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Abstract 

Recent work has cast doubt on some of the usual assumptions in the analysis of 
the Kosterlitz-Thouless transition in a Coulomb or vortex gas; in particular, the well
known Kosterlitz-Thouless parameter flow appears to depend on some specific and 
somewhat implausible assumptions. In the present paper we extend this analysis and 
assess recent efforts to verify the properties of this transition numerically. We find 
that the verification depends critically on the availability and on the specific form 
of a finite-size scaling; we show that several alternative models cannot be properly 
considered with available numerical methods, and that the validity of the finite-size 
scaling is doubtful; with these caveats, we find that the numerical calculation of the 
phase transition line in the low-density regime agrees with the predictions of the usual 
KT theory with surprising accuracy. Several attendant paradoxes are also discussed. 
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1 Introduction 

The Kosterlitz-Thouless transition is the transition between a conducting and an insulating 

phase in a sparse Coulomb system in the plane; it is also a basic paradigm in statistical 

physics, has been extended to the analysis of transitions in vortex and other two-dimensional 

systems, and constitutes a model for transitions in more dimensions. A basic theory of mean

field type for this system was given by Kosterlitz and Thouless (KT) several decades ago [1]; 

in particular, these authors sketched the famous renormalization group parameter flow that 

has remained the basic building block of subsequent work. Rigorous work on this transition 

is available, and modern approaches to the renormalization group have also appeared and 

provided higher order corrections to the basic theory [2, 3, 4]. For the sake of brevity, we 

shall use throughout a terminology appropriate for a COll1omb system. 

Numerical work intended to check this theory has a long history [5, 6] and there is a 

substantial amount of recent work [7, 8, 9, 10, 11, 12, 13] .. It was always clear that the 

verification of the properties of what is a very weak transition is difficult, but it is reasonable 

to expect that the properties of a two-dimensional system can nowadays be established with 

some certainty; recent work does indeed claim to have verified the basic properties of the 

Kosterlitz-Thouless parameter flow. 

In a recent paper [14], Chorin and Hald showed that, within the framework of the simplest 

and oldest description of the transition, one can derive essentially different models with 

distinct properties; historically influential arguments that these models are equivalent contain 

fundamental errors. A further conclusion was that the correctness of the Kosterlitz-Thouless 

renormalization flow rests on a very specific assumption of one-sided polarization, which has 

long been known to be implausible in its literal form [15]. In further work, still unpublished, 

these authors have reached similar conclusions for more sophisticated derivations of the 

renormalization group equations. The conclusion that one-sided polarization was a key to 

the validity of the Kosterlitz-Thouless model has also been reached by Alastuey and Kornu 

by other means [16] and a further example that supports this conclusion will be given below. 

A conclusion from this work is that the validity of the basic theory is far from being firmly 

established on theoretical grounds. A further reason for doubting the standard theory is 

the recent discovery that well-known and long undoubted scaling properties of dense vortex 

systems are in fact in error [17]. 

In the present paper we reconsider recent numerical work on the KT transition, check it 
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and assess it. The key issue is the validity and significance of the finite-size scaling without 

which the calculations cannot be brought to a conclusion. As a check on our l.mderstanding of 

the numerical issues, we reconstructed much of the earlier work. The conclusion is that on the 

whole those aspects of the KT descriptions that are accessible to a numerical calculation with 

the available tools are verified with unexpected accuracy, indeed, with amazing accuracy; 

paradoxes and uncertainties still remain, and we shall discuss them. The emphasis here is on 

calculations in which the basic variables are the charges, but we believe that the conclusions 

illuminate what happens in other variables as well. 

We consider the Coulomb gas in a periodic box, and its limiting behavior as the box 

size tends to infinity; we have no tools that would allow us to look at the KT problem in 

the whole plane, or to estimate the differences between the whole-plane problem and the 

limit of the periodic problem (a short discussion of the differences between these problems 

will be given). We focus on the behavior of the (possibly non-universal) phase transition 

line, the other properties of the transition being out of numerical reach. We provide a new 

example that shows the dependence of the phase transition line on the one-sided polarization 

assumption. With the help of some additional technical assumptions, we calculate the phase 

transition line and we find that it coincides, with surprising accuracy, with the predictions of 

the classical KT theory. The calculation exhibits some surprising and unexplained features. 

We believe that we provide the sharpest comparison so far between the original KT phase 

transition line and the numerical results. 

The paper is organized as follows: We begin with a description of the Coulomb system, 

followed by a review of the relevant linear response theory and a summary of the conclusions 

of Chorin and Hald with a new example that illustrates them. We then explain the numerical 

approach and implement it with care. The conclusions and the remaining open questions 

are summarized in a final section. 

2 The Coulomb gas in the plane 

Consider a two-dimensional Coulomb gas with 2N particles that carry a unit charge q = ±1, 

in an Lx L square box. Without loss of generality, one can assume that the gas is neutral [18], 

and thus to each positive charge corresponds a negative charge, with N being the number 

of pairs of opposite charges. 
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The Hamiltonian of the system is 

H = ~ J dx J dx' p(x)G(x - x')p(x'), (1) 

where p(x) is the charge density, and G(x) is the Green function of the Coulomb interaction 

which satisfies 

(2) 

subject to appropriate boundary condifions. For an infinite system G(x) = -log Ixl + C, 

where C is a constant. Simulations are however restricted to finite systems. It is usual and 

reasonable to work with periodic finite systems. 

The interaction between point charges diverges logarithmically at short distance and it "-

is necessary to introduce a cut-off length, u, for the system to be stable. In a lattice model 

the cut-off is built-in if particles are prevented from occupying the same lattice site. In 

a continuum model a cut-off can be introduced by excluding configurations in which the 

separation between any two particles is less than a minimum length (a "hard core" model). 

