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Abstract 

SPIN POLARIZATION AND MAGNETIC DICHROISM 

IN CORE-LEVEL PHOTOEMISSION FROM FERRO MAGNETS 

by 

Jose Gabriel Menchero 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Charles S. Fadley, co-chair 

Professor Steven G. Louie, co-chair 

In this thesis we present a theoretical investigation of angle- and spin-resolved core

level photoemission from ferromagnetic Fe and Ni. We also consider magneto-dichroic 

effects due to reversal of the photon helicity or reversal of the sample magnetization 

direction. 

In chapter 1, we provide a brief outline ofthe history of photo emission, and show how 

it has played an important role in the development of modern physics. We then review 

the basic elements of the theory of core-level photoemission, and discuss the validity of 

the some of the commonly-used approximations. 

In chapter 2, we present a one-electron theory to calculate spin- and angle-resolved 

photoemission spectra for an arbitrary photon polarization. The Hamiltonian includes 

both spin-orbit and exchange interactions. As test cases for the theory, we calculate 

the spin polarization and magnetic dichroism for the Fe 2p core level, and find that 

agreement with experiment is very good. 
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In chapter 3 we present a many-body theory based on a small-cluster model to 

describe and analyze photoemission from the Ni ·2p core-level. The model treats same

site hole-hole Coulomb interactions and extra-atomic core-hole screening on an equal 

footing. Theoretical spectra are found to be in excellent agreement with experiment. 

Also, by considering various limiting cases, we are able to disentangle the effects of spin

orbit, exchange, and extra-atomic screening, and thereby gain considerable insight into 

the physical problem. In chapter 4, we apply the same model to the Ni 3p core level, 

and again find that the theoretical results agree very favorably with experiment. 

In chapter 5 we consider the question of the Ni surface orbital moment. Our findings 

do not support an earlier analysis that required a large enhancement this moment. Using 

our model, we are able to explain the experimental observations without invoking such 

an enhancement. 

In chapter 6 we consider photoelectron diffraction effects in photoemission spectra. 

In particular, we discuss an important new effect in which the magnetic dichroism about 

a forward-scattering peak is found to exhibit a characteristic chessboard pattern. We 

provide a simple intuitive explanation of the effect. We also present theoretical re

sults based on a finite-cluster multiple-scattering calculation, and find that they are in 

excellent agreement with experiment. 

In chapter 7, conclusions are given and the prospects for future work are dicussed. We 

also include an appendix which provides details on utilizing group theory to symmetrize 

the basis functions and thereby greatly reduce the computational effort. 
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Chapter 1 

Introduction 

1.1 Historical Development 

The' photoelectric effect - also known more recently as photoemission or photoelec

tron spectroscopy - has played a central role in the development of physics for more than 

a century [1, 2]. In 1879, the Berlin Academy of Sciences offered a prize "to establish 

experimentally any relation between electromagnetic forces and the dielectric polariza

tion of insulators." Originally, the question had been posed to confirm Maxwell's theory 

of electromagnetic waves. In one of the great ironies of science, however, it ultimately 

led to the particle description of light. 

Heinrich Hertz took up the challenge posed by the Berlin Academy of Sciences, and 

conducted a series of experiments which led, by accident, to the discovery of the pho

toelectric effect [3]. His apparatus consisted of a primary and a secondary spark-gap 

circuit, separated by a dielectric medium. A spark in the primary circuit would induce 

a weak spark in the secondary circuit. The weakness of the secondary spark, how

ever, prompted Hertz to enclose it in a dark chamber to facilitate its observation. The 

unexpected result was that shielding the secondary circuit from the light dramatically 

decreased the maximum spark length. By systematically varying the dielectric materi

als, and performing a series of refraction experiments, Hertz was able to deduce that 

ultraviolet light from the primary spark was responsible for inducing the spark in the 

secondary circuit. 

Today, of course, we know that what Hertz was observing was the light-induced 
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emission of electrons. It was not until 1897, however, with the discovery of the electron 

by J.J. Thomson [4], that the second half of the picture could begin to be understood; 

within two years of his discovery, Thomson was also able to show that, the particles 

emitted by ultraviolet radiation were indeed electrons. 

In a parallel set of experiments, P. Lenard added a few crucial pieces to the puzzle. 

To carry out his investigations, he built what was perhaps the world's first electron 

spectrometer. It consisted of a cathode, which was excited by ultraviolet radiation, and 

an anode with a small aperture, through which photoelectrons would pass. On the other 

side of the anode was a bending magnet which would deflect the electrons. By analyzing 

these trajectories, Lenard was able to measure elm, and thereby independently confirm 

that the emitted particles were electrons [5]. Furthermore, by applying a voltage across 

the cathode and anode, he was able to show that there existed a stopping potential 

above which no electrons could pass: i.e., the photoelectrons possessed a maximum 

kinetic energy. Moreover, this stopping potential was found to be independent of the 

intensity of the incident light (although the total photocurrent did, of course, depend on 

it). Lenard's remarkable findings baffled the scientific community of the day: classically, 

increasing the rate at which electromagnetic energy impinged on the electrons would be 

expected to increase their kinetic energy as :well. 

Meanwhile, in a seemingly unrelated development, Max Planck was struggling to 

interpret experimental data on the spectral distributions of blackbodies. Reluctantly, 

he made the radical· hypothesis that the energies of the modes were quantized. In doing 

so, he was able to derive an expression, known today as Planck's law, that fit the 

experimental results. However, this revolutionary step required the introduction of a 

new fundamental constant, n. By fitting Planck's law to the experimental blackbody 

curves, Planck was able to estimate the value of n. 

It took a physicist of Einstein's genius to make the connection between the work of 



Lenard and the work of Planck. In doing so, Einstein placed the photoelectric effect 

on a firm theoretical foundation, and for this work was awarded the 1921 Nobel prize 

in physics. Einstein made the assumption that the energy quantization proposed by 

Planck also applied to light [6]. These light quanta, called photons, deliver all their 

energy to the electrons when absorbed. If w is the frequency of the light, the quantum 

of energy is nw. Thus, if <I> is the energy required to remove an electron from the surface 

(i.e., the work function), then conservation of energy says that the maximum kinetic 

energy of the photoelectrons is given by Tmax = nw - <I> - a result which immediately 

explained Lenard's findings. Furthermore, the kinetic energy could be simply related 

to the stopping potential Vo via Tmax = eVo. Therefore, Einstein's theory made the 

powerful prediction that a plot of Vo versus w would yield a straight line with slope n/e. 

R.A. Millikan, who in his celebrated "oil drop" experiment of 1909 had . made the 

first accurate determination of e, now set about to test Einstein's photoelectric equation. 

By 1916, careful experiments by Millikan [7] had shown conclusively that Vo was indeed 

linear in w. Furthermore, the value of n obtained from these slopes agreed with that 

obtained by Planck previously. It was an amazing triumph for theoretical physics that 

blackbody radiation and the photoelectric effect - two seemingly unrelated phenomena 

- could be related by Planck's new fundamental constant. 

With the development of modern quantum mechanics in the mid 1920s, there were 

additional advances in the theory of photoemission. For instance, in his theory of metals 

[8], Sommerfeld was able to relate the work function.<I> to other experimentally measur

able quantities such as the thermionic emission current [9] and the contact potential 

[10]. Another success of this period was the theory of work functions for alkali metals, 

published in 1935 by Wigner and Bardeen [11]. The alkali metals attracted early theo

retical interest due to their nearly free-elect ron-like nature, which made them tractable 

problems given the computational methods of the day. These theoretical advances all 
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dealt with photoemission from the outer or valence electrons. 

While progress was thus being made on the theoretical front, the inter-war years 

proved to be a low point for experimental advances in photoemission. The most notable 

contributions during these years were made by Maurice de Broglie (brother of Nobel 

prize winner Louis de Broglie) and H. Robinson, both of whose work involved emission 

from the inner or core electrons. M. de Broglie, who had discovered the L3 (2P3/2) edge 

using the technique of x-ray absorption, did succeed in measuring several of the K (Is) 

and L (2s+2Pl/2+2P3/2) photoemission lines for silver and copper [12]. However, he was 

not able to resolve the L fine structure due to the three levels involved. Disappointed 

with the poor energy resolution in his photoemission experiments, de Broglie turned his 

attention back to x-ray absorption and x-ray emission - techniques which, at the time, 

offered far better energy resolution. Robinson, on the other hand, continued his work 

on photoemission up until the second world war. He extended measurements to a wide 

variety of systems, and was able to see lines over a large range of core-level energies. 

Despite his efforts, however, Robinson was never able to adequately overcome the energy 

resolution problems, and photoemission as an experimental method fell into a period of 

inactivity. 

Another problem which hindered the development of photoemission, although it 

was not appreciated for many years, was surface contamination. The escape depth of 

a typical photoelectron ranges from 5-50 A, depending on the kinetic energy and the 

particular material. Therefore, even one monolayer of contaminant can have an adverse 

effect on the photoemission spectrum. For reactive metals, at a pressure of 10-9 torr, 

this coverage can be achieved in less than one hour. It was not until ultrahigh vacuum 

technology became commercially available, therefore, that photoemission could emerge 

as a fully controllable and viable spectroscopy. 

By the early 1950s, the prerequisite improvements in vacuum technology had been 



secured, and the stage was set for dramatic advancesin experimental photoemission. The 

use of core-level spectra for chemical analysis had been discussed, but with spectra of not 

much better resolution than Robinson's [13]. The man most responsible for turning x-ray 

photoelectron spectroscopy (XPS) into a powerful and reliable experimental tool was Kai 

Siegbahn, professor of physics at the University of Uppsala, Sweden. Siegbahn's initial 

training was in the area of high-resolution {3-ray spectroscopy, and he deftly applied many 

of these ideas and methods to the field of XPS. After years of extensive experimental 

development, Siegbahn constructed a magnetic spectrometer that could finally match 

the resolution of x-ray absorption. The first spectra were measured in 1954, and the 

sharpness of the lines allowed Siegbahn and his group to make accurate measurements 

of the core-level binding energies for a large number of elements. In the course of their 

investigations, they realized that the local chemical environment (e.g., surface atoms 

versus bulk atoms, local chemical bonds, surface contamination, etc.) could shift the 

energetic positions of the core levels. Measuring these "chemical shifts" soon became 

the primary focus of the group, and led to another name for core-level XPS: Electron 

Spectroscopy for Chemical Analysis (ESC A) [14]. Throughout the 1960s, Siegbahn and 

his group systematically measured these chemical shifts for a wide variety of atomic, 

molecular, and solid-state systems, and were able to extract an unprecedented wealth 

of information. In 1965, similar XPS studies were begun in the U.S. by Shirley and 

co-workers [15]. The success of this work, for which Siegbahn was awarded the Nobel 

prize in physics, led to a surge of interest in photoelectron spectroscopy. 

Ultraviolet photoelectron spectroscopy (UPS), the low-energy counterpart of XPS, 

also benefitted during this period from advances in instrumentation. For example, elec

tron spectrometers based on electrostatic rather than magnetic principles, and improved 

photon sources, such as the 21.2 e V helium lamp, both led to increased energy resolution. 

The most important early applications of UPS to solids were by Spicer and co-workers 
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at Stanford [16]. 

Another great experimental advance was the advent of synchrotron radiation in the 

1970s. This form of light, produced by' accelerating relativistic electrons, is charac

terized by high brightness and well-defined photon polarization over a wide range of 

energies (typically ultraviolet to hard x-ray). Synchrotron radiation offers many pow

erful advantages over conventional photon sources. For instance, the high intensity of 

the synchrotron beam means that experiments may be performed with unprecedented 

energy resolution. Furthermore, entire new classes of experiments, such as time-resolved 

photoemission, are made possible due to the high count rates. 

An even more desirable characteristic of synchrotron radiation is the continuous dis

tribution of photon energies; whereas a conventional photon source (e.g., x-ray lamp) 

is capable of only certain discrete excitation energies, a synchrotron source is tunable. 

Since the photoelectron escape depth depends on the kinetic energy, varying the incident 

photon energy is equivalent to sampling at different penetration depths. In this way, 

the photon energy can be tuned to act either as a surface-sensitive probe or as a bulk

sensitive probe. Another example which deserves special mention is the case of resonant 

photoemission. In 1977, a group at the Orsay synchrotron source reported that, as the 

photon energy exciting the 3d valence bands ,of Ni passed through the threshold of excit

ing the Ni 3p core level, a resonant enhancement of the 6-eV valence satellite occurred 

[17]. This measurement, which would not have been possible without synchrotron radia

tion, proved the two-hole nature ofthe satellite and the inherently many-electron nature 

of such resonances, and also gave birth to the new field of resonant photoemission. 

Another extremely important application of synchrotron radiation is in the determi

nation of electronic band structure. Knowledge of the electron dispersion relations, in 

principle, allows one to derive many other experimentally measurable quantitities (e.g., 

optical properties, transport properties, etc.). Although band structures have been cal-



culated since the 1930s, it was not until the 1970s that experimentalists were able to 

measure them. This requires angle-resolved photoelectron spectroscopy (ARPES) in 

order to extract the k-dependence of the initial state. As first demonstrated by Smith 

[18), the k conservation law involved requires that the component of k parallel to the 

surface is conserved, but not the perpendicular component. By varying the polar an

gle of emission, one can scan this parallel component. By properly tuning the photon 

energy, one can also scan the component of the wavevector normal to the surface and 

thereby map out the complete bulk band structure. 

When used in conjunction with spin detection, this method (known as spin-polarized 

ARPES, or SPARPES) can be used to map out the band structures of ferromagnetic 

systems: In a ferromagnet, the spin degeneracy is broken, and the energy dispersion 

curves split into majority and minority bands. In 1985, Kisker et al. [19) used this 

technique to measure the exchange splitting (Le., the energy separation between peak 

positions of the majority and minority bands) of the valence band in ferromagnetic Fe. 

Furthermore, by performing the experiment at different temperatures, they obtained 

important insight into the nature of the ferromagnetic- to-paramagnetic phase transition. 

The polarization of the photon beam is another aspect of synchrotron radiation that 

is extremely useful for magnetism studies. In the orbital plane, the light is linearly po

larized, but it acquires a large degree of circular polarization above or below the plane. 

This property of the light can be exploited in core-level photoemission studies via the 

technique of magnetic dichroism. The photon polarization, which acts directly only on 

the electron orbital wavefunction (characterized by quantum numbers I and ml), can 

couple indirectly to the electron spin (characterized by quantum numbers ms = ± ~) 

,_ via core-level spin-orbit interaction. The spin of the core electron, in turn, couples to 

the spin of the valence electrons through the intra-atomic exchange interaction, leading 

to what can be very large ('" several e V) multiplet splittings in core-level spectra from 

7 
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magnetic atoms [20]. In this way, the light is indirectly coupled to the spin-polarized 

valence band. As a result, the core-level photoemission spectrum depends on the rela

tive orientation between the photon polarization vector and the sample magnetization. 

The first study to utilize synchrotron radiation as a magnetic probe in a core-level pho

toemission experiment was performed by Baumgarten et al. [21] in 1990 . They used 

circularly polarized light to estimate the exchange splitting of the Fe 2p core electrons, 

and their success has prompted a flurry of activity in magnetic dichroism. For instance, 

it w~s soon realized that, in an angle-resolved photoemission experiment with the proper 

geometry, magnetic properties and exchange splittings could also be measured with lin

early polarized excitation. In 1993, Roth et al. [22] used this approach to probe the 

magnetic structure of the higher-lying Fe 3p core level. Even more remarkable was the 

discovery by Hillebrecht et al. of magnetic dichroism in photoemission with the sort of 

unpolarized radiation available in a typical laboratory XPS system [23]. This result has 

opened the possibility of also using conventional x-ray sources as a probe of magnetic 

materials. 

An alternative approach, which can be carried out with either synchrotron radi

ation or conventional x-ray sources, is to directly measure the spin of the outgoing 

photoelectron. Due to extremely low signal·s, spin-resolved measurements typically re

quire an additional four orders of magnitude in data acquisition time, as compared to 

conventional measurements. Given the relatively low photon fluxes of prior-generation 

synchrotron radiation sources and conventional x-ray sources, and the weak signals in

herent in spin-resolution, initially it was not even clear that the spin polarization of 

the core levels could be experimentally resolved. By now, however, such meas1!rements 

have been successfully carried out in both shallow core levels [24] and deep core levels 

[25, 26, 27]. The first such studies on the deep core levels of the itinerant ferromagnets 

were carried out beginning in 1993 by the Klebanoffgroup at Lehigh University. They 



used a conventional source and measured the spin-resolved core-level spectra for Fe [25], 

Co [26]: and Ni [27] with sufficient resolution to reveal a rich and fascinating structure. 

This work demonstrated conclusively that spin-polarized core-level photoemission was 

a viable probe of magnetic systems. 

Photoelectron diffraction is another area of photoemission that has led to important 

advances in surface physics and magnetism [28]. The basic idea is that an outgoing core 

photoelectron will scatter off other atoms on the way out, and that these scattered waves 

will interfere with the primary wave. In a single-crystal sample: such diffraction will give 

rise to intensity modulations. The two basic ways for measuring these modulations are 

to either vary the photoelectron takeoff direction (scanned angle method), or to vary 

the incident photon energy (scanned energy method). 

By now it is well understood that for high kinetic energies (above several hundred 

eV), the scattered intensity is strongly peaked in the forward direction. This feature can 

be exploited, for example, to deduce the orientations of adsorbed molecules on surfaces 

[29], or to characterize epitaxial overlayers [30]. 

Imaging of atomic positions via holographic inversion of photoelectron diffraction 

patterns is another promising development in photoemission studies. Barton [31], pur

suing a suggestion first made by Szoke [32], was the first to demonstrate that, in prin

ciple, diffraction data could be used to deduce atomic positions relative to the emitter. 

Theoretical studies suggest that this method can also be extended to study short-range 

magnetic order [33]. 

Photoelectron diffraction has also been found to have important consequences in 

the analyis and interpretation of magnetic dichrosim experiments. Until now, most 

theoretical work on magnetic dichroism has completely neglected diffraction effects. 

Very recently, however, Fanelsa et al. [34] conducted an experiment which directly 

probed such effects. They discovered that photoelectron diffraction can indeed be the 
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dominant effect, and must be taken into account in any theoretical analysis of data from 

single-crystal samples. 

1.2 Basic Theory of Core-Level Photoemission 

In a typical photoemission experiment, light of a definite energy and polarization 

impinges upon. a sample, exciting the electrons into free electron states far above the 

Fermi level. The kinetic energy, wavevector, and perhaps also the spin of these photo-

electrons are then measured. Our objective here is to outline how such an angle- and 

spin-resolved spectrum can be calculated, and to briefly discuss some of the assumptions 

that are commonly employed. 

The effect of the electromagnetic radiation is to induce a perturbation Hamiltonian, 

I e --H = -2 -(p·A+A·p), 
me 

, (1.1) 

where p= -in-V and A = A(r, t) is the vector potential. It is always possible to choose 

a gauge such that V·· A = 0, in which case [p, X] = 0, so that H' reduces to 

H ' - e A- --- .p. 
me 

(1.2) 

We assume that the vector potential can be written in the following form 

A(r,t) = €Aoexp[i(q·r-wt)] , (1.3) 

which gives 

H ' e A ['( - - )]--= -.'1.0 exp z q. r - wt E· P . 
me 

(1.4) 

The transition rate Ri-J (i.e., photoemission intensity) between the initial state IWi} 

which contains the core electron, and the final state IWf(k)) which contains a core hole 

and an outgoing photoelectron with wavevector k is now calculated from time-dependent 

perturbation theory via Fermi's golden rule: 

211" 2 
Ri-f = "FIMifl p(E) , (1.5) 



where p( E) ex: El/2 is the photoelectron density of states at energy E and 

I Mil/
2 = /(W I(k)/A· P1WiW (1.6) 

1i2 A6/(W I(k)/ exp( iq· r}€. V/WiW . 

At this point one usually makes the electric dipole approximation. That is, we 

approximate exp( iq . r) ~ 1. . This is equivalent to saying that the wavelength of the 

light is much larger than the spatial extent of the core wavefunction. The wavelength of 

a 2 KeV x-ray is '" 6..\, whereas the spatial extent of a highly localized core electron is 

'" 0.5A. Therefore, the electric dipole approximation remains a very good one well into 

the soft x-ray regime. 

By utilizing the dipole approximation and the commutation relations, the matrix 

elements Mil ofEq. (1.6) can be rewritten as 

(1. 7) 

where C is a product of fundamental constants and .4.0. If the core electron is charac

terized by orbital quantum numbers 1 and m[ and spin m s , and the photoelectron by Ii, 

m{, and m{, then the dipole selection rules require that 

fj.I = 11 -I = ±1 (1.8) 

fj.m[ m{ -m[ = 0, ±1 

fj.ms m{ - ms = O. 

This gives rise to two photoemission channels: 1 + 1 and 1 - 1. In subsequent chapters, 

we will investigate important effects that result from interference between these two 

channels. 

The initial state / Wi) is given by the ground state of the N -electron system prior 

to excitation. For weakly correlated systems, IWi) may be written as a single-particle 
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wavefunction corresponding to the core electron. More generally, however, the many

body nature of l'iIii) must be included, for example, by using a configuration interaction 

(CI) approach and writing it as a linear combination of Slater determinants. 

The final state I 'iIi f(k»), which contains a core hole and an outgoing photoelectron 

with wavevector k must also, in general, be described by an N-electron many-body 

wavefunction. Usually, the coupling between the photoelectron and the (.N - 1 )-electron 

state left behind is considered negligible. Therefore, 1'iIiJ{k») consists of two parts, and 

can be written formally as 

(1.9) 

Here, l'iIij(N - 1») is a many-body eigenstate of the system in the presence of a core 

hole, and l4>f(k») is the one-electron wavefunction for the outgoing photoelectron. Thus, 

the wavefunction I 'iIi f( k») contains much interesting physics. This gives rise to phenom

ena that are appropriately called "final-state effects", and of which we may distinguish 

between two distinct types, one involving l'iIij(N - 1») and the other involving l<Pf(k»). 

The first type of final-state effect is strictly of a many-body nature and is the result of 

the many-electron response to the sudden creation of a core hole. Upon photoemission; 

the valence electrons feel the attractive potential of the core hole and rush in to screen it. 

