and in the absence of a dilaton, can be regulated ala Pauli-Villars. 

Regularization of the full supergravity divergences without a dilaton are under study [.52J. 

An objective of this study is to determine the extent to which, in the string theory 

context, a modular invariant regularization procedure can be achieved that preserves 

the continuous S L(2, R) symmetry of the classical effective Lagrangian. To obtain the 

full one-loop Lagrangian, including all finite contributions, requires a resummation of 

the derivative expansion. A procedure for resummation will be described elsewhere [.52]. 

We have presented our results for one-loop corrections to the classical general super­

gravity Lagrangian [42, 13] with at most two-derivative terms. As seen in Section 5, the 

result simplifies considerably for the classical effective Lagrangian derived from string 

theory, due to the the absence of a potential for the dilaton and the special form of its 

Kahler potential. These features are modified when the effective Lagrangian includes a 

nonperturbatively induced [72J superpotential for the dilaton and/or the Green-Schwarz 

counterterm [26J that is necessary to restore modular invariance. The latter term de­

stroys the no-scale nature of Lagrangians from torus compactification and the untwisted 

sector of orbifold compactification, and generally destabilizes the effective scalar poten­

tial. However this term is of one-loop order and therefore should be considered together 

with the full one-loop corrections. An interesting question, that will be addressed else­

where, is whether these corrections can restabilize the potential. 

An important unresolved issue in the construction of effective supergravity La­

grangians for gaugino condensation is the correct form of the kinetic term for the com-
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posite chiral multiplet that represents the lightest bound state of the confined Yang-Mills 

sector. It has recently been shown [27], in the context of both the linear and chiral multi­

plet formulations for the dilaton, that such terms can be generated by higher dimension 

operators. The contribution (4.84) to the effective Lagrangian determines the leading 

one-loop contribution to these operators; similar terms occur in string theory [6.5]. This 

is one example of how the determination of loop corrections can serve as guide to the 

construction of such an effective theory. 
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Chapter 5 

Gaugino Condensation, Threshold Corrections, and 

S-Duality 

5.1 Introduction 

As discussed in Section 2.1, a basic feature of superstring constructions in four di­

mensions is the presence of massless moduli in the effective field theory. These fields 

whose vevs parameterize the continuously degenerate string vacua, are gauge-singlet 

chiral fields; furthermore, they are exact flat directions of the low energy effective field 

theory (LEEFT) scalar potential. Generically, the moduli appear in the couplings of 

the LEEFT. For example, the tree level gauge couplings at the string scale depend on 

the dilaton, S, and the Yukawa couplings as well as the kinetic terms depend on the 

T-moduli (and S through the Kahler potential) . There is mixing of the moduli beyond 

tree level, due to both string threshold corrections [25] and field-theoretical loop effects. 

Since the supersymmetric vacua of heterotic strings consist of continuously degen­

erate families (to all orders of perturbation theory), parameterized by the moduli vevs, 

the latter remain perturbatively undetermined. This degeneracy can only be lifted by a 

nonperturbative mechanism which would induce a nontrivial superpotential for moduli, 

and at the same time break supersymmetry. We shall assume that this nonperturbative 

mechanism takes place in the LEEFT and is not intrinsically stringy. This certainly ap­

pears to be the most "tractable" possibility. A popular candidate for such a mechanism 

has been gaugino condensation which is briefly reviewed in Section 5.2. 

In this Chapter, we wish to consider gaugino condensation in a superstring-inspired 

effective field theory, with approximate S-duality invariance [66,67] and exact T-modular 

invariance. We generalize the work in ref. [67] to incorporate an intermediate scale MJ 

(Mcond ~ MJ ~ Mstring), and we are interested in how the intermediate-scale thresh­

old corrections will affect gaugino condensation and supersymmetry breaking[85]. The 

intermediate scale may be generated by spontaneous breaking of the underlying gauge 

symmetry, or alternatively, by a gauge singlet field, A, which is coupled to the hidden­

sector gauge non-singlet fields ~i. In the latter scheme, A is assumed to acquire a VEV 
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dynamically and therefore gives the gauge non-singlet fields masses without breaking 

the gauge group. We assume the latter scheme because of its simplicity. In fact, this 

scheme has been seriously considered when studying the gauge coupling unification 

[69J. Incorporating the intermediate-scale threshold corrections into gaugino conden­

sation is non-trivial in the sense that the field-theoretical threshold corrections at MJ 

are dilaton-dependent. Hence, these modifications can have non-trivial implications 

for supersymmetry bre~king by gaugino condensation. Furthermore, a priori, nothing 

prohibits intermediate scales in the hidden sector. 

The outline of this chapter is as follows. After a brief review of gaugino condensation 

(Section 5.2), and of duality symmetries, modular and S-duality in Section 5.3, we 

shall review the quantum corrections to the gauge couplings in superstring effective 

supergravity theories and the connection with modular invariance of the effective theory 

in Section 5.4. We shall discuss our model in Section 5.5, and arrive at the renormalized 

Kahler potential including I-loop threshold corrections at an intermediate mass, and 

constrained by duality symmetries. The issues related to the scalar potential, dilaton 

run-away, and supersymmetry breaking, as well as the role of the intermediate mass are 

discussed in Section 5.5. Concluding remarks are given in Section 5.6. 

5.2 Gaugino Condensation (A Review) 

A possible mechanism for breaking supersymmetry within the framework of (N = 1, 

D = 4) LEEFT of superstring is gaugino condensation in the hidden sector. In this 

scenario, the nonperturbative effects arise from the strong coupling of the asymptotically 

free gauge interactions at energies well below Mp/. Corresponding to this strong coupling 

is the condensation of gaugino bilinear (~A)h.s.. Let us briefly remind the reader the 

overview of the development of gaugino condensation. It was recognized many years 

ago that gaugino condensation in globally supersymmetric Yang-Mills theories without 

matter does not break supersymmetry [70J. In fact, that dynamical supersymmetry 

breaking cannot be achieved in pure SYM theories was shown by topological arguments 

of Witten [71J. In the locally supersymmetric case the picture is rather different, namely, 

gaugino condensation can break supersymmetry [72], and the gauge coupling is itself 

generally field-dependent. When the gauge coupling becomes strong, it gives rise to 
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gaugino condensation at the scale1 

M M · (ReT)-1/2 e-ReS/2bo - M . (ReT)-1/2 e-l/bo9;, cond '" stnng - stnng , 

which breaks local supersymmetry spontaneously (M;ond '" ().A)h.s. ), and S is the dila­

ton/axion chiral field. Supersymmetry breaking in the observable sector is induced by 

gravitational interactions which act as 'messenger' between the two otherwise decoupled 

sectors. 

However, there are generally two problems associated with the above scenario. First, 

the destabilization of S - the only stable minimum of the potential in the S-direction 

being at S ~ 00; i.e., in the direction where exact supersymmetry is recovered and 

the coupling vanishes! This is contrary to the expectation that the vacuum is in the 

strongly coupled, confining regime. This problem, the so-called dilaton runaway prob­

lem, is present in most formulations of gaugino condensation, in particular the so-called 

'truncated superpotential' approach [74], where the condensate field is assumed to be 

much heavier than the dilaton and therefore is integrated out below Mcond. In fact, 

the dilaton runaway problem is perhaps a more generic problem in string phenomenol­

ogy where the underlying string theory is assumed to be weakly coupled without any 

nonperturbative effects being taken into account [86]. We shall return to the dilaton 

runaway in Sections 5 and 6. 

The second difficulty is the large cosmological constant that arises from the vacuum 

energy associated with gaugino condensation. An early attempt to remedy these diffi­

culties was proposed by Dine et ai. [74], in the context of no-scale supergravity whereby 

a constant term, c, is introduced in the superpotential which independently breaks su­

persymmetry and cancels the cosmological constant. The origin of c is traced to the vev 

of the 3-form in lOD supergravity, and is quantized in units of order Mpz. Therefore, 

this approach has the unsatisfactory feature of breaking supersymmetry at the scale of 

the fundamental theory. 

5.3 Duality Symmetries 

Modular symmetry, with the group S L(2, Z) subgroup of S L(2, R) duality transfor-

IThese arguments are modified by, for instance, the requirement of modular invariance [73]. 
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mations, written in its simplest form: 

T 
aT - i/3 

-+ , 
i-yT+6 

(.5.1) 

where a6 - /3, = 1 and a, /3",6 are integers,2 is an exact invariance of the underlying 

string theory. However, this symmetry is anomalous in the LEEFT. Cancellation, or 

partial cancellation, of this anomaly in the effective theory can be achieved by the Green­

Schwarz (GS) mechanism" which is especially clear in the linear-multiplet formulation 

of the LEEFT [75, 76, 77]. In the corresponding chiral formulation, the adding of GS 

counter-terms amounts to modifying the dilaton Kahler potential: 

-In(5 + 5) -+ -In(5 + 5 - bG), 

where b = -~bo, and bo is the E8 one-loop /3-function coefficient. G = 1:i In(Ti + 
ti - 1:1~12), and ~ is any untwisted sector (non-modulus) chiral field of modular weight 

(1,1,0) in the theory. We neglect the twisted dector matter fields. For simplicity, here we 

only consider models where modular anomalies are completely cancelled by GS mecha­

nism, 'for example, the (2, 2) symmetric abelian orbifolds with no N = 2 fixed planes, 

like Z3 or Z7 [75, 76, 77]. The role of the gauge coupling and its renomalization in 

superstring effective theories, and the connection with modular anomaly cancellation 

are reviewed in the next section. 