A standard alternative is to regularize the interaction by smoothing the charge distribution 

<!>(x - Xi) associated with each particle (a "soft core" model). We assume each particle has 

a Gaussian charge density profile [13], so that the charge density field is 

2N 1 2N 

p(x) = L qi<!>(X - Xi) = --2 L qie-lx-xd2/2u2. 
. 27rU . ,=1 ,=1 

~ After substitution of (3) into (1) the Hamiltonian can be written as a double sum, 

1 2N 2N 

H N ( {xd) = 2 L L qiV(Xi - Xj)qj, 
i=1 j=1 

where 

V(Xi - Xj) = J dx J dx' <f>(Xi - x)G(x - x')<f>(Xj - x') 

is the regularized interaction, which can be represented by the Fourier series 

v (x) = 2~ L :2 exp ( - 4~~2 k2
) exp (2; ik . x ) . 

kEZ 

(3) 

(4) 

(5) 

(6) 

For r = Ixl small enough compared to the spatial period, L, V(x) is spherically symmetric 

and approximated by 

V(r) ~ -~ [log (~) - Ei (-~) + 'Y] , 
2 4u2 4u2 

(7) 
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where Ei(·) is the exponential-integral function [19], and I is the Euler constant. 

The critical properties of the Coulomb gas are characterized in particular by a sharp 

change in the response of the system to external fields. This response can be expressed by 

the dielectric "constant" f, which is related to the two-point charge correlation function in 

the absence of external fields. The relation between the two is a standard result of linear 

response theory, which we review for-the sake of clarity. 

Consider an external electrostatic potential, W(x), which adds to the Hamiltonian a 

perturbation 

8H = J dxp(x)W(x): (8) 

This external field induces a charge redistribution whose average in the linear response regime 

IS 

(p(x)) = -j3 (p(x) 8H)0 , (9) 

where the notation (·)0 refers to an average with respect to the unperturbed system. The 

induced charge distribution creates an electrostatic field, which together with W(x) forms an 

effective field, 

weff(x) = W(x) + J dx' (p(x')) G(x - x') = J dx' f-l(X - x')w(x'). (10) 

The last identity defines the inverse dielectric function f-l(X). 

The inverse dielectric function is more easily expressed in Fourier space; let 

-- 1 J (211") c 1 (k) = L2 . dX'f-l(x)exp -yk.x . (11) 

Equations (8)-(11) give 

__ j3L4 

c 1(k) = 1 - 211"k2 (p(k)p( -k))o, (12) 

with 

2 

fo(k)fo(-k) = ;, exp (-4~;\2) ~qieXp (~ ik· Xi) (13) 

The components of the wave vector k in a finite periodic system with period L are 

multiples of ~. Note that a k = 0 excitation corresponds to a uniform shift, which has no 
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physical effect on the system. Hence the smallest wave vector for which a dielectric response 

can be defined in a periodic system is k = Ikl = ~. 
The inverse dielectric constant, €-l, is the k -+ 0 limit of ;-:I(k) in the thermodynamical 

limit. The two limits, k -+ 0 and L -+ 00, are not interchangeable, as the k -+ 0 limit is 

not defined for a finite system. In the simulations below we calculate the inverse dielectric 

function for the smallest nonzero wavevector. The inverse dielectric constant is the limit 

(14) 

It is often stated in the computational literature that it is necessary to extrapolate the 

inverse dielectric function calculated for finite wave numbers and fixed L to k = O. As the 

system size tends to infinity, both the k = 2;; component of ;-:I (k) and the extrapolation to 

zero wave vector converge to the same limit and we see no reason to prefer the latter, which 

has no physical significance and contains an additional numerical error. 

The statistical properties of a macroscopic system are determined by the probability 

measure associated with its microscopic states. We shall use both the canonical and the 

grand-canonical ensembles in the analysis of the system. In the canonical ensemble N, the 

number of pairs, is fixed, and the probability density function for the configuration {Xi} is 

the Boltzmann distribution, 

(15) 

where Zc is the canonical partition function and f3 = ~ is the inverse temperature. 

In the grand-canonical ensemble the number of pairs can vary, and a chemical potential 

or an energy per charge Jl is introduced. It is convenient to start with a system in which 

the number of states is countable; let ( be a spatial discretization size; the continuum limit 

will be recovered below. The probability density function for a state with N pairs and a 

configuration {Xi} is 

(16) 

where Zgc is the grand-partition function, and z = e2f3JJ. is the fugacity. 

The Coulomb gas model we have just defined involves the following parameters: the 

temperature T, the number of charge pairs N or alternatively the fugacity z, the system 
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size L, and the cut-off length O'. In the grand-canonical ensemble we also introduced a 

lattice size (. This system exhibits interesting scaling properties, which reduce the number 

of independent parameters and provide insight on the role of the cut-off length. 

Consider equation (16): If the grid size ( is small compared with the interaction cut-off 

length O', the statistical properties of the system are asymptotically invariant under the grid 

refinement transformation, 

(-+ a( L -+ L. (17) 

This suggests the definition of a rescaled fugacity, z = ,t, which remains invariant under 

grid refinement. The continuum limit can then be taken by keeping z fixed while ( -+ O. 

Another scaling relation follows from the fact that both the regularized interaction (6) 

and the inverse dielectric function (11) depend only on the length ratios, xdL and O'/L. 

Therefore the dielectric function remains invariant under the scaling transformation 

O' -+ aO' L -+ aL T-+ T. (18) 

Two results follow from this invariance: (i) The cut-off length O' can always be set equal 

to one by an appropriate rescaling of the other parameters. (ii) The limit of point charges 

O' -+ 0 with the other parameters fixed is equivalent to the limit of infinite fugacity or infinite 

particle density. The cut-off length determines the elementary length scale of the system, 

and certain quantities diverge as it tends to zero, as usual in the theory of phase transitions. 