The energy of the final state then depends on the Coulomb interaction energy between 

the core hole and the valence electrons. Energy conservation therefore implies that 

the spectral density does not occur as a single sharp peak, but rather is distributed in 

energy. This is the origin of multiplet splittings and satellite structures in photoemission 

spectra. Also, because the energy depends on the spin orientation of the core hole due 

to exchange, the satellite structures can have a large spin polarization. The strength of 

the satellite peaks is determined by the many-body overlap integral between the (N -1) 

electrons in the ground state l'iIii) excluding the core hole involved in the photoemission, 



and the orbitals in the (N - 1) final state Iwj(N - 1)). 

To calculate this overlap integral, one typically employs the sudden approximation. 

This is equivalent to saying that the ground state charge density does not change much 

within the time it takes for the photoelectron to escape. We now estimate the validity of 

the sudden approximation. Let tl be the characteristic time for the valence electrons to 

rearrange. Then tl '" ~, where T is the valence bandwidth. Let t2 be the time required 

for the photoelectron to escape. Thus, t2 '" ~, where d is the size of the atom and v is 

the speed of the photoelectron. For the sudden approximation to be valid requires that 

tl » t2, or v » Tnd . Typically, T"" 5 eV and d"" 2 A, so that we require v » .0Ie. 

This indicates that the sudden approximation is valid for photoelectrons with kinetic 

energy above several tens of e V, as is the case for all systems treated here. 

The second type of final-state effect is due to the photoelectron scattering off of 

the lattice on the way out of the crystal, and may be treated within the one-electron 

approximation. The scattered waves can interfere constructively or destructively with 

the direct (unscattered) wave, thus producing intensity modulations in energy and/or 

angle. The scattered waves, in principle, can themselves be scattered off the lattice, 

thereby leading to a multiple scattering description. The basic effect, however, can be 

understood within the single scattering approach. 

Let l<Po(k)) be the direct or unscattered photoelectron wave in the directionk. Let 

I<pj(k)) be the singly-scattered ,,:"ave with wavevector k that results from scattering of the 

direct wave l<Po) from an atom j. The total wavefunction, which is just the superposition 

of the direct wave plus all singly-scattered waves, can be written 

I<pj(k)) = l4>o(k)) + L I<pj(k)) . 
j 

(1.10) 

The scattering process that gives rise to the l4>j(k)) can be described most simply 
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by means of the complex plane-wave scattering factor 

1(8) = If(8)1 exp[i8(8)] , (1.11) 

where If(8)1 gives .the magnitude of the scattered wave, 8(8) gives the scattering phase 

shift, and 8 is the scattering angle. The simplest way to calculate f(8) is to assume an 

incident plane wave and then use the partial-wave phase shifts 8/, 

1 00 . 

f(8) = k L:(21 + 1)e10
/ sin(8/)P/(cos8) , 

/=0 

(1.12) 

where k is the . magnitude of the photoelectron wavevector and Pz is the Legendre poly-

nornial [35]. For large kinetic energies, above say a few hundred eV, the function If(8)1 

becomes strongly peaked around 8 ~ 0, so that the forward scattering is strongly en-

hanced. 

The complex plane-wave approach to the scattering pr,ocess implicitly assumes that 

t~e curvature of the scattering wave is sufficiently small compared to the dimensions 

of the scattering potential. A more realistic treatment should take into account the 

spherical nature of the outgoing waves, and all of the calculations reported in this thesis 

have made use of this more accurate approach. Comparisons between the plane-wave 

scattering and the more accurate spherical-wave scattering can be found in the literature 

[36]. 

1.3 Thesis Overview 

In this thesis, we present a theoretical investigation of core-level photoemission from 

ferromagnetic Fe and Ni. The inspiration and experimental basis for this work lies in 

the spin-resolved studies of Klebanoff. Good results are obtained for Fe within a phe-

nomenological one-electron theory. The primary theoretical effort, however, is aimed at 

Ni. Due to its pronounced satellite structures, Ni is a particularly intriguing system to 



examine, and requires an accurate many-body approach. Emphasis is placed on under

standing and disentangling the subtle and competing effects of spin-orbit interaction, 

extra-atomic screening, and many-body exchange and correlation. The effects of photon 

polarization and spin resolution are also investigated. Although ferromagnetic Co is not 

explicitly considered, the data suggest [26J that Co may be treated in a way analogous 

to Fe. 

In Chapter 2, we present a one-electron theory which describes angle-resolved pho

toemission from a core level in the presence of spin-orbit and exchange interaction. The 

theory is applied to the case of Fe 2p, and the resulting spectra agree well with both ex

perimental spin-resolved measurements as well as magnetic dichroism studies. However, 

this one-electron approach is not adequate for describing Ni due to strong many-body 

interactions. 

In Chapter 3 we present a theoretical model to describe photoemission from ferro

magnetic Ni. Theoretical spin-resolved spectra are calculated for Ni 2p and found to 

be in excellent agreement with experiment. Magnetic dichroism due to circular- and 

linear-polarized excitation is also discussed. In this chapter, we also carry out the first 

quantitative investigation of the nature of the final state, and the various peaks in the 

spectrum are assigned physical meaning. As an appendix to Chapter 3, we discuss the 

group-theoretical analysis employed in diagonalizing the Hamiltonian. 

In Chapter 4 we present theoretical spin-resolved spectra for photoemission from the 

Ni 3p core level, and these results also agree very well with experiment. In addition, 

we present spectra for magnetic dichroism with circular-polarized excitation. Again, we 

provide the first quantitative analysis of the Ni 3p final state, and physically interpret 

all features of the spectrum. Moreover, by considering a simple 2x2 model, we derive an 

analytic expression for the satellite intensity. This analysis provides important insight 

into the question of spectral weight transfer. 
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In Chapter 5 we treat the case of magnetic dichroism from Ni 3p using linear

polarized excitation, and the theoretical results· agree very favorably with experiment. 

This case merits special attention because it represents the best experimental data avail

able for Ni magnetic dichroism, and because it relates to the controversy regarding the 

Ni surface orbital magnetic moment. 

In Chapter 6 we describe the recent magnetic dichroism experiment by Fanelsa et 

al. [34] which proved the importance of photoelectron diffraction in the analysis of 

such data. We also present theoretical simulations based on a multiple-scattering finite

cluster approach. The calculated results are found to be in very good agreement with 

experiment. Finally, we use a simple physical argument to derive an analytic expression 

for the observed dichroism. 

In Chapter 7, conclusions and prospects for future work are given. 



Chapter 2 

One-Electron Theory of Core-Level Photoemission from 

Ferromagnets 

2.1 Introduction 

In recent years there has been great interest in utilizing core-level photoelectron 

spectroscopy to probe the local electronic and magnetic structure of the itinerant fer

romagnets. In the shallow 3p core levels, the spin-orbit and exchange interaction are 

roughly equal in magnitude, leading to heavy hybridization between the 3P3/2 and 3Pl/2 

lines. This is in contrast to the deep 2p core levels, where the spin-orbit interaction is 

much larger than the exchange interaction. As a consequence, the 2P3/2 and 2Pl/2 main 

lines are well separated in energy, and experience little mixing. These characteristics 

help simplify the spectroscopic interpretation, and therefore make the 2p core levels 

particularly instructive to examine. 

One approach to using photoemission as a probe of magnetic systems is to directly 

measure the spin of the outgoing photoelectron, a method known as spin-resolved x

ray photoelectron spectroscopy (SRXPS). Due to the Pauli principle and the resulting 

exchange interaction, core electrons with spin parallel to the majority in the valence 

band will have their binding energy increased relative to electrons with spin anti-parallel. 

This effect appears as a shift in spectral weight to higher binding energy for the majority 

photoelectrons. Spin-resolved studies have by now been carried out on the ferromagnetic 

transition metals for both the shallow core levels [24J as well as the deep core levels 

[25, 26, 27J. The core-level spectra for Ni exhibit prominent satellite structures with 
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complex spin polarizations, a proper description of which requires an accurate many

body approach [37, 38, 39]. Core-level spectra of Fe and Co, on the other hand, do not 

exhibit such pronounced satellite structures, and one-electron theories have been used 

with success to describe these systems [40, 41}. 

An alternative to SRXPS - which does not require photoelectron spin resolution -

is magnetic dichroism. The first observation of magnetic dichroism in core-level photoe

mission was by Baumgarten et al., who performed angle-resolved measurements using 

circularly polarized light - a technique known as magnetic circular dichroism in the an

gular distribution, or MCDAD - to deduce an effective exchange splitting of the Fe 2p 

main lines [21]. In MCDAD studies, two distinct methods of measurement have been 

employed: fixing the magnetization and reversing the photon helicity, or fixing the pho

ton helicity and reversing the magnetization. If linear-polarized excitation is used, then 

dichroism can only be observed by reversal of the magnetization, and Hillebrecht et al. 

used this approach to probe the Fe 2p core level [42}. This method also requires an

gular resolution of photoelectrons, and is therefore known as magnetic linear dichroism 

in the angular distributions, or MLDAD. It is possible to observe dichroism even with 

unpolarized light, an effect which can be termed MUDAD, and such studies have been 

carried out for several itinerant ferromagnetic systems [23, 34, 43}. 

In this chapter we present a one-electron theory to describe angle- and spin-resolved 

photoemission from a core level ·under the spin-orbit and exchange interactions. We do 

not include final-state photoelectron scattering and diffraction effects, although these 

are by now recognized to be important when studying single-crystal samples in certain 

geometries [34]. Our formulation treats an oriented atom for which the only effect ofthe 

magnetic solid is to induce an exchange splitting ofthe different sublevels, and it allows in 

a simple way to treat a general photon incidence direction and polarization. Cherepkov 

has also used a similar model to theoretically describe angle-resolved photoernission 



from oriented atoms [44, 45]. He calculates the photoemission intensity in terms of the 

partial photoionization cross section, the state multipoles, and a somewhat complicated 

set of terms that describe the coupling of the various angular momenta. Cherepkov's 

formalism, though quite powerful and general, has the disadvantage of being rather 

difficult to interpret in an intuitive way. In our approach, the only parameters that 

enter have an immediate and obvious physical meaning (e.g., photoelectron takeoff angle, 

photon polarization, spin-orbit and exchange strengths, etc.). We believe, therefore, that 

the present formulation is more transparent, and may be useful for \vorkers in need of a 

more straightforward method of calculating spin polarization and magnetic dichroism in 

photoemission from a p core level. Another important difference between our approach 

and Cherepkov's is that we allow for mixing between the j = 1+ 1/2 and j = l-1/2 levels 

by explicitly including the exchange interaction in our Hamiltonian. Such an approach 

is necessary to correctly describe the spin-resolved transfer of spectral weight across the 

levels. In other words, Cherepkov assumes that jmj are good quantum numbers for the 

core hole, whereas in our model only mj is a good quantum number. 

As examples, we apply our theory to Fe 2p SRXPS and MUDAD experimental 

spectra. The theory correctly reproduces the main features of the spectra, although 

it does not account for some details. We attribute these discrepancies to many-body 

effects not describable within the one-electron model considered here. In particular, we 

show that the experimental results indicate the existence of weak satellite structures 

in Fe 2p photoemission spectra. Finally, we discuss an example which illustrates the 

differences between the magnetic dichroism arising from reversal of magnetization with 

that arising from reversal of photon helicity. 
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2.2 Theory 

The electric dipole operator is defined as 

Te = r· € = XEx + yEy + ZEz , (2.1) 

where r is the electron coordinate vector, 

_ . [(X) . (Y) . (Z) . ] r = rr = r -;: €x + -:;: €y + -:;: €z , (2.2) 

and € is the electric field polarization 

(2.3) 

To describe the most general photon polarization, the expansion coefficients Ei must be 

complex. Using the usual relations for the spherical harmonics, 

we can rewrite the electron coordinate unit vector as 

[4ir ("V-I. yl' "VO· ) = V3 .II €+- 1€-+.II€z , 

where we have introduced the circular-polarized basis vectors 

In terms of this new basis, the photon polarization vector can be rewritten 

(2.4) 

(2.5) 

(2.6) 

(2.7) 



where 

Cx + icy 
L= V2 . 

The dipole operator is then given by: 

T - - (41r (VI v-I VO) (=r.c=rYT -.lIC++.lI c-+.lICz 

(2.8) 

(2.9) 

(2.10) 

This is a convenient basis for circular-polarized light propagating in the z direction, or 

for z-polarized light propagating along an arbitrary direction in the xy plane. However, 

such an expression is not immediately useful for a general polarization and geometry, 

as depicted schematically in Fig. 2.1 for an oriented atom. Here, k is the photoelec-

tron wavevector, and q is the photon wavevector. We now proceed to generalize our 

development for this geometry. 

The dipole operator as written in Eq. (2.10) is defined by six real (three complex) 

numbers. One of these can be related to an overall phase factor, and another can be 

related to a normalization condition, neither of which are important for present purposes. 

This leaves four remaining independent numbers to define the polarization. Due to the 

transverse nature of the electric field, two of these are defined by the photon propagation 

direction, which is given in Fig. 2.1 by ((}q, </>q). The other two are defined by the relative 

magnitude and phase difference between the two orthogonal components of the electric 

field. For a normalized polarization vector €, this can be written in spherical coordinates 

in terms of two angles Q and 8 as 

(2.11) 

For Eq. (2.10) to be useful for a general photon polarization and propagation direction, 
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we need to express the polarization coefficients E+, L, and Ez in terms of the four new 

parameters 8q, </>q, a, and 8. For a general propagation direction, the normalized dipole 

operator is 

_. {4T. (v-1 . v1' vo.) ( . . is· ) r·E=rVT.I1 e+-.I1 e_+.I1 ez • cosaee+smae e¢ , (2.12) 

where 

(2.13) 

Now using 

(2.14) 

we obtain the desired result: 

, (2.15) 

ei¢q [. . ] 
E_ = v'2 cos a cos 8q + i sin aetO , 

Ez = -cosasin8q • 

To illustrate the use of these relations, consider right circularly polarized (RCP) 

light propagating along the +z direction, so that 8q = 0°. We here define RCP light to 

have positive helicity, which means that a = 45° and 8 = 90°, and therefore we arrive 

at IE+I =. 1. From Eq. (2.10), we see this corresponds to T~ '" Yl, i.e., the photon 

angular momentum is parallel to the wavevector q. As another example, let 8q = 90° 



and <pq = 0°, so that the photon is propagating along the +x direction (see Fig. 2.1). 

Suppose 00 = 90° and b = 0°, so that € = e¢ = ey • Then Eq. (2.15) gives E+ = -i/V2 

and L = i/V2, so that we recover Te '" i(Yl + y1-
1

) '" y. 

The 00 and b defined here can also be related to the very commonly used Stokes 

parameters [46] by 

51 = cos 200 (2.16) 

52 sin 200 cos b 

53 sin 200 sin b , 

which gives So = Js? + 5~ + S5 = 1. For a surface normal given by n = z, Sl gives the 

preponderance of p-linear polarization (€ = e6) over 5-linear polarization (€ = e¢», with 

51 = +1 corresponding to p-polarization and 51 = -1 corresponding to 5-polarization. 

The Stokes parameter 53 gives the preponderance of RCP over LCP light, with S3 = +1 

corresponding to RCP, and 53 = -1 corresponding to LCP. 

Let Iw kO') be the wavefunction for the outgoing photoelectron with wavevector k and 

spin (7, and let I qr core) be the wave function for the core electron in the initial state. The 

intensity is then given by 

(2.17) 

where EE is the binding energy of the core electron, Ek is the kinetic energy of the 

photoelectron, and !iw is the photon energy. 

The final state, for emission into a general direction k, is given by a superposition 

of spherical waves [47], 
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'Ifk<T(r,O,</» = 471" L>Ze-i5IYi~(Ok'</>k)Yim(O,</»!kz(r)0", (2.18) 
Zm 

where Cz are the partial wave phase shifts, and fkZ( r) are the radial wavefunctions at 

kinetic energy Ek = ii2 k 2 /2m. The special case Of a plane wave is recovered by setting 

all Cz = 0 and ikz(r) = jz(kr), where iz(kr) is the spherical Bessel function of order 

1. In this work, we do not consider photoelectron diffraction effects in the final-state 

wavefunction, which would modify 'If ku further by scattering from neighboring atoms. 

The initial state 'If core is given by 

(2.19) 

where fnl(r) is the radial wavefunction and ~<T(O,</» is the part depending on angle and 

spin. To determine ~<T(e, </», we follow the approach discussed by van der Laan [48]. We 

include the spin-orbit interaction and treat the exchange interaction by means of a spin 

field. The Hamiltonian is therefore given by 

(2.20) 

As our basis states, we choose the Ii, mj) spin-orbit states, which can be constructed 

directly from the Clebsch-Gordan coefficients: 

13/2 3/2) = Iyl j) (2.21) 

13/2 1/2) V2/3IYIO j) + f1j3lYl1) 

13/2 - 1/2) = V1/3IYI-
1 j) + V2/3IYIO 1) 

13/2 - 3/2) = ly1-
1 1) . 

11/2 1/2) = V1/3IYIO j) - V2/3IYl1) 

11/2 - 1/2) V2/3IYl-1 j) - f1j311;° 1) . 



The Hamiltonian in this basis then becomes: 

3.:\ +3~ 0 0 0 0 0 

0 3.:\+~ 0 0 V8r 0 

1 0 0 3.:\ -~ 0 0 V8~ 
H=- (2.22) 

6 0 0 0 3.:\ - 3~ 0 0 

0 V8~ 0 0 -6.:\ - ~ 0 

0 0 V8~ 0 0 -6.:\+ ~ 

The introduction of a spin field breaks the rotational symmetry, and so j = 3/2 and 

j = 1/2 levels are allowed to mix, as evidenced by the off-diagonal terms. About the 

magnetization axis, however, rotational symmetry is preserved, and so mj is still a good 

quantum number. In the limit .:\ » ~ - which is closely realized for a 2p core level- the 

P3/2 and Pl/2 levels are shifted energetically by +,:\/2 and -.:\, respectively, leading to a 

spin-orbit splitting of 1.5.:\, and an exchange splitting of ~/3 appears between adjacent 

mj sublevels. The level scheme for this limit is shown in Fig. 2.2. 

For general .:\ and ~, Eq. (2.22) can be easily diagonalized to obtain the angular 

eigenstates ~(7( 8, </». To calculate the matrix elements of Eq. (2.17) for a general initial 

state Wcore , it is thus sufficient to know the matrix elements for the jj, mj) basis states. 

These have been computed for the three basic photon polarizations t = T Yl, r y1-
1 

, 

and T y1o, and are presented in Tables 1, 2, and 3, respectively. In these tables, 8k and 

</>k define the photoelectron wavevector. The RI are defined as RI = Rleio1 , where RI are 

the radial matrix elements for the two dipole-allowed final state channels, 

(2.23) 

and the 01 are the respective phase shifts. These matrix elements and phase shifts have 

been calculated and tabulated by Goldberg, Fadley, and Kono [47], for several elements 
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and energies. 

To summarize, we assume that we have an oriented atom magnetized in the z di

rection, as shown in Fig. 2.1. The photon incidence direction (8q, </>q) and polarization 

(a, b) defines the dipole operator via Eq. (2.15) and Eq. (2.10). Dipole matrix elements 

between the Ii, mj) basis states and the outgoing photoelectron can now be determined 

using Tables 1-3. The appropriate linear combinations of these can be formed by diago

nalizing the Hamiltonian in Eq. (2.22), which also determines the energies of the states. 

Finally, Eq. (2.17) can be used to calculate the spin-resolved intensities of each line. 

2.3 Results and Discussion 

2.3.1 Spin-resolved spectra 

In Fig. 2.3( a) we present experimental spin-resolved spectra due to Van Campen et ai. 

[25] Data were smoothed by one cycle of equal weight three-point averaging. The poly

crystalline Fe sample was magnetized in-plane along what we take to be the +z direction 

(see Fig. 2.1) and irradiated with a Mg Ka (1iw = 1253.6 eV) x-ray source. Photoelec

trons were collected normal to the surface plane (k '" ex) and their spin measured along 

the magnetization axis. The photon q was defined by 8q = 117° and <Pq = 142.5°, which 

is a chiral geometry. To eliminate spin-orbit-induced spin polarization due to chirality, 

spin-resolved spectra were averaged over both magnetic orientations. In Fig. 2.3(a), 

photoelectrons with spin parallel to the majority in the valence band are given by the 

solid line, and the corresponding minority spectrum is given by the dashed line. For both 

levels, an exchange splitting is clearly evident; i.e., the peak of the majority spectrum 

is shifted to higher binding energy. Except for the leading edge of the 2P3/2 main line, 

the experimental spectra show a strong majority spin polarization throughout. Part of 

this is due to the spin polarization of the secondaries. To permit a more meaningful 



comparison with theoretical results, we subtract from the experimental results a sim

ple linear background that eliminates the spin polarization at the leading and trailing 

edges. The resulting spectra are presented in Fig. 2.3(b). In Fig. 2.3( c) we present the

oretical spin-resolved spectra calculated for the same experimental geometry described 

above, and also averaged over both magnetic orientations to eliminate spurious spin 

polarizations. We use a spin-orbit splitting of 13 eV (>. = 8.67 eV) and a spin field of 

_ ~= 1.20 e V, and the resulting lines were convoluted using a Doniach-Sunjic lineshape 

with singularity index Q = 0.35 and Lorentz broadening 1.2 e V FWHM. These values 

were chosen to best fit the experimental lineshapes and peak positions. Overall, the 

theoretical results are in good agreement with the background-subtracted experimental 

results. In Fig. 2.3( d), the theoretical and experimental spin polarizations are plotted. 

These difference spectra were normalized to the peak height of the spin-integrated in

tensity. The theoretical difference spectra also agree well with the main features of the, 

experimental results, which are characterized by plus/minus features at both levels. 

