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1 Duality rotations in four dimensions 

The invariance of Maxwell's equations under "duality rotations" has been 

known for a long time. In relativistic notation these are rotations of the 

electromagnetic field strength FJJ.// into its dual, which is defined by , 

(1.1 ) 

This invariance can be extended to electromagnetic fields in interaction with 

the gravitational field, which does not transform under duality. It is present 

in ungauged extended supergravity theories, in which case it generalizes to a 

nonabelian group [1]. In [2, 3] we studied the most general situation in which 

duality invariance of this type can occur. More recently [4] the duality invari

ance of the Born-Infeld theory, suitably coupled to the dilaton and axion [5], 

has been studied in considerable detail. In the present note we will show that 

most of the results of [4, 5] follow quite easily from our earlier general dis

cussion. We shall also present some new results that were not made explicit 

in [2, 3], especially some properties of the scalar fields. 

We begin by recalling and completing some basic results of our paper [2, 3]. 

Consider a Lagrangian which is a function of n real field strengths F:// and of 

some other fields Xi and their derivatives X~ = 8JJ.Xi: 

(1.2) 

Since 

(1.3) 

we have the Bianchi identities 

(1.4) 

On the other hand, if we define 

(1.5) 

we have the equations of motion 

(1.6) 
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We consider an infinitesimal transformation of the form 

(~ ~) (~) , 
~i(X), 

(1. 7) 

(1.8) 

where A, E, C, D are real n x it constant infinitesimal matrices and ~i (X) func

tions of the fields Xi (but not of their derivatives), and ask under wha.t cir

cumstances the system of the equations of motion (1.4) and (1.6), as well as 

the equation of motion for the fields Xi are invariant. The analysis of [2] shows 

that this is true if the matrices satisfy 

(1.9) 

(where the superscript T denotes the transposed matrix) and in addition the 

Lagrangian changes under (1.7) and (1.8) as 

8L = ~ (FCF+ GEe). (1.10) 

The relations (1.9) show that (1.7) is an infinitesimal transformation of the real 

noncompact symplectic group Sp(2n, R) which has U(n) as maximal compact 

subgroup. The finite form is 

(1.11) 

wh~re the n x n real submatrices satisfy 

(1.12) 

Notice that the Lagrangian is not invariant. In [2] we showed, however, 

that the derivative of the Lagrangian with respect to an invariant parameter is 

invariant. The invariant parameter could be a coupling constant or an external 

background field, such as the gravitational field, which does not change under 

duality rotations. It follows that the energy-momentum tensor, which can be 

obtained as the variational derivative of the Lagrangian with respect to the 

gravitational field, is invariant under duality rotations. No explicit check of 

its invariance, as was done in [4]-[7], is necessary. 

The symplectic transformation (1.11) can be written in a complex basis as 

( 
F' + iG') = (<Po 
F' - iG' . <PI 

<P~) (F+iG) 
<P~ F - iG ' 

(1.13) 

2 



where * means complex conjugation and the submatrices satisfy 

cP~ CPt = cpr CPo, CPt CPo - CPt CPt = 1. 

The relation between the real and the complex basis is 

2a = CPo + cP~ + CPt + cpi, - 2i b = CPo - cP~ + CPt - cP~, 

2ic = CPo - cP~ - CPt + cpi, 2d = CPo + cP~ - CPt - cp~. 

(1.14) 

(1.15) 

In [2,3] we also described scalar fields valued in the quotient space Sp(2n, R)jU(n). 

The quotient space can be parameterized by a complex symmetric n x n ma

trix f{ = f{T whose real part has positive eigenvalues, or equivalently by a 

complex symmetric matrix Z = ZT such that zt Z has eigenvalues smaller 

than 1. They are related by 

1 Z* 1 - f{* 
f{ = - Z = (116) 

1 + Z* ' 1 + f{* . 
These formulae are the generalization of the well-known map between the 

Lobachevskir unit disk and the Poincare upper half-plane: Z corresponds to 

the single complex variable parameterizing the unit disk; if{ to the one pa

rameterizing the upper half plane. 