3 The KT renormalization group 

Heuristically, the KT phase transition can be described as follows: At low temperatures 

all the particles form bound pairs of opposite charge and the medium is dielectric. At the 

critical temperature, Te, charge unbinding occurs, and for T > Te there exist free charges 

which can conduct electric current and screen electric fields. The transition is accompanied 

by sharp changes in the dielectric constant and by the divergence of certain thermodynamic 

quantities [20]. 

In their original work [1] KT presented a model of the phase transition based on an 

iterated mean-field approach in the limit of low fugacity. In this model, at temperatures 

below the transition temperature, the medium is viewed as consisting of bound pairs of 

particles, or electric dipoles. In general, there is some ambiguity in the identification of the· 
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pairs in a system in which only the coordinates of the individual charges are given; however, 

at low density this is not a serious problem. 

Consider a dipole of size r; its contribution to the total energy can be divided into 

an intrinsic contribution V(r) (the "bare" interaction), and the energy associated with its 

interaction with the rest of the system. In the mean-field approximation the interaction 

between charges that belong to different pairs is replaced by an ensemble average. The 

average energy of interaction between a dipole and the rest of the system is added to the 

bare interaction and defines an "effective", or renormalized, interaction energy. The total 

energy can then be written as a sum of the effective energies of the dipoles. 

The effective energy E(r) associated with a dipole of size r can be related to a scale

dependent dielectric function €(r): Start with a dipole of size zero, and then increase its 

size adiabatically allowing the medium to equilibrate after each infinitesimal step. In the 

absence of neighboring charges, work is done against a restoring force - ~~. We introduce 

the dielectric function by writing the effective force as -C1(r) ~~. The effective energy of a 

dipole of size r is related to this function by 

(19) 

Note that both V(r) and €(r) are assumed to depend on the size of the dipole but not on 

its orientation. This approximation holds as long as the dipole is small compared to the size 

of the system. The lower limit of integration is taken as zero because the finite cut-off has 

already been taken into account in the definition of the regularized interaction, V. 

At low fugacity, z ~ 1, the density of dipoles of size between rand r + dr is 

(20) 

The polarizability of a dipole is p(r) = !,8r2 [1], and the electric susceptibility of the medium, 

X, is the total polarizability per unit square, 

(21) 

where n(r) is the number density of dipoles of size up to r. Finally the dielectric constant is 

related to the susceptibility by 

€ = 1 + 21rX ~ 1 + 21r2,8z 100 

dr r3 exp [,8 lT ds €-I (s) ~~l. (22) 
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As pointed out in [14], equation (22) is not sufficient to determine the function fer); it is a 

single constraint on the infinite set of values of the function f(r). One has to make additional 

assumptions to obtain a solvable model. The best known of the assumptions made by KT 

(for historical remarks, see e.g. [14]) was that equation (22) could be approximated by a 

scale dependent equation for the function f(r) 

(23) 

The physical interpretation of this approximation is that the energy of a given dipole is 

reduced only by the polarization of dipoles that are smaller than itself. In particular, the 

energy of a dipole of size r is reduced by the polarization of a dipole of size r - 8r but not 

by the polarization of a pair of size r + 8r, howev~r small 8r may be. At first sight, this is 

an implausible assumption. 

It is customary to introduce a new function K(r) = (3c1(r), in terms of which equation 

(23) becomes 

(24) 

The integro-differential equation (24) can be transformed into a system of first order dif

ferential equations. Define a logarithmic scale by £ = log r; equation (24) is then equivalent 

to the pair of ordinary differential equations 

dK-1 

aT = y(f) (25) 

~~ _ [4 - K(f) (1 - e-e
2l

/4(
2
)] y(f), 

with the initial conditions 

(26) 
for f ~ -1. 

The "equivalence is in the sense of ordinary calculus: Integration of equations (25) yields 

values of the function K(r) in (24). However, equations (25) can also be given an interesting 

additional interpretation: One can view y( f) and (3/ K-1 (f) as the effective fugacity and 

dielectric constant at scale £, and thus equations (25) describe the flow of the parameters as 

functions of scale; they can thus be viewed as renormalization group (RG) equations. 
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On the basis of this model one can also calculate n(r), the density of dipoles of size 

smaller than r, which satisfies the differential equation 

dn e-2l 

dR = -;-y(R), (27) 

with the initial condition n( -00) = o. 
The RG equations (25) differ slightly from their standard form because we accounted 

explicitly for the effect of a regularized interaction, V(r). This correction to the equations 

becomes small as R ~ 1. One normally assumes that the universal properties of the system 

are determined by the properties of the fixed point of the renormalization flow [21], while the 

precise location of the phase transition line, which can be read from these equations as well, 

may well depend on the contingencies of the cut-off and of the specific assumptions used to 

derive the RG equations from the more general statement of the linear response assumption. 

The macroscopic inverse dielectric constant is the asymptotic value c l = T K( 00). The 

two parameters T and z determine the initial conditions (26) and thus determine Cl. For 

each value of z there exists a critical temperature Tc(z); it is widely believed that at Tc the 

dielectric constant c l jumps discontinuously from a finite value [20]. 