A more careful comparison yields the following observations: 

(1) Experimentally, the main line for the majority spectrum is shifted rv 0.5 eV to 

higher binding energy (relative to the minority position) for both 2P3/2 and 2Pl/2. In 

our calculation, it is approximately 0.85 eV for 2P3/2 and 0.30 eV for 2Pl/2. A more 

realistic treatment of the many-body interactions may account for this discrepancy. For 

instance, by including many-body terms in an accurate way, it was found theoretically 

that the energetic splittings of the 2P3/2 and 2Pl/2 main lines in Ni 2p are approximately 

equal [38]. 

(2) In both theory and 'experiment, the minority peak intensity is enhanced at the 

2P3/2 main line, and majority peak intensity is enhanced at 2Pl/2. This result is a 

consequence of the off-diagonal terms in Eq. (2.22), which lead to mixing between the 

2p3/2 and 2Pl/2 levels. Without such mixing, the majority and minority peak intensities 
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would be equal, even though the peaks would occur at different binding energies due to 

exchange. 

(3) Experimentally, the lineshapes are spin dependent, with the lineshapes for the 

majority photoelectrons being more asymmetrical. In other words, the majority spec

trum exhibits greater strength in the high-binding-energy tail, and correspondingly less 

in the main line. This is especially evident for the 2P3/2 main line. Such intensity 

profiles are indicative of satellite structures. In Ni, such spin-dependent lineshapes are 

also found, both experimentally [27] and theoretically [38, 39], and are a consequence 

of well-known satellite structures. Theoretically, the satellite is expected to have a ma

jority spin polarization because the mean majority satellite position is shifted to higher 

binding energy, and the high-binding-energy side of the satellite transfers less spectral 

weight to the main lines [38, 39]. 

2.3.2 Magnetic dichroism 

In a magnetic dichroism experiment, light with a definite polarization impinges upon 

a magnetic sample, and the photoemission spectrum with a definite magnetization (M i 

or M 1) is measured as IMT or 1M!. In one way of measuring the dichroism, the mag

netization direction is simply reversed, and the difference spectrum IMT - 1M! gives the 

magnetic dichroism. It is instructive to consider the limit >. > > ~, which is approxi

mated by a 2p core level in Fe. For this limit, to first order, the core eigenstates are 

given simply by the Ij, mj) spin-orbit eigenstates, and the energy separation between 

adjacent mj sublevels is ~/3. In this case, reversing the magnetization will not change 

the intensities ofthe states, but will merely interchange the energetic positions of Ij, mj) 

and Ij, -mj). Such a situation is shown schematically in Fig. 2.2. Therefore, in this 

limit, the magnetic dichroism for a given line is calculated simply by considering a single 

magnetic orientation and taking Iii, mj) - Iii, -mj)' 



For RCP excitation, and the special case of photon q parallel to the magnetization 

M, this intensity difference is 

2P3/2: 113/2, 3/2) - 113/ 2, -3/2} = 3~MCDAD 

1 13/ 2, 1/2) - 113/2, -1/2} 

2P1/2: 111 / 2, 1/2) - 111/2, -1/2) = 2~MCDAD, 

where ~MCDAD gives the angular distribution of the dichroism: 

~MCDAD = ~ (3R~ sin2 Ok - R5 - R~ - RoR2 (3 cos2 Ok - 1) cos(Oo - 02)) 

(2.24) 

(2.25) 

MCDAD can be qualitatively explained as a result of the spin polarization induced 

by circular-polarized excitation. At certain takeoff directions, there may be strong pref

erential emission of a given spin component - say spin up - at one of the levels. If the 

magnetization direction is also up, then this peak is primarily minority in character, and 

so is shifted to lower binding energy. When the magnetization is reversed, the spin po

larization does not change (still spin up), but the peak is now majority in character and 

so shifts to higher binding energy, thereby leading to different spectra upon magnetic 

reversal. 

With linear-polarized excitation, there can also be an induced spin polarization, 

which in turn leads to an angular-dependent magnetic linear dichroism (MLDAD). Foor 

example, let the dipole operator be given by T, '" y (Le., q '" ex and a = 90°). The 

induced spin polarization is then 

2P3/2: Ir - h = (2.26) 

The magnetic dichroism is calculated in the same way as before, 

2P3/2: 113/2, 3/2) - 113/2, -3/2) = 3~MLDAD (2.27) 
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113/2, 1/2) - 113/2, -1/2) LlMLDAD 

2P1/2: 1 11 / 2, 1/2) - 111 / 2, -1/2) = 2LlMLDAD, 

where now 

(2.28) 

Therefore, except for an angular-dependent scaling factor, the MLDAD is equal to the 

MCDAD, as discussed by previous workers [49]. Although this result was derived here 

for a one-electron model in the limit ). > > ~, it holds more generally for any values 

of spin orbit and exchange, and is even valid for the many-body case [49]. In other 

words, the lineshapes for both types of dichroism are identical, as shown schematically 

in Fig. 2.2. 

Magnetic dichroism can also be observed with unpolarized light, which is an inco

herent superposition of sand P components. Although the s component is non-dichroic, 

the P component leads to the same dichroism as before. In Fig. 2.4( a) we present exper

imental photoemission spectra, due to Fanelsa et ai., for the 2p core of Fe (001) excited 

by a Mg Ka x-ray source [34J. The sample was magnetized in the surface plane, and 

both the photon and photoelectron wavevectors were in the plane normal to the magne

tization. Photoelectron takeoff was normal to the surface and made an angle of 45° with 

. respect to the photon incidence direction. 1MT and 1Ml are the spin-integrated spectra 

for magnetization in the up and down directions, respectively. The theoretical spectra 

are shown in Fig. 2.4(b), and the difference spectra (normalized to peak intensity) are 

plotted in Fig. 2.4(c). These spectra were calculated again using). = 8.67 eV, and 

~ = 1.2 eV, and the lines were convoluted with the same Doniach-Sunjic lineshape as 

before. Overall, the theoretical results agree well with experiment, and are characterized 

by a plus/minus feature at 2Pl/2 and a minus/plus feature at 2P3/2' 

However, there are discrepancies between experiment and theory. For instance, at 

/ 
/ 

( 



the 2P3/2 main line, 1MT has a greater intensity than 1M!, whereas in the theoretical 

calculation they are equal. Also, the experimental dichroic signal in the interval be

tween the main lines is much larger than in the theoretical calculation. Both of these 

discrepancies may be attributed to many-body effects not accurately described within 

the present model. For instance, 1M! has a majority spin polarization at 2P3/Z. The 

effect of satellite structures is to shift majority spectral weight to the satellite region, 

and away from the main line, which then acquires minority spin polarization. This effect 

would explain the shape of the magnetic dichroism curve, although it cannot be modeled 

within the exchange-split main line approach considered here. 

A direct comparison of the magnitude of the dichroism is not meaningful here because 

the experimental data were taken from a single-crystal sample. It was recently shown by 

Fanelsa et al. that photoelectron diffraction can have a strong effect on the magnitude 

of the dichroic asymmetry for such cases [34]. 

As a final illustration of the usefulness of the model, we compare the MCDAD which 

results from reversal of the sample magnetization to the MCDAD which results from 

reversal of the photon helicity. For simplicity, we again consider the limit .A > > ~, so 

that the picture of Fig. 2.2 applies. If the magnetization M, photon q, and photoelectron 

k all lie in the same plane, then it can be easily verified (e.g., using the present model) 

that both dichroisms are equivalent. However, for a more general geometry this is not 

true. 

More specifically, suppose that the system is magnetized in the surface plane with 

M as usual along the +z direction and with a surface normal given by n = ex. Let the 

photon q be incident in the xz plane with Oq = 45° and ¢q = 180° (see Fig. 2.1), and 

consider normal emission (Ok = 90°, ¢k = 0°). For convenience, we define an energy

integrated dichroic asymmetry A. If the magnetization is reversed, then A is given 
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by 

(2.29) 
n 

where the sum is over all six lines n, and the normalization is simply the total intensity 

for both magnetizations 

(2.30) 
n 

Here, Sn = ±1, depending on the sign of the dichroism for a given line. More explicitly, 

we use Sn = +1 for the three lines that exhibit positive dichroism in Fig. 2.2, and 

Sn = -1 for the other three lines. Such a definition is necessary in order to ensure that 

the dichroisms of the various lines add rather than cancel. In this way, the asymmetry 

is simply the net area of the difference spectrum divided by the area o{ the sum. 

Alternatively, the dichroism could be measured by reversing the helicity of the light. 

Suppose that the helicity is switched from RCP to LCP. In this case, we define the 

dichroic asymmetry as 

(2.31) 
n 

where again the sum is over all six lines n, Sn is defined the same as before, and the 

normalization is given by 

j = 'L,(In(RCP) + In(LCP)) . (2.32) 
n 

For M along +z, and with k and q as described above, by symmetry both definitions 

give the same result. However, if the magnetization is now rotated by an angle f3 about 

the surface normal, so that M remains in the yz plane, while keeping k and q fixed, then 

the two definitions are not equivalent. In Fig. 2.5 we present the theoretical dichroic 

asymmetry due to reversal of magnetization, calculated as a function of f3 according to 

Eq. (2.29). The curves shown are for RCP, LCP, S-, and p-polarized excitation, using 



as an example a radial matrix element ratio of R2/ Ro = 3.0 and a phase shift difference 

of 02 - 00 = 1.0 (57.3°). 

The dichroism As for s-polarized light is always zero. For p-polarized light, the 

dichroism Ap is nonzero and reaches ~ maximum magnitude at /3 = 90°. Observe that 

/3' = 90° corresponds to the standard MLDAD geometry. In this model, which does not 

include photoelectron diffraction, the dichroism resulting from p-polarized excitation is 

due entirely to cross-channel interference. In other words, A-p is proportional to the sine 

of the phase difference, as indicated in Eq. (2.28). 

Another result evident from Fig. 2.5 is that, for a general rotation angle /3, ARCP :f:. 

-ALCP. This can also be seen as a consequence of cross-channel interference. If ARCP 

and ALCP were equal and opposite, then the dichroism resulting from unpolarized light 

would vanish. Since As = 0, this would imply Ap must also vanish. However, for the 

general case, we have seen that Ap does not vanish due to cross-channel interference. 

Therefore, for the general case, ARCP and ALCP cannot be equal and opposite. The 

correct relationship is given by 

(2.33) 

where TJ is the rotation angle away from /3 = 90°. 

For comparison, we now show the dichroic asymmetry ARcP due to switching the 

photon helicity from RCP to LCP, calculated according to Eq. (2.31). At /3 = 0° and 

180°, the two dichroisms are identical, but they deviate from each other for /3 in between. 

At /3 = 90°, ARcP vanishes by symmetry, i.e., the spectra due to RCP and LCP are 

identical. 

2.4 Conclusions 

\Ve have presented a one-electron theory to describe spin- and angle-resolved photoe-
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mission spectra from a p core level of a ferromagnetic system, and for a general photon 

polarization. We have applied the model to calculate spin-resolved Fe 2p spectra as well 

as magnetic dichroism. Agreement with experiment is generally very good. The dis

crepancies can be attributed to many-body effects. The spin-dependent lineshapes are 

particularly interesting, because they are indicative of satellite structures. Finally, we 

have used the model to compare the magnetic dichroism arising from reversal of sample 

magnetization to that obtained from reversal of photon helicity, and showed that the 

two definitions are equivalent only for special geometries. 
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Table 2.1: Dipole Operator Matrix Elements, t = rYl-

(w kT I (Wkll Ij, mj) 

..:.. ~ R2 sin 2 Oke2i¢k 0 I~ ~) 
2 

V3R2 sin Ok cos Okei¢k -/JR2 sin2 Oke2idJk I~ !) 
-If (Ro + !R2(3 cos2 Ok - 1)) V3R2 sin Ok cos Okei¢k I~ _ 1) 

2 2· 

0 C 1 - 2 ) - Ro + 2R2(3 cos Ok - 1) I~ - ~) 

IfR2 sin Ok cos Okei¢k IfR2 sin2 Oke2i¢k I! ~) 

-If (Ro + !R2(3 cos2 Ok - 1)) -j"fR2 sin Ok cos Okei¢k 11_ 1\ 
2 2' 

Table 2.2: Dipole Operator Matrix Elements, T( = ry1-
1

• 

(W kT I (w kll Ii, mj) 

(- 1- 2 ) - Ro + 2R2(3 cos Ok - 1) 0 I~ ~) 

-V3R2 sin Ok cos Oke-i¢k -If (Ro + !R2(3 cos2 Ok - 1)) I~ !) 
-/fR2 sin2 Oke-2i¢k -V3R2 sin Ok cos Oke-i¢k I~ - !) 

0 -~R2 sin2 Oke- 2i<Pk I~ - ~) 

-If R2 sin Ok cos Oke-i¢k /IC 1- 2 ) 3 Ro + 2R2(3 cos Ok - 1) I~ ~) 

-IfR2 sin2 Oke-2i¢k IfR2 sin Ok cos Oke-i¢k I~ - ~) 
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Table 2.3: Dipole Operator Matrix Elements, Tf = r Y1o. 

(WkTI (Wkll Ii, mj) 

/fR2 sin Ok cosOkeitPk 0 I~ ~) 

v1(- - 2 ) 3 Ro - R2(3 cos Ok - 1) If R2 sin Ok cos fheitPk I~ ~) 

-jIR2 sin Ok cosOke-itPk v1(- - 2 ) 3 Ro - R2(3cos Ok -1) I~ - ~) 

0 -..ff R2 sin Ok cos Oke- irhk I~ -~) 
·2 2 

1£ (Ro - R2(3cos20k -1)) -V3R2 sin Ok cos OkeitPk I~ ~) 

-v'3R2 sin Ok cos Oke-itPk -If (Ro - R2(3 cos2 Ok - 1)) I~ - ~) 
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Figure 2.1: General geometry. Magnetization is along the +z direction. k and q are the 

photoelectron and photon wavevectors, respectively. 
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Figure 2.2: Schematic diagram showing energetic positions of Ij, mj) core states, for 

both magnetic orientations, and the resulting magnetic dichroism. Such a situation is 

realized when the spin-orbit parameter>' is much larger than the exchange energy f 
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Figure 2.3: Spin-resolved Fe 2p photo emission spectra. (a) Experimental results due to 

Van Campen et al. [2]. Data were smoothed with one cycle of three-point averaging. 

(b) Background-subtracted experimental spectra. (c) Theoretical results. Lines were 

convoluted with a Doniach-Sunjic lineshape. (d) Spin polarization, normalized to the 

peak intensity. 
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Figure 2.4: Fe 2p magnetic unpolarized dichroism. (a) Experimental results due to 

Fanelsa et ai. [13] with spin-integrated spectra for both magnetic orientations. The small 

peak at 712 e V is due to satellite x-rays. (b) Theoretical results. Lines were convoluted 
-' 

with a Doniach-Sunjic lineshape with singularity index 0: = 0.35 and Lorentz broadening 

1.2 e V FWHM. (c) Difference spectrum for theory and experiment, normalized to the 

peak intensity. 
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Figure 2.5: Dich~oic asymmetry A due to reversal of sample magnetization for RCP, 

LCP, S-, and p-polarized excitation, for geometry described in text. The dichroic asym

metry ARcP, due to switching photon helicity from RCP to LCP, is also shown for 

comparison. 
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Chapter 3 

Many-Body Theory of Ni 2p Photoemission 

3.1 Introduction 

Photoemission from Ni metal has attracted much attention over the years [27, 38, 50, 

51,52,53,54,55]. Ni is a classic itinerant ferromagnet, with a valence bandwidth roughly 

equal to the intrasite Coulomb repulsion. This results in an intermediate coupling 

regime in which both the one-electron picture and the purely localized viewpoint begin 
\ 

to breakdown: satellite structures cannot be explained in the former approach, whereas 

extra-atomic screening effects cannot be described by the latter. Thus, Ni presents a 

particularly interesting and challenging many-body problem for the theorist. 

Photoemission from ferromagnetic Ni displays several intriguing effects: 

(1) Angle-resolved photoemission studies [50] of the valence band showed a much 

smaller dispersion than that predicted from theoretical band structure calculations[56]. 

This "narrowing of the band" has been attributed to correlation effects among the 

valence electrons[51, 52, 53]. 

(2) The valence band photoemission spectrum exhibits satellites approximately 6 eV 

to the left (higher binding energy) of the main lines[54]. These satellites, a many-body 

effect, correspond to final states with a high probability of finding two valence holes on 

the same site[53]. 

(3) Core-level spectra for Ni are also known to exhibit satellites approximately 6 eV 

to the left of the main lines[54]. These satellites were attributed to final states involving 

one core and one valence hole on the same site-also a two-hole final state. 



Due to the exchange interaction between the core level and the spin-polarized valence 

band, core spectra may depend on the spin orientation of the outgoing photoelectrons. 

Measuring the spin of the outgoing photoelectron in spin-resolved x-ray photoelectron 

spectroscopy (SRXPS) is a direct way to probe the spin character of the core levels, and 

thus the local magnetic environment. Until recently, however, the spin polarizations of 

the spectra of deep core levels were not known. See and Klebanoff used unpolarized Mg 

]( Ci. X-rays to conduct the first comprehensive spin-resolved study of all accessible core 

levels, revealing a rich and interesting structure[27, 55]. For instance, the Ni 3s 6-eV 

satellite displayed an apparent 100% majority spin polarization, in contrast to the mixed 

spin polarization expected for a 3s13([9 final-state configuration. The Ni 2p spectra also 

exhibit an interesting spin polarization, which we address below. 

The ability to excite core levels with polarized synchrotron radiation has opened a 

new avenue in the study of core-level photoemission. For circular-polarized excitation, 

the photoemission spectrum depends on the relative orientation of the photon helicity 

and the sample magnetization. The photon couples indirectly to the core electron spin 

through the spin-orbit interaction. The core electron spin, in turn, couples to the spin 

polarized valence band via intra-atomic exchange. Thus, the photon couples indirectly to 

the sample magnetization, leading to distinct spectra for the two helicities. Measuring 

such intensity differences in photoemission is known as magnetic circular dichroism 

(MCD). Baumgarten et al. [21] used this technique to measure the exchange splittings 

of the Fe 2p core electrons, proving that polarized excitation sources could also be used 

as a probe the local magnetic environment. 

Magnetic dichroism can also be observed with linear p-polarized light. The exchange 

interaction induces a spin polarization which reverses upon reversal of the magnetiza

tion direction. The spin-orbit interaction on the other hand, in a chiral geometry, 

induces a spin polarization which is independent of magnetization [57]. Therefore, the 

43 



44 

spin-integrated spectrum may change upon reversal of the sample magnetization. Such 

dichroism was first observed by Roth, Hillebrecht, Rose, and Kisker in photoemission 

from the Fe 3p core level [22]. These effects result from cross-channel interference and 

are only observable in angle-resolved measurements, vanishing with integration over 

emission angle [48, 58]. Accordingly, this effect has been referred to as magnetic lin

ear dichroism in the angular distribution (MLDAD). Roth and the same coworkers also 

observed another kind of dichroism using linear s-polarized light [59]. This type of 

dichroism, as discussed by van der Laan [48], does not depend on cross-channel inter

ference and is also observable in angle-integrated photoemission. Such dichroism, which 

will not be considered in this work, has been termed magnetic linear dichroism (MLD) 

to distinguish it from MLDAD. 

By symmetry, MLDAD cannot be observed with linear s-polarized light [48]. Unpo

larized light, on the other hand, is an incoherent superposition of sand p components, 

and therefore may also exhibit dichroic effects. Such magnetic unpolarized dichroism 

in the angular distributions (MUDAD) was first observed by Hillebrecht and Herberg 

[23] in Fe 3p core-level photoemission, thereby showing that even standard unpolarized 

x-ray sources could be used to probe the magnetic structure of the core levels. 

With these recent experimental advances, core-level photemission is rapidly becom

ing a powerful tool in the investigation of magnetic materials. The need thus arises for 

a detailed description of the core-level photoemission problem, especially regarding the 

nature and origin of the spin polarization and the subtle interplay between single-particle 

and many-body effects. Ni, due to its intermediate coupling nature, is a particularly 

instructive example to consider, and many of the results here can be extended to the 

other itinerant ferromagnets. 

In this chapter, we elaborate much more fully on our previous work [38], which 

considered only spin-resolution with unpolarized excitation and spin-integration with 



circular-polarized excitation. We describe in greater detail our model and calculational 

details, and extend the analysis to consider spin-resolved and spin-integrated Ni 2p 

spectra for circular, linear, and unpolarized light. Many-body effects and extra-atomic 

screening are discussed. Finally, a detailed analysis of the final-state configurations is 

presented, allowing one to assign a precise physical interpretation to the various features 

in the spectrum. 

3.2 Model and Calculation 

The small-cluster model used by Victora and Falicov [53] to successfully describe 

the Ni valence band photoemission spectrum is extended here to the case of core

level photoemission. The model consists of a small tetrahedral cluster of four atoms, 

with periodic-boundary conditions imposed to generate the full fcc lattice, as shown in 

Fig. 3.1. Each atom in the crystal can be labeled by an index 1-4, and is surrounded by 

twelve nearest neighbors of a different index. Therefore, this model treats same-site and 

nearest-neighbor interactions very accurately, and due to the highly localized nature of 

the core and valence electrons, these are expected to give the dominant effects. 

Rotational and translational symmetries of the fcc lattice ,are fully preserved in this 

scheme [60]. Neglecting inversion, there are 96 symmetry operations in our system: the 

24 proper rotations of a cube (point group 0) coupled to the four translations 0, Ti,TS, 

and T4, as shown in Fig. 3.1. Such periodicity dictates that all Bloch states in this system 

transform according to either r (the center) or X (the centers of the square faces) in 

the Brillouin zone. 

Atomic Ni has an outer electron ~onfiguration 4823d8 • When these atoms join to

gether to form a solid, the tightly-bound 3d states form a narrow band, and are crossed 

by a widely dispersive 48 band. A four-atom cluster can accommodate 40 3d electrons 

and eight 48 electrons. The two 48 states at r are well below EF and are fully occupied, 
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whereas the six 4s states at X are far above EF and remain empty. Thus, within the 

four-atom cluster, the six 4s electrons at X "drop into" the lower lying 3d band, leaving 

a total of 38 3d electrons in our system, or equivalently, two d holes on four sites. 