Under Sp(2n, R) 

f{ ~ f{' = (-ic + df{) (a + ibf{)-} , Z ~ Z' = (cp} + cp~Z) (CPo + cp~Z)-} , 
(1.17) 

or, infinitesimally, 

~f{ = -iC + Df{ - f{ A - if{ Bf{, ~Z = V + T* Z - ZT - iZV* Z, (1.18) 

where 

T = - Tt, V = VT . (1.19) 

The invariant nonlinear kinetic term for the scalar fields can be obtained 

from the Kahler metric [8] 

Tr (df{* f{ : f{* df{ f{ :1{*) = Tr (dZ 1 _ ~* ZdZ* 1 _ ~Z*) (1.20) 

which follows from the Kahler potential 

TrIn (1 - ZZ*) or Trln(f{ + f{*), (1.21) 

which are equivalent up to a Kahler transformation. It is not hard to show 

that the metric (1.20) is positive definite. Throughout this paper we assume a 

flat background space-time metric; the generalization to a nonvanishing grav

itational field is straightforward [2]-[5]. 
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2 ·Born-Infeld theory 

As a particularly simple example we consfder the case when there is only one 

tensor FJ1.// and no additional fields. Our equations become 

- 8L 
G = 2

8F
, 

8F = )"G, 8G = -)..F 

and 

(2.1) 

(2.2) 

(2.3) 

We have restricted the duality transformation to the compact subgroup U(1) ~ 

50(2), as appropriate when no additional fields are present. So A = D = 
0, B = -c =)... 

Since L is it function of F alone, we can also write 

8L = 8F 8L = )"G~G. 
8F 2 

(2.4) 

Comparing (2.3) and (2.4), which must agree, we find 

(2.5) 

Together with (2.1), this is a partial differential equation for L(F), which is the 

condition for the theory to be duality invariant. If we introduce the complex 

field 

M --.: F - iG, (2.6) 

(2.5) can also be written as 

MM* = O. (2.7) 

Clearly, Maxwell's theory in vacuum satisfies (2.5), or (2.7), as expected. A 

more interesting example is the Born-Infeld theory [6], given by the Lagrangian 

(2.8) 

where 

(2.9) 

For small values of the coupling constant 9 (or for weak fields) L approaches 

the Maxwell Lagrangian. We shall use the abbreviation 

1 -
i3=-FF. 
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Then 
8~ 2 4-
8F = 9 F - /3g F, (2.11) 

- 8L 1 ( 2 -) G = 2 8F = -~ -2 F - /3g F , (2.12) 

and 

(2.13) 

Using (2.12) and (2.13), it is very easy to check that GG =(-F F: the Born

Infeld theory is duality invariant. It is also not too difficult to check that 

8L/8g2 is actually invariant under (2.2) and the same applies to L - ~FG 

(which in this case turns out to be equal to -g28L/8g2). These invariances 

are expected from our general theory. 

It is natural to ask oneself whether the Born-Infeld theory is the most 

general physically acceptable solution of (2.5). This was investigated in [4] 

where a negative result was reached: more general Lagrangians satisfy (2.5), 

the arbitrariness depending on a function of one variable. 

3 Schrodinger's formulation of Born's theory 

Schrodinger [7] noticed that, for the Born-Infeld theory (2.8), F and G satisfy 

not only (2.5) [or (2.7)]' but also the more restrictive relation 

2 

M (M M) - M M2 = g8 M* (M M) 2 • (3.1) 

We have verified this by an explicit, although lengthy, calculation using (2.6), 

(2.12), (2.13) and (2.9). Schrodinger did not give the details of the calcula

tion, presenting instead convincing arguments based on particular choices of 

reference systems. One can write (3.1) as 

(3.2) 

where 
.M2 

.c=4(MM)' (3.3) 

and Schrodinger proposed .c as the Lagrangian of the theory, instead of (2.8). 