Recently, another type of duality symmetry has been receiving much attention in 

string theories. In this case the group of duality transformations is 5L(2, Z), but acting 

on the field 5 instead of T i , and is referred to as 5-duality. Like its T-analogue, this 

group has a generator which is the transformation 5 -+ 1/5, and since 5 is related 

to the gauge coupling, this duality transformation is also referred to as 'strong-weak' 

duality. Font et al. [78] have conjectured that 5-duality, like T-duality is an exact 

symmetry of string theory. More recently, there has been mounting evidence that S­

duality is a symmetry of certain string theories [79]. However, these theories all have 

N = 4 or N = 2 supersymmetries. At the level of string theory, there are two different 

types of S-duality, namely (i) those that map different theories into one another, and 

(ii) those that map strongly and weakly coupled regimes of the same theory into each 

another. Indeed, presently there is no evidence of an S-dual N = 1 string theory, 

and it is therefore difficult to justify the use of S-duality as a true symmetry in the 

2There is, generally, one copy of the group per modulus field Ti. 
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corresponding LEEFT. However, it has been shown that in the effective theory, the full 

5 L(2, R) duality transformation is a symmetry of the equations of motion of the gravity, 

gauge, and dilaton sector in the limit of weak gauge coupling [66, 67]. As in [67], we 

shall take S-duality as a guiding principle in constructing the Kahler potential for the 

gaugino condensate, which is, so far, the least understood element in the description 

of the effective theory for gaugino condensation. That is, we assume that S-duality 

invariance is recovered in limit of vanishing gauge coupling, 5 + 5 - 00. 

In the following we review some elements of S-duality transformations derived from 

the general formalism ofref. [66] (see also [67]). In the simplest case, in the presence of 

a YM field-strength FJ.tI/' the scalar fields parameterize the coset space G I H, where G = 

5L(2, R), is the (noncompact) group of duality transformations and H is its maximal 

compact subgroup U(l). Under the action of 5L(2, R), the bosonic component of the 

dilaton transforms in the usual way: 

, as - ib 
s-s= , 

ies + d 
(5.2) 

where a, b, e, d are real, and ad-be = 1. The transformation of the fermions is determined 

by the considering the invariance of the corresponding kinetic terms and their coupling 

to the dilaton. One then obtains the transformation property of the supermultiplet. As 

shown in ref. [67], the transformation law (B.1) can be promoted to that of the dilaton 

(chiral) supermultiplet as follows: 

5(()) _ a5(()') - ib = 5'(()') 
ie5(()')+d ' 

(5.3) 

where 

() _ ()' = z~s _+ == ~-1/2(), 
(

. d )1/2 
-us + d 

(5.4) 

and 

(5 .. 5) 

Similarly, for the gaugino one finds: 

(5.6) 

which implies that: 
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where U is the composite field containing the gaugino condensate: U = eK / 2 H3. Here, 

H is the usual chiral multiplet. Note that U and H have different Kahler weights, 

therefore, U differs from an ordinary chiral superfield; in fact it can be shown to satisfy 

the constraint U = (f>2 - 8R) V, where V is a vector multiplet which contains the 

components of a linear multiplet and a chiral multiplet ([67, 64]). 

It follows from the above transformation laws that the chiral field H transforms as: 

(S.8) 

This, together with the fact that Re5 -+ lie5 + dl- 2 ReS, fixes (up to an S-invariant 

factor) the function 1(5,5) in the Kahler potential (21): 1 = (5 + 5)1/3. Notice that 

the T-moduli are inert under S-duality transformations. 

There have been other recent discussions of gaugino condensation with S-duality 

[80] but with a rather different approach than ours; namely, by modifying the gauge 

kinetic term by replacing the gauge kinetic function 5 with the function 5 + 1/5, and 

introducing a very different nonperturbative superpotential for the dilaton than one gets 

using the standard approach of ref. [70] as we do here. Other crucial differences with 

this work are the renormalization of the dilaton in Kahler function (including threshold 

corrections), and the use of 5L(2, R)approximate symmetry to constrain ]( in our 

approach. 

5.4 The Role of the Gauge Coupling 

In this section, we recall a few facts about the perturbative corrections of the gauge 

coupling function in the superstring effective field theory as well as the connection with 

modular invariance of the effective theory. 

As mentioned earlier, in our approach, the one-loop renormalization of the gauge 

coupling is completely included in the Kahler potential ](, i.e., the renormalization 

effects are completely absorbed into ]( by replacing the tree-level gauge coupling 5 + 5 

in ]( by the one-loop renormalized gauge coupling. Therefore, it is worthwhile to discuss 

the renormalization of gauge couplings in superstring LEEFTs. For simplicity and 

explicitness, we restrict ourselves to untwisted sector of orbifold models. 

Let us first recall the Lagrangian for supergravity plus super-YM. Recall from eq. 

(2.26) and (2.28-29) that in the Kahler covariant formalism [12] the classical superfield 
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Lagrangian is given by: 

£ = -3 J d4()E + J d4
() (8~fab(z)waaw! + 2~eK/2W(Z)) + h.c., (.5.9) 

where Z stands for the chiral fields in the theory, The first term in eq. (5.9) corresponds 

to the kinetic energy for the gravity sector as well as the chiral fields. The chiral fields 

enter through the dependence of the spinorial derivatives of E on the Kahler potential, 

K(Z, .2'). The second term describes the super-YM coupling to the theory, with the 

(holomorphic) gauge coupling function fab(Z) and the YM 'field-strength' superfield 

Wa = WaaTa = (~D2 - R)e-2V Dae2V, 

where V is the vector multiplet containing the YM gauge potential. We shall take 

fab = f bab = S bab corresponding to the bare coupling of the effective superstring theories 

where S is the dilaton/axion chiral superfield. The component form of the second term 

contains: 

J d4 xV9 (-lRe f Tr(F2
) -lImfTr(FF)), 

and thus Ref is the YM gauge coupling, while Imf gives the axionic coupling. 

Finally in the last term of eq. (5.9), W(Z) is the superpotential which is a holomor­

phic function of the chiral matter fields (independent of S and other internal moduli, 

until supersymmetry is broken nonperturbatively). 

In discussing the gauge couplings in effective theories, it is important to to distinguish 

between the Wilsonian couplings, and the physical, or effective couplings. In particular 

in the effective supersymmetric theories that we are considering, there are powerful 

statements that can be made about the two types of gauge coupling. The (holomorphic) 

Wilsonian gauge couplings in supersymmetric YM theories, which appear in the Wilson 

effective action, do not renormalize beyond one loop. These are functions that appear 

in the Wilson effective action, Sw(p), the local functional of quantum operators. In 

Sw(p), only momenta between the scale p and the UV cut-off contribute to loops. 

The physically measurable 'effective' (or running) couplings appear in the c-number 

valued generating functional of IPI graphs, f; this is in general a nonlocal functional of 

background fields that contain the IR momenta p < p running through loops, as well. 

Right at the UV cut off, the Wilsonian couplings, i.e., the coefficients appearing in front 

of the operator terms in Sw are the bare couplings of the theory. The relation between 

the two effective actions may formally be written as [.58] 

eir(<I>ce,/lJ = (eiSw[<I>,/lJ), 
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where the expectation value on the right hand side is taken in the the presence of back­

ground fields. In the supersymmetric YM theories, it is known that, unlike the Wilsonian 

gauge coupling, the effective coupling renormalizes perturbatively at all orders, and that, 

indeed, higher order corrections introduce nonholomorphicities [.58]. The generalizations 

of these results to supergravity effective theories of superstrings have been carried out 

more recently [25, 77, 83, 84]. 

The gauge coupling in all N = 1. effective heterotic string constructions is given at 

tree level by: 

(5.10) 

ReS is the 'universal' gauge.coupling at string scale, and kex is the level of the affine 

Lie algebra associated with the factor G ex of the product gauge group. Subsequently, 

we shall set kex = 1, and throughout the analysis Gex refers to the IR strong group 

with gaugino condensation. The exact (i.e., all-loop) Wils0!lian coupling is given by the 

holomorphic function: fw = S + f(1), and the moduli dependent one-loop (i.e., all-loop) 

correction f{l)(T i ) has been determined [84] (see below). The effective gauge coupling, 

with LEEFT-loop corrections to all orders is given by [83,58]: 

A2 ," T(adj) -2 2 
boln 2'" + cA + 8 2 lngejj(p) 

P 1i 

1 '" () (r) ( 2)' -2 ~T r lndetZejj P , 
81i r 

(5.11) 

where, bo = (-3T(adj) + Lr nrT(r))j161i 2 (the YM ,B-function coefficient), and c = 
(-T(adj) + Lr nrT(r))j161i2

, and Z is the kinetic normalization matrix. It is worth 

mentioning that in our discussion, the above result for the (physical) effective gauge 

coupling is obtained by starting with the definition of Wilsonian coupling of ref. [83, 84] 

with a constant UV-cutoff. It can also be obtained by a Pauli-Villars regularization 

involving a field-dependent UV cutoff [77]. In the latter, definition of the Wilsonian 

coupling differs from the above, and due to the dependence of the the cut off on Kahler 

potential, it is non-holomorphic. To one-loop order, one has to evaluate the r.h.s. of 

the above equation at tree level, at 2-loop the r.h.s. is evaluated to one loop, etc. The 

one-loop result has also been obtained in [77]. Threshold corrections due to integrating 

out the heavy string modes have been calculated in reference [25]. These corrections are 

only dependent on the moduli T i , and not on the dilaton. All the perturbative dilaton 

dependences in the effective gauge coupling arise from field-theoretical loop effects. We 

81 



shall see in the next section that threshold corrections in the effective field theory also 

introduce dilaton-dependent terms in the running coupling. 

Let us now turn to the question of modular invariance. As inputs from string theory, 

for general fields <pI (ignoring for the moment the GS counter terms), we have the 

normalization matrix for the kinetic term, and the Kahler function. The former is given 

by: 

(.5.12) 

where the rational numbers q} are the modular weights of the field <pl. They depend on 

the twist sector of the orbifold which gives rise to the matter fields q>I, and the modulus 

field Ti. The Kahler function at the tree level is given by ]( = -In( 5 + S) - Li In(Ti + 
ti) + O( q>2). For the modular transformation given in eq. (1) of the text, ]( transforms 

by the usual transformation law: 

(.5.13) 

Under a modular transformation, the non-modulus chiral fields, transforms as: 

(5.14) 

Hence, the kinetic matrix ZIJ transforms according to: 

(5.1.5) 

It follows from eq. (5.13-15) that the reparametrization induced on the matter fields by 

modular transformations is given by: 

(5.16) 

where C6J is moduli independent. 