While the 4s electrons certainly play an important role in the screening process, 

the 4s band is not spin polarized and therefore does not add magnetic structure to the 

problem. In this work, the 4s electrons are not explicitly treated, but are taken into 

account by renormalizing the direct Coulomb repulsion. The basic idea is that the cost 

of placing two holes on the same site is reduced by the presence of the 4s electrons [61]. 

For instance, sId? + sId? -+ s2dB + sOdlO is energetically more favorable than placing 

two d holes on the same site in the absence of the highly mobile 4s electrons . 
. 

As our basis set we use ten 3d spin-orbitals per site for the valence states, and six 

2p spin-orbitals for the core electrons on the photoexcited site. Due to the nearly fully 

occupied valence band, it is more convenient to express the Hamiltonian in terms of 

holes: 

where vI and Vk create and destroy valence holes in Bloch states of energy Ek, cl and 

Cpj create and destroy holes in core states Pi and Pi respectively, and >'c is the core-level 

spin-orbit-splitting parameter. The creation and destruction operators in the last sum 

create and destroy holes in both the core level and the valence band. Therefore, the 

uk1mn describe the Coulomb repulsion between two valence holes and/or one valence 

hole and one core hole. 

The Hamiltonian contains three kinds of terms: 

( a) The terms in the first sum define the electronic band structure, and allow for the 

valence-band hopping that gives rise to extra-atomic screening effects. One particle 'in 

the valence band can occupy any of 20 spatial 3d orbitals. These states decompose with 



the following space-group symmetries: 

(3.2) 

These symmetrized states can be explicitly constructed using the complete projection 

operators [62]. The energies of the resulting Bloch states are taken from the spin-

averaged band structure calculations of Wang and Callaway [56], and are shown in 

Table 3.1. 

(b) The second sum describes the spin-orbit interaction for the core states. For Ni 2p 

the splitting is approximately 17.26 e V, leading to well resolved 2Pl/2 and 2P3/2 levels. 

Valence-level spin-orbit coupling is very small and is neglected in this work. 

(c) The terms in the last sum describe the Coulomb interaction, which we calculate 

exactly for an intrasite repulsion. The uk1mn integrals are given by 

uk1mn = / k(1)l(2)1_ e
2 

_ Im(1)n(2)), \ Irl - r21 
(3.3) 

where k, l, m ,and n denote atomic spin-orbitals. For two intrasite d holes, neglecting 

the trivial spin integration, there are 54 = 625 such integrals. Most of these vanish 

by symmetry. In fact, all can be expressed as linear combinations of only three Slater 

integrals [63]: Udd, Fld and FlI. For a P core hole and a d valence hole on the same 

site, the Coulomb interaction is described by four Slater integrals: Upd, G!d' F;d' and 

G~d' We refer to the Udd and Upd as the direct terms, and the various F and G as 

the exchange terms. It is the exchange interaction between the core hole and the spin-

polarized valence band, together with core-level spin-orbit coupling, that gives rise to 

all magnetic dichroism and spin polarization in the spectra. For the exchange terms, 

we use the values from a previous work [64] which were calculated using Cowan's code 

[65] and multiplied by 0.80 to account for intra-atomic screening effects. Extra-atomic 

screening from the delocalized 4s electrons precludes such an approach for the direct 
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terms, which must be treated as adjustable parameters. In this work, we obtain good 

agreement with experiment using Udd = 3.0 eV and Upd = 4.0 eV, which is consistent 

with previous estimates using an Anderson impurity model [66]. The values used for 

the Slater integrals in this work are given in Table 3.1. 

To calculate the spectrum, we first need to find the many-body ground state. One 

valence hole on the four-site cluster can occupy one of 40 spin-orbitals. The second 

hole can occupy one of the remaining 39. The number of many-body states is thus: 

40x39 j2! = 780. Therefore, in principle, we need to diagonalize a 780x780 matrix. In 

the one-electron approximation, with 38 3d electrons in our system, all single-particle 

Bloch states up to EF would be occupied, and the ground state would consist of two 

holes in X 5 • Correlation effects would in principle mix higher-energy single-particle 

Bloch states into the ground state. However, in this system, it is possible to place both 

holes in X 5 states with zero probability of placing both holes on the same site. Therefore, 

the many-body ground state is also the one-electron ground state. In other words, 

the ground state is perfectly correlated, and there is no energetic contribution from 

the electron-electron interaction. The many-body ground state has overall symmetry 

3 X 2 • Choosing the magnetization direction as up, the majority electrons are spin down. 

Alternatively, in the ground state, both holes are spin up. The ground state is threefold 

degenerate, one of which can be written 

where cJ (dxy j) creates a spin-up hole on site j in orbital dxy . The other two ground 

states can be similarly written, and involve the t2g permutations dxz and dyz • Therefore, 

the ground state is ferromagnetic with 50% a,9 and 50% dIO character. The spin moment 

per atom in the ground state is thus 0.50J.lB, in good agreement with other theoretical 



estimates of'" 0.53'uB [67]. 

Upon creation of a core hole, we have 780x6=4680 many-body states. We need to 

find the eigenstates of this system. Due to the tightly-bound nature of the ~ore hole, 

we can treat it as being localized on a particular atom. Thus, translational symmetry is 

broken and the new group is the point group O. Owing to the spin-orbit interaction in 

the core, we must use the double-group representations [62]. The 4680 states decompose 

as 

392f 6 EB 388f 7 EB 780f 8, (3.5) 

where f6, f7, and f8 are irreducible representations of dimensions 2,2, and 4 respec

tively. By using the complete projection operators, we are assured that the Hamiltonian 

matrices associated with the different rows of an irreducible represe~tation will be iden

tical. This means that we can obtain all the finaleigenstates by diagonalizing only three 

matrices of dimension 392, 388, and 780. Furthermore, we find that the spectra ob

tained by including f 8 are visually indistinguishable from those obtained by using only 

f6 + f7 [68]. Apparently, f6 and f7 span a large enough portion of the Hilbert space 

to accurately describe all of the eigenstates. Therefore, the complete spectrum can be 

calculated by diagonalizing only two matrices of dimension 392 and 388. Assuming that 

diagonalization time scales as '" n3 , we save approximately three orders of magnitude 

by fully utilizing group theory. This enormous reduction in computational effort makes 

it possible to efficiently sample parameter 'space, and thereby gain insight into the un

derlying physics of the photoemission spectrum. Details of the symmetrization of the 

basis functions are given in Appendix A. 

With the ground state and final states now defined, we employ the sudden ap

proximation and Fermi's golden rule to calculate the transition probabilities from the 

ferromagnetic ground state to the final state with core hole and outgoing photoelectron. 

Again, it is convenient here to think exclusively in terms of holes. The initial state is 
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a composite wavefunction consisting of the two-hole ferromagnetic ground state CPGS, 

plus a third hole of spin (j and wavevector k (not to be confused with the Bloch index 

k) for the outgoing photoelectron CPkO', which is annihilated upon photoemission. Thus, 

the initial state is 

(3.6) 

The final states are many-body eigenstates with two valence holes and one core hole. 

Final states may be written as 

IWj) = LAlmICPl;Pm), (3.7) 
lm 

where I = 1,780 is a sum over the valence configurations, and m = 1,6 is a sum over' 

core states. For photon polarization €, the dipole matrix elements between the initial 

and final states are 

(3.8) 

where the Te"o- are given by 

(3.9) 
m m 

.I. 

Here, cpm destroys a core hole Pm, and etc creates an outgoing photoelectron hole CPkO'. 

The r::, through k, are functions of the emission angle as well as the channel matrix 

elements and phase shifts for the I ± 1 partial waves. In this work, we use the values 

given by Goldberg, Fadley,and Kono [47] calculated for Ni 2p emission by 1253.6 eV 

photons: Ro = 1.00, R2 = 4.28, ao = 6.113, and a2 = 2.611. 

With an implied sum over the threefold degenerate ground state, the angle-resolved 

spectrum is written as a sum over all final states: 



I:cr = L /M!kj/28(EJ - Ei - liw), 
J 

(3.10) 

with additional sums over photon polarization € and/or photoelectron spin <7 as appro-

priate. Finally, the lines are Gaussian and Lorentzian broadened to obtain the final 

spectrum. 

3.3 Results and Discussion 

In the first section, we consider spin-resolution with unpolarized excitation. Such 

spectra are useful in understanding the spin-integrated spectra with polarized excita-

tion we consider later. We examine a variety of limiting cases to illustrate the effects of 

Coulomb repulsion, exchange, and extra-atomic screening. After discussing these effects, 

we present the theoretical spin-resolved spectra and compare them to recent experimen-

tal results [27]. In the following section, we consider circular-polarized excitation with 

and without spin resolution. We examine how the spin polarization of the levels depends 

on emission angle and photon helicity. Next, we consider the effect of linear- polarized 

excitation, with and without spin resolution. We show that MLDAD can be under-

stood as a subtle interplay between exchange and spin-orbit-induced spin polarizations. 

MUDAD spectra are also presented and discussed. In the last section, we describe a 

spectral-weight transfer effect which explains the preferential transfer of minority li~e 

strength from the satellite to the main lines. This effect, due to extra-atomic screening, 

is important in understanding the observed spin polarization. Finally, we consider the 

nature of the final states by plotting the final-state valence configuration, both in real 

space and in k-space. This allows for a precise description of the physical nature of all 

features in the spectrum. 
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3.3.1 Spin-resolved spectra 

In Fig. 3.2 we present the spectroscopic arrangement adopted in the theory. The 

sample is magnetized in the +z direction, meaning that the majority electrons are spin 

down. The photons q impinge upon the sample in the xz plane, making an angle ()q 

with the z axis. Photoelectrons are measured in the xz plane at a takeoff angle ()k with 

the z axis as shown. 

In order to gain physical insight into the Ni 2p spectrum, we examine theoretical 

spin-resolved spectra for a variety of limiting cases, presented in Fig. 3.3. Lines were 

narrowly broadened for enhanced spectral detail. All spectra in Fig. 3.3 are for grazing 

incidence (()q = 0) and normal emission (()k = 90°). 

As a first example, we consider spin-resolved spectra in the limit of zero valence 

bandwidth and zero core-valence exchange. We obtain this case by setting all the band 

. energies and pd exchange terms in Table 3.1 equal to zero. The direct Coulomb term Upd, 

as well as the dd Slater parameters are maintained at their values as given in Table 3.I. 

Although the spin-orbit interaction can induce a spin polarization even with unpolarized 

light and in the absence of exchange [57], in the non-chiral geometry considered here 

such effects are not present. Furthermore, with the pd exchange terms equal to zero, 

there can be no exchange-induced spin polarization either. Therefore the majority and 

minority spectra are identical for this case, as evident from Fig. 3.3(a). 

With zero bandwidth, there can be no intersite valence hopping, and hence no extra

atomic screening. Because the groun,d state is exactly 50% d,9 and 50% dlO , we have 

equal probabilities of exciting a core electron from a site which initially had exactly one 

or zero valence holes. In addition, since there is no valence hopping, the final states must 

also have either exactly one or zero valence holes. The states with one valence hole are 

exactly Upd higher in binding energy. Features Band D in Fig. 3.3( a) correspond to the 



2PI/2 and 2P3/2 main lines respectively, and are both 100% dlO in character. Features 

A and C are the satellites, occurring Upd e V to the left of the main lines, and are 100% 

(j9 in character. 

As a next example, we consider the limit of zero valence bandwidth as before, except 

now include the pd exchange terms as given in Table 3.1. Though there is still no spin

orbit-induced spin polarization, there can now be exchange-induced spin polarization 

caused by the magnetized valence band. This results in distinct spectra for minority 

and majority photoelectrons, as shown in Fig. 3.3(b). The satellites, denoted by A and 

C, now separate into their characteristic p5(j9 multiplet structures. The 2P3/2 satellite 

contains exactly eight lines, the 2PI/2 exactly four, each corresponding to atomic mul

tiplets of definite total angular momentum J. Both multiplets are spread over about 

3-4 e V. Features Band D in Fig. 3.3(b) correspond to the main lines and are still pure 

dlO in character, and so exhibit no multiplets and no spin polarization. Also, the 2P3/2 

main-line intensity is exactly double the 2Pl/2 main-line intensity in this limit, for both 

majority and minority spectra. The total satellite intensity, summed over both 2P3/2 

and 2PI/2 levels, is exactly equal to the total main-line intensity, due to the equal dis

tribution of (j9 and dlO in the ground state. However, with pd exchange now included, 

the satellite intensities are no longer equally distributed energetically; the effect of core

valence exchange is to shift the majority (minority) spectrum to higher (lower) binding 

energy both within each level and across the levels. That the majority spectrum is shifted 

to higher binding within each level can be seen qualitatively by comparing the satellites 

in Fig. 3.3(b) for majority and minority spectra. That the line strength is also shifted 

across the levels is not so obvious by inspection. However, in our calculations we find 

that the relative intensities of the satellites for the minority spectrum in case (b) is 

68% for 2P3/2 and 32% for 2PI/2, whereas for the majority spectrum it is 65% and 35% 

respectively. If there were no mixing between the levels, then the 2P3/2 to 2PI/2 satellite 
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intensity ratio would be fixed at the statistical ratio of 2:1 for both spin channels. This 

transfer of spectral weight across the levels - a consequence of intra-atomic exchange -

is one of the keys to understanding the Ni 2p spectra. 

This effect can also be seen in other ferromagnetic transition metals. For instance, in 

both Fe [25] and Co [26], the 2P3/2 level displays a strong net minority spin polarization, 

and the 2PI/2 level a strong net majority spin polarization. Of course, the total spin-up 

and spin-down intensities, when integrated over both levels, should be equal. 

In Fig. 3.3( c) we see the effect of introducing a small valence bandwidth, thereby 

allowing for weak extra-atomic screening. The band energies are set to 50% of their 

values shown in Table 3.1. In the initial state, we have equal probabilities of exciting 

a core electron from a site which locally tf3 or dlO. Upon core-hole creation, a valence 

electron from a neighboring atom can feel the potential caused by the sudden creation of 

a core hole at a tJ9 site, and hop into the unoccupied valence state on the photoexcited 

site, thereby screening the core hole and leading to a dIO final state. In other words, the 

effect of extra-atomic screening is to transfer line strength from the tf3 satellite to the 

dIO main line. Careful examination shows that this transfer is not uniform throughout 

the satellite. Rather, satellite final states closer to the main lines transfer'more spectral 

weight than those final states at higher binding energy. This can be seen most clearly 

by examining the 2P3/2 majority satellite (feature C) in Fig. 3.3(b), which is dominated 

by two strong peaks centered about rv 854 and rv 857 eV. Both peaks are still clearly 

visible in Fig. 3.3( c), with weak extra-atomic screening, and now occur at about rv 855 

and rv 858 eV. However, the low-binding-energy peak, which had a stronger intensity 

in case (b), now has a weaker intensity in case (c). Because the minority satellite 

intensity is naturally weighted nearer the main lines, this amounts to a preferential 

transfer of minority line strength from satellite to main line. This energy-dependent 

spectral-weight-transfer effect is considered in more detail in section C. 



With valence hopping, mixing can occur between the different configurations, and 

the main line, which is nominally dID, now has some cJ9 mixed in. This results in a small 

exchange-induced spin polarization in the main lines, and also to a very small "exchange 

splitting" between peak positions for majority and minority main lines [38]. Similarly, 

the cJ9 satellite begins to acquire some dIO character, and the multiplet structure, though 

still clearly apparent in features A and C, begins to blur due to configuration mixing. 

It is well known that when a core electron is ejected from a metal, low-energy 

electron-hole (e/h) pairs can be excited near the Fermi level, leading to asymmetric 

line shapes [69]. An interesting feature of our model is that we also :find such low-energy 

e/h-pair excitations. This is a consequence of the periodicity imposed on the four-atom 

cluster, which introduces a k-space and hence a band structure. The excitations can be 

seen as a small peak just to the left of the main lines at '" 853 eV in Fig. 3.3(c). These 

lines are mostly dlO in character, and have a high probability of finding one of the Xs 

valence holes occupied by an electron from below the Fermi level. 'When the lines are 

realistically broadened, these e/h excitations also lead to asymmetric main-line shapes. 

In Fig. 3.3( d) we set the one-electron Bloch energies to their full values as given 

in Table 3.1. As we increase the valence bandwidth, more cJ9 configuration is mixed 

into the main-line states, and we see that the main lines shift slightly to the left. The 

e/h excitation peak also shifts to higher binding energy; with increasing bandwidth, the 

energetic cost of promoting an electron from a Bloch state below Ep to an unoccupied 

Xs state increases as well. Also, the satellite loses more intensity to the main lines 

through the increased effectiveness of extra-atomic screening. The multiplet structure 

is still apparent, though extremely blurred due to increased configuration mixing. 

Next we compare the theoretical spin-resolved spectra with experimental results, 

which were measured by See and Klebanoff [27], and are presented i~ Fig. 3.4(a). In 

the experiment, they measured the majority spectrum (e.g., spin up) for a given mag-
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netization, and then reversed the magnetization and remeasured the majority spectrum 

(now spin down). They then averaged over both magnetizations to obtain the resultant 

majority spectrum. The same was done for the minority spectrum. Experimentally, a 

majority to minority intensity ratio of 0.93 ± .03 e V was found in the 2P3/2 main line, 

as well as a small exchange splitting of I'V .02 e V between the 2P3/2 main lines, with 

the majority spectrum being shifted to higher binding energy. This splitting , though 

small, proves that the main line cannot correspond to a purely dIO final state, which 

would be intrinsically nonmagnetic. In our calculation, we adopt the same experimental 

geometry as See and Klebanoff [70], with magnetization M = ±M z, normal emission 

(k I'V x), and photon wavevector q I'V -x + cos400y - sin400z (see Fig. 3.2). We also 

average majority and minority spectra 'over both magnetizations, and broaden the lines 

with Gaussian (r = 1.6 e V) and Lorentzian (CT = 1.2 e V for 2PI/2 and CT = 0.8 e V for 

2P3/2) lineshapes [71]. The resulting theoretical spectra are presented in Fig. 3.4(b), and 

are seen to be in excellent overall agreement with experimental results. The theoretical 

ratio of majority to minority intensity at the 2P3/2 main line is found to be 0.96, in 

agreement with experimental observations. The exchange splitting in the 2P3/2 main 

line is found to be 0.032 eV, also consistent with experimental results. 

In Fig. 3.4( c) the experimental and theoJ,"etical spin polarization (multiplied by a fac

tor of 6 for clarity) is plotted for comparison. Although the differences between majority 

and minority spectra are quite small, agreement between theoretical and experimental 

spin polarization is still very good, with theory predicting the correct spin polarization 

throughout the spectrum. The spin polarization of the spectrum can be understood as 

a combination of two effects: 

(1) The exchange interaction shifts majority line strength to higher binding energy, 

both across and within each level. 

(2) Extra-atomic screening transfers line strength preferentially from the minority-



dominated low-binding-energy side of the satellites to the main lines. 

The two effects add in the 2Pl/2 satellite, giving everywhere a majority spin polar

ization, they cancel in the 2Pl/2 main line, leading to near zero spin polarization, they 

cancel in the 2P3/2 satellite, leading to the observed crossover, and they add in the 2P3/2 

main line, leading to a net minority spin polarization. 

3.3.2 Magnetic circular dichroism 

In Fig. 3.5 we present theoretical spectra calculated for a grazing-angle geometry 

(Bq = 0) with right-circul~r-polarized (RCP) excitation. Fig. 3.5( a) is the spin-integrated 

spectrum for an electron takeoff angle Bk = 0 (k II q), with the corresponding spin

resolved spectra shown below in Fig. 3.5(b). We see that the 2P3/2 level has a strong 

spin-down polarization, while the 2Pl/2level is totally spin up polarized. In fact, exactly 

75% of the 2P3/2 photoelectrons are spin down, and 100% of the 2Pl/2 photoelectrons are 

spin up. This is a well known fact from atomic physics [72]. For left-circular-polarized 

(LCP) excitation, the fraction of spin-up and spin-down photoelectrons at each level is 

exactly reversed, with 100% of the 2Pl/2 photoelectrons being spin down for the same 

geometry. In Fig. 3.5( c) we present theoretical spectra for RCP excitation at the same 

grazing angle geometry (Bq = 0), except now for an electron takeoff angle of Bk = 900 

(normal emission), with the corresponding spin-resolved spectra shown in Fig. 3.5( d). 

We see that the spin polarization has reversed from the Bk = 0 case: now the 2P3/2 

(2Pl/2)'level has a strong spin-up (down) polarization. This example makes clear that, 

with circular-polarized excitation, changing the position of the electron detector has a 

drastic effect on the spin-resolved photoemission spectrum. 

In Fig. 3.6(a) we present theoretical spectra due to RCP and LCP excitation for 

normal emission (Bk = 900
) and grazing-angle geometry (Bq = 0). For this geometry, we 

know from above that RCP excitation leads to a strong spin-up (minority) polarization at 
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2P3/2' with LCP leading to an opposite spin polarization. At 2Pl/2 the spin polarizations 

are reversed. This explains why RCP /LCP resemble minority/majority at 2P3/2 and 

majority /minority at 2Pl/2 (compare with Fig. 3.4(b)). In Fig. 3.6(b) we plot the M CD, 

which we define as IRcP - hcp, multiplied by a factor of 6 for clarity. Comparing the 

intensity difference of Fig. 3.6(b) to the theoretical spin polarization of Fig. 3.4( c), we 

see that the two spectra are virtually identical in structure and magnitude, with only a 

sign change at the 2Pl/2 level due to its reversed spin polarization. These plots reveal 

the close link between spin resolution with unpolarized excitation and spin integration 

with circular-polarized excitation. 