Of course, .c is a Lagrangian in a different sense than L, which is a field 

Lagrangian in the usual sense. Multiplying (3.1) by M and saturating the 
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unwritten indices 1111, the left hand side vanishes, so that (2.7) follows. Us

ing (3.1) it is easy to see that .c is pure imaginary: .c = -.c*. Sshrodinger also 

pointed out that, if we introduce a map 

~ 8.c ...:: f(M) 
28M ' g . 

(3.4) 

j so that (3.1) or (3.2) can be written as 

f(M) = M*, (3.5) 

the square of the map is the identity map 

f (f(M)) = M. (3.6) 

This, together with the properties 

f(M) = - j(M), f(M*) = f(M)*, (3.7) 

ensures the consistency of (3.1). Schrodinger used the Lagrangian (3.3) to 

construct a conserved, symmetric energy-momentum tensor. We have checked 

that, when suitably normalized, his energy-momentum tensor agrees with that 

of Born and Infeld up to an additive term proportional to TJ~v. 

Schrodinger's formulation is very clever and elegant and it has the advan

tage of being manifestly covariant under the duality rotation M -+- M ei >. which 

is the finite form of (2.2). It is also likely that, as he seems to imply, his for

mulation is fully equivalent to the Born-Infeld theory (2.8), which would mean 

that the more restrictive equation (3.1) eliminates the remaining ambiguity 

in the solutions of (2.7). This virtue could actually be a weakness if one is 

looking for more general duality invariant theories. 

4 Axion, dilaton and SL(2, R) 

It is well known that, if there are additional scalar fields which transform 

nonlinearly, the compact group duality invariance can be enhanced to a dual

ity invariance under a larger noncompact group (see, e.g., [2] and references 

therein). In the case of the Born-Infeld theory, just as for Maxwell's theory, 

one complex scalar field suffices to enhance the U(l) ::: SO(2) invariance to 

the SU(l, 1) ,...,.. SL(2, R) noncompact duality invariance. This is pointed out 
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in [5], but it also follows the considerations of our paper [2]. We shall use 

the letter S instead of ]{ for the scalar field, which, in the example under 

consideration, is a single complex field, not an n x n matrix. In today's more 

standard notation 

S S 'S -</> . = 1 - Z 2 = e - za, ( 4.1) 

where ¢> is the dilaton and a is the axion. For SL(2, R) ~ Sp(2, R), the 

matrices A, B, C, D are real numbers and A = - D, Band C are independent. 

Then the infinitesimal SL(2, R) transformation is 

8S = -2AS - iBS2 - iC. (4.2) 

For the SO(2) ~ U(l) subgroup, A = 0, B = -C = '\, 

8S = -i,\S2 + i'\. (4.3) 

The scalar kinetic term, proportional to 

(S + S*)2' 
( 4.4) 

is invariant under the nonlinear transformation (4.2) which, in terms of S1, S2, 

takes the form 

The full noncompact duality transformation on FJ1.// is now 

8F = AF + BG, 8G = DF + DG, D = -A, (4.6) 

and we are seeking a Lagrangian L(F, S) which satisfies 

8L =.~ (FCP + GBt) , (4.7) 

where 

(4.8) 

and now 

(4.9) 
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Equating (4.7) and (4.8) we see that L must satisfy 

( 4.10) 

This equation can be solved as follows. Assume that L( F} satisfies (2.1) 

and (2.5), i.e. 

gg + FF = 0, 

where 
- 8£ 
g = 2 8F' 

For instance, the Born-Infeld Lagrangian L(F) does this. Then 

satisfies (4.10). Indeed 

8L(S, F) _ 8L st ~S F 
8F - 8F 1 + 2 2 . 