For a generic supergravity theory with super-YM, under the combined transforma­

tions: ]( -+ ]( + F + F and <pI -+ C5<P J with c5 holomorphic function of the moduli 

<pI, the Kahler invariance of the (exact) integral of the RGE's, i.e., eq. (5.11) imply 

that: 
1 fw -+ fw + cF - - ""' T(r)trln C(T), 2,,2 ~ 

T 
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where c is the group theoretical factor given after eq. (5.11) above. For C5 and F 

corresponding to modular transformations, eq's (.5.13) and (5.16), this gives: 

(5.18) 

with 

a i = 2:T(~I)(1- 2q}) - T(adj); T(q/) = 2:tr(T2(r)), (5.19) 
I r 

and Ta (r) are the generators of the representations of the fields ~I. 

Furthermore, the transformation law (.5.18) corresponds, up to a modular invariant 

function, to the transformation of the logarithm of Dedekind function. In fact it will give 

the complete modular dependent perturbative correction, J(1) to the Wilsonian coupling 

[25, 76, 77] : 

ReJ(1) = - 4~2 2;: (iln 11](iTiW, (.5.20) 
t 

modulo a moduli independent part which has been argued to be a constant in most 

orbifold models [84]. 

In the context of the effective theory of gaugino condensation modular invariance 

is restored by including factors of 1](iTi) in the superpotential (see eq (2)), and in the 

definition of the fields, so as to parametrize the above modular dependent correction of 

the gauge coupling, as well as by introducing GS counter term as discussed in section 2-B. 

However, the inclusion of the 1] factors tends to spoil the boundedness from below of the 

scalar potential. To avoid this, we may restrict ourselves to the orbifold models which do 

not receive string threshold corrections. These models have been classified [25, 76, 84]. 

For such models, the modular anomaly is solely cancelled by the GS counter term. 

5.5 The Model 

This model basically generalizes the model of gaugino condensation with S-duality 

of ref. [67] to the case in the presence of an intermediate scale. Other works based 

on the truncated approach have addressed gaugino condensation in the· presence of an 

intermediate scale [81]. However, our approach is quite different from those works in 

three respects. First, the effective Lagrangian approach is adopted here rather than the 

truncated approach. In the truncated approach, the mass of the composite is assumed 

to be much larger than the mass of the dilaton, and the condensate is integrated out 

below the condensation scale. Here, both the composite field and the dilaton are treated 
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as dynamical fields. Due to this very assumption made in the truncated approach, these 

two approaches are not equivalent in the case where the mass of the composite is of the 

order the dilaton's mass or lower. Second, invariance under S-duality is used here to 

constrain those parts of the Lagrangian which cannot be obtained using the argument 

of anomalous symmetry. Third, the (dilaton dependent) one-loop intermediate-scale 

threshold corrections to the gauge coupling are included in this study. 

The scheme of generating the intermediate scale considered here- involves the cou­

pling of the hidden-sector gauge non-singlet fields «Pi to a gauge singlet A. When A 

dynamically gets a vev, «Pi become massive and the intermediate scale is thus generated. 

Since A is a singlet, the hidden-sector gauge group does not break. Such a scheme has 

interesting implications for gauge coupling unification [69]. Since we are mainly inter­

ested in the effects of the intermediate scale rather than the effects of gauge symmetry 

breaking, we choose the above scheme due to its simplicity. For consistency, the pat­

tern Mcond ~ M J ~ Mstring is always assumed. Therefore, we shall integrate out the 

hidden-matter fields below MJ and the effective lagrangian at Mcond will consist of the 

moduli and the gauge composites only. 

The superpotential for the hidden sector matter fields that we use is the following: 

(5.21) 

It is worth remarking the curious fact that in all the examples of semirealistic superstring 

models with exactly three generations of matter that have been studied so far [82] no 

cubic self-coupling of gauge singlets seems to arise in the superpotential. However, there 

are indeed cubic couplings in the superpotential that involve two or three different gauge 

singlets (i>:a,B(k'YA,B or i>:a,B"YAa A.B A"Y with a, (3, and I all different). The cubic self­

coupling is, however, not ruled out on any physical grounds. So, just to be consistent 

with the current literature, one should perhaps introduce at least a pair of gauge singlets, 

one of which is coupled to the gauge-charged matter fields. In that sense our case is 

a toy model describing the situation where the gauge singlets have mutual couplings 

comparable to our )..'. However, for the general analysis of gaugino condensation in the 

presence of an intermediate scale, no new feature can be expected to arise from the extra 

gauge singlets as compared to our simplified case. 

When constructing our model, two symmetry principles have been used to constrain 

the Lagrangian: First, the LEEFT must be T-modular invariant to all orders. Second, 
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S-duality is a symmetry in the weak-coupling limit (S + S) --+ 00, as has been discussed 

in Section .5.3. Furthermore, we adopt also the point of view that the Kahler potential 

is renormalized instead of the gauge kinetic term when including the renormalization 

effects of the tree-level gauge coupling S + S. This viewpoint is especially clear in 

the linear-multiplet formalism of the LEEFT. For example, in the linear-multiplet for­

malism, the cancellation 9f modular anomaly is achieved by adding the Green-Schwarz 

(GS) counterterm through the linear multiplet, which contains the string two-index anti­

symmetric tensor field. When going from the linear-multiplet formalism to the chiral 

formalism by performing the supersymmetric duality transformation, the GS countert­

erm of the linear-multiplet formalism transforms into the renormalization of the tree­

level coupling S + S in the Kahler potential of the chiral formalism only. The gauge 

kinetic term of the corresponding chiral formalism remains unrenormalized [77]. Hence, 

we will include the renormalization and intermediate-scale threshold corrections only in 

the dilatonic part of the Kahler potential. It is worth noting that in the exact S-duality 

limit, in our chiral multiplet approach, the superpotentials for the matter field as well 

as the chiral condensate are absent. In constructing an effective theory for the chiral 

condensate field, consistent with the symmeteries of the underlying theory (modular 

and S duality symmetries), we include the wave function renormalization of the conden­

sate, H, in the Kahler potential. Put differently, the usual superpotential W N P '" H3 

is absent by requiring S-invariance in the 9 --+ 0 limit; and so in the effective theory 

for this field, rather than having a quantum correction of the form Wq '" H 3 In(H / J.L), 

we have a renormalization of the Kahler potential corresponding to the wave function 

renormalization of H. 

Let us start with the construction of the Kahler potential. We derive the Kahler 

potential ]( in two slightly different ways. The first derivation is straightforward: we take 

the canonically normalized mass of the fields <Pi (which is a field-dependent, modular­

invariant quantity) as the dynamically generated intermediate scale M J, and the gauge 

coupling at the condensation scale is obtained easily by running the gauge coupling 

from the string scale first to the intermediate scale, and then to the condensation scale 

together with the fact that the matter fields of mass MJ decouple below MJ. 

In the second derivation, we apply the result derived in ref. [83] for the corrections to 

the gauge coupling at a field-theoretical threshold to one loop. Their result was derived 

for a generic supergravity model with a threshold scale, with no reference to modular 
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invariance. In a modular invariant theory, we can show that both approaches result in 

the same gauge coupling, and therefore the same Kahler potential I{. 

The no scale case of the Kahler potential [67] (without matter fields, i.e., with pure 

E8 gauge group) at the condensation scale is given by 

]{ = -In mo - 3In(1- m~/3Q) + G (.5.22) 

where, 

1 
-3b = 2bo = 87r2 C(E8). 

(.5.23) 

Here, Mp/ = 1; and notice that the UV cut-off is taken to be Mstring = (5 + S - bG)-1/2 

meaning that the condensation scale is really in these units, Q/(5 + S - bG). 

In the presence of an intermediate scale the renormalization of the gauge coupling 

in mo will be different from that of ref. [67]. If we include the threshold corrections at 

one loop, we get 

mo ~ m = 5 + S - bG + 3 [b> In (M~~ ) + b< In (Q/(5 + ~ - bG))], (.5.24) 
. s~~ ~ 

and the Kahler potential at the condensation scale is: 

]{ = -In m - 3In(l- m 1/ 3Q) + G. (.5.2.5) 

Here, P and b< are proportional to the ,B-function coefficients above and below the 

intermediate scale, respectively: 

(.5.26) 

where CG and CM are the quadratic Casimirs: 

( .5.27) 
r 

with r labelling the representations of the gauge group, and nr being the number of 

fields in the r representation. As expected, in the absence of MJ, i.e., for b> = b<, we 

recover the Kahler potential of ref [67]. Let us briefly note that the general form of the 

Kahler potentials (3) and (6) is simply obtained by starting with the modular invariant 

tree level Kahler potential (supplied with the appropriate GS counter-term, G) which 

includes the kinetic term for the condensate field, H: 

I{ = -In(5 + S - bG) - 3In(e-G
/ 3 - /(5, S)IHI2), 
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and imposing S-invariance, which gives f = (S + 5)1/3 up to an S-invariant factor. 

Finally one replaces S + 5 - bG with the one-loop renormalized effectiye coupling at the 

condensation scale, which we have denoted m = 2/g;jj(Mcond). 

The modular invariant scale MI has to be determined - it is the modular invari­

ant, canonically normalized mass of 4?, and not simply the vev of the gauge singlet A, 

which has a nonzero modular weight. Before computing MI, let us make the distinction 

between the GS terms above and below the threshold, namely, 

> - 2 '" 2 G -3In(T + T - IAI - L..J l4?il ), 

-3In(T + i' - I(AW). (.5.28 ) 

Indeed, the difference arises only due to the change in the spectrum as the threshold is 

crossed. 'We analyse the theory with all the massive fields (4?i and A) "integrated out" 

at the condensation scale, so that in the first line of eq (.5.28), these fields are replaced 

with their vacuum expectation values to obtain G< in the second line. We discuss what 

kind of an approximation this replacement entails at the end of this section. 

It is straight forward to show that the canonically normalized mass is: 

(.5.29 ) 

Modular invariance is automatic due to the appropriate G-S terms, provided that A has 

the following modular transformation property: A -.. lifT + 61-1 A, i.e., has modular 

weight -l. 

We now derive the above Kahler potential by a different argument. It can be shown 

[83] that in the presence of a mass, in a YM + supergravity effective theory, the gauge 

couplings receive threshold correction at a scale AI given by 

1 1 p2 A2 
b> In -2. + b< In -..l. - (c> - c<)K o A2 0 p2 

I < 

8~2 (T( adjf - T( adj)<) In g-2 

+ 8~2 2: T( r) In det Z~assjve· 
r 

( .5.30) 

The group theoretic factors c> and c< are respectively given by: 

(.5.31) 
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The Kahler function, wave function renormalization matrix Z of the massive fields, and 

the (effective) coupling 9 on the right hand side of the above formula are all tree level 

quantities at the intermediate scale. The derivation of the above equation assumes non­

canonical normalization of the tree level kinetic terms in the supergravity Lagrangian. 