The critical behavior of the system can be read from equations (25) as follows: For R ~ 1 

the derivative ~ simplifies into [4 - K(R)] y(R), and the trajectories (K(R), y(R)) are given by 

a family of curves [14] 

K 4 
y = log "4 + K - 1 + c(T, z), (28) 

where c(T, z) is a constant that characterizes the curve and is determined by the initial. 

conditions. The resulting family of functions y = y(K) has a vertical asymptote at K = 0, 

is decreasing for 0 < K < 4, has a minimum Ymin = c(T, z) at K = 4, and increases for 

K > 4. Points at which these curves intersect the K -axis are fixed points, hence y does not 

change sign along a trajectory. As K ( -00) > 0 and y( -00) > 0, y( R) is always positive 

and K(R) is monotonically decreasing. The trajectory that passes through the fixed point 

(K = 4, y = 0) is the critical trajectory which separates the parameter values for which 

Koo = K(oo) = 0 (the conducting phase) from those for which Koo is finite (the dielectric 

phase); see Figure 1. Note that this d~scription of the phase transition contains a strong 

heuristic element; in [14] it is shown that the RG trajectories are not well-defined in the 

conducting phase. From equation (28) it follows that this fixed point is reached for c = 0, 

i.e., the condition c(Tc, z) = 0 defines implicitly the critical curve Tc(z). This observation is 
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Figure 1: The K-y projection of the renormalization flow (25) for z = 0.006, T = 0.0957 (solid 
line), T = 0.0959 (dashed line), and T = 0.0961 (dash-dot line).The initial condition is given 
by equations (26) with f = -4.0. The critical curve is the one that approaches the fixed point 
(4,0). 

often interpreted as meaning that Koo jumps at the transition point from Koo = c 1 IT = 4 

to 0, a conclusion known as the universal jump condition (but it should be pointed out that 
, 

though the conclusion may well be true, it is shown in [14] that this derivation makes no 

mathematical sense). 

The phase transition line determined from equations (25) is shown in Figure 2 where we 

plot trajectories (K(f), y(f)) calculated by a numerical integration of equations (25). 

Equations (25) can be derived by more sophisticated means, together with higher order 

(in y) approximations; the most attractive alternative proceeds through the identification of 

the system with a Sine-Gordon field theory (see e.g [18]). However, for our present purposes 

the derivation above is sufficient. Our goal is to examine whether the phase transition can 

be described by equations (25) with their initial data; the identification of flaws in various 

derivations is outside the scope of the present paper. 
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Figure 2: The phase transition line, Tc(z), calculated from the renormalization group equations 
(25). 

3.1 Alternative models 

The KT model leading to equation (24) involves an additional assumption, needed to obtain 

a solvable model: The interactions between dipoles are assumed to be one-sided; dipole 
l 

energies are affected only by the polarization of smaller dipoles. As was demonstrated in 

[14], the KT assumption is not the only one that can be made, and we have argued that 

it is implausible. Several other assumptions can be found in the literature. The general 

belief is that these other assumptions also lead to the KT parameter flow (equation (25)). 
\ 

In [14], Chorin and RaId showed that this general belief is false, and indeed that most of the 

derivations of the KT equations within the context of linear response theory are in error. 

Other a priori reasonable assumptions lead to phase transition lines different from the KT 

line in Fig 2, and to theories that are different both qualitatively and quantitatively. 

Note that the models offered in [14] that are drastically different from the KT model are 

non-local, in the sense that the energy of a pair of any size is affected by the polarization of 

pairs of all sizes, large as well as small, but of course with weights that differ according to 

the relative size. In a finite calculation, there is no way to check the correspondence between 
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these different models and numerical results because all dipole pairs beyond the size of the 

computational domain are suppressed. 

We now exhibit a simple model that demonstrates the sensitivity of the KT phase transi

tion line to the specific assumption of one-sided polarization. Suppose that instead of having 

the dipoles of size up to r and no others affect the energy of a pair of size r, we allow also the 

pairs up to size ar to enter into the calculation of K-1(r), where a is a parameter. (This is 

a purely mathematical example, and no claim is made that it corresponds directly to some 

real physics; it is nonetheless not less plausible than the KT assumption.) The resulting 

integro-differential equation for K (r) is 

(29) 

This equation is also equivalent to a pair of (this time, non-local) ordinary differential equa

tions, 
dK-1 

----;u-- = Y ( f) (30) 

: = y(f) [4 - y(f + log a) (1 _ e-a2eU/4(2)] . 

The initial conditions are 

K(-oo)=T 
(31) 

f ~-1. 

The solution of equations (30) depends on the value of a. However large f may be, 

the solution of (30) never "forgets" its initial conditions, and some properties of the phase 

transition change. In particular, the location of the phase transition line changes with a. 

(See Figure 3). Thus a simple generalization of the sharp one-sidedness assumption of the 

KT model has a substantial effect on the phase transition line. 

Note that as f --+ 00, the new RG equations (30) converge to the KT equations (25); 

indeed, for f large enough, the non-local additive argument in K becomes negligible. By 

contrasting this remark with the theory in [14], we reach the following conjecture: All models 

of the phase transition in which the polarization of only a finite range of dipole sizes can affect 

the energy of a dipole of a given size give rise to RG equations with the same asymptotic 

properties near the critical point. However, this still allows the non-universal properties of 

the transition, for example the location of the phase transition line, to depend on the specific 

properties of the model; in the present case, the phase transition line is a sensitive function 

of a. 
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Figure 3: Phase transition lines, Tc(z), calculated by solving the integro-differential equation 
(29) for three values of 0:: 1.0 (circles), 1.2 (stars), and 2.0 (crosses). 
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4 The numerical algorithm 

We now turn to the numerical investigation of the KT transition. First the infinite plane 

must be approximated by a square, and it is generally believed that the boundary conditions 

that typically yield the highest accuracy (i.e., represent most faithfully what happens in the 

whole plain) are periodic boundary conditions. A major uncertainty is introduced in this 

way: It is far from obvious, and probably false in general, that the statistics of a Coulomb 

system in a finite domain, with any boundary conditions, converge to the statistics of a 

Coulomb system in the plane. Indeed, it is quite easy to see that the Coulomb interaction 

in the plane decays so slowly with distance that the effect of those charges that are outside 

a circle of radius R on the charges at the center of that circle does not tend to zero as R 

increases. By the same argument, models in which pairs of all sizes interact, such as the 

ones considered in [14], cannot be studied numerically on a finite domain. A whole class 

of interesting phenomena is therefore excluded at the outset. We are studying a problem 

that differs from the true problem, and are excluding models that differ from the bounded

interaction model and that would make sense only for the true problem. This limitation 

should not be forgotten. 