This relationship is even more explicit in Fig. 3.7, which plots the fractional spin 

polarization for RCP excitation at grazing incidence, as the emission angle (h is swept 

from 0° to 90°. We see that, as mentioned previously, at Ok = 0° the 2Pl/2 level is 100% 

spin-up polarized, whereas the 2P3/2 photoelectrons are exactly 75% spin down and 25% 

spin up. As we increase the emission angle, the spin polarization changes, resulting in 

a strong spin-down (spin-up) polarization for the 2Pl/2 (2P3/2) level at normal emission 

(Ok = 90°). Again, for LCP excitation the spin polarizations are exactly reversed. At 

some intermediate "crossover" angle, the photoelectrons from both levels will be exactly 

50% spin up and 50% spin down. This occurs at f"V 31 ° for the case of Ni. At this angle, 

the MCD is found to vanish over the entire spectrum; i.e., the spectra due to RCP and 

LCP excitation are identical. For grazing-angle excitation, the "crossover" angle occurs 

at: 

20 2R~ - R5 + RoR2 cos( 82 - 80) 
cos c = 3(R~ + RoR2 cos( 82 - 80)) , 

(3.11) 

where Ro and R2 are the radial matrix elements for the I = 0 and I 2 spherical 

waves, and 00 and 02 are the respective phase shifts [47]. Measuring the crossover 

angle experimentally could give information on the radial matrix elements and phase 

shifts. The phase shifts are important because, in the absence of diffraction [34], they 



determine the sign of dichroism with linear or unpolarized light, as discussed below. We 

have investigated such crossover angles for nongrazing geometries, and find that such 

angles also exist. The MeD is expected to vanish at these angles. It should be stressed 

that photoelectron diffraction effects can also give rise to dichroisms and could therefore 

alter these results, unless a suitable geometry can be chosen such that the diffraction 

contribution to the MeD vanishes. 

3.3.3 Magnetic linear and unpolarized dichroism in the angular distri.., 

bution 

MeD can be understood as a consequence of preferential emission of a given spin 

component upon circular-polarized excitation. The origin of MLDAD is more subtle, 

involving an interplay between spin-orbit and exchange-induced spin polarizations. In 

a typical MLDAD experiment, one excites the sample using p-polarized light impinging 

at Oq = 900 with q '" iJ - x (see Fig. 3.2). The spin-integrated spectrum is measured for 

normal emission k'" x, with magnetization M = Mi. The magnetization direction is 

then reversed, and the spectrum remeasured. The two spectra are subtracted to obtain 

the magnetic dichroism. 

In the absence of photoelectron diffraction [34], MLDAD is caused by cross-channel 

interference between the I ± 1 channels, which, in the presence of spin-orbit coupling, 

can induce spin polarizations. This is apparent from Fig. 3.8( a) and 3.8(b), which 

contains the spin-resolved spectra for magnetizations along the ±z directions (M i and 

M 1, respectively), for the geometry described above. In this example, the valence 

bandwidth is set to zero to eliminate extra-atomic screening effects. In Fig. 3.8( c) the 

spin polarization, Iup - Idown, is plotted. This example is illustrative because it allows 

for a clearer separation of spin-orbit and exchange-induced spin polarizations. With zero 

valence bandwidth, the main lines are pure diO in character, and hence cannot experience 
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any exchange-induced spin polarization. We see that for either magnetization, the 2P3/2 

main line has a net spin-down polarization, while the 2Pl/2 main line has a net spin-up 

polarization. The effect of spin-orbit coupling with cross-channel interference, therefore, 

is to induce a spin polarization at one level and an opposite spin polarization at the other 

level, independent of magnetization. The effect of exchange-induced spin polarization is 

to shift the majority spectrum to higher binding energy and the minority spectrum to 

lower binding energy for the d,9 satellites. For M i, the majority electrons are spin down, 

and so the spin polarization exhibits an overall -/ + feature at both satellites. For M 1, 

the exchange dominated satellite spin polarization is largely reversed, now exhibiting an 

overall + / - feature at both levels. 

In Fig. 3.9 we present the same spin-resolved spectra using p-polarized excitation 

for M i and M 1, except now with realistic broadening and full valence bandwidth to 

account for extra-atomic screening. With valence hopping, the main lines acquire some 

d,9 character which allows for a small exchange-induced spin polarization. However, 

the spin-orbit-induced spin polarization still dominates, as evident by the fact that the 

2P3/2 main line still has a spin-down polarization and the 2Pl/2 main line a spin-up 

polarization. The satellites, largely ,p in character, are dominated by exchange-induced 

spin polarization. However, spin-orbit-induced spin polarization is still apparent. For 

example, exchange and spin-orbit both enhance the spin-up intensity in the 2Pl/2 satellite 

for M 1, leading to a very strong spin-up polarization. For M i, on the other hand, 

exchange effects enhance the spin- down character of the 2Pl/2 satellite, while spin-orbit 

enhances the spin-up character. The two effects tend to cancel, leading to' only a very 

weak spin polarization for the 2Pl/2 satellite. Analogous arguments could be used to 

explain the spin polarizations of the 2P3/2 satellites. 

The origin of such MLDAD is now clear: If there were no spin-orbit-induced spin 

polarization, then the spin-up intensity for M i would exactly equal the -spin-down 



intensity for M 1, and spin-up intensity for M 1 would exactly equal spin-down intensity 

for· Mi. The spin-integrated intensities for either magnetization would then be exactly 

equal, and there would be no dichroism. Spin-orbit-induced spin-polarization breaks 

this symmetry. 

In Fig. 3.10( a) we present theoretical spin-integrated spectra using p-polarized light 

in the same MLDAD geometry described above, for magnetizations M i and M 1. In 

Fig. 3.10(b) we present the MLDAD, which we define as IMl - IMT' In a previous work 

[38], we calculated the MCD according to (IRCP - ILCP)/(IRCP + I LCP ). However, to 

avoid an energy-dependent normalization factor, it is more natural to define the MCD 

simply as the difference spectrum IRCP - I LCP . With the MCD defined in this way, we 

find that the MCD signal, as a fraction of the peak intensity, is much larger than the 

corresponding MLDAD signal. However, the lineshapes are identical. This is because 

both difference spectra in fact measure the same fundamental spectrum J1, as discussed 

by Thole and van der Laan [48, 73). 

Two points should be stressed here: 

(1) Special attention should be given regarding the sign of the dichroism. In the 

absence of diffraction, MLDAD is caused by cross-channel interference and the sign of 

the dichroism varies as sin( 62 - 60 ), The spin-orbit- induced spin polarization reverses 

sign as the phase difference passes through 0 or 1r. In other words, for different partial

wave phase shifts we may find opposite spin-orbit-induced spin polarizations from those 

described above. Therefore, measuring the sign of this dichroism would provide infor

mation on the phase shifts. 

(2) It was shown by Fanelsa et al. [34) that scattering off the lattice (diffraction) 

can induce dichroisms even larger than those due to cross-channel interference. This 

effect must be taken into account when analyzing the sign of the dichroism, although it 

is possible that such effects may not alter the MLDAD lineshape. 
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We have seen that linear p-polarized radiation leads to a magnetic dichroism upon 

reversal of the magnetization, and that this dichroism measures the same fundamental 

spectrum as MeD. By symmetry, excitation by linear s-polarized light does not lead to 

such dichroism. However, unpolarized light is an incoherent superposition of sand p, . 

and the p-component should lead naturally to dichroism as before. 

In Fig. 3.11 we present theoretical spin-integrated spectra using unpolarized excita

tion for magnetic orientations M i and M 1, along with the corresponding (MUDAD) 

dichroism. The geometry is the same as the MLDAD geometry described above, and 

the spectra were normalized such that the photoemission intensity derived from the p

polarized component was the same in both cases. For such a normalization, we see that 

the difference spectrum of Fig. 3.1l(b) is exactly the same as that of Fig. 3.10(b). How

ever, due to the intensity contribution from the non-dichroic s-component, the percent 

asymmetry is less than with linear p-polarized light. The MUDAD, while being less than 

the MLDAD, is not exactly one-half as large as commonly believed. The reason for this 

is that the photoemission intensity derived from the s-polarized component is not equal 

to the photoemission intensity derived from the p-polarized component. In fact, for the 

phase shifts and geometry considered here, the ratio of p-derived to s-derived intensity 

is about 9:2. It should be mentioned that this ratio depends sensitively on the phase 

differences between the 1 ± 1 channels. For zero phase difference, the intensity ratio 

drops to 3:2. Measuring this intensity ratio with linear-polarized synchrotron radiation 

also could yield information on the partial-wave phase shifts for the solid state. 

As a final example of such MUDAD effects, we return to the SRXPS results of See 

and Klebanoff [27], for which the experimental geometry was already described. See and 

Klebanoff averaged the majority and minority spectra over both magnetic orientations, 

as discussed above. The purpose here is to investigate the spin-resolved spectra for 

each magnetic orientation. In Fig. 3.12(a) and 3.12(b) we present theoretical spin-



resolved spectra for M T and M 1 respectively. We see significant differences in the 

spin-polarization for the two orientations. For instance, the 2P3/2 main line has a strong 

minority-spin polarization for M L but a small majority-spin polarization for M T. The 

sign of the 2Pl/2 main-line spin polarization also depends on the magnetic orientation. 

The majority and minority spectra, averaged over both magnetizations, were presented 

already in Fig. 3.4(b), and are reproduced here in Fig. 3.12( c) for convenience. 

3.3.4 Nature of the final state 

In this section we investigate in greater detail the effects of electron-electron interac

tion and the nature of the final state. In Fig. 3.13 we consider the case of photoemission 

from a structureless core level, obtained by setting all of the pd exchange integrals to 

zero. The dd Slater parameters and the valence-band Bloch energies are set to their 

full values as given in Table 3.1. Each spectrum in this limit contains six features: the 

2P3/2 main line ("" 852 e V), the 2P3/2 e/h pair excitation ("" 854 e V), the 2P3/2 satellite 

(as indicated by the arrows), and the corresponding features for the 2Pl/2 level. We 

consider a grazing-angle geometry (Oq = 0) and normal emission, so that there is no 

spin-orbit-induced spin polarization. Since there can be no exchange-induced spin po

larization either, the spin-up and spin-down intensities are equal. The analysis is further 

simplified because the satellites are reduced to single peaks. In Fig. 3.13 we plot the 

photoemissionspectra as we progressively decrease the direct Coulomb repulsion. Upd 

from 5 eV to 2 eV. Reducing Upd reduces the energetic cost of leaving the core hole 

unscreened, and the satellite position moves in toward the main lines, as shown. The 

satellite position is always more than Upd eV to the left of the main lines because the 

localized valence hole, viewed in k-space, contains sizable components of higher-energy 

single-particle Bloch states. What is surprising is that the intensity of the satellite de

creases so dramatically as the satellite moves in closer to the main lines. This intensity 
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loss in the satellite translates into an intensity gain for the main line. In other words, 

the effect of extra-atomic screening is to selectively transfer spectral weight from the 

low-binding-energy satellite states to the main lines. This effect is a fundamental fea-

ture of the Ni 2p photoemission spectrum, and is not an artifact of the structureless 

core considered here. This is most apparent by comparing the 2P3/2 majority satellite 

for the case of zero bandwidth and 50% bandwidth (shown as feature C in Fig. 3.3), 

as discussed in section A. In particular, this extra-atomic screening effect explains why 

there is a preferential transfer of minority line strength from the satellite to the main 

lines: the minority satellite intensity is naturally weighted nearer the main lines by 

intra-atomic exchange, and therefore transfers a greater proportion of its intensity to 

the main lines. 

The e/h excitation appears as a distinct peak approximately 2 eV to the left of 

the main lines for all values of Upd considered in Fig. 3.13. That the peak position 

is energetically fixed is reasonable because the e/h pair, viewed in k-space, involves 

promotion of electrons from states below EF to unoccupied states at or near EF. The 

energetic cost of doing this depends on the valence band structure, and the energies 

of the single-particle Bloch states do not change as we vary Upd. Interestingly, for the 

physically realistic range of core-valence repulsion considered here, the intensity of the 

e/h excitation is largely independent of Upd. 

It should be emphasized that the e/h pair excitation appearing as a single peak in our 

spectra is purely an artifact of the model. This is a consequence of our Brillouin zone, 

which consists of r and the three Xpoints. Exciting an electron from below EF to a hole 
\ 

at or near EF costs a discrete amount of energy in our model, due to the discrete nature 

of our Brillouin zone. In a realistic system, there is no energy gap at EF and the e/h-

excitations can be of arbitrarily small energy. This leads to the classic asymmetric line 

shapes in core-level photoemission from metals, as described by Doniach and Sunjic[69]. 



For realistic broadening, however, the e/h excitation peak in our spectrum "gets buried" 

into the main line, and manifests itself also as an asymmetry in the main lines. While 

not leading to a continuous tail, it is remarkable that a simple four-atom cluster with 

periodic boundary conditions contains such excitations, which are a truly solid-state 

effect. 

In Fig. 3.14 we plot the satellite intensity as a function of Upd for the same limiting 

case considered in Fig. 3.13. The dramatic intensity drop with decreasing Upd is purely 

an extra-atomic screening effect. For zero valence bandwidth, the satellite strength 

would always be exactly 50% (due to our ground state) and would always occur exactly 

Upd to the left of the main lines. Since satellite position is roughly proportional to 

, Upd, the essential result of this plot is that the effect of extra-atomic screening is to 

dramatically dampen those satellite final states whose energetic position is nearer the 

main lines. 

This binding-energy-dependent spectral-weight-transfer effect may also explain the 

lack of any observable minority component in the Ni 3s satellite [27]. Assuming for a 

moment zero valence bandwidth, and using our ground state (50% tf3 and 50% d10 ), the 

majority Ni 3s spectrum would consist of three peaks: a main line of relative strength 

2, and two satellite peaks, each of relative strength 1, corresponding to 1 D and 3D 

final states. The minority spectrum would consist of two peaks: a main line of relative 

strength 2, and a satellite, corresponding to a 3D final state, also of strength 2. The 

main line occurs at about 110 eV binding energy. If one now allows for extra-atomic 

screening by introducing a valence bandwidth, satellite line strength will be transferred 

. to the main lines. If we assume that the triplet peak occurs at f'V 113 e V binding 

energy and that the singlet peak occurs at f'V 116 eV, then we can see from Fig. 3.14 

that the triplet peak, which has minority character, would transfer its intensity almost 

completely to the main lines, which would then acquire minority character. Any residual 
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satellite triplet strength would be buried by the main lines, and the only satellite peak 

to survive in substantial strength would be the high binding energy singlet final state, 

leading to an apparent pure majority spin polarization for the 6-e V satellite, as observed 

experimentally [27]. 

Next we examine quantitatively the nature of the final state, both from a localized 

(real space) perspective, and also from a band-structure (k-space) point of view. In the 

former approach, it has been argued for some time that the main lines correspond to dID 

final states, and the satellites to d? final states. However, See and Klebanoff measured a 

small exchange splitting in the Ni 2p main lines[55], thereby proving that the main lines 

could not be pur~ dID. However, until now, quantitative descriptions of the main-line 

final-state configurations have not been reported. Also, the possibility of significant dID 

mixing in the nominally d? satellite has not been investigated in detail. 

In Fig. 3.15( a) we present a plot ofthe spin-integrated Ni 2p photoemission spectrum, 

with the fraction of local dID, d?, and d8 configuration in the final states plotted below. 

We see that the main lines are not pure dID, but have roughly 10% of d? configuration 

mixed in. This small d? hybridization in the nominally dID main line explains the small 

exchange splitting observed experimentally. The ejh excitation, occurring at '" 854 eV 

for 2p3/2, also corresponds to a primarily dlO final state. The satellite, however, is found 

to contain a surprisingly large amount of dID mixing in the final state. At the high

binding-energy side of the satellite, the dID mixing is about 30%, but rises to nearly 50% 

at the low-bin ding-energy side. The d8 final states (two valence holes on the core hole 

site) are found to occur approximately 10-15 eV to the left of the main lines and are 

not excited. It should be remarked that had our ground state contained a small amount 

of d8 configuration, then we would have had a small probability of exciting these final 

states, leading to a very weak 14-eV satellite, as found experimentally [27] and predicted 

theoretically using an Anderson impurity model with such d8 mixing [74]. 



Recently there has been speculation that the Ni core-leveI6-eV satellites may actually 

correspond to d8 final states [27, 55]. The reasoning behind this was that the observed 

spin polarization of the Ni 3s 6-e V satellite was believed to be inconsistent with the 

mixed spin polarization expected for a satellite corresponding to an SI d? configuration. 

However, we believe that the extra-atomic screening effects described above resolve this 

apparent discrepancy and are consistent with the observed spin polarizations of both the 

Ni 3s satellites and main lines. Our main-line (nominally dIO) and satellite (nominally 

d?) final-state assignments are also consistent with other theoretical descriptions based 

on an Anderson impurity model [37]. 

Finally, we consider the nature of the final-state configuration from a k-space point 

of view. In Fig. 3.16 we plot the Bloch-state decomposition for main-line, e/h pair, 

and satellite final states. For any final state, the number of valence holes, summed over 

all Bloch states, must equal two. In the ground state, both holes are in Xs. If there 

were no interaction· between the core hole and the valence band, then there would be 

no rearrangement of the valence charges upon photoemission, and both holes in the 

final state would remain in Xs. For the main-line states, we see that there is a small 

rearrangement of the valence charges. However, about 90% of the valence holes still 

remain at (Xs) or near (X2 ) the Fermi level. 

For the e/h pair excitations, we see a substantial rearrangement of the valence 

charges, with a high probability of exciting "shakeup" electrons from either r~s or X 3 , 

which are both located well below EF. 

For the satellite, we see an almost uniform distribution of valence configurations in 

k-space. This is a reflection of the fact that the natural language for describing the 

satellite is the localized basis. There are more holes at X s, but that is partly due to 

the fact that, statistically, there are simply more of these states; Xs is a six-dimensional 

irreducible representation, while the other representations are of dimension two or three. 
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3.3.5 Conclusion 

We have calculated Ni 2p spin-integrated and spin-resolved photoemission spectra 

for a variety of cases, including circular, linear, and unpolarized excitation. We have 

emphasized the subtle interplay between Coulomb, exchange, spin-orbit, and extra

atomic screening effects. We have also described an energy-dependent spectral-weight

transfer effect, which can also explain the spin polarization of the Ni 3s spectrum. 

Finally, we discussed the nature of the final state, showing that main'lines have a small 

d? mixing, and that the satellite has a substantial dlO component. 
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Table 3.1: Slater integrals and spin-averaged band energies used in this work. 

Integral Energy (eV) Bloch State Energy (eV) 

Udd 3.0 rl2 0.92 

Fld 9.79 r;;; 2.04 

FJd 6.08 Xl 4.31 

Upd 4.0 X 2 0.18 

G~d 4.63 X3 3.81 

F;d 6.18 X;; 0.0 

G~d 2.63 
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( 

1 

Figure 3.1: The model. Periodic boundary conditions are imposed on the small tetra

hedral cluster of four atoms (black circles) to generate the full fcc lattice. Each atom 

is labeled by an index 1-4, and each is surrounded by twelve nearest neighbors of a 

different index. The four translations that leave the crystal invariant are 0, T2,T3, and 

T"4, where 0 is the identity translation. 



y z 

Figure 3.2: Definition of the geometry. The incident photons q make an angle Oq with 

the magnetization direction, which is in plane along the z axis. The electrons k are 

emitted at a takeoff angle Ok with respect to the z axis. 
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Figure 3.3: Majority and minority photoelectron spectra. All lines were Gaussian (r = 

0.3 eV) and Lorentzian (0' = 0.3 eV) broadened. (a) Spectra for zero valence bandwidth 

and zero exchange interaction between core hole and valence states. (b) Spectra for zero 

valence bandwidth, now including core-valence exchange. (c) Spectra, including core-

valence exchange, for 50% valence bandwidth. (d) Spectra for full Ni valence bandwidth. 
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Figure 3.4: Ni 2p spin-resolved experimental and theoretical results_ (a) Experimental 

results. (b) Theoretical results, convoluted with a Gaussian (f = 1.6 e V) and Lorentzian 

(0' = 0.8 eV and 1.2 eV for 2P3/2 and 2Pl/2, respectively). (c) Difference of majority 

and minority spectra for theoretical (dashed lines) and experimental (solid lines) results, 
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Figure 3.5: Spin-integrated and spin-resolved spectra for RCP excitation at grazing 

incidence (eq = 0). For LCP excitation, the spin polarization is reversed. (a) Spin-

integrated intensity for Ok = 0 takeoff angle. (b) Corresponding spin-resolved spectra. 

The 2P3/2 photoelectrons are 75% spin down and 25% spin up. The 2Pl/2 photoelectrons 

are 100% spin up. (c) Spin-integrated intensity for normal emission (ek = 90). (d) 

Corresponding spin-resolved spectra. Here the 2P3/2 (2Pl/2) level has a strong spin-up 

( down) character. 
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Figure 3.6: Magnetic circular dichroism for grazing incidence ceq = 0°) and normal 

emission (ek = 90°). (a) Partial intensities for RCP and LCP excitation. (b) M CD 

difference spectrum, multiplied by 6 for clarity. 
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Figure 3.7: Fractional spin polarization at grazing incidence (Oq = 00
) for RCP excita-

tion. For LCP, the spin polarization is exactly reversed. At approximately 310
, equal 

numbers of spin-up and spin-down electrons are ejected from each level. At this angle, 

the MCD is predicted to vanish throughout the spectrum. 
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Figure 3.8: Spin-resolved spectra in the zero bandwidth limit using linear p-polarized 

excitation, for geometry described in text. All lines were narrowly broadened with a 

Gaussian (f = 0.3 eV) and Lorentzian (0" = 0.3 eV). (a) Spin-up intensities for magneti-

zation along +z and -z respectively. (b) Spin-down intensities for magnetization along 

+z and - z, respectively. (c) Spin polarization. The 2P3/2 main line is polarized spin 

down, whereas the 2Pl/2 main line is polarized spin up, independent of magnetization. 

The main-line spin polarization is due exclusively to spin-orbit and cross-channel inter-

ference. The spin polarization of the satellites is dominated by the exchange interaction. 
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Figure 3.9: Spin-resolved spectra using true valence bandwidth with linear p-polarized 

excitation, for geometry described in text. Lines convoluted with a Gaussian (r = 

1.6 eV) and Lorentzian (0' = 0.8 eV and 1.2 eV for 2P3/2 and 2Pl/2' respectively). (a) 

Spin-up intensities for magnetization along +z and -z respectively. (b) Corresponding 

spin-down intensities. (c) Spin p<?larization for +z and -z magnetizations. Main lines 

display a spin polarization due to spin-orbit (small exchange), but the satellite spin 

polarization is due mainly to exchange (due to larger exchange effects present there). 
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Figure 3.10: MLDAD for geometry described in text. (a) Spin-integrated intensities for 

magnetization along +z and -z respectively. (b) MLDAD difference spectrum. Except 

for the reduced magnitude, the spectrum is identical to the MCD spectrum presented 

above. 
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Figure 3.11: MUDAD for geometry described in text. (a) Spin-integrated intensities 

for magnetization along +z and -z respectively. (b) Unnormalized MUDAD spectrum. 