In particular, modular invariance plays no role, and the intermediate scale is not fixed 

by modular invariance and canonical normalization. Therefore, we take Al = I)'AI 2 

as one would in the noncanonical normalization. The Kahler term in eq. (5.30) must 

contain the contribution of the massive fields, i.e., it is J(tree = -In(S + 5 - bG) + G, 

with G given in the first line of eq. (5.28). For the UV cut-off, we use Mstring and 

for condensation scale M;ond = Q /(S + 5 - bG), as before. The normalization matrix 

for the ~ fields is given simply by the Kahler metric components ](iJ. One only finds 

contributions from the diagonal blocks: ZIl = 3[1 + b/(S + 5 - bG)]eG / 3 . Hence, 

2 LT( r) In det Z~assive 
r 

2~T(r)~ln [3e G
/

3 (1+ S+;-bG)L 

LT(r)nrln [3 (1 + S +; _ bG) e
G

/
3f 

r 

(5.32) 

Finally, notice that in our scheme of generating the intermediate mass the T( adj» -

T( adj)< = 0, and thus the corresponding term in the threshold correction will be absent. 

Making the above replacements in eq. (5.30) gives: 

S+S-bG -

S + 5 - bG + 

+ 

which is precisely the same as in eq. (5.24). To summarize, our Kahler potential is 

given by eq. (5.2.5) and (.5.24) which is the extension of that proposed in ref. [67]. 

This extension consisted of the renormalization of the gauge coupling in J(, including 

the one-loop field-theoretical threshold corrections around MJ, the modular invariant, 

canonically normalized intermediate mass scale. 
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A comment on integrating out the heavy fields and replacing them with their vevs is 

perhaps in order. We have obtained the renormalized Kahler function at the condensa­

tion scale. Since the masses ofthe heavy fields (O(MJ)) are, by assumption, much larger 

than the condensation scale, we must integrate out all the heavy fields. We assume that 

the gauge-singlet A is heavy, with MA '" O(MJ) ~ Mcond; i.e., the self coupling of A 

in the superpotential W(A) = ~' A3 is sufficiently large. Then it is easy to show that if 

we integrate out the fields A and q>i at tree level, the following terms are generated in 

the effective potential: 

(5.34 ) 

The quantities denoted by a vertical bar are evaluated at the vacuum (a = (a) , <pi = 

(<pi) = 0). The last line follows from the fact that Va = aVjfJa vanishes at (A). Since, 

the effective potential (5.34) that arises contains only 4-derivative couplings, at energies 

well below M A , i.e., at the condensation scale it can be ignored, and in our analysis, 

we can replace the heavy fields with their vev's. 

We close this with the following remarks. We notice that a constant term is generated 

in the superpotential, namely 

(5.35) 

In essentially all models of gaugino condensation, introduction of a constant super­

potential is necessary for breaking supersymmetry. However, the constant is usually 

either introduced in an ad hoc way, or its origin is from compactification of superstrings. 

Namely, the vev of the compactified components of the 3-form, Hlmn from 10-D super­

gravity [74]. In the latter case, the constant has the undesirable property that it is of the 

order of Planck mass (thus breaking supersymmetry at Mpl) and that it is quantized, 

presumably in units of M Pl. The above constant c is clearly much smaller (of the order 

of MJ) and it is continuous. The second remark has to do with the fact that we know 

[see eq. (5.28)] that I(A)1 2 < (T + T). Further, we know that the vev of T is not det~r­

mined perturbatively. The nonperturbative superpotential for the condensate is what 

will eventually allow us to fix (T). So, how are we justified in integrating out A but not 

T? The only justification we offer is the fact that the T modulus remains massless to all 

orders in perturbation theory until supersymmetry is broken (noriperturbatively) by the 

gaugino condensation (or otherwise), whereas A is by construction massive (MA "" MJ). 
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5.6 Scalar Potential and the Vacuum 

The dynamical fields at the condensation scale in our model are S, H, and T. The 

scalar potential is given by: 

(.5.36) 

and the Kahler metric written in terms of m = 2/g;jj(Mcond) [ego (.5.24)], Q = IHI 2eG
/
3

, 

and their derivatives with respect to the scalar fields is given by: 

where 

and 

]{iJ = m-2{mim Jx + m(~ - l)miJ+ (~+ e)(miqJ+ mJqi) 

+ 3m2[~qiJ + (~ + e)qiqJ] + m 2GiJ} , 

x 
~=--, 

I-x 

( .5.37) 

Notice that GiJ = 0 unless i = j = t, mhJ = 0, and qs = o. The nonperturbative part of 

the superpotential is of the form 

(.5.38) 

with n < 3 (the Veneziano-Yankielowicz superpotential is the special case of n = 3 and 

k = 1). The reason the exponents nand k are introduced is because, as stressed earlier, 

it is the Kahler potential (5.25) that includes the gaugino condensate wave function 

renormalization, while the superpotential vanishes in the weak coupling limit. 

Is the potential positive semi-definite? Numerical analysis indicates that the answer 

is yes. Analytically, this would be obvious if (W) could be shown to be zero. In fact, 

numerically3 we find that at the minimum of V, 

• (W) :::: O . 

• m = 2/g;jj(Mcond) --+ O . 

. To see that (W) = 0 at V = 0, guided by the second numerical result above, we 

expand V in powers of m in the limit m --+ o. A lengthy but straightforward calculation 

shows that when (W) = 0, V '" O( m)+ higher order as m --+ 0; and for (W) :/ 0, 

3In the numerical analysis, the value of (Ret) was fixed and sand h were varied (see later). 
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H 

o Re(S) 

Figure .5.1: The boundary between the kinematically forbidden (below the curve) and 

allowed regimes contains the nontrivial minimum of the scalar potential V (s, h). 

there would be a pole rv 11m in V (this is because the threshold corrections at M[ 

cause the Kahler potential to be no longer exactly 'no-scale'). No such pole was found; 

the minimum of V(s,h) corresponds to the minimum of m(s,h) (which is zero). The 

analytical asymptotic expansion of V in m, and the numerical results are compatible only 

for (W) = O. The reality of the Kahler function, and the hierarchy Mcond ~ M[ ~ Mpl 

restrict the kinematically allowed region of the parameter space such that:4 

a < v2t, >..a/3 ~ h 

(for simplicity, we take both sand h to be real). The kinematically forbidden and 

allowed regions are typically separated as shown in Fig. 1. The boundary between the 

two regions contains the nontrivial minimum satisfying m = 0 and (W) = 0 (as well as 

the trivial minimum ( s, h) = (00,0)). 

Both m and (W) increase monotonically from zero In both h and Res near the 

vacuum 5 . The plot shown in Fig. 2 shows that V( s, h) also monotonically increases 

in both directions, and particularly sharply in the h (condensate) direction, indicating 

4 Hereafter, lower case letters indicate the scalar components of the corresponding superfields. 

s'Vacuum' here refers to the nontrivial minimum of the potential. 
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confinement. In the direction of the dilaton, the potential increases quadratically as a 

function of S. This can be seen by looking at the S -dependence of V (m ~ 0). Further­

more, we notice that the dilaton does 'run away', but in the correct direction! Namely, 

to some finite value of s (which separates the kinematically allowed and forbidden re­

gions, at the nontrivial minimum of the potential). This is in addition to the usual 

runaway behaviour to s -+ 00, which is the susy-restoring and deconfining limit. Also 

interesting is the behaviour of m = 2/ 9;j j( Mcond) near the vacuum, which as noted 

above, is m -+ 0 or gejj(Mcond) -+ 00 (while 9st remains finite). This is exactly what 

one expects physically, since the condensate - the bound state in the strong coupling 

regime - is expected to correspond to a stable vacuum solution. Notice, however, that 

the relations (V) = (W) = 0 imply that supersymmetry remains unbroken. 

So far, the role of the intermediate scale has been masked. In the following, we 

show that in the effective theory that we are considering, the free parameter f.1, in the 

nonperturbative superpotential (5.38) is intimately related to the intermediate mass. 

Furthermore, we shall see that the intermediate mass plays a role in allowing a sensible 

hierarcl1y between the Planck scale and condensation scale, consistent with the phe­

nomenologically acceptable values of (Res) and (Ret). For this, we shall give a rough 

argument below. Of course, the obvious effect that can immediately be associated with, 

the intermediate mass is the shift it causes in the condensation scale, since in its presence 

the gauge coupling runs differently, as discussed in Section 5.5. 

In the presence M I, the vacuum is characterized by two independent conditions: 

m=O, (W) = O. (5.39) 

These two conditions together imply that: 

(5.40) 

Here, .6..b = P - b< and .6..b = b - b<. This can be re-written as follows: 

s + s - bG = b [1"3al ,.'< I'" (t + f - lal'),,'I'''' - 1 r' (5.41) 

This equation should be viewed as a relation between s, t, and f.1, in the vacuum of the 

theory. Is this compatible with phenomenologically acceptable values, (s + s) '" 0(1) 

and (t+t) '" 0(1)? If in eq. (5.41) we set (t+f-JaJ2)::: 1,6 which is also the assumption 

6Notice that this does not restrict MJ since). can be chosen small enough to give the assumed 

hierarchy M J ~ M PI. 
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Figure 5.2: The scalar potential V( s, h). The graph corresponds to the example of 

5U(3) as the gauge group, and assuming (n, k) = (2,1), (t) = 1 for the internal modulus, 

(a) = 1.1, A = 0.1, and ,AI = 1. The kinematically forbidden region of the h-s plane has 

been excluded here; i.e., the minimum of this plot is a point on the curve illustrated in 

Fig. 1, in this case (Res,h) = (2.66,0.00044). 
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Figure 5.3: The runaway behaviour of the dilaton in both directions. In the left direction 

the minimum corresponds to the effective coupling becoming strong. There, the potential 

'runs' into the kinematically forbidden region. 
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in the numerical analysis, then it is easy to see that in order to get (s + s) '" O( 1), 

(.5.42) 

should be O( 1). That is to say, for b< /!J.b of order unity, 

(.5.43 ) 

The free parameter of the effective superpotential for the condensate is, therefore, 

'locked' to the intermediate mass. This rough argument also shows that, with mild 

(O( 1)) fine tuning, it is at least possible in this scheme to obtain a phenomenologically 

acceptable value for the dilaton, and at the same time achieve condensation and gener­

ate the desired hierarchy. 7 To see this, consider eq. (.5.40) again which together with 

eq. (.5.43) tells us that: 

(
-(s + s)) (-(s + s)) -

l(h)1 '" exp 6b< f.1 '" exp 6b< MI. (.5.44 ) 

Again, we see that the parameters, which are admittedly model-dependent but are nev­

ertheless, dictated by the presence of the intermediate mass and the choice of the gauge 

group can allow for a condensate whose vev is suppressed compared to the parameter J.L 

which by requirement of phenomenology is of the order of the intermediate mass. 