The statistical properties of our Coulomb gas in a periodic domain can be calculated by 

Monte-Carlo methods, where averages are calculated over a Markov chain of states generated 

numerically. The standard way of doing so is the Metropolis algorithm, in which the Markov 

chain process is specified by transition probabilities Wi-.j between states characterized by 

(Ni' {Xi}) and (Nj , {Xj}). For the statistical weight of the i'th state, pi, to approach the 

desired equilibrium value, p(Ni , {xd), as the size ofthe sample tends to infinity, it is sufficient 

(though not necessary) to impose the detailed balance condition 

'Vi,j. (32) 

This condition does not define the transition probabilities uniquely. 

Previous numerical work has been based on the grand-canonical ensemble. The two 

ensembles lead to identical statistical properties in the thermodynamical limit, where number 

fluctuations are negligible. In the present problem however the simulations can only be 

performed with small systems in which these fluctuations are not necessarily small. It will 

therefore be of interest to compare the numerical results obtained with the two ensembles. 

In the case of the canonical ensemble we proceed as follows: At each step one particle is 
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selected from the set of particles present, with each particle having an equal chance to be 

chosen. An attempt is then made to move it to a new location within a radius d from its 

current location; the new location is selected with uniform probability within the circle of 

radius d, and periodicity is enforced. This defines a trial move from a state (N, {Xi} ) to a state 

(N, {Xj}), which is then accepted with probability min (1, exp {-,8 [HN( {Xj}) - HN( {Xi})]}). 

This algorithm assigns non-zero probabilities only to transitions between states that differ 

in the location of one particle by a distance less than d. The attempt frequency between two 

states, i and j t~at are accessible to each other, i.e., the probability density of the event that 

there will an attempt to move the system from one of them to the other, is constant and 

equal to ni _ j = nj _ i = 1!'~. The transition probability, Wi_j, is the product of the attempt 

frequency, ni _ j , and of the acceptance probability, ai_j, that once the attempt is made, it 

will be accepted. This product satisfies the detailed balance condition, 

Wi_j = ai_j = e-.B[HN({xj})-HN({Xi})] (33) 
Wj-+i aj_i 

The Markov chain for the grand-canonical ensemble has to include transitions between 

states with differing numbers of particles. We construct a process in which each step can 

allow pair creation, particle displacement, or pair elimination. The type of trial move is 

selected at random, with probabilities Pl, Po, and Pb respectively, with Pl = Pl' 

The relocation of particles is performed in exactly the same way as in the case of the 

canonical ensemble. Pair addition is implemented by randomly selecting two sites for the 

new particles to be added; the new sites are selected with uniform probability throughout 

the system. Again we need to briefly consider a lattice model with grid size (. Let (N, {Xi} ) 

and (N + 1, {Xj}) denote the state of the system before and after the addition of a pair. 

The attempt frequency for such a move is n i -+ j = Pl/ ( ~ ) 4. The backward transition of 

pair elimination is performed by randomly selecting a positive and a negative charge to be 

removed. The attempt frequency in this case is nj-+i = p!/(N + 1)2. For detailed balance 

to be satisfied, the acceptance probabilities, ai_j and aj-+i, must guarantee that 

(34) 

Therefore the ratio of acceptance probabilities is 

(35) 
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This relation is satisfied if we take, for example, ai .... j = min(l, R) and aj .... i = min(l, R-l). 

We can now reintroduce the rescaled fugacity, z = z / (4, and let the lattice size go to zero. 

The two algorithms defined above still include free parameters, such as d, Pr, and po, 

which can be dynamically adapted such to optimize the convergence rate of the Metropolis 

sampling. It is widely thought that an optimal convergence rate is obtained when the 

acceptance ratio of a single Metropolis step is !; indeed, if the acceptance ratio is too small 

the system will change very slowly, and if it is too large, it must be that the proposed moves 

are too small and the evolution will be slow as well. 

4.1 Finite size scaling 

A standard problem in Monte-Carlo simulations is the extrapolation of the numerical results 

to the thermodynamical limit. As explained above, the most we can obtain in a simulation 

is an evaluation of the inverse dielectric function for the smallest non-zero wave number, 

which depends in general on both the temperature T, and the size of the system L. The 

phase transition point, Te , for a given chemical potential or density, can be located by the 

requirement that at Te the dielectric constant (14) drops discontinuously from a finite value 

to zero. In doing so, we explicitly assume the correctness of the universal jump condition 

[20] for which an independent check would have been desirable. This discontinuity refers to 

the thermodynamical limit, hence we have to extrapolate the numerical results to this limit. 

The extrapolation of ;:t (~) to the thermodynamical limit requires the knowledge of the 

form of the dependence of i on L. One can derive this dependence from the RG equations, 

. but one has to be very careful not to base conclusions regarding the validity of the KT theory 

on a numerical process into which this theory is built in. 