The lineshape is identical to the MLDAD spectrum, but slightly smaller in magnitude 

due to the non-dichroic component derived from s-polarized photons. 
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Figure 3.12: Spin-resolved spectra using unpolarized excitation for experimental ge-

ometry described in text. (a) Majority and minority spectra for M j. (b) Majority 

and minority spectra for M 1. (c) Majority and minority spectra, averaged over both 

magnetizations. 
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Figure 3.13: Ni 2p photoemission spectra at full valence bandwidth setting exchange 

integrals to zero. (a )-( d) Spectra for Upd = 5,4,3, and 2 e V respectively. As the satellite 

lines move to lower binding energy, they also transfer line strength to the main lines. 
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Chapter 4 

Many-Body Theory of Ni 3p Photoemission 

4.1 Introduction 

In a typical core-level photoemission experiment, monochromatic light of wavevector 

q, polarization €, and energy liw impinges on a sample, exciting the core electrons into 

free electron states far above the Fermi sea.. The wavevector k, kinetic energy Ek, 

and perhaps also the spin (7 of these photoelectrons are then measured. Knowing Ek 

and liw allows one to deduce the electron binding energy EB via the simple relation: 

EB = liw - Ek. The core-level binding energies of the elements are well known, and 

so a peak in a photoemission spectrum at a given binding energy serves as a sort of 

"atomic fingerprint" for the presence of a given species of atom. This makes core

level photoelectron spectroscopy a powerful element specific probe of condensed matter 

systems. 

More specifically, several core-level photoemission investigations have been carried 

out-for the itinerant ferromagnets Fe, Co, and Ni. The core electrons in these systems 

are coupled to the spin-polarized valence electrons through the Coulomb and exchange 

interactions. In a ferromagnet, therefore, core electrons with spin parallel to the majority 

in the valence band should see their average position shifted to higher binding energy. 

In spin-resolved x-ray photoelectron spectroscopy (SRXPS), the spin of the outgoing 

photoelectron is measured, and these spin-polarized spectra serve as a direct probe of the 

local electronic and magnetic environment. Such SRXPS studies have been performed 

on Fe [25], Co [26], and Ni [27] using unpolarized radiation sources. 



Alternative probes - without requiring electron spin detection - are possible with 

high-intensity polarized synchrotron radiation. The dipole operator, which acts only on 

the orbital component of the core wavefunction, can couple indirectly to the core spin via 

the spin-orbit interaction. The core spin, in turn, couples to the spin-polarized valence 

electrons through exchange. Therefore, the photon couples indirectly to the valence 

band, and so the spin-integrated spectra in an angle-resolved photoemission experiment 

can depend on the magnetic orientation. Measuring these intensity differences upon 

reversal of the sample magnetization is known as magnetic dichroism in the angular dis

tribution. Such dichroism using circularly polarized light (MCDAD) was first observed 

by Baumgarten et al. [21] in Fe 2p, and using linearly polarized light (MLDAD) by 

Roth et al. in Fe 3p. 

For the relatively delocalized transition metals Fe and Co, one-electron theories 

[40, 41] reproduce experimental results relatively well for 2p and 3p core levels. These 

methods all involve calculating - in one way or another - the intensities of the six jj, mj) 

core states, and then positioning the lines at the appropriate energy. This approach 

implicitly assumes that the jj, mj) are good quasiparticle states. This assumption clearly 

breaks down in a localized atomic-like system, where coupling between the core hole and 

the valence shell results in a complex. multiplet structure. For such systems, the spectra 

cannot be described with only six lines. 

The situation for Ni is complicated by the fact that it not only exhibits a multiplet 

structure, but also displays extra-atomic screening effects. Therefore, both the localized 

and the de localized properties of the valence electrons are manifest in the photoemission 

spectrum. It is this "intermediate coupling" nature of Ni that makes it a particularly 

instructive and interesting system to study. 

Up to now, most theoretical efforts to describe core-level photoemission from Ni have 

been based on an Anderson impurity model [37, 75, 76]. In this model, Ni is treated 
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as an "impurity" within a Ni host, and extra-atomic screening is described in terms 

of hybridization of valence orbitals with adjacent atoms through an adjustable "mixing 

parameter" . 

An alternative approach is the periodic small-cluster model used by Victora and 

Falicov [53] to describe the Ni valence band photoemission spectrum, and by Menchero 

[38, 39] to analyze the Ni 2p core level. It is this model which we extend here to consider 

the case of photoemission from the Ni 3p core leveL Unlike the Anderson model, this 

model contains translational symmetry operations due to periodicity. Translational 

symmetry implies a band structure, which in turn describes the hopping of the valence 

electrons. Therefore, extra-atomic screening is treated naturally by way of the electronic 

band structure. 

The chapter is organized as follows: In Sec. 4.2 we provide a brief description of the 

model. We then present the calculated Ni 3p spin-resolved spectra and make a detailed 

comparison to experimental results. In Sec. 4.3 we present and discuss spin-resolved and 

circular-polarized spectra for a variety of limiting cases. This analysis provides important 

insights into the tlnderlying physics. We also present results from a simple model that 

correctly explains the transfer of spectral weight between the satellites and the main 

lines. We then discuss hybridization effects between d8 , tP, and dID configurations, and 

plot the local atomic configuration as a function of binding energy. Conclusions are 

given in Sec. 4.4. 

(' 

4.2 Results 

Our model has been described elsewhere [39]. Briefly, it consists of a tetrahedral 

cluster of four Ni atoms, with periodic boundary conditions imposed to generate the full 

fcc lattice. Each atom in the lattice can be labeled by an index 1-4, and is surrounded 

by twelve nearest neighbors of a different index. Such periodicity dictates that all Bloch 



states must transform according to either r or X in the Brillouin zone. 

We use d-orbitals to describe the valence band and p-orbitals for the core electrons. 

Our Hamiltonian contains three types of terms: core-level spin-orbit coupling, intrasite 

electron-electron Coulomb repulsion, and valence band hopping. We use 1. 74 e V for 

the spin-orbit splitting between the j = 3/2 and j = 1/2 core levels, a value used by 

previous workers [76]. 

The Coulomb interaction is described in. terms of the standard Slater integrals, which 

are given in Table 4.1. For the F and G integrals, we again adopt the values of previous 

workers [76]. The Udd and Upd must be treated as adjustable parameters. For Udd we 

use 3 eV, although the calculated spectra are found to be virtually independent of this 

parameter for any reasonable choice. This is a reflection of the fact that (],9 and dID 

configurations dominate both the initial states and the final states. Upd determines the 

overall energy of the p5(],9 final states, and hence the satellite position. We obtain good 

agreement with experiment using Upd = 5 eV. 

The valence band hopping is described in terms of the electronic band structure. 

For a four-site cluster, one particle in the valence band can occupy one of 20 d-orbitals. 

These 20 states can be constructed using the complete projection operators [62], and 

decompose with the following symmetries: 

(4.1) 

The energies of these Bloch states are matched to the spin-averaged band structure 

calculations of Wang and Callaway [56], which are given in Table 4.1. 

The ground state in our model is ferromagnetic with a 50% (],9 and 50% dID initial

state configuration, leading to a spin moment of 0.50 Ji-B per atom. In this work, we 

use the sign convention that the magnetization direction is "up", meaning that the 

majority electrons are spin down. Spectra are calculated using Fermi's golden rule 
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within the electric dipole and sudden approximations. We include interference between 

the I ± 1 channels, and use the chaimel matrix elements and phase shifts of Goldberg, 

Fadley, and Kono [47]. Photoelectron diffraction effects are not considered in this work, 

although in some cases such effects are known to cause significant changes in both the 

spin polarization [77] and magnetic dichroism [34, 78]. 

In Fig. 4.1 (a) we present experimental Ni 3p spin-resolved spectra due to See and 

Klebanoff [27]. A single-crystal Ni sample., remanently magnetized in the surface plane, 

was irradiated with a Mg K a x-ray source. Photoelectrons were collected normal to 

the surface and their spin measured along the magnetization direction. Instrumental 

resolution was 1.6 e V FWHM. Solid (dashed) lines are for photoelectrons with spin 

parallel to the minority (majority) electrons in the valence band. The experimental 

. results are characterized by three main features: a broad main line (labeled A), and two 

satellite structures (labeled B and C) centered about,....., 72 eV and,....., 77 eV. The main 

line displays a strong minority spin polarization, as does satellite B. Satellite C, on the 

other hand, exhibits a strong majority spin polarization. 

In Fig. 4.1 (b) we present the corresponding theoretical spin-resolved spectra, which 

were calculated for normal emission and a grazing-angle geometry, i.e., photon q was 

taken parallel to magnetization M, with photoelectron k normal to M. The geometry 

adopted for the calculation was chosen to eliminate spin-orbit induced spin polarization. 

The experimental geometry, which was chiral, has been described in Chapter 3. Exper-

imentally, the elimination of spin-orbit induced spin polarization was accomplished by 

averaging over both magnetic orientations. We use channel matrix elements taken at 

Mg K a photon energy [47]. Lines were convoluted with a Gaussian (1.6 eV FWHM) 

to simulate instrumental broadening, and by Lorentzians (1.5 eV FW~M for A and B, 

I 
2.5 eV for C) to simulate lifetime broadening. For narrower broadenings, the well known 

2-e V shoulder emerges in the main line. For the relatively wide broadenings used here, 
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however, this shoulder is hardly discernible. 

The theoretical results correctly reproduce all the principal features of the experi-

mental spectra, and the relative positions and intensities of peaks A, B, and C agree 

very well with observations. 

In Fig. 4.1 (c) we plot the theoretical and experimental spin polarizations. In both 

theory and experiment, feature C has a strong majority spin polarization, whereas fea-

tures A and B exhibit minority spin polarizations. While the theoretical results correctly 

predict the sign of the spin polarization throughout the spectrum, the magnitude is over-

estimated at C and underestimated at A and B. This is probably due to a net minority 

background spin polarization in this energy range. Since the core is fully occupied in 

the initial state, the spin polarization integrated over the energy range of the core shell 

should vanish: 

[ (IuP.- Idown)dE = O. 
icore 

(4.2) 

Clearly, the experimental observations do not satisfy this result. Agreement between 

theory and experiment would be improved if the minority spectrum of the latter were 

rigidly shifted downward to correct for the background spin polarization. 

4.3 Discussion 

The Ni 3p spectrum exhibits several complex subtleties due to the interplay between 

Coulomb and exchange interaction, spin-orbit coupling, and extra-atomic screening. In 

order to gain physical insight into the underlying structure, we consider here a variety of 

limiting cases. From Fig. 4.1, we see that the satellites are spread over a manifold of more 

than 12 eV. Spin-orbit splitting, on the other hand, is only 1.74 eV. This suggests that 

LS coupling is a reasonably good starting point for describing the satellite structures. 

We then discuss the transfer of spectral weight between satellites and main lines, and 
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show that the effect can be understood in terms of a simple 2x2 model. Finally, we 

turn to the question of final-state configurations. This allows us to describe in a more 

quantitative way the physical nature of the final states. 

4.3.1 Spin polarization 

In this section we present theoretical spin-resolved spectra for a variety of limiting 

cases, with the same grazing-angle geometry described in Sec. II. Lines were convoluted 

with Gaussian (FWHM=l eV) and Lorentzian (FWHM=l eV) lineshapes and the chan

nel matrix elements were taken at 400-eV photon energy [47]. The photon energy was 

chosen to permit a more direct comparison with experimental MCDAD data presented 

later, which were also taken at 400-eV. 

As our first case, we consider the spin-resolved spectra in the limit of LS coupling 

and zero valence bandwidth. We obtain the zero-bandwidth limit by setting the energies 

of all the Bloch states in Table 4.1 to zero. For this case, there can be no mixing or 

hybridization in the final states; Le., the number of valence electrons on the core-hole 

atom is a good quantum number. In this way, each line in the spectrum can be assigned 

a precise physical interpretation. We obtain the LS limit by setting the spin-orbit 

coupling to zero. In this case, the total L and total S of the core-hole atom are good 

quantum numbers. 

The spin-resolved spectra are presented in Fig. 4.2(a). As before, majority electrons 

are spin down. Even in this limit, already the gross features of the actual Ni 3p spectra 

are apparent: Le., a main line A and two satellites Band C, each with the correct 

spin polarization. The most obvious discrepancies between these spectra and the actual 

SRXPS spectra are that the satellite intensities are too large and that there is no 2-e V 

shoulder in the main line. 

For this simple limit, it is instructive .to examine in greater detail the underlying 



structure of the spectra. If the core hole is created at a site which is locally d,9, then the 

core hole and the valence hole angular momenta couple according to the LS scheme. 

The resulting term energies can be calculated analytically: 

E(3F) = 
6 1 22 3 3 

Upd - 15 Gpd + 35 Fpd - 245 Gpd ( 4.3) 

EeD) 
3 1 7 2 21 3 

Upd - 15Gpd - 35 Fpd + 245 Gpd 

Eep) = 
. 1 1 7 2 63 3 

Vpd - 15Gpd + 35Fpd - 245Gpd 

EeD) = 
• 3 1 7 2 21 3 

Vpd + 15Gpd - 35Fpd - 245Gpd 

Eep) = 
1 1 72 63 3 

Upd + 15 Gpd + 3.,Fpd + 245Gpd 

EeF) = 
6 1 2 2 3 3 

Upd + 15Gpd + 35 Fpd + 245 Gpd . 

The resulting spectrum in this limit contains exactly seven lines: a single dlO line 

and six lines for the d,9 configuration. These spin-resolved line strengths are given in 

Table 4.2, and yield the following observations: 

(a) The dlO line, being intrinsically nonmagnetic, is unpolarized. 

(b) The net intensities of the d,9 and dlO lines are in exact proportion to their ground 

state populations; i.e., 50% of the line strength is d,9 and 50% dlO. 

(c) The d,9 triplet lines are minority spin polarized in the ratio 2:1; the singlet lines 

are 100% majority spin polarized. 

(d) The spin·integrated strengths of the d,9 lines are proportional to the number of 

states in the.terms: e.g., Iep)/Iep) =3:1, IeD)/Iep) =5:3, etc. 

Therefore, in this limit, the leading edge of the main line is d10 , but the spin polar-

ization is due to the 3 F term. Feature B is due to the 3 P and 3D terms, leading to a 

strong minority spin polarization. Feature C is due to 1 P and 1 F terms and is therefore 

100% majority spin. 
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As our next case, we introduce a realistic spin-orbit splitting of 1.74 eV between P3/2 

and PIj2, but maintain the valence bandwidth at zero. With nonzero spin-orbit coupling, 

total L and total S of the core-hole atom are no longer strictly good quantum numbers. 

Total angular momentum J of the core-hole atom is still rigorously a good quantum 

number, and the triplet terms in Eq. 4.3 break up into individual lines of definite J. 

Therefore, in this limit, the spectrum consists of 14 lines: the spin-orbit split diO lines 

and the 12 d? lines. 

The spin-resolved spectra for this case are presented in Fig. 4.2{b). Satellite C is 

almost unchanged from the strict LS limit case. However, satellite B is noticeably 

broader due to the splitting of the 3 P and 3D terms. The most obvious change with the 

introduction of spin-orbit coupling is the appearance of a "twin peak» structure in the 

main line. 

Again, since the number of lines is so limited, and because each line can be unam

biguously assigned, it is instructive .to explicitly examine the intensities of each line, 

which are given in Table 4.3. We observe the following: 

(a) The diO lines are unpolarized. The diO lines are intrinsically nonmagnetic and so 

can exhibit no exchange-induced spin polarization. Although there can be spin-orbit

induced spin polarization in a diO line [57]. in the nonchiral geometry considered here 

such effects are not present. Therefore, the spin polarization is determined exclusively 

by the d? configuration. 

(b) The relative intensities of the P3/2d10 to PI/2dIO lines is 2:1, a reflection of the 

2j + 1 multiplicity of the levels. 

(c) The relative spin-integrated intensities of the d? lines are proportional to the 

multiplicity 2J + l. 

(d) The spin polarization of the I D2 line is effectively neutralized through strong 

mixing with the 3 F2 line. This example clearly demonstrates the strong hybridization 



effects that occur when two energetically nearby lines are allowed to mix. Before spin

orbit coupling is turned on, the 1 D line is 100% spin down, and energetically separated 

by only 0.57 eV from the 3 F line, which is primarily spin up. With spin-orbit coupling, 

the lines repel and 1 D2 acquires much of the spin-up character of 3 F2 , and vice versa. 

(e) The main-line leading edge is P3/2d10 and the high binding energy "twin peak" 

is due to 3 F and Pl/2d10. 

Next we consider the effect of extra-atomic screening by introducing a narrow valence 

bandwidth. This is accomplished by multiplying the energies of the Bloch states in 

Table 4.1 by a scaling factor of 0.50. The resulting spectra are presented in Fig. 4.2(c). 

With a small but nonzero bandwidth, configurations can mix, meaning that the electron 

occupancy of the core-hole atom is no longer a good quantum number. Also, line strength 

is now transferred from the high binding energy side of the spectrum to the low binding 

energy side, Le., satellites Band C lose intensity to the main line. This is also true 

within the main line: the high binding energy "twin" in the main line transfers intensity 

to the low binding energy side, and thereby reduces itself to a shoulder. 

Although satellite peaks B and Care no longer pure d? due to hybridization, the 

peaks are still clearly identified. In this sense it is still meaningful to assign satellite C 

to 1 P and 1 F terms, and satellite B to 3 P and 3D terms. 

Caution must be exercised in assigning the main line. Before the valence bandwidth 

is turned on, the 3 F2 , 3 F3 , and Pl/2 lines are energetically separated by only 120 meV 

(see Table 4.3). Any mixing between these lines will lead to very strong hybridization, as 

demonstrated by our previous example. Therefore, although the Ni 3p main line cannot 

be unambiguously defined, we can say that it consists of a heavily hybridized mixture 

of Pl/2dlO, 3 F, and P3/2d10 lines. 

As our final case, we set the valence bandwidth to 100% of its actual value, and 

present the resulting spectra in Fig. 4.2( d). As the bandwidth is increased , extra-
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atomic screening transfers additional spectral weight from the d? satellites to the main 

line. While satellites Band C both lose intensity, careful examination of Figs. 4.2(b )-( d) 

show that as the bandwidth is increased from 0% to 100%, satellite B loses a greater 

proportion of its intensity. This transfer of spectral weight, which depends sensitively 

on relative binding energy, is dis~ussed in greater detail below. 

We further observe that as the bandwidth is increased, the positions of satellites' 

Band C are shifted to higher binding energy. This is because a local d? excitation, 

when ,viewed in k-space, must contain sizable components of Bloch states from below 

the Fermi level. As the bandwidth is increased, the energetic cost of promoting these 

electrons is also increased, and the line shifts to higher binding energy. 

Finally, we observe that line strength continues to be transferred within the main 

line from the high binding energy side to the low side. In doing so, the 2-eV shoulder 

becomes less pronounced. 

4.3.2 Magnetic circular dichroism 

In Fig. 4.3( a) we present theoretical spin-integrated spectra at 400-e V photon en

ergy for RCP and LCP excitation. Spectra were calculated for the same grazing-angle 

geometry as described above, and normalized to a peak intensity of 100. Lines were 

convoluted with a Gaussian of 1.6 eV FWHM and Lorentzians of 1.5 eV FWHM (for A 

and B) and 2.5 eV FWHM (for C). The corresponding MCDAD, defined as IRcp-hcp, 

is presented in Fig. 4.3(b). Satellite C is characterized by a plus feature, whereas the 

high binding energy side of satellite B displays a strong minus feature. The main line A 

is characterized by a very pronounced minus/plus feature, centered about the intensity 

maximum. In addition to these four strong dichroism peaks, there is also a very weak 

positive feature centered about '" 70 e V. 

For comparison, we present Ni 3p experimental and theoretical MCDAD results, 



both due to van der Laan et aI. [75]. The experimental data, presented in Fig. 4.4, were 

taken at 400-e V photon energy from a single-crystal sample. In their data, the dichroism 

was multiplied by a factor of 2 to account for the incomplete circular polarization of the 

light and incomplete magnetization of the sample. The theoretical results, presented in 

Fig. 4.5, were calculated using an Anderson impurity model. The shape of our calculated 

MCDAD agrees well with both the experimental (Fig. 4.4) and theoretical (Fig. 4.5) 

results of van der Laan. Two comments are in order regarding the magnitude of the 

dichroism: 

1) The magnitude of the calculated dichroism found here ( '" 2%) is roughly the same 

as that calculated by van der Laan et ai., even though the present work uses considerably 

narrower line broadenings. This can be attributed to differences in the ground states: 

the ground state used 'by van der Laan et aI. contains a nonzero orbital moment as well 

as a sizable fraction of dB configuration. 

2) The magnitude of the MCDAD calculated here is smaller than the observed dichro

ism (Fig. 4.4). This may be due in part to photoelectron diffraction effects arising from 

the single-crystal sample used in the experiment by van der Laan et aI.[75]. 

These questions will be addressed in greater detail in Chapter 5. For present pur

poses, however, we are not so concerned about the magnitude of the dichroism. Instead, 

we concentrate here on trying to understand the underlying structure of the lineshape. 

To gain physical insight into the MCDAD spectrum, we consider the same limiting 

cases as before. Spin-integrated spectra for RCP and LCP excitation are presented in 

Fig. 4.6. All lines were broadened by Gaussian and Lorentzian lineshapes of 1.0 e V 

FWHM each. 

As our first case, we consider the limit of zero spin-orbit coupling and zero valence 

bandwidth. In the absence of spin-orbit coupling, there is no way for the dipole operator 

- which acts only on the orbital part ofthe wavefunction - to couple to the spin-polarized 
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valence band. For this case, we see from Fig. 4.6(a) that IRep = hep, and hence the 

dichroism vanishes. We can also see from Table 4.2 that this result holds on a line by 

line basis. 