So 

where we have defined 
1 

F = SlF, 

and 9 is given by (4.12). Now 

Using (4.11) in this equation we find 

We also have 

On the other hand, since 

8~ = 8£ F = ~9F 
8Sl 8F 2 ' 
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( 4.12) 

. (4.13) 

( 4.14) 

( 4.15) 

(4.16) 

( 4.17) 

(4.18) 

( 4.19) 

( 4.20) 

(4.21 ) 



we obtain 

( 4.22) 

In addition 

( 4.23) 

Using (4.19), (4.20), (4.22) and (4.23), together with (4.5), we see that (4.10) 

is satisfied. It is easy to check that the scale invariant combinations F and g, 
given by (4.17) and (4.12) have the very simple transformation law 

( 4.24) 

i.e., they transform according to the U(l) ~ 50(2) compact subgroup just 

as F and G in (2.2), but with the parameter ,\ replaced by 51B. If L(F) is 

the Born-Infeld Lagrangian, the theory with scalar fields given by L in (4.13) 

can also be reformulated a la Schrodinger .. From (4.16) and (4.17) solve for F 

and 9 in terms of F, G, 51 and 52. Then M = F - ig must satisfy the same 

equation (3.1) that M does when no scalar fields are present. 

5 Connections to string theory 

The duality rotations considered here are relevant to effective field theories 

from superstrings. The supersymmetric extension [9] of the Lagrangian (4.13) 

with L(F) = -iP describes the dilaton plus Yang-Mills sector of effective 

N = 1 supergravity theories obtained from superstrings in the weak coupling 

(51 --700) limit. The 5L(2,Z) subgroup of 5L(2,R) that is generated by the 

elements 47r5 --7 1/47r5 and 5 --7 5 - i/47r relates different string theories [10] 

to one another. The generalization of [2] to two dimensional theories [11] 

has been used to derive the Kahler potential for moduli and matter fields in 

effective field theories from superstrings. In this case the scalars are valued on 

a coset space K/H, K E 50(n, n), HE 50(n) x 50(n). The kinetic energy is 

invariant under K, and the full classical theory is invariant under a subgroup 

of K. String loop corrections reduces the invariance to a discrete subgroup 

that contains the 5L(2, Z) group generated by T --7 l/T, T --7 T - i, where 

T is the squared radius of compactification in string units. 

9 



Acknowledgements. We are grateful for the hospitality provided by the 

Isaac Newton Institute where this work was initiated. We thank Gary Gib

bons, David Olive, Harold Steinacker, Kelly Stelle and Peter West for inspir

ing conversations. This work was supported in part by the Director, Office 

of Energy Research, Office of High Energy and Nuclear Physics, Division of 

High Energy Physics of the U.S. Department of Energy under Contract DE

AC03-76SF00098 and in part by the National Science Foundation under grant 

PHY-95-14797. 

References 

[1] S. Ferrara, J. Scherk and B. Zumino, Nucl. Phys. B121: 393 (1977); E. 

Cremmer and B. Julia, Nucl. Phys. B159: 141 (1979). 

[2] M.K. Gaillard and B. Zumino, Nucl. Phys. B193: 221 (1981). 

[3] B. Zumino, Quantum Structure oj Space and Time, Eds. M.J. Duff and 

C.J. Isham (Cambridge University Press) p. 363 (1982). 

[4] G.W. Gibbons and D.A. Rasheed, Nucl. Phys. B454: 185 (1995). 

[5] G.W. Gibbons and D.A. Rasheed, Phys. Lett. B365: 46 (1996). 

[6] M. Born and L. Infeld, Proc Roy. Sec. (London) A144: 425 (1934). 

[7] E. Schrodinger, Proc. Roy. Soc. (London) A150: 465 (1935). 

[8] P. Binetruy and M.K. Gaillard, Phys. Rev. D32: 931 (1985). 

[9] P. Binetruy and M.K. Gaillard, Phys. Lett. B365: 87 (1996). 

[10] J.H. Schwarz and A. Sen, Phys. Lett. B312: 105 (1993) and Nucl. Phys. 

B411: 35 (1994); M. Duff, Nucl. Phys. B442:47 (1995); E. Witten, 

Nue!. Phys. B443: 85 (1995). 

[11] S. Cecotti, S. Ferrara and L. Girardello, Nucl. Phys. B308: 436 (1988). 

10 



@:::J'*'J:.-nr ~ ~A;J*I"§! l!bl;J:iII:I!Y3I:'I ~ ~ 
(§GI§! ~ ~ ~ @l!I:::J3"'Y3rlo ~III:::J~ ~~ 