When c(T,z) = 0 (i.e., at the critical temperature) and £ ~ 1, the (K(£),y(£)) trajectory 

is given by the fUIiction 

K(f) 4 
y(£) = log -4- + K(£) - 1 (36) 

[14]; substitution into equation (25) yields a closed equation for K(£), 

dK = -K210g K(£) + K(K _ 4) 
~ 4 . (37) 

Linearizing about the fixed point, K(£) = 4 + 11:(£), we find 

dll: 1 2 

d£ = -211: , (38) 
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which is easily integrated. Hence 

K (£) '" 4 [1 + 2( £ ~ £0) ] £~ 1, (39) 

or, reverting to the original scale, 

€-l(r) = 4T [1 + 210g(~/Lo)] r ~ 1, (40) 

where £0 and Lo are integration constants and £0 = -log Lo. Equation (40) is widely viewed 

as a plausible guess for the scale dependent dielectric function of the KT transition. 

Note here a significant ambiguity: The parameter r refers to the size of a dipole; in the 

KT theory one assumes that the energy of a dipole depends on the polarization of smaller 

dipoles but not on the polarization of larger dipoles. If one identifies (3 I< -1 evaluated at L 

with the factor by which the energy of a pair of size L is decreased, one is making a non

trivial additional assumption according to which dipoles smaller than L outside the square 

of side L do not contribute to the dielectric response, and one also simplifies the complexities 

that arise when one has pairs smaller than L lie partly inside and partly outside the periodic 

box of side L. In other words, we are identifying, with no clear quantitative rationale, two 

quantities that are in principle different: (i) The reduction in the energy of a single dipole 

pair by an external field and (ii) the effective field resulting from the ensemble average over 

the charge. distribution induced by the external field. What we calculate numerically is the 

response of our system to a spatially sinusoidal field with wave number k = 't. It is most 

unlikely that c 1 (L), as defined by the KT model, and ;-:t. (~), as defined by equation 

(12), are the same quantity. The derivation of the form of the finite-size scaling cannot be 

taken literally. Note in addition that in a periodic system of size L the maximum separation' 

between two points is L/2. 

In a similar way, one finds y( r) and n( r), 

1 
y(r) '" 8(log r/Lo)2 (41) 

1 [1 2. ( r )] n(r) '" noo - 87r r2log r/Lo + L5 E1 -2 log Lo . (42) 

In addition, the relevance of the finite size scaling formula to the extrapolation of data 

obtained for finite (and small) systems should depend on the scale at which the behavior of 

K(£) is well approximated by equation (39). From equation (39) it follows that 

2 
K (£) _ 4 '" £ + £0 ( 43) 
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for £ ~ 1. In Figure 4a we plot K(~-4 as function of £ for z = 0.003, and eight different values 

of temperature. The thick solid line correspond to the critical temperature Te = 0.1229532, 

and coincides with the line £ + 0.951; thus £0 = 0.951 or Lo = e-lo = 0.386. The other lines 

correspond from top to bottom to the values of temperatures indicated in the legend of the 

figure. The further T is from Te , the earlier does the curve deviate from the straight line. A 

deviation from the critical temperature at the seventh significant digit causes the curves to 

separate at the logarithmic scale of £ '" 80. 

For the sake of comparison with the numerical simulations one needs to consider much 

smaller scales. I';' Figure 4b we present the same curves for 0 < f < 10. The thick solid line 

is again the asymptotic behavior of the critical curve. None of these curves coincide with 

the asymptote in this range. For T very close to Te there exists an intermediate range of 

scales where the behavior of the curves is linear; the slope of the curve is however not one as 

predicted by the finite size scaling formula. For T = 0.1228, which deviates from the critical 

temperature by a tenth of a percent, there is no range for which Kd)-4 is linear. The very 

high sensitivity of the renormalization flow to the temperature, and the fact that it agrees 

with the asymptotic behavior only at vary large scales, shed doubt on the extrapolation 

procedure based on the finite size scaling formulas. 

An alternative to this finite size scaling, based on an analog of Callen-Symanzik form of 

the renormalization group, has been proposed for the spin version of the KT transition [8], 

and turned out to be inapplicable in our calculations, as we shall discuss further below. 
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different values of the temperature (see legend). Figure (b) is a magnification of Figure (a) at 
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5 Comparisons with some earlier work 

The early numerical work on the KT transition was related to the XY spin model [6]. Thes~ 

simulations attempted to validate the KT theory, but gave inconclusive results due to poor 

statistics. In order to have sufficient statistics one needs to have a large number of vortices. 

The vortex-pair density near the phase transition in the XY model is less than 10-2
, creating 

a need for very large systems. 

Saito and Miiller-Krumbhaar [5] were the first to study the XY model by explicitly con

sidering vortex statistics, i.e., by studying a Coulomb gas. They used a lattice model with a 

chemical potential J.L = -0.808 which corresponds to half the energy of vortex-pair creation 

in the XY model. They were able to locate the transition from dielectric to metallic behavior 

within 20% accuracy. 

Lee and Teitel [22] considered a lattice Coulomb gas with a variable chemical potential, 

defined by the Hamiltonian, 

H = ~ L L qiV(Xi - Xj)qj - J.L L q; + L(q; - q;), 
i j i i 

(44) 

where the summations run over all lattice points, qi assumes all signed integers, and the last 

terms help to suppress charges with Iqil > 1. They focused mainly on the first order tran

sition to a solid-like checkerboard lattice, obtained for large negative values of the chemical 

potential. To locate the KT transition they calculated ;-I (~), and identified the transition 

point as the intersection of the curves of ;-I (~) as function of T for different sizes of system. 

This intersection point lies close to the line representing the universal jump condition, but 

does not coincide with it. In fact, it is not clear from the data tha! one should expect all 

the curves to intersect at one point for increasing system size. 

The use of the finite size scaling relation to locate the KT transition was introduced by 

Weber and Minnhagen [7]. The derivation of the scaling relation from the KT renormaliza

tion group equations was, to our knowledge, first presented in [23]. For the XY model these 

authors were able to locate the transition point based on the best fit within a few tenth of 

percent. This approach was then adopted by numerous other authors [24, 12, 13]. 