As our next limiting case, we set the core-level spin-orbit splitting to 1.74 eV, but 

maintain the valence bandwidth at zero. With nonzero spin-orbit coupling, we see 

from Fig. 4.6(b) that a dichroism is now observed: satellite C acquires a plus feature, 

satellite B a minus/plus feature, and the main line also acquires a minus/plus feature. 

Already in this simple limiting case, therefore, we have correctly reproduced the sign of 

the dichroism throughout the spectrum. However, we see that the low binding energy 

side of satellite B exhibits a relatively large dichroism, whereas in the final calculated 

result (Fig. 4.3(b», it possesses only a very weak M CDAD signal. We show below that 

the disappearance of this feature is due to the combined effect ·of line broadening and 

extra-atomic screening. 

Again, it is useful to explicitly examine the intensities of the individual lines, which 

are given in Table 4.3. We see that the dID lines exhibit no dichroism. However, as 

the cJ9 lines split apart into lines of definite J, each acquires a dichroic character. In 

this way, the minus/plus feature at the main line A is due to lines derived from the 3 F 

term. In satellite B, 3 P leads to a plus feature, whereas the minus feature is due to 

3 D. In satellite C, 1 P and 1 F both give rise to a positive dichroism. We also note from 

Table 4.3 that Iup + Idown = IRep + hep on a line by line basis; either way, the sum of 

the two gives the spin-integrated spectrum for unpolarized excitation. 

In· Fig. 4.6( c) we see the effect of introducing a valence bandwidth of 50% its actual 

value. While extra-atomic screening significantly affects the circular-polarized spectra, 

the difference spectrum is still characterized by the same plus/minus features as before. 

However, due to spectral weight transfer, the low binding energy side of satellite Bioses 

more intensity than the high binding energy side, and so the resulting dichroism in this 



region is reduced accordingly. 

This can be seen even more clearly for the case of 100% valence bandwidth, which is 

plotted in Fig. 4.6( d). The high binding energy side of satellite B preserves its negative 

dichroism, but the positive MCDAD on the low binding energy side is almost entirely 

washed out by extra-atomic screening. When the wider broadenings of Fig. 4.3 are 

employed, the weak positive dichroism of this feature is further washed out by the much 

larger negative dichroisms on either side. Therefore, we see that the MCDAD can be 

understood by first examining the limit of zero valence bandwidth, and then considering 

the effects of line broadening and extra-atomic screening. 

4.3.3 Transfer of spectral weight 

In this section we investigate in greater detail how extra-atomic screening transfers 

spectral weight between a rJ9 satellite and a dlO main line. In particular, we wish to 

determine how this transfer depends on the valence bandwidth and satellite position. 

From Fig. 4.2 we see that each satellite maintains its relative spin polarization as 

intensity is transferred to the main line, although satellites Band C do not lose strength 

in the same proportion. In other words, to first order, the transfer of spectral weight 

does not depend on spin, but rather on relative binding energy. This suggests that we 

can neglect electron spin when modeling the effect. 

We choose as our simple model a two-atom system with periodic boundary conditions 

and one valence orbital per site. In our initial state we have one hole in the valence 

band, so that the local occupancy fluctuates between zero and one holes. This is in 

direct analogy to the case of Ni, where the dominant dlO and rJ9 configurations also lead 

to local fluctuations of zero or one holes. For spinless electrons, the basis states are 

given by: 

III) = ct 10) ( 4.4) 
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where eI; creates a valence hole at site i. If t is the hopping parameter for holes, then 

the Hamiltonian matrix is given by: 

H=[: :] (4 .. 5) 

The ground state has energy -t and is given by: 

IGS) = Ih) ~Ih) ( 4.6) 

The anti-bonding state is at energy +t and hence the valence bandwidth is BW = 2t. 

Upon photoemission, a core hole is created, and our new basis states become: 

191) = et Ih) 

192) ct 112) 

(4.7) 

where et creates a core hole at site 1. The Hamiltonian H' after photoemission is given 

by: 

,'-:' [ U t ] H- , 
t 0 

where U is the Hubbard term which describes the intrasite Coulomb repulsion between 

the core hole and the valence hole. The unnormalized eigenstates of H' are given by: 

(4.9) 

In the limit t --+ 0, we see le+) '" 191) and le-) '" 192). In other words, le+) corresponds 

to the satellite and le-) to the main line. We obtain the satellite intensity in the sudden 

approximation by projection: 

(4.10) 



If we define the dimensionless parameter T = BW j U: then the result is given by: 

I _ J, [1 - T + T2 + (1 - T)V1 + T2] 
sa.t - 0 1 2 VI 2 ' +7 + +7 

( 4.11) 

where 10 is the satellite intensity in the limit of zero valence bandwidth (in this example, 

10 = 0.5). In the narrow bandwidth limit, Eq. 4.11 reduces to Isa.t = 10(1- 7); Le., the 

satellite intensity is predicted to decrease linearly with increasing valence bandwidth. 
I 

To study how well Eq. 4.11 describes the screening process in Ni, we must first 

determine 7 = BWjU for the satellites. From Table 4.1: the Ni valence bandwidth is 

4.31 eV. For U, we must use the effective Hubbard interaction Uejj, defined here as the 

energy separation in the limit of zero valence bandwidth between the satellite and the 

leading edge of the main line. From Table 4.3, this .is roughly 504 e V for satellite Band 

roughly lOA eV for satellite C. Hence, we use 7B = 0.80 and TC = 0041. In Fig. 4.7 

we plot the intensities of satellites Band C as a function of valence bandwidth. These 

intensities were calculated two different ways: first by means of numerical integration 

using the full many-body calculation and second by using Eq. 4.11 with the 7B and TC 

given above. The two approaches yield results that are in excellent agreement, indicating 

that the important quantity governing the transfer of spectral weight is the ratio of the 

valence bandwidth to the effective Hubbard repulsion. 

4.3.4 Final state configuration 

In this section we examine in greater detail hybridization effects and the nature of 

the final state. Upon photoexcitation, a localized core hole is created at a particular 

site, leading to a sudden attractive potential for nearby electrons. If the core hole is 

created at a site that is locally d?, then an electron from a neighboring atom can hop 

into the unoccupied valence orbital, thereby screening the core hole. This extra-atomic 

screening leads to mixing of the configurations. 
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For a given final eigenstate IWf), of energy Ef, we wish to know the local number 

of valence electrons on the core-hole atom. Let Idk) be the kth basis state with exactly 

n valence electrons on the photoexcited atom. We then calculate the local atomic 

configuration according to: 

F(Ef) = :L1(dkIWf)1
2 

, 
k 

( 4.12) 

where Fn(Ef ) gives the fractional probability offinding the final eigenstate of energy Ef 

with n valence electrons on the core-hole atom. We then average over a sufficiently small 

energy interval to obtain a smooth function defined for the range of core-level binding 

energies. Since the valence configuration fluctuates between 8,9, and 10 electrons, 

F8 + p9 + FlO = 1.0 ( 4.13) 

must hold for every eigenstate I W f). 

In principle, such a description could be misleading. Consider the zero bandwidth 

limit. In this case, each line in the spectrum can be unambiguously assigned to either 

cf9 or diO configurations, e.g., the satellites are pure d? final states. However, there may 

be d iO states of zero intensity in the energetic neighborhood of the d? satellite. In such a 

case, we would not wish to include these d iO lines in our average, as this would imply that 

the satellite were not pure d? One way around this would be to eliminate all lines below 

some cutoff intensity, say 2% of the intensity of the strongest line in the spectrum. In 

practice, such a distinction introduces only relatively small differences in the theoretical 

final-state configuration. The reason is that all neighboring lines are sufficiently well 

hybridized so that the calculation using either method yields similar results. 

In Fig. 4.8 we present the local d8 , d?, and diO configurations calculated according 

to Eq. 4.12, with the Ni 3p spin-integrated spectrum plotted on the same energy scale 

for convenient reference. 



We see that the leading edge of the main line is 80-90% dID, and the trailing edge 

is roughly 70-80% dID. Therefore, the nominally d? 3 F lines get largely mixed into the 

nearby dID states, leading to a strongly hybridized mixture of the two. Even so, as 

we have seen, analysis of the purely rJ9 3 F term for the zero-bandwidth limit correctly 

predicted both the minority spin polarization and the minus/plus dichroism feature of 

the main line. 

\Ve also see from Fig. 4.8 that satellite B is roughly half d? and half dID, while 

satellite C is roughly 60% d?, 35% dID, with a little dB mixed in. If we eliminate all lines 

below a 2% cutoff intensity, we find that the rJ9 character of satellite B is increased by 

10-15%, and the d? character of satellite C is increased by 15-20%. 

Finally, we observe that most of the dB states occur 20-25 eV to the left of the main 

line. These states are not excited in our model due to the absence of dB in our ground 

state. 

4.4 Conclusions 

We have presented theoretical Ni 3p photoemission spectra calculated within a pe

riodic small-cluster model. Theoretical results were found to compare very well with 

experimental observations. We examined theoretical spectra for a variety of limiting 

cases, thereby gaining considerable physical insight into the underlying structure. We 

showed that, upon introduction of a valence bandwidth, there is a strong transfer of 

spectral weight to the main line. We showed further that this spectral weight transfer 

depends on the ratio of the valence bandwidth to the effective Hubbard interaction Uell. 

Finally, we discussed hybridization effects and configuration mixing in the final state, 

and calculated the local atomic configuration as a function of binding energy. 
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Table 4.1: Slater integrals and spin-averaged band energies used in this work. 

Integral Energy (eV) Bloch State Energy (eV) 

Udd 3.00 r12 0.92 

FJd 8.65 r;s 2.04 

FJd 5.40 Xl 4.31 

Upd 5.00 X 2 0.18 

G!d 10.99 X3 3.81 

F;d 8.84 Xs 0.00 

G~d 6.70 

Table 4.2: Final states and relative binding energies in the limit of zero spin-orbit inter

action and zero valence bandwidth. Iup and Idown are the spin-resolved photoemission 

intensities for un polarized excitation. IRCP and hcp are the spin-integrated intensities 

for right and left circular-polarized excitation. 

State Energy (eV) Iup Idown IRCP hcp 

dIO 0.00 50.00 50.00 50.00 50.00 

3F 1.03 23.33 11.67 17.50 17.50 

ID 1.60 0.00 8.33 4.17 4.17 

3p 4.32 10.00 5.00 7.50 7.50 

3D 4.85 16.67 8.33 12.50 12.50 

Ip 9.22 0.00 5.00 2.50 2.50 

IF 9.98 0.00 11.67 5.83 5.83 

Total 100.0 100.0 100.0 100.0 
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Table 4.3: Final states and relative binding energies for a spin-orbit splitting of 1. 74 e V, 

in the limit of zero valence bandwidth. Iup and Idown are the spin-resolved photoemission 

intensities for unpolarized excitation. IRep and hep are the spin-integrated intensities 

for right and left circular-polarized excitation. 

State Energy (eV) Iup Idown IRep hep 

P3/2
d1O -0.58 33.33 33.33 33.33 33.33 

3F4 0.45 10.48 4.52 9.30 5.70 

3F2 1.04 2.20 6.14 2.58 5.75 

3F3 1.10 6.99 4.68 5.57 6.10 

Pl/2 dlO 1.16 16.67 16.67 16.67 16.67 

ID2 2.19 3.94 4.40 4.32 4.01 

3Po 3.74 0.83 0.83 1.03 0.63 

3P1 3.83 4.12 0.88 3.06 1.94 

3P2 4.17 5.06 3.27 4.90 3.44 

3D3 4.68 7.09 4.58 5.64 6.02 

3DI 5.17 2.45 2.55 1.64 3.36 

3D2 5.57 6.65 1.68 2.87 5.47 

IP3 9.39 0.10 4.90 2.80 2.20 

1 F3 10.08 0.09 11.57 6.29 5.38 

Total 100.0 100.0 100.0 100.0 
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Figure 4.1: Experimental and theoretical SRXPS results. (a) Experimental results 

taken at 1iw = 1253.6 eV. (b) Theoretical results. Lines were convoluted with Gaussian 

(FWHM=1.6 eV) and Lorentzian (1.5 eV FWHM at A and B, 2.5 eV at C) lineshapes 

to simulate instrumental and lifetime broadenings. (c) Theoretical and experimental 

spin polarizations, multiplied by 2.5 for clarity. 
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Figure 4.2: Theoretical spin-polarized photoemission spectra, with spin-up (down) cor-

responding to minority (majority) photoelectrons. All lines were broadened with Gaus-

sian (FWHM=l eV) and Lorentzian (FWHM=l eV) lineshapes. (a) SRXPS for zero 

core-level spin-orbit splitting, and zero valence bandwidth. (b) SRXPS for 3p spin-orbit 

splitting of 1.74 eV, and zero valence bandwidth. (c)-( d) SRXPS for 1.74 eV spin-orbit 

splitting, with 50% and 100% valence bandwidth, respectively. 

107 



108 

100 
A 

~ a) 
~ .-
CI.l 

= 80 
~ 
~ 

= IRCP I-oC 

= 60 
ILCP 0 ._.- ... -.-

CI.l 
CI.l .-e 40 
~ 
0 
~ 
0 ..c 

20 Q.c 
C 

0 

4 85 80 75 70 65 60 

3 

2 
b) I Rep • I LCP 

~ 
CJ 1 = ~ 
;. 0 
~ 
~ -1 .-
Q 

-2 

-3 

-4 

85 80 75 70 65 60 

Binding Energy (e V) 

Figure 4.3: Theoretical MCDAD results. (a) Spin-integrated results for RCP and 

LCP excitation. (b) Difference spectrum. Lines were broadened with Gaussian 

(FWHM=1.6 eV) and Lorentzian (1.5 eV FWHM for A and B, 2.5 eV for C) lineshapes. 
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Figure 4.4: Experimental MCDAD results due to van der Laan et al. (Ref. 75). In 

the top panel, experimental Ni 3p photoemission intensities 1+ and 1- using circularly 

polarized x-rays with the projected photon helicity parallel (\7) and antiparallel (Ll), 

respectively. In the bottom panel, 2(1+ - 1-) gives the MCDAD IR - h. 
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Chapter 5 

On the Enhancement of the Ni Surface Orbital Moment 

5.1 Introduction 

Since the earliest demonstration of magneto-optical effects in photoemission from 

ferromagnetic surfaces [21,40], it has become apparent that some fundamental problems 

of surface magnetism may be investigated with such techniques. In a photoemission 

experiment one can fully characterize the final state of the photoelectron by measuring its 

energy, k-vector and spin. Both circular- and linear-polarized excitation can further be 

used to probe the magnetic order at surfaces and interfaces [45,49,48,80]. With the use 

of linearly polarized radiation, angular selection of the photoelectrons is required in order 

to define a chirality between the vectorial quantities of the photoemission experiment 

[22,41,81]. Accordingly, such effects have been referred to as linear magnetic dichroism 

in the angular distribution, or MLDAD. 

The great interest in magneto-optical effects in core-level spectroscopy is connected 

with the promise of developing an atom-specific surface/interface magnetometry [82]. 

This implies that the method must be understood at a quantitative level, and it must 

provide reliable measurements of spin and orbital magnetic moments of the surface 

and interface atoms. This quantitative analysis is lacking in the case of conventional 

magneto-optic effects, i.e., the Faraday and Kerr effects which involve transitions sam

pling the joint density of states of the ferromagnetic material [83]. The search for 

magneto-optical effects in higher-energy spectroscopies has produced the important tech

nique of magnetic circular dichroism in X-ray absorption (XMCD) [84], which involves 



transitions from atomic-like core states to unoccupied states in the valence band. Opti

cal transition sum rules have been developed which relate the orbital and spin moments 

to the dichroic X-ray absorption intensity, in an atom-specific and chemically sensitive 

way, with reasonable accuracy, and such measurements have been used to measure both 

spin and orbital moments [85]. Dichroism in core-level photoemission, by contrast, in

volves transitions to free-electron states and can be qualitatively understood within a 

simple atomic photoionization model, which accounts for the main features measured in 

Fe 3p and Fe 2p core levels [45,41,86]. However, beyond this qualitative understanding, 

there is a compelling need to deepen the quantitative understanding of the magneto" 

optic dichroism in photoemission, and of the solid state effects involved, with the aim 

of developing a truly surface sensitive magnetometry. 

Electron spectroscopy of Ni has been the test-bench for many important improve

ments in the understanding of correlated narrow-band systems, since spin-polarized 

final-state satellites are present in both the valence band and the core-level spectra, and 

these can only be explained in terms of many-body interactions [87]. Surface sensitive 

experiments on Ni are also challenging due to the high reactivity of the free surface. 

Nonetheless, recent experiments on Ni core levels with spin resolution [27j or circular

polarized excitation [7'5] have dearly shown the distribution of intensity over a complex 

satellite manifold for both Ni 2p and Ni 3p core levels. In a recent pioneering study, 

van der Laan et al. measured circular dichroism for Ni 3p at a photon energy of hv = 

400 eV and calculated the dichroism in an Anderson impurity model [75]. They found 

that the calculation severely underestimated the experimental dichroism, and this was 

interpreted as evidence of a significantly enhanced orbital moment for the surface and 

near-surface Ni atoms contributing to the surface sensitive photoemission spectra. The 

possibility of an enhanced surface orbital moment arises from theory [88] and from the 

presence of perpendicular magnetization for some ferromagnetic surfaces [89]. On the 
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other hand, L 2,3 X-ray circular dichroism experiments on Ni layers grown on Fe(100) 

[90] showed that the total magnetic moment is reduced at monolayer thickness and con-

verges to the bulk Ni values for thicknesses of 4-6 monolayers, when the epitaxial strain 
I 

starts to relax. This result was based on the application of the magneto-optic sum rules 

for XMCD. It is therefore clear that the fine details of the surface structure, i.e. re-

laxation, tetrahedral distortion, interface strain, etc., can cause changes of the spin and 

orbital moments for the surface atoms which may differ substantially with respect to 

bulk matter. 

5.2 Results 

Here we present data obtained by MLDAD on a thin layer of Ni grown on Fe(100). 

The Ni thickness is of the order of 20 monolayers, which assures the relaxation of the 

film to the stable fcc structure, although some residual stress from the epitaxial inter-

face may be present in the deeper layers of the film. The sample was grown in situ 

bye-beam deposition on a room temperature substrate. The residual gas pressure was 

of the order of 5x10-10 mbar during growth and 2x10-11 mbar during measurements. 

The surface contamination was probed by core-level and valence-band photoemission 

at UV energies where the sensitivity to CO photoemission is maximum. Clean Ni sur-

faces could be maintained and measured for several hours. Ni 3p photoemission spectra 

were measured in the geometries sketched in the inset of Fig. 1. The linearly polarized 

radiation of the SU3 undulator of the SuperAco storage ring at Orsay was monochrom-

atized by a plane grating monochromator and impinged at 45° from the surface normal. 

The photon energy was 160 e V, leading to Ni 3p photoelectrons at ,...., 80 - 100 e V and 

greater surface sensitivity than the prior work by van der Laan et al. [75]. The normal 

emission photoelectrons were accepted by an hemispherical electrostatic energy analyzer 

with ±1° angular resolution; the overall energy resolution was,...., 100 meV. The Ni film 



was exchange coupled to the Fe(100) substrate whose in-plane magnetization, perpen

dicular to the photoemission reaction plane, could be oriented up or down. The two 

orientations of the magnetization vector determine the two mirror experiments which 

define the MLDAD dichroism spectrum. The relaxed Ni film is polycrystalline, although 

some texture may exist. This is an important requirement if one wishes to compare the 

dichroism calculated in an atomic model to the experimental dichroism, which is defined 

here as M LDAD = (Iup - Idown) , where Iup(down) is the photoelectron spectral intensity 

obtained with the magnetization in the up (down) direction. That is, large directional 

effects have been measured in Fe and Co MLDAD from single-crystal surfaces, which 

can be explained in terms of photoelectron diffraction effects [34, 42]. These MLDAD 

modulations can be so large that the dichroism may vanish at some combined angle and 

energy, or even undergo a change of sign. The present experiment integrates over all 

the hidden chiralities that modify the photoelectron transport towards and through the 

surface due to the integration over the misaligned grains of the polycrystalline film, so 

that only the external chirality between the vectors describing the photoemission experi

ment is active. The spectra exhibit pronounced satellite structures, and these structures 

display a large dichroism. The experimental curves are presented in the top panel of 

Fig. 1. The central panel shows the spectra after an integral background subtraction, 

and the bottom panel shows the difference between the two spectra measured in the 

mirror experiments. The noise level in the difference spectrum is estimated at 10%. 

In our calculation we employ the same small-cluster model which has been used 

previously to successfully describe both the valence band [53] and the 2p core-level [38, 

39] photoemission spectra of Ni. The model consists of a small tetrahedral cluster of four 

atoms, with periodic-boundary conditions imposed to generate the full fcc lattice. All 

Bloch states with such periodicity must transform according to r or X in the Brillouin 

zone. Each atom in the lattice can be labeled by an index 1-4, and is surrounded by 
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twelve nearest neighbors of a different index. Therefore, same-site and nearest-neighbor 

interactions are treated quite accurately in this approach, and due to the highly localized 

nature of core electrons and the 3d valence electrons, these are expected to give rise to 

the dominant effects in Ni. 

As our basis set, we use ten 3d spin-orbitals per site to model the valence electrons, 

and six 3p spin-orbitals for the core electrons. The Hamiltonian used in the present 

work has been described elsewhere [38, 39]. Briefly, it contains terms describing the 

hopping of the valence holes, the spin-orbit splitting of the core level, and Coulomb 

repulsion between two holes on the same site. Valence hole hopping, which gives rise to 

extra-atomic screening effects, is described in terms of the Ni band structure. One hole 

in the valence band can occupy any of 20 3d spatial orbitals. These states decompose 

with the following space group symmetries: 

(5.1) 

We match the energies of these Bloch states to the spin-averaged band structure cal-

culations of Wang and Callaway [56]. In this way, the screening is described without 

resorting to adjustable parameters. The intrasite repulsion for two valence holes is de-

scribed by the Slater integrals Udd, FJd and Fld' whereas the core-valence repulsion is 

described by Slater integrals U-pd, G~d' F;dl and G;d. For all the F and G integrals, as 

well as the spin-orbit coupling strength, the values of previous workers [76] are adopted. 