5.7 Conclusions 

Perhaps the most peculiar feature of the model of gaugino condensation that we 

have discussed above is the running behaviour of the dilaton, which is schematically 

shown in Fig. 3. The finite value of ReS that the potential "runs" to is, as noted 

earlier, on the boundary of the kinematically forbidden region, and this value corresponds 

precisely to 1/geff(Mcond) ~ o. We interpret this running of ReSin both directions 

as a manifestation of the approximate S-duality which constrains the Kahler potential 

which we have started with - the behaviour of the strong and weak coupling (small and 

large S, respectively) regimes are alike. The intermediate scale serves basically to shift 

the renormalization running of the gauge coupling and allow for a hierarchy between 

the unification and condensation scale by shifting the condensation scale and/or the 

iWe hesitate to call this stabilization of the dilaton because the finite value of (Re S) at which the 

potential runs to a minimum is at the boundary of the kinematically forbidden regime; V is not smooth 

there. 
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unification scale (see ref. [69] for detailed discussion of the latter). The intermediate 

mass (or rather, the vev of the gauge singlet) was assumed, but of course a realistic model 

should dynamically generate such an MJ consistent with phenomenology as discussed 

near the end of the previous section, and thereby giving a phenomenologically correct 

hierarchy of scales. This is of course a more significant issue in the models where 

supersymmetry is broken by gaugino condensation at the scale Mcond. 

However, as we have seen, neither S-duality nor the I-loop corrections to the dilaton 

in ]{ (including the dilaton dependent threshold corrections at MJ are enough to break 

supersymmetry in such models. If one is to include any perturbative (I-loop) corrections 

to ]{, results such as those presented here or in ref. [67] seem to indicate that it is more 

meaningful to include the full renormalization of the Kahler potential, and all other 

terms that arise at I-loop in the supergravity and super-YM effective action which are 

relevant to gaugino condensation, such as 

J d40E( Na In ~2 )(ReS)2IwaWaI2. 
327r 

(.5.4.5 ) 

These have been calculated as discussed in previous chapters, and work along this di­

rection is under progress elsewhere [8.5]. Indeed, as it has been argued by Banks and 

Dine, if stabilization of the dilaton (and other moduli) and supersymmetry breaking are 

really one and the same phenomena, as they appear to be, then stringy nonperturbative 

corrections to Kahler potential are crucial and should be included [86]. A realization 

of this proposal in the context of linear multiplet formulation of gaugino condensate 

appears in ref [87]. Of course, the exact form of these nonperturbative corrections are 

not yet understood. But one can perhaps expect that the recent developments in string 

dualities can shed some light on the latter, and on the stabilization of string moduli and 

supersymmetry breaking. 
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Appendix 

A. Relations among operators 

In this appendix we derive relations among the various operators that appear in 

the traces needed to evaluate the one-loop effective action. We adopt the gauge sign 

conventions of [42], [62]: 

Op.i + iA~(Taz)i, Dp.zm = op'zm -iA~(Taz)m, 

~[1)p., 1)v] = V' p.Av - V'vAp. + i[Ap., Av], 
z 

V' p.A~ - V'vA~ - c\cA~A~. (A.1) 

Our other conventions and notations are given in Section 3.3. 

r' We first consider constraints on covariant scalar derivatives that follow from gauge 

mvanance. We define 

1 l.~ . (T -)m (rp )j -.I\m) a Z .LbZ , 
x 

1) = ~1) 1)a 
2x a , 

~abf(z), f = x + iy. (A.2) 

The classical scalar potential is V + 1). It follows from the gauge invariance of the Kahler 

potential ]( that: 

(A.3) 

where ](ij = OiOj]( = oJ{j, and the second and third lines follow from the first by taking 

successive scalar derivatives. Here OI = 0/ ozI, I = i,2, D I is the reparameterization 

covariant scalar derivative, and Rimjn is the Kahler curvature tensor. Indices are lowered 

and raised, respectively, with the Kahler metric ](im and its inverse ](im. Similarly, it 

follows from the gauge invariance of f that 

fij(Taz)j P 
fdmDi(Taz)m 
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and from the gauge invariance of the superpotential W that 

Ai(Taz)i 

Aij(Taz)i + AiDj(Taz)i 

Am(Taz)m = VaA, 

VaAj + J(jm(Taz)m A, 

Aijk(Taz)i + AijDk(Taz)i + AikDj(Taz)i + AiDkDj(Taz)i 

= VaAjk + J(jm(Taz)m Ak + J(km(Taz)m Aj. (A . .5) 

The tensors Ail ... in are reparameterization invariant covariant derivatives [30] of A = 
eKW. Using (A.3) and the definitions (A.2) we obtain 

(A.6) 

where C2;') is the Casimir in the adjoint representation, Cabc are the structure constants 

of the gauge group, and 

(nz)iDi(Taz)j = (Taz)iDi(TbZ)j + iCabc(TCz)j, 

VbJ(mj(Taz)m(Taz)iDi(Tbz)j = VbJ(mj(Taz)m(Tbz)iDi(Taz)j - ~Cg-)Vava. (A.7) 

Combining (A.3) and (A . .5) we obtain 

AiDm(Taz)i = -At(Taz)i + AmVa + A(Taz)m, AiDi(Taz)m 

Ai Di(Taz)k - n k - k - n -k - n -k - k AnD (Taz) = AnD (Taz) = -An(Taz) + A Va + A(Taz) , 

- -k - 1 - -k -
Va AJ AijDk(TazY = -2AJ Aijk(TazYVa 

+~R iA-jkA-va(T -)m + VA- -A-ij + va(T -)mA-i A-2 jmk t aZ X tJ aZ m t· (A.8) 

To evaluate the one-loop effective action, we find it convenient to introduce the scalar 

field reparameterization covariant derivatives of the variable p, defined as the squared 

gauge coupling: 

1 
P= -

x 

Pij 

DmPi = Pmi 

Dj(X2Pi/) 

DjDk (x2Pipi) 2 i x P Pijk, etc., 

2 2 2 f- fdj!m - x Pmij - x mPij - 2· 
2x 

(A.9) 
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It follows from [Dm, Di](X 2Pi/) = 0 that 

-k' 1 . -k -' k . 1 k . 
f P\i + - f F Pki = ikPi J + - ikfiP J. 

x X 
(A.IO) 

In addition we introduce the variable 

A l' A K/2 ( - -) a = + - i = e m'l/J - m).. , 
2x 

(A.11) 

The variables a, Pij and 1 - x 2
/ Pi, and all covariant derivatives thereof, vanish for 

effective supergravity theories obtained from superstrings in the classical limit: f( z) = 
s, ]( = -In(s + s) + G(z, z =f. s, s), Ws = O. 

We will also need the following identities involving the Yang-Mills field strength and' 

the space-time curvature. It follows from manipulating products of the antisymmetric 

tensor tJ1.VPo" that 

~ VMJ1.O"M 2 Ml MJ1.V Mi 1 MPO" 
29p 1 J1.0" - J1.p 2' J1.V = 2 t J1.VPO" i ' 

_(Fa F,J1.V)2 _ (Fa FJ1.V) 
2 + 4Fa FPv F,0"J1. Fb J1.V b J1.V a PJ1. a b O"V' 

-2(Fa F,J1.V)2 + 4Fa F. F bJ1.P F,vO" (A.I2) J1.V b J1.V a pO" b' 

where M~v is any antisymmetric tensor-valued operator. Using the first of these gives 

~Tr [(1). A)(B· C) - (A· B)(C· D) - AJ1.V B pO"CJ1.vDPO"] , 

~Tr [(A. B)(C· D) + (D· A)(B. C) - AJ1.V B pO"CJ1.vDPO"] , 

~Tr [(A. B)(C· D) - (D· A)(B . C) - AJ1.V BpO"CJ1.vDPO"] , 

1 P pa FJ1.O" (A.I3) 49v J1.O" a . 

It follows from the the symmetry properties of the space-time Riemann tensor that 

(A.I4) 

and, using (A.I2) with Ml = F, M2 = p, M2 = -F, 

~T pO" pJ1.V pa 
2 J1.V a pO" 

2 J1.Fa FVP 1 Fa FJ1.P 1 PO"FJ1.vFa 
Tv J1.P a - 2T J1.P a - 2T J1.v a PO"· (A.I5) 

In addition: 

c Fa FbJ1.P F CV 
abc IJV P 

+TJ1. Fa FVP - ~T pO" FJ1.V Fa v IJP a 2 J1.V a pO" . (A.I6) 
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It is convenient to isolate terms that do not contribute to the S-matrix, using the 

classical equations of motion: 

{ 
i,l 

I,J = _.' 
2,) 

(A.17) 

The first of these gives, in particular (MJ = m1/Jm1/J, Mr = mAmA): 

(
0 x· -) \7

2
x --;:-1)J.Lz'J(iiitDv1)vzm + h.c. ---;-V 

o xoJ.L x ( X) 0 yoJ.L x -+ J.L 2 V + - p2 + J.L P P + total derivative, 
x 4 4x 

a + b;2/ Pi (2J(i iit 1)J.L i1) J.L ziit1)a Di(Taz)j + 8x1) MJ 

_21)a1)bf(ab - e-K [va(TaZ)iAijAi + h.c.] 