As stated above, there is a difficulty in validating a theory with a calculation that ex

plicitly uses the theory to be validated. We have been unable to avoid this vicious circle 

completely while using periodic boundary conditions. An interesting alternative is to use 

"self-consistent" boundary conditions [25], where the interaction of the environment with the 
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subsystem under consideration is approximated by an appropriate mean-field term added to 

the Hamiltonian. The idea is to pick an appropriate effective interaction such that (i) the 

modified Hamiltonian reduces to the original one in the thermodynamical limit, and (ii) there 

is only a weak dependence of the observable of interest on the size of the system. These two 

properties, if satisfied, may produce values of the observables for a finite domain that do not 

deviate much from their thermodynamical limits. Thus, the use of self-consistent boundary 

conditions may be a powerful alternative to the finite-size scaling discussed above, and is 

closely related to. the Callen-Symanzik form of the RG [21]. 

Such an approach has been successfully applied to spin systems [26], where interactions 

are local, and therefore the environment interacts only with perimeter spins; this interaction 

can be modified by the introduction of a coupling constant that may have to satisfy some 

self-consistency conditions. 

In the context of the KT transition, self-consistent boundary conditions were considered 

by Olsson [8, 9, 10, 11] in a spin formulation; the claim is that the results are promising, 

but not enough detail is given in the papers cited to compare in detail with the KT theory. 

The condition for the approach to work is that there exists a value of the coupling constant 

for which the derivative of the quantities of interest (for example, the dielectric constant) 

with respect to the size L of the computational domain vanishes; this value of the coupling 

constant presumably leads to the best values of the dielectric constant; the same holds for 

other quantities of interest, possibly at other values of the coupling constant. We have 

attempted to apply this method in the present problem, and found that with the obvious 

analog of the coupling used by Olsson the derivative of the dielectric constant with respect 

to the system size was a monotonically increasing function of the system size, i.e., the best 

value of the coupling constant was zero and the derivative was not zero at that point; thus 

the method, as we applied it, did not work. We expect to return to this problem in a future 

publication. 
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6 Numerical results 

We now present the numerical results. The regularized interaction function was calculated 

from the Fourier series (6), and stored in a matrix for optimization purposes. The cut-off 

scale in all the simulations was chosen to be (j = 1. The number of Metropolis steps in each 

run was 5 . 105 L2. The first 10% of the steps was excluded from the statistics in order to 

allow the system to equilibrate first. 

We start with the canonical ensemble. To estimate the accuracy of the procedure we plot 

in Figure 5 the running average of ;-t (~) as function of the size of the sample. The three 

curves were calculated with the same values of parameters except for a different initialization 

seed for the random number generator. The convergence rate is expected to scale as the ( - ~) 

power of the size of the sample. From Figure 5 the error in the dielectric function can be 

estimated as fractions of a percent. 
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Figure 5: The running average of the inverse dielectric function for the smallest nonzero wavevec
tor as function of the size of the sample for the canonical ensemble with T = 0.08, N = 16, 
and L = 24. The three curves were calculated with three different seeds to initialize the random 
number generator. 

In Figure 6 we plot ;-t e.Z) as function of temperature for a dipole density of n = 0.0277. 
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The five curves correspond to five different system sizes. The dashed line is a graph of the 

universal jump condition, 4c1T = 1. The dielectric function is, as expected, a decreasing 

function of temperature. This plot however is by itself insufficient to indicate the occurrence 

of a phase transition, and certainly does not allow to locate the phase transition point. Even 

if one relies on the theoretical prediction that the graph of f-l(T) intersects the universal 

jump curve at the critical point, it is not clear where this intersection occurs as L --t 00. 
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Figure 6: Canonical ensem ble: the" bare" (uncorrected by finite-size scaling) inverse dielectric 
function for the smallest nonzero wavevector as function of temperature. The dipole density is 
n = 1/36. The five curves correspond from top to bottom to L = 12, 16.97, 18.97, 20.78, and 
24. The dashed line is the 4f- I T = 1 curve. 

In order to locate the phase transition point we performed a fit based on the finite 

size scaling formula (40). The procedure is as follows: One picks values of the inverse 

dielectric function, ;-:t (~), calculated for different values of T and L. For each value of the 

temperature one tries to fit the dependence of ;-I (~) on L to the finite-size scaling formula 

(40) by minimizing the x2-error function 

X'(T) = L {'-'(T,L;) - 4T [1 + 210g(~;/Lo)l}' 
~ 

(45) 

with respect to the parameter Lo. The summation runs over the different system sizes, Li. 
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The assumption is that there exists a single temperature Tc for which 

(46) 

The numerically estimated value of Tc is therefore the one that minimizes the error function 

X2(T). In order for this estimate to be meaningful, it has to be independent of the set of 

system sizes used for this minimization. To verify that this is indeed the case, we repeated 

this procedure for various sets of system sizes, and checked that the minimum does not vary 

much. 

The dependence of the x2-error on the temperature is shown in Figure 7. The three 

curves were obtained with fitting procedures including sets of 3, 4, and 5 different system 

sizes. All three curves have a minimum in which the x2-error is small, namely of the order 

of the sampling error. This minimum point constitutes the numerical estimation for the 

phase transition point. Thus for n = 0.0277 we evaluate the phase transition point to be 

Tc = 0.0805. 
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Figure 7: The fitting procedure for the canonical ensemble: x2-error of the fit versus tem
perature for L = [12,16.97,18.97] (stars), L = [12,16.97,18.97,20.78] (crosses), and L = 
[12,16.97,18.97,20.78,24] (open dots). These curves have a minimum around T ~ 0.0805. The 
fitted value of Lo is 1.43 ± 0.01. 
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A similar set of calculations was repeated for the grand-canonical ensemble. In Figure 

8 we plot ;-:t (~) versus the temperature. Unlike in Figure 6 the dielectric function is not 

monotonically decreasing as the size of the system increases. The five curves approximately 

intersect at the point T ~ 0.085. Such an intersection point was interpreted in [22] as the 

location of the phase transition point. It is however unclear whether more curves are going 

to intersect the same point at larger system size. In fact, Figure 6 indicates that curve 

intersection cannot be generally used as a criterion to locate the phase transition point. 
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Figure 8: Grand-canonical ensemble: the inverse dielectric function for the smallest nonzero 
wavevector as function of temperature. The fugacity is z = 0.006. The five curves correspond 
to L = 12, 16.97, 18.97, 20.78, and 24. The dashed line is the 4€-lT = 1 curve. 