For the direct Coulomb term Udd we use 3 eV, although this term has almost no effect on 

the calculated spectra due to the domination of both the initial and final states by d? and 

dIO configurations. Therefore, the only truly adjustable parameter in our Hamiltonian is 

the direct Coulomb term Upd. This important parameter determines the relative energy 

difference between the d? and dIO final-state configurations, which in turn determines 

the satellite positions. We obtain good agreement with experiment using Upd=5 eV. For 



present purposes, valence band spin-orbit splitting is assumed to be small and is not 

included. 

We solve for the Ni ground state within our model by placing two valence holes on 

the four-atom cluster. We find that the many-body ground state results from placing 

both ,holes in Bloch states at X5 in the Brillouin zone, and has overall symmetry 3 X 2 • 

The ground state is thus 50% (]9 and 50% dID, leading to a spin moment of 0.50 J1B 

per atom that is in excellent agreement with prior band structure calculations [.56J. 

Due to the vanishing valence spin-orbit splitting used here, the orbital moment in the 

ground state of our model is identically zero. With the ground state thus defined, 

we obtained the spectra using Fermi's golden rule and the sudden approximation to 

calculate the transition probabilities between the ferromagnetic ground state and the 

final states which contain a core hole and an outgoing photoelectron. The. resulting 

lines were convoluted with Lorentzians and Gaussians of HWHM 0.75 eV and 0.50 eV 

respectively, with these chosen to best fit experimental lineshapes. 

In Fig. 2 we present theoretical angle-resolved spectra calculated for both magnetic 

orientations (Iup and Idown) , for the same geometry shown in the inset of Fig. lea). 

Overall, the calculated spectra agree very well with the experimental results of Fig. l(b). 

The main line contains much internal structure, consisting of final states which are 

nominally P3/2dIO and Pl/2dlO, but also 3 P and 1 D multiplets derived from the p5tJ? 

configuration. The bump at '" 87 eV is due to p5 (]9 multiplets derived from 3 P and 3D 

terms, and the broad peak at '" 82.5 e V is due to 1 P and 1 P terms. 

In Fig. l(b) we present the difference spectrum Iup - Idown, which also compares 

well with the experimental results of Fig. l( c). The calculated dichroism exhibits four 

prominent features: a broad plus feature at the 1 pI P peak, a broad minus feature at 

the 3 D3 P peak, and a sharp minus-plus feature at the main line. 

Notably, the calculated dichroism is larger than the experimental dichroism. In the 
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work of van der. Laan et al., the calculated dichroism was smaller than the measured 

dichroism by a factor of 2.5 [75]. It was argued that this could only be explained as due 

to a strongly enhanced surface orbital moment for Ni. Our results here do not support 

these earlier conclusions, i.e., our calculated dichroism is larger than the experimental 

dichroism even using a ground state that has zero orbital moment. 

We provide two possible reasons to account for this apparent discrepancy. Firstly, the 

Ni 3p main line actually contains considerable structure, as discussed above. Thus, the 

calculated linewidth is due to an intrinsic structure as well as Lorentzian and Gaussian 

broadenings to incorporate both lifetime and instrumental effects, respectively. Reduc

ing these broadenings will greatly enhance the intrinsic differences, and lead to a much 

larger dichroism. In their work, van der Laan et al. used much larger line broadenings 

of 2.0 eV HWHM (Lorentzian) and 1.33 eV HWHM (Gaussian). We calculated the 

dichroism with the same broadenings as used by van der Laan et al., and then recalcu

lated it with the smaller broadenings used in this work, and found that the calculated 

dichroism increased by a factor of 4. It appears therefore that the magnitude of the 

calculated dichroism depends strongly on the line broadening which is adopted in the 

calculation, and that a careful analysis of the integral spectra must be the guideline 

for the choice of the maximum allowed broadening of the calculated spectra. Here we 

present a calculation which intentionally overestimates slightly the FWHM of the 3p 

main line (it is 3.4 eV for the calculated spectra and 3 eV for the experimental spectra). 

As a result, we can safely say that the larger dichroism calculated here is not due to 

artificially narrow lineshapes. Therefore, although the present data cannot exclude the 

possibility of an enhanced surface orbital moment for Ni, such an enhancement is not 

required in order to explain the experimental data. 

A second possible explanation to account for the apparent contradiction between 

the present results and those of van der Laan et at. is connected to differences between 



the experiments. Van der Laan's experiment was done on a Ni (110) single crystal, 

with the sample magnetized in the surface plane along the [III] direction. The plane of 

measurement contained the surface normal and the magnetization axis. However, such 

a plane is not a plane of mirror symmetry, and it is known that photoelectron diffraction 

effects can have a large, even dominating effect on the measured dichroism in such cases 

[91]. The present experiment, due to the polycrystalline sample, does not suffer from 

such effects. From this point of view, the present data represent an improvement of 

the experimental information on Ni 3p MLDAD. In addition, the present calculation 

both reproduces all the features of the difference spectrum and sets a lower limit on the 

theoretical value of the MLDAD, which is larger then the measured one. 

In conclusion, we have measured the Ni 3p magnetic dichroism using linear p

polarized synchrotron radiation and with greater surface sensitivity than in a prior 

study, and calculated the dichroism by means of a small-cluster many-body approach. 

Even using a ground state with zero orbital moment, the calculated dichroism was found 

to be larger than the measured one. Thus, our findings do not support an earlier analysis 

of Ni 3p magnetic dichroism that required the existence of an enhanced surface orbital 

magnetic moment. 
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Figure 5.1: Ni 3p experimental results. (a) Raw data for magnetization up (Iu.p) and 

down (Idown), with inset showing geometry. Linearly p-polarized photons q of 160 eV 

energy impinge in the xy plane, making an angle of 45° with the photoelectron k, which 

coincides with the surface normal. (b) Background subtracted experimental spectra, 

normalized to a peak intensity of 100. (c) MLDAD difference spectrum between Iu.p and 

Idown. Data were smoothed by one cycle of five-point averaging. 
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Figure 5.2: Theoretical results for bulk Ni. (a) Ni 3p angle-resolved spectra for magne-

tization up (Iup) and magnetization down (Idown), for the geometry shown in inset of 

Fig. l(a). Spectra were Gaussian (HWHM=0.50 eV) and Lorentzian (HWHM=0.75 eV) 

broadened, and normalized to a peak height of 100. (b) Calculated dichroism Iup - Idown. 
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Chapter 6 

Photoelectron Diffraction Effects in Magnetic Dichroism 

6.1 Introduction 

Magnetic dichroism in core-level photoelectron emission from solids represents a 

promising new probe of surface and interface magnetic order It has been shown recently 

that, for magnetic solids, the spin-integrated photoelectron intensity in a given direction 

can depend on the direction of the long-range magnetization, leading to one kind of 

. magnetic dichroism [21, 22]. This is found to occur when the photoelectrons are excited 

by circular-polarized radiation, leading to magnetic circular dichroism (MCD) [21], as 

well as by p-type linear- polarized radiation (MLD) [22]. In such dichroism experiments, 

the photon- electron geometry can be held fixed, and the magnetization simply switched 

from being parallel (M j) to anti-parallel (M !) to some special axis, with the dichroic 

asymmetry then being measured from the two different intensities IMi and 1M! as: 

From symmetry considerations, it can also be shown that MLD effects occur only 

in angle-resolved photoemission, and that they disappear with integration over emission 

angle [58]. Accordingly, this effect has been referred to as magnetic linear dichroism in 

angular distributions (MLDAD). Such effects have also more recently been observed with 

unpolarized radiation, where they can be termed MUDAD [23, 92]. The fact that the 

photoelectron intensity with unpolarized radiation (Iunp) can be simply related to those 

with both sand p linear, and right and left circular, polarizations via Iu'(Lp = Is + Ip = 

Irep + Ilep also makes clear the close connections among them. Thus, unpolarized light 



contains the p component producing MLDAD, and MUDAD can be viewed as a special 

manifestation of MLDAD. MCD was immediately explained in terms of the selection 

rules for dipole-allowed transitions from initial states that are split by both spin-orbit 

and exchange effects, with' atter being directly related to the magnetization of 

the sample [21]. The potential importance of photoelectron diffraction effects in the 

final states of the excitation have also been pointed out [91, 93J and such effects have 

been shown to playa role in MLDAD [78]. However, a complete understanding of 

MLDAD and MUDAD including both initial-state and final-state effects is yet to be 

obtained. In the present investigation, we explore magnetic dichroism occurring with 

unpolarized radiation in a different experimental geometry, and find that a more general 

model including both initial- and final- state effects is essential for interpretation. The 

particular example treated is higher-energyunpolarized x-ray excitation such that strong 

forward scattering effects arise in the resulting photoelectron angular distributions (AD) 

[28]. 

The first quantitative explanation of core-level MLDAD was made by Rossi et al. 

[41], who treated core spectra of a single free atom. They simulated ferromagnetic 

alignment by fixing the orientation of the atomic magnetic moment and found good 

agreement with the experimental data of Roth et al. [22]. Van der Laan et al. [94] 

further predicted that the intensity difference obtained for the two magnetization direc

tions should scale with 1M .(kxE)(k.E)1 f"V sin 28, where M is the magnetization, k is the 

photoelectron wave vector, E is the electric field vector of the light, and 8 is the angle 

between k and E. In these free-atom models, there can be no dependence of the dichro

ism on the emission direction with respect to a crystal lattice. Recently, the dependence 

of the dichroism on the angle 8 has been investigated [78, 95]. In the latter experiment 

[95], as k was varied, the sample also was rotated to keep the relation between the emis

sion direction and the crystallographic directions constant. The sin 28 dependence was 
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found to be correct, confirming one of the predictions of the atomic model. In the former 

experiment [78], the directions of E and M were kept fixed in space, and photoelectrons 

emitted from the sample in narrow angular intervals were collected by a multichannel 

photoelectron detector. Accordingly, two quantities were changed simultaneously: the 

angle 8 and the emission direction with respect to the crystallographic directions. An 

overall sin 28 dependence was observed here also, but it was found to be modulated by 

fine structure that was successfully explained by considering photoelectron diffraction 

effects in the crystal lattice [78]. Fanelsa et al. [23, 92] have also observed that the 

dichroic asymmetry changes sign when varying the photoelectron emission angle with 

respect to the crystal lattice while keeping all the other parameters fixed with respect 

to one another. Thus, the single-atom model for MLDAD is not adequate to describe 

all of the effects observed previously. 

6.2 Results 

In the present investigation, we have varied only the emission direction with re

spect to the crystal lattice, while keeping the geometrical conditions between M, k, 

and E constant; this serves to focus on photoelectron diffraction as the only source of 

dichroism. This was achieved simply by rotating the sample about the direction of the 

magnetization, as shown schematically in Fig. 6.1(a). M was perpendicular to both 

light incidence and k, with the angle between the latter two being fixed at 45°. For each 

setting of the rotation angle 0:, an energy distribution curve (EDe) covering the entire 

Fe 2p core level spectrum was collected, as shown in Fig. 6.2(a). A large range in 0: 

was spanned to obtain an overview of the behavior of the dichroism in this parameter 

space. We used a standard X-ray source emitting unpolarized Mg K 0: radiation (1253.6 

e V) and a commercial hemispherical electrostatic analyzer accepting electrons over a 

cone with about a 5° full acceptance angle. The overall energy resolution was 0.9 eV as 



judged from the width of the Ag Fermi edge. The samples were 2 nm thick epitaxial 

bcc Fe(OOl) films grown in situ on Ag(OOl) in URV conditions, with an in-plane easy 

magnetization direction (x =< 100 » coinciding with the axis of rotation. The films 

were magnetized in the +x or -x direction by short field pulses of about 80 Oersted 

which were applied after each energy scan at a preset value of a. 

Fig. 6.2( a) shows Fe 2p energy distribution curves for magnetization along +x (solid 

lines) and -x (dashed lines) for emission slightly off normal (a = _2°). Fig. 6.2(b) 

shows the corresponding asymmetry, and constitutes part of a larger MUDAD data set 

on the (a, Eb) grid, with Eb denoting the binding energy. The peak-to-peak value is 

approximately 5%, which is comparable in magnitude to the results obtained earlier 

with linearly polarized radiation at hll = 879 eV [42]. The maximum of the dichroism 

occurs at 0.65 e V smaller binding energy than the peak of the 2P3/2 intensity. The 2P3/2 

and 2Pl/2 lines show asymmetries with opposite energy dependence, with that of the 

j = ~ sublevel being much stronger than that of the j = ! sublevel; this is qualitatively 

similar to what has been seen with circular-polarized excitation of Fe 2p [21]. The 

asymmetry does not vanish between the two sublevels, also in qualitative agreement 

with prior experiments using linearly polarized light [42]. 

Fig. 6.3( a) shows simultaneously the full set of intensity and asymmetry data for the 

Fe 2P3/2 region of the spectrum in the form of a 3D plot of J( a, Eb), with the surface 

being shaded according to the value of the asymmetry (light = +, and dark = -). The 

intensity surface displays the usual photoelectron diffraction (PED) peaks occurring at 

emission angles of a = 0°,25°, and 45° that are well-known to be due to strong forward 

scattering along the < 001 >, < 012 >, and < 011 > directions, and which should ideally 

occur at a = 0°,26 .. 5°, and 45° for rotation about < 100 > [28]. Directly along these 

emission angles, the dichroism is very small, but it exhibits sign changes around each 

of them as a is varied. Fig. 6.3(b) shows in more detail the region of Fe 2P3/2 emission 
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near the < 001 > surface normal; here, the contour plots of the intensity (indicated 

as dashed lines) are overlaid with a shaded contour plot of the asymmetry (indicated 

by various grey levels). The maximum of the dichroism occurs at an emission angle 

0: = -8° and a binding energy of 706.2 eV and the minimum at a = +6° and the same 

binding energy. The signs of the asymmetry pattern on the high-binding energy side 

of the 2P3/2 intensity peak are also opposite to those on the low-binding energy side, 

yielding a second type of sign change. Combined with the angular dependence of the 

dichroism, this leads to a characteristic "chessboard" pattern that is nearly centered in 

(0:, Eb) along the forward scattering peak. The same pattern is found around each of 

the forward scattering peaks in Fig. 6.3(a). Similar behavior is observed in Fe 2Pl/2 and 

Fe 3p MUDAD data not shown here. 

The fact that the sign of the dichroism depends on the emission angle with respect 

to low-index directions in the crystal lattice immediately indicates that photoelectron 

diffraction is a primary factor, as the relations between M, k, and E which in a single

atom picture exclusively determine the dichroism are not affected by the rotation in 

the present experiment. We thus consider a more quantitative model of these high

energy MUDAD effects which includes photoelectron diffraction within a well-established 

atomic cluster model [96, 97] that has recently been generalized to calculate all forms 

of dichroism (CDAD in non-magnetic systems [91, 93], as well as MCDAD, and ML

DAD jMUDAD [91, 93]). We have carried out calculations of the Fe 2P3/2 intensity from 

a simple two-atom Fe cluster (one emitter and one scatterer) with interatomic spacing of 

0.287 nm to represent the < 001 > direction that is in the center of Fig. 6.3(b) at 0: = 0°. 

Correct interference of the sand d photoelectron channels was also included, although 

spin-orbit scattering of the photoelectron (which has been found to be negligible in prior 

photoelectron diffraction calculations [28,91,93,96,97]) was not. The four mj sublevels 

of the j = ~ manifold were assumed to be separated from one another by an empirical 



exchange splitting of 0.30 eV that has been used to correctly describe both MCDAD 

and spin polarization data for Fe 2p [21, 91, 93], and the levels finally broadened using 

a Doniach-Sunjic lineshape (FWHM of 1.0 e V and singularity index of 0.44) that has 

been employed previously to simulate such spectra [25]. Calculations were performed for 

both orientations of the magnetization, and the resultant asymmetry thus calculated. A 

plot of these theoretical results analogous to Fig. 6.3(b) is shown in Fig. 6.3( c), and we 

see that the chessboard pattern is correctly predicted. Simple photoelectron diffraction 

theory is thus able to predict the characteristic pattern seen in these MUDAD results. 

Including interference between the sand d channels is not essential for producing the 

chessboard pattern, as was verified by carrying out a calculation with the dominant d 

channel only. This s - d interference does however produce the shift in the zero line of 

the asymmetry as a function of a, which is exactly along a = 0° with only the d channel 

included. 

A more heuristic picture of the underlying physics is also possible. We consider for 

simplicity the case of d-channel emission only from the same two-atom cluster, with 

geometry as shown in Fig. 6.1(b). In the dipole approximation, the p-component of the 

unpolarized light (the s-component does not contribute to MUDAD) yields photoelec

tron amplitudes for the I ~, ± ~) core states that are proportional to 1 + 3e±2i¢, where 4> 

is the electron emission angle (see Fig. 6.1 b). The amplitudes of the primary waves at 

the electron detector are thus 1 ± 3i for photoelectrons derived from the I ~, ± ~) states, 

respectively. At the scatterer 4> = 45° + a, so the amplitudes of the same primary waves 

at the scattering site are 1 ± 3ie±2ia. The amplitudes A of the scattered waves at the 

electron detector are thus proportional to: 

(6.1) 

where If(a)1 is the magnitude of the scattering factor, and 8(a) is the total phase shift 
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due to scattering and path-length difference. The key to producing the chessboard 

dichroism pattern is the fact that the primary waves from the Ij, ±mj) both suffer the 

same overall phase shift 8( a) at the scattering site. The total amplitude at the electron 

detector is the sum of the primary and scattered waves, leading to an intensity difference 

between the two levels that is finally proportional to: 

II~ ~) - II~_~) = 121f( a)1 sin 8( a) [1 - cos 2a - 3 sin 2a] 
2'2 2' 2 

(6.2) 

The same calculation for the mj = ±! levels yields the result: 

II~ 1) - II~ _1) = 4If(a)1 sin 8(a)[1 - cos 2a - 3 sin 2a] . 
2'2 2' 2 

(6.3) 

When the magnetization direction is reversed, the intensity of each sublevel remains un-

changed, but the energetic positions of the Ii, ±mj) core states are simply interchanged 

due to the exchange splitting. Therefore, equations (2) and (3) give precisely the (unnor

malized) MUDAD asymmetry, and it is qualitatively clear from the functional form that 

the chessboard pattern should result. These equations were then used to simulate the 

asymmetry via appropriate exchange splitting of levels and energy broadening, and we 

find that the characteristic chessboard .pattern in the asymmetry is very well reproduced 

by considering only d-channel emission in this simple picture, although these results are 

not shown here. The proportionality to If(a)1 sin8(a) in equations (2) and (3) also 

makes it clear that such MUDAD asymmetry requires scattering and diffraction: in the 

absence of scattering, If( a)1 is identically zero. 

Finally, in order to obtain a more comprehensive comparison between theory and 

experiment, we have carried out photoelectron diffraction calculations using a large 79-

atom five-layer cluster. Multiple scattering effects were included by utilizing a program 

developed by Kaduwela et ai. [91, 93, 97]. Photoemission spectra were calculated plac-



ing the emitter in each layer, and then averaging over the layers. Appropriate electron 

attenuation and angular broadening (over a cone of ±5°) were also included, and the re

sulting intensity and asymmetry contours are shown in Fig. 6.4. The theoretical findings 

are seen to be in excellent agreement with experiment, with three prominent forward 

scattering peaks apparent in the intensity contours, and a corresponding chessboard pat

tern centered about each of these peaks in the asymmetry contours. Note in particular 

that this more realistic calculation moves the maxima and minima in the chessboard 

pattern closer to the < 001 > direction, thereby improving agreement with experiment 

in Fig. 6.3(b) as compared to the two-atom single-scattering calculation of Fig. 6.3( c). 

This also makes it clear that the combined effects of s, d interference and diffraction can 

move the peaks in intensity (e.g., for < 012 » and the zero of the asymmetry (for all 

three low-index directions) away from a given low-index direction. More quantitative 

studies of these effects would be of interest in the future. 

In summary, the magnetic dichroism in core-level photoelectron angular distributions 

excited by a standard laboratory x-ray source in the ke V range exhibits around each 

low-index forward scattering peak an antisymmetry in emission angle and an antisym

metry with binding energy which combine to yield a characteristic chessboard pattern. 

This pattern is furthermore found to be correctly predicted using photoelectron diffrac

tion theory, and can be understood more fully via a simple analytical model. These 

results thus not only permit better understanding the origins of linear and unpolarized 

magnetic dichroism in photoelectron angular distributions, but also suggest future com

binedstructural and magnetic studies by photoelectron diffraction using widely available 

standard laboratory x-ray sources. The latter is particularly attractive since the higher 

x-ray photoelectron energies involved also lead to a dominance of forward scattering 

that simplifies the analysis significantly. 
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Figure 6.1: Photoemission and scattering geometry. (a) The photoemission geometry: 

Mg K Q radiation impinges on the sample in the yz plane at an angle of 450 with respect 

to the photoelectron collection direction. The sample magnetization is switched between 

the +x and -x directions to obtain the dichroism. The sample can be rotated about the 

x axis to vary the angle Q, which equals zero for emission normal to the surface. (b) 

The emission and scattering geometry, with the angles a and ¢ both defined about the 

magnetization or x axis perpendicular to the plane of the figure. 
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Figure 6.2: (a) Fe 2p photoemission spectra for 10 ML FejAg(lOO) with emission devi-

ating by 0 = _2° from normal. Solid and dashed lines show spectra for magnetization 

directions along +x and -x, respectively. The small structure at 711-712 eV binding 

energy is due to the Mg ](03,4 satellite x-rays. (b) Dichroic intensity asymmetry when 

switching the magnetization direction from -x to +x, as defined in the text. 
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Figure 6.3: (a) Fe 2P3/2 photoelectron intensity as a function of the emission angle (Q) 

and binding energy (Eb). The height of the surface above the (a,Eb) plane represents 

the photoemission intensity, with the intensity surface further grey shaded corresponding 

to the MUDAD asymmetry. (b) Intensity