+ (J(iiiJ(jiit 1)J.L zj (Taz)iit [(Taz tv J.LZii + (Taz)ii1) J.Li] 

+h.C.) 

- o~x1)aJ(jiit [1)J.L Zi(Taz )iit + (Ta z )i1)J.L ziit]) 

+bx1)a [1)J.L Z k pi PkjJ(iiit (1)J.LZiit(TaZ)i + VJ.LZi(Taz)iit) + h.c.] 

+total derivative. 

(A.18) 

We absorb a part of the one loop correction into the Kahler potential; a shift oj( in the 

Kahler potential gives a shift b..5K £ in the Lagrangian: 

1 
-b..5KL 
..j9 

(A.19) 
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Taking 6]( = D, the last equation in (A.18) can be written as 

(a + bx2/Pi) (~b.'[)£ + 2V [e-Kaa - 3MJ - 3M? - V] 
+ [](in](jmDJtiDJtzj(Taz)m(Taz)n + h.c.] 

.oJtYva [i" (T )iD -m h ] +t-;z \.im aZ Jtz - .c. 

-:2 V [oJt xoJtx + oJtyoJty] ) 

+bxDa [VJtzk pj Pkj](im (D/-Lzm(Taz)i + DJtZi(Taz)m) +h.c.] 

+total derivative. (A.20) 

B. Matrix Elements and Supertraces 

In this Appendix we list matrix elements of operators appearing in Eqs. (4.72-4.7.5) 

and traces needed to evaluate the divergent contributions to the one-loop effective action 

(4.76). Notation and conventions are defined in Section 3.2, and the relevant part of the 

tree Lagrangian [42], [13] is8 

~£(g,](,f) 1 . /-L i m x F F/-LV Y - /-LV V 
-T + R ··D z D z - - - -F F -2 tm Jt 4 Jtv 4 /-LV 

+ t; -\ f/JA + i](im (xt f/Jxi + xk f/Jx~) 
K/2 (1 -' - ..) +e- 4 fiAt ARAL - AijXkxt + h.c. 

+ (i-\'R [2ICm(Taz)m - 21xfiV a -leT /-LVF:V fi] xi + h.C.) 
+£", + four - fermion terms, 

1 - 1 - [X -
41/J/-LIV(i f/J + M)J/-L1/Jv - 41/JJtI Jt(i f/J + M)JV1/Jv - 81/J/-LeTvP,JtAaF:p 

+oi, '17I-m l·· /-LL i 1oi, /-L ,aV +. oi, /-LL i . + h ] 'f//-L yZ .I\.iml X - 4 'f//-LI 15 A a t'f//-LI X m t .c., 

M = (M)t = eK
/

2 (WR+ WL), mi = e-K
/

2 Ai. (B.1) 

If we define 

1 
STrF = TrF4> - 4TrFe - 2TrFgh + 2TrFGh, (B.2) 

BIn I we defined (0123 = 1; here we denote by (I-'l/P<7 the covariantly constant tensor. With this 
1 - , 

definition there is no factor g- '2 multiplying the F F term in the Lagrangian. 
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where TrFe is defined below [see (R24)], the effective Lagrangian (4.2) is 

(B.3) 

In the following subsections we list the matrix elements that were not included in I; 

the subscript 0 refers to the contributions without the Yang-Mills sector that are given 

in Appendix B of I, except that ordinary derivatives are replaced by gauge covariant 

derivatives. 

The contributions to STrH from each supermultiplet have been given in [4.5]; below 

we list the analogous contributions to STrH2 and STrG2 ; we drop all total derivatives. 

Boson matrix elements 

As in [41] we rescale the quantum gauge fields: All = y'XAw Then the operator H<t> 

can be expressed as 

H + X + Y - N - S - J(, 

zI HIJzJ + h llv Xllv,pqhPI7 + 2hllVYilvIzI - All NllvAv 

2AA Il S I 2hllv l·' AA P 
- IlIZ - ItJ.LV,p, (BA) 

with, in addition to the matrix elements of Z<t> given in I, 

(B.5) 

Using the results of [41] and Section 2 above, the elements of H, X, Yare modified with 

respect to those given in (B.3) of I by 

(lI: V Il) - x (FJ.LvFa ·F-IlvFa ) 
V I J - !1- IJ - - 4P I J a IlV =t= Z a IlV' 
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XjJ.l/,PO' = (XO)jJ.l/,PO' - 2PjJ.l/,PO'D + ~PjJ.l/,puFfrF:r + l (F:pFal/u + F:pFaJ1.u) 

-/6 (F:AFap Agl/U + F:AFap AgJ1.O' + F:AFauAgl/p + F:AFau AgjJ.p) , 

(B.6) 

where II == fi(Jz) for I = i(z), etc .. The potential V = V + D now includes the D-term 

D defined in (A.2) above: 

(B.7) 

The additional nonvanishing elements of Z4>H4>: are .....:NaJ1.,bl/, SaJ1.,!' and J(J1.l/,ap, with9 

NaJ1.,bl/ = 

} "a 
i J1.l/,p 

(B.8) 

9In [37], [41], there is an additional graviton-gauge mass term Q "'''',ap; this term drops out when the 

prescription (4.23) is adopted. 
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In writing the above expressions we used the notation in (2.2-3) and the first identity in 

(A.12) with Ml = Fa, M2 = Fb, M2 = -Fb. The inverse metric Z-l must be included 

in evaluating the traces of these operators, which are defined such that 

TrH~ = TrH + TrX + TrN, 

(B.9) 

In the expressions for the traces given in Appendix C of II (the chiral-gauge sector is 

given below) space-time indices are raised with gJ.LV and scalar indices are raised with 

Kim. 

Finally we need 

( G~v ) ap,bu 

(Ggz ) J.LV ap,I 

(Gcz ) J.Lv OI{3.I 

( G9C ) J.Lv ap,OI{3 = 

(Gz +Gc + Gg + Ggz + Gcz + Ggc)J.LV' 

(G~J.Lv)~±iF:vDJ(Taz)I, I,J= {~'~' 
2,) 

{ 
i,] 

I,J = _.' 
2,) 

( GgJ.Lv) OI{3,-yO + ~ [F~J.LFa-yvg{3o 
+F~J.LFaovgrh + FpJ.LFa-yvgOlo + FpJ.LFaovgOl-Y - (f.L +-+ v)] , 

gpu (CabcF~v + ~ [Fa>'J.LFb\ - Fa>.vF[J.L]) + DabTupJ.Lv 

( [
\7 J.LO>'y O>'YOJ.LX] ) 

-Dab tpvu>. 2x - 2x2 - (f.L +-+ v) 

-Dab 4~2 (O>.yO>'ygpvgJ.LU + ouyovygpJ.L + OpyOJ.Lygvu - (f.L +-+ v)) 

+ ~ [FauJ.LFbPV - FapJ.LFbuv + x2 Pipi (FaJ.LpFbvu + FaJ1.pFbvu) 

-(f.L +-+ v)] 

(G~~)I,ap = -'DJ.L [iPI(Favp=j=iFavp)] 

-tpJ.Lu>' ~:; II (Fa v u =j= iFav u) - (f.L +-+ v), I = {; , 
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(cgG
) IJ.II O/{3,ap 

(B.10) 

Fermion matrix elements 

As described in Chapters 3 and 4, we take the Landau gauge condition C = 0, where 

(B.ll) 

which we implement by introducing an auxiliary field o. After an appropriate shift in 

the gravitino field 1/JIJ.' we obtain for the bilinear fermion couplings of the gravity sector: 

1 - -
-21/JIJ.( i fJ - M)1/JIJ. - a( i fJ + 2M)0 

+ix{;IJ. f'~Aa - 2{;J.L(VJ.Lzm Kim LXi + VIJ.zi KimRXm) 

- (X lip \ Fa 2' I 'n \ a) -0 20" Aa lip - zmIX + "YSVa A . (B.12) 

To obtain the ghostino determinant we use the supersymmetry transformations [42] 

1· . 
2(1)z'R - im:L)E, 

= (iDIJ. - ~I'IJ.M)E' 

i6Xm = [~(1)zm L - imm R)] E, 

iOAa = UI'J.LI'IIF:II - 2~ I's1)a] E, (B.13) 

yielding 

D2 + HGh = ooC 
OE 

1 - . 
DIJ. DIJ. - 21'IJ.I'II[DIJ.' DII ] - i[.!2',M] - 2M M + m'mi + 1) 

+2im- 17IzmL+2im· 17IziR+::'0" FqP[~O"J.LIIFa - ~'Vs1)a] 
m If' , If' 2 q P a 4 J.LII X I 

1) i Y 1)IJ. -m + 1 [IJ. 11]1) -m P" 1) i - IJ.z ~im z 21'S I' ,I' IJ.z ~im liZ. (B.14) 

The metric for the gaugino field, as obtained from the classical supergravity La­

grangian given in (3.23), is Zab = OabX. Following [37] we rescale the gaugino field 

A = y'XA', so for the rescaled field A', Zab = Oab. The matrix elements of Me are given 

by (4.32), (3.25) and (B.9-10) of! and by 

-K/2 e -k 
m A = ---/kA , 

2x 

105 



MIa ~ab ( MJ.LV) MI 1 }r/J ( MJ.LV) u mbI + bI (7 J.LV' a = 2" 1 mJa + Ja (7 J.LV , 

i (1 f 1) " (T -)m) * mai mia = Vx 2x i a - 211im aZ = m a" 

M J.LV _MJ.LV __ tX (FJ.LV 'F-J.Lv) I {i 
aI Ia - 4 PI a' =f t a , = 1:' 

2M~ M- a - + MJ.LV 2M- 01 - M a - - + M- J.LV 
- 01 - m Oia Oia (7 J.LV' a - - 01 - m Oia Oia (7 J.LV' 

1 V MJ.Ll/ = M- J.Ll/ = _~FJ.Ll/ -inOla = Vx a, Oia Oia 2 a , (B.15) 

with covariant derivatives as defined in (3.35) (see also section 3.3) 

= _e-K
/
2 (VJ.L Zm [am - Am] + VJ.LZi [t~ a - XPikLP]) , 

D- M 'OPY M D M D- M .oPY M P aA - t 2x aA/5, p Aa = p Aa + Z 2x Aa/5, A = i,in,a, 