The corresponding x2-error is plotted versus the temperature in Figure 9. The error 

function vanishes within the expected accuracy at Tc ~ 0.096 ± 0.001, which indeed does not 

coincide with the point where the five curves intersect. 

In the grand-canonical ensemble we can also calculate the average density of dipoles, (n); 

it is plotted in Figure 10 as function of temperature for the five different system sizes. An 

intriguing result is that the density is a decreasing function of the size of the system. This 

cannot be reconciled with the finite-size relation (42) as n(r) is by the definition of the KT 

model a monotonically increasing function of r. We have not found an adequate explanation 
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Figure 9: The fitting procedure for the data of Figure 8: x2-error of the fit versus tem
perature for L = [12,16.97,18.97] (stars), L = [12,16.97,18.97,20.78] (crosses), and L -
[12,16.97,18.97,20.78,24] (open dots). These curves attain a minimum around T ~ 0.096. 

for this observation. 

Once we have a well-defined procedure to calculate the phase transition point, the phase 

transition line, Tc(z), can be traced. This is shown in Figure 2 where the values calculated 

from the Monte-Carlo simulations are represented by open dots, whereas the solid line is the 

theoretical prediction obtained by a numerical integration of the RG equations (25). The 

agreement between the two is remarkable. 

F9r the average density of dipoles, (n), a similar comparison between the simulations and 

the RG equations is problematic; in the absence of an appropriate finite-size scaling formula 

we are unable to estimate accurately the L ---? 00 limit of the dipole density. In Figure 11 we 

plot (n), as function of the fugacity, z, at the phase transition line. The solid line is again 

the theoretical expectation; the open dots represent the simulation results for the largest 

system (L = 24), and because (n) is apparently a decreasing function of L, they constitute 

only an upper bound. 

The inability to estimate accurately the density of dipoles in the thermodynamical limit 

make it difficult to compare the numerical results in the canonical and the grand-canonical 
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Figure 10: Grand-canonical ensemble: the average density of dipoles as function of temperature. 
The fugacity is z = 0.006. The five curves correspond from top to bottom to L = 12, 16.97, 
18.97, 20.78, and 24. 

ensembles. We can only perform a rough test of consistency based on our upper bound for 

the dipole density in the grand-canonical ensemble. For a dipole density of n = 0.0277, an 

interpolation based on the data points shown in Figure 11 gives a corresponding fugacity 

of z ~ 0.0082. From Figure 2 the critical temperature for this value of the fugacity is 

Tc ~ 0.085, i.e., about 5% off the calculated transition point for the canonical ensemble 

sampling. 

We have treated the parameter Lo as a free parameter selected by the procedure in which 

the calculated values of ~ (:r) were fitted to the finite size scaling formula (40). Given a 

model, Lo is not a free parameter, but results from the renormalization equations. We now 

compare the value of Lo obtained from the fitting procedure to the expectation value from 

the KT model. 

For z = 0.006 as analysis of the renormalization equations gives 4~K '" £ + 0.695, which 

means that Lo = e-lo = 0.499. In Figure 12 we plot the values of Lo as calculated from 

the fitting procedure as function of temperature. For this value of the fugacity the critical 

temperature was evaluated as Tc = 0.096 ± 0.001, which implies that 0.3 < Lo < 1.0. Within 
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Figure 11: The density of pairs, (n), as function of the fugacity, i, for the critical temperature, 
Tc(i). The solid line is the result of the RG equations; the open dots are the Monte-Carlo 
sim ulation results for L = 24. 

the given accuracy of our procedure the numerical estimate of Lo is not accurate enough to 

allow a sharp test of the KT model. The most we can claim is that the numerical estimate 

of Lo agrees with the theoretical expectation within a factor of two. 
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Figure 12: The fitting parameter Lo as function of temperature for z = 0.006. 
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7 Discussion 

The salient conclusion from our calculations is that the KT renormalization flow predicts 

correctly the phase transition line in a KT transition, and thus that the conclusions from 

the one-sided polarization assumption are correct, at least for the infinite-size limit of a 

system of finite size. The calculations use in an essential way the form of finite-size scaling 

derived from the KT equations, but do not depend on the precise values of the coefficients in 

that scaling. The calculations also utilize the Nelson universal-jump assumption, for which 

an independent check would have been desirable. The least one can say is that the KT 

theory is self-consistent. Among the numerical questions that remain inadequately analyzed 

are: (i) The surprising behavior of the number density n as a function of the system size; 

(ii) the inconsistent behavior of the intersections of the finite-size transition curves, which 

should have offered a reliable alternative to the localization of the transition points via the 

universal jump assumption, and (iii) the failure of the "self-consistent" boundary conditions 

to provide an alternative path to the reduction of finite-size effects. We can offer no method 

for checking the alternate models of [14]. 

In view of these results, we shall feel fully justified in using the KT theory as a starting 

point for the analysis of dynamical effects in the neighborhood of the critical line in Coulomb 

and vortex systems. These calculations will be presented in a subsequent publication. 
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