= 

-DpMt'av = - (DpM~!'r = (DpMfavr 

ix [(V 'OPY) 1) j ] (-r: '-i-) -"4 Pi p + Z--;;- + pZ Pij .r aJ.Ll/ - t.r aJ.Ll/ , 

Dpmia = (Dpma,) * 

i [ (Ii ['0 0 1 j) OpX }" (T -)m ..jX 1)a 4x2 2z PY - pX - XPij1) pZ + -;:- lim aZ 

+~ fi(J(jm(Taz)mVpzj + h.c.) - 2JCmDn(TaZ)mVpzn] , 
2x 

(D- -)* 1 (}" [V i(T -)m -m(T )i] OJ.L X1)) - J.LmOia = Jx lim J.LZ aZ + VJ.LZ aZ - 2x a , 

(DpM1:~r = -~VpF~Ll/. (B.16) 

Here a is the auxiliary field introduced in I to implement the gravitino gauge fixing; 

its couplings to chiral and Yang-Mills matter are given in (3.10) of I. In addition, there 

is a >"-'ljJ connection [37], (DJ.L)av = (DIl.)l/a = -Fal/J.L' that contributes as follows to the 

covariant derivatives of the fermion mass matrix: 

(DpM)aJ.L 

(DP M)'I 

(DpM)~ 

(DPM)~ 

(D M) - -K/2--r: - p Il-a - -e a.raJ.LP' 

-2KI.JDPVJ.LzJ - MfF::P, (DpM): = Dp1)ll-zI + M!F:p, 

DpMf + 2KI.J1)J.LzJ F:p, (DpM)! = DpM! + 1)J.Lz I F:p, 

The non vanishing matrix elements of G J.Ll/ involving the gaugino field are 
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( G;vtp 

(G;v) pa 

- [(1)~ + i-ysL~)Fapv - (/1 '"""" v)], 

- [(1)~ - i-ysL~)Fapv - (/1 '"""" v)]. (B.18) 

1)~ is the gauge and general coordinate covariant derivative, r ~v and z~v are given in 

Section 3.3, and IO 

L - - {)~y 
~ - , 

2x 
(B.19) 

The other matrix elements of G ~v are as given in Appendix (B.12) of I, except that now 

the chiral matter connection includes the gauge field: 

(G~v)5 = (R~v)5 ± iF:vDJ(Ta z / + 155 (Z~v ± r ~v), I, J = {~'~' 
Z,] 

(B.20) 

where (R~v)5 is defined in (B.8) of I, and the 7J;->' connection gives an additional con­

tribution to the gravitino matrix element of G ~v: 

(G;v) pO' = gpO' (±r ~v + z~v) - r pO'~V + (F:~FaO'v - /1 ~ v) . (B.21) 

Finally, in the 8 X 8 matrix notation of (2.14-17), setting G ~v = G ~v + i-ysL~v, 

H M M 1[ ~ V]G- . mM 2D~Me v 4 p Me M~O' e e e + 4 "( ,,,( ~v - Z ¥ e - ~v "( - "( "( 0' ~p e 

-2L~L~ + iD~ L~"(s + 2i-y~"(p"(v"(s[LP, M~V], 
D" e D- 2 vMe LV ~ ~ + "( ~v + a ~v"(s , 

G" e G- + 2 p (D- Me D- Me) 4 p 0' (Me Me Me Me ) ~v ~v "( ~ vp - v ~p + "( "( ~p VO' - vp ~O' 

+ [ap~ (,sDvLP - 2iLvLP) - (/1 '"""" v)] - 2iLpLPa~v - 4i[$, M~vhs 

-2 ["(~ ({LP, M!} - i[LP, M!hs) + {L~, M;;'h P - (11 ~ v)] , 
Me (B.22) 

Then, defining He = HI + Hz + H3 , with 

HI MeMe - 4,P"(O'M~pM~0', 

Hz -i fJMe - 2,v D~ M:v + 2i-y~,p"(v,s[LP, M~v], 

H3 lb~"V]G~v - 2L~L~ + iiJ~L~"(s, 
(B.23) 

lOWe use the notation LI-" LI-'''' to denote the field operators defined in (B.19), and also the matrices 

defined by these fields multiplying the unit projection operator in the space of gauginos, as in (4.41-43), 

(3.36-37), (B.22), etc. 
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we find the following traces (Tr includes the Dirac trace): Tr1 == 8Tr1, where Tr is over 

internal symmetry indices only): 

1 2 
-TrHI 
8 

~Tr (M~)o +4K~ - 21) (1- X
2/Pi) + NcM'f.. + iF:vFci

v
, 

1 Tr [( )2 ( MlJ.vM pcr)2 4 MlJ.v Me "8 meme + O'lJ.vO'pcr e e + me e me IJ.V 

+' 16MIJ.v Me (Me M Pcr - M Pcr Me \) 1 e pv IJ.cr e e IJ.cr 

Tr [(mm? + 2mMIJ.vmMIJ.v + 2MIJ.vmMIJ.vm + 4MIJ.vMpcr M IJ.V MPcr 

+8 (MIJ.V MiJ.V) 2 
- 16MIJ.v MPcr MIJ.PMvcr l' (B.24) 

and using (A.12), partial integration and the relation 

we obtain 

1 2 
--TrH2 

8 
-~~ {-i fJme + 2iv[LIJ.' M~V] + 2i-yvi5DiJ.M~V}}2 
Tr{ DiJ.mDiJ.m - 4DIJ.MiJ.V DP Mpv - 4[LIJ. MiJ.P][LV , Mvp] 

+[LIJ.' m][LiJ., m]- i ([LiJ.v, m]MIJ.V + [LlJ.v, m]MIJ.V) }, 

(B.25) 

(B.26) 

where LiJ.v is defined in (4.43). The remaining traces needed to evaluate TrHe, TrH~ 

are: 

1 
- TrH3 
2 

~TrH2 
2 3 

1 
"2 Tr (H I H3 ) 

~TrGe GIJ.V 
2 IJ.V e 

8IJ.y8IJ.Y 
= (N + Nc + 5)r - 2Nc 2 ' 

x 

NcTrh~ + (N + .5)~ - Tr ([r~, LIJ.]) 2 - ~Tr (G~vG'iJ.V) 
~Tr [(~ - 2LiJ.LiJ.) HI - 2M~vM~v DpLP - iG~v{M~V, me}] 

~Tr{ GiJ.vGIJ.V + 16GlJ.vM~p M¥tipicr 

+8D Me (DIJ. M VP - DV MlJ.p) + 4[[' L ][r'lJ. LV] IJ. VP e e. IJ.' V , 

+16 (DiJ.M~V{LP,M!} - DIJ.M~V{LP,M!}) 

+2 ([r~, LIJ.]) 2 - 32 (M~vM~V M!M~cr + M~M~P M~crM¥t) 
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-32M:uM;:' (M~U M~P - 3M¥/ M~P) + 80LIJ.D' M~P M;:' 

-80LpLP M~v M:v + 24DIJ.LIJ. M;:'M~P } + NcTr (g2 - g2) ,(B.27) 

where Trh§, Trg2, Trg2 are given in (C.66) of II, and r~ is the gaugino-gravitino con­

nection. 

G host matrix elements 

For the gravitino ghost, HCh is defined by (B.14). For the bosonic ghosts we have 

(C9h
) IJ.V ab 

C
C9h )a IJ.V P 

-rpulJ.v + ~ (F:/J."Fauv - (Ji +-+ v)) , 
= cabcF~v + ~ (FaplJ.Ft v - C a +-+ b)) , 

CC!~)/ = -~ (DIJ.F;v - VvF:IJ.) . 

Mixed chiral-gauge supertraces 

(B.28) 

CB.29) 

The following illustrates the evaluation of the supertraces. We give an outline and 

the result of the evaluation of the traces which give rise to divergent contributions to the 

effective action [as derived in Section 4.3) 1 only for the mixed chiral-gauge sector. The 

reason other sectors are not included is brevity. All other contributions can be found 

in Appendix C of II. The results from different sectors are then added up into the full 

one-loop effective Lagrangian which was presented in Chapter 4. 

For the bose sector we have H~9 = -5, and 

Tr52 ~](im [DIJ.CTaz)i][DIJ.CTaz)m] - 4 O;2X [CTaZ)i](imDIJ.CTaz)m + h.c.] 

ya 0lJ.xolJ. x _ [0 0C a )iC'7' )jFvlJ. (Fb 0 -b) h ] +2'\-a X2 X PtJ T z .LbZ a VIJ. - zFvlJ. + .c. 

-2i [XPmijDvzmCTaz)iDlJ.zj (F/:v - iF/:v) - h.c.] 
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(B.30) 

In writing this expression we dropped total derivatives and used (A.I0) and (A.12-A.14), 

as well as the Yang-Mills Bianchi identity. In addition we used (A.3-.5) and (A.8) and 

Ixp·· (:;:vJt - i:FvJt) V iD (Taz)j = -V ip"(Taz)j ( IxV"Fv/J. - iFvJta x) V;J.;, 'J a a v Jt v 'J V ;J.; /J. a a /J. 

-x(Taz)j (F:Jt - ii':/J.) (PijD/J.Vvzi + PihijVJtZmVvzi ) + total derivative, 

-iF:v,[VJtzivvzm]{jmDi(Taz)j - h.c.] = total deriv. 

+iV/J. Fa ]{. - [vv zm(Tz)i _ VV zi(T z)m] + xFa F,/J.v J(} JtV ,m a a /J.V b a' 

F:v DJtVv zI = ±~F:vF:V(Tbzl, 1= {:. 

To evaluate the fermion matrix elements we use (4.46); we have 

Trh;g + 2 [CmM/J.V)~ (mMJtv)~ + (M/J.v m ): (M/J.vm): + h.c.] 

-Tig + e-KV (2aiai + 8aa) + 2V (V - MJ) 

(B.3I) 

-K 
+~ [4CTaz)iAij(Taz)j (a - A) - 2 ((TaZ)iva Aijaj + h.c.)] 

-K 
+4~(Taz)i(Taz)nAkiA~ + 2M~ [2K~ + (3x 2/Pi - 4) V] 

-K 
+2~ {ada - A) [Jiv - (Taz)iVa] + h.c.} , 
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with 

and, 

2 (D/lm): (D/lm); - 8 (DwM/lV): (DPMpv ); 

+ {[L/lv, m]~ (M"'V)~ + [L/lv, m]~ (M/lvy; + h.c.} 

+2[L/l' ml~[L/l, m]i + 8LP L/l (Mpv ): (M/lV)~ 

-8 (D/lM/lv): (DPMpv ); = - X2~i/ (V~FV/l + ~1'V/l r 
+ XPiP' ( 'xV"FV/l + 0 y1'V/l _ ~o XFV/l) (}PxF 4 y J; v. v 2 v P/l 

+ XPipi (1;::) >lP pV/l D 1>l >lP FV/l D >l;::)P FV/lF ) -4- Supxu X IV/l + 4upxU Y IV/l - UvYU Y P/l 

(B.32) 

1 {Vp i j-j (F ·F-) [ r.::V" 'LV/l . >l (pV/l ·F-V/l)' ] h } +8 z Pij P/l- Z P/l yX v.r - ZUvY +z + .c. 

- 3
1
2 [VPziPij]iOpx (FV/l PV/l - iFV/l 1'V/l) + h.c.] 

x3 Vp iV -iii j P~/lF + x3 Vp iV -iii j pV/lF, - 2 z v Z PijPiii P/l"8 z pZ PijPiii V/l' 

8LP L,.. (Mpv ): (M"'V)~ = X~;i (4ovyoPyFp/lFV/l - opyoPyF/lvF/lV) , 

{[L/lv, m]~ (M/lV)~ + [L/lv, m]~ (M/lVr: + h.c.} = T:9, (B.33) 

2 (D/lm): (D/lm); + 2[L/l,m]~[L/l,m]i = _2
0
;2

X 
[(TaZ)i](iiiiD/l(Taz)iii + h.c.] 

+4 }". D (T -)iiiV -nD (Ta )iV'" j 4 J(b pa D/lV - lnn 11, aZ /lZ j Z Z + X a /lvIb 
X 

+XPipi { ](in](jiiiV/l zj (Taz)iii [(Ta z)iV /lZn + (Ta z)nV /lZi] + h.c.} 

-O/lXPipiVa ](jiii [(Ta z )jv /lZiii + (Taz)iiiV /lzj] 

-2 {](jiii(Taz)iiiV/lzj [Pik(Taz)iV/lzk + Piiin(Taz)iiiV/lZn] + h:c.} 

- 2~ Va {PijV,..zi]i]( kiii [(Ta ZlV/lZiii + (Ta Z)iiiV/lZk] + h.c.} 

+2Va [PijV/liV/lzkVk(Taz)j + h.c.] - 2i~/lYVa [Pik(Taz)iV/lzk - h.c.] 
, i 

+ (O/lXo/lx + 30/lyo/ly) P~ V + 2x2VPijV,..ziV /l Ziii p!m 

+ [~p~LVOvY](iiiiV/lzi(Taz)iii - XV/PijV/lZi (O/lX + 2io/lY) + h.C.] 
+4xpa FMV _ivv Ziii 1(-- + J(a (O/lXO/lX _ O/ly(}/ly) 

/lV a p-<- lm a x2 x2 

+2 · ( 2 V"T"/lV O/lXP/lv) }., [V -iii(T )i V i(T -)iii] Z Vi /l.ra --;- a liiii vZ aZ - vZ aZ . (B.34) 
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We write the X->. contribution to T as 

where 

Ti
g + T;g + r;g + t~g = T~g + t~g, 

-4 (mMtlll)! (mMtlll ): + h.c. 

(xW + 1)) (x2pipiM~ + (a - A)ai t~) + h.c., 

- ~36 [( jy' Mutl ): (iJpMPtl); + LU Lp (Mutl)~ (MPtl)~] 
16i [- i (- ) a ] +TLu (Mutl)a DpMPtl i - h.c. , 

_ / Pi 0 yo X Ftlll1)a + 0 tl Y Fa (op X ptlll - fJPyFtl ll ) 
2 tl II a 2x pil a a. 

(B.3.5) 

(B.36) 

In addition we have 

4 ( G~: ) ap,i ( G~: ) i,ap = Tr ( G~g) 2 

64 (iJtlMIIP ): (iJtlMIlP - iJIIMtlP); 

-128i [LII (MIIP)~ (iJtlMtlP); - h.c.] , 

64 (iJpMIIP ): (iJ tl MIlP - iJll MtlP); = _2x2pi/ (V~F:II + ~F:II) 2 

-~ {1)PziPijJi [F:II F:ll opx - iF:1I F:1/ (OpX + iopY) + 4i8l1 yF:pF:II ] + h.c.} 

+ (Vx1)~F:1I + OtlyP:II) {2xpipifJPxF;1I + [(F;II - iF;II) 1)pzipijJi + h.c.]} 

+Ftlll Fa [:'ppio xoPx + x3p. ·pj-v _i1) pzm] + Xpipi ptlll Fa 8Py8 X a tlll 4 t P tJ m P'" 2 a pll P 

-F:P F:p [XPipi (0tlx8 I1 x + 28tl y811 y) + 4X3pijP~1)tlZi1)lIzm] , (B.37) 
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Using the classical equations of motion (A.17-20), we obtain, with kl = -4K~, 

-T' + (IJ _iIJJ.lz'm + .4iAme-K) (kL - ~(Taz)j(T z)nR-- ._) Xg J.l '" . tm X a tmJn 

_e-K (k~.4iA+h,c.) _ 4x2pipib.:VC_ x2pipiCa CaJ.l 
t .j9 gx J.l 

2xptPi ['raJ.l (T..' IJ -m(T )i h ) V a(T)1 r ] +.j9 z'-' I\.im i1-Z aZ - .c. + aZ '-'1 

+ 1 rp { i !lJ.l F-a + [P IJv j (Fa 'F-a ) h ]} y'g'-'a XP PiU Y J.lp 2Pij z . vp - Z vp + .c. 

-112STrG~g - t~g + 4x2pipi IJ [3MJ + V - e-Kaa] + 10x2/PiIJM; 

+4x [Pij(Ta z)i(Tbz)j (Wab + 2~2IJaVb) + h,C.] - 4MJK~ 
+2 [ixPmijIJvzm(Taz)iIJJ.lzj (F/:v - iF/:v) + h,c.] 

3XPip
i 

(FVJ.l 'F-Vi1-) (F 'F-) (!l!lP !l!lP) --4- - Z PJ.l + Z Pi1- UvXU X + UvYU Y 

- (x12 + /Pi) OJ.lYOvxIJa F/:v + p~i IJ (.sOJ.lXOJ.l x + 3oJ.lyOi1-y) 

_ixpiPiKim [VPzm(Taz)i -IJPzi(Taz)m] oJ.lyF:p 

+ {W [2X 3
/ PiMJ + (a- A)fiaie-K - OpfIJpzjPij{i] + h.C.} 

_2x2 [(FVJ.l Fa - iFVJ.l Fa) IJPiIJvzjp·· + h c] a PJ.l a PJ.l tJ' . 

2 oi1-x Fa V":Fvp ovyoVx FJ.lP Fa FVJ.l Fa (Ov XOPX _ OvYOPY) + ;;; J.lP v a + a J.lP + a PJ.l 
yX X X X 

-e-KIJ (2aiai + 16aa) + 2IJ (3V + 17MJ) + 4M; (IJ + K~) 
-K 

+~ {2IJa(Taz)iAij (a j - 2.4j ) - ai (a -.4) [pIJ - 2(Taz)iIJa] + h.c.} 
-4xK~F:vF:v - Pi/ [(oJ.l x + 2i8i1-y ) Kjm(Taz)jIJJ.lZm + h.c.] IJa 

Z T..' (IJ v -m (T )i IJv i(T -)m) [f-i IJP j (Fa 'F-a ) h ] -2 I\.im z aZ - Z aZ Pij Z pv - Z pv + .c. 

-2 {Kjm(Taz)mVJ.lzj [Pik(Ta z)iIJi1- zk + Pln(TazlIJJ.l zn] + h.c.} 

+ 2
1
x Va {PijIJJ.lZiJi Kkm [(Taz)kIJi1-zm + (Taz)mIJJ.lzk] + h.c.} 

{ .. IJVi[2IJV(Ta)jIJ k f-jFJ.lp(OJ.lXFa OVXFa)] h} + PtJ Z a k Z vZ + a 2 VP - 8 J.lP + .c. 

-4xFa FJ.lPV zivvzm K.- + Ka (OJ.lXOJ.l X + OJ.lyOJ.l y ) 
J.lV a P tm a x2 X2 

( 
V"FJ.lV 0 ) 

-2i 2 :d - ;x F/:v Kim [IJvZm(TaZ)i - Vvzi(Taz)m] 
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2 . 2 
_tX9 _ X Pip

t (1)" FlJ.v + {)IJ.Y FIJ.V) 
3 4 IJ. a .JX a 

+xp·pt __ Fa 'x1)"FlJ.v + {) yFIJ.V + P FlJ.v Fa . [{)P X ( - ) {)P y{) x - ] 
t 4 pv Y J.; IJ. a IJ. a 16 a IJ.V 

+~ [(Fa - iFa ) 1)pzip . ·f-j + h c.] ( 'x1)"FlJ.v + {) yFlJ.v) 8 pv . pv tJ •. Y J.; IJ. a IJ. a 

1 FlJ.vF-a [.(~ .. ~ )'T'IP i f-j h ] + 32 a IJ.V t upX + tuPy L/ Z Pij + .c. 

x3 . ( ... 1 .) _ - p. pJ_ FIJ.P Fa 1) zt1)v zm __ FlJ.v Fa 1) -t1)P zm 
2 tJ m a VP IJ. 4 a IJ.V P'" 

+ XPipi [FlJ.v Fa {) x[)px _ 4FI-'P Fa ({) x{)Vx + 2{) y{)Vy)] 32 a IJ.V P a VP IJ. IJ. 

- }2 [( F:v{)px + 4iF:p{)vY) F/.:v Pij]i1)P zj + h.c.] 

+ xPipi (plJ.vpa ~ ~P 4pIJ.ppa ~ ~v) 48 a IJ.vupYu Y - a vpulJ.Yu Y . (B.38) 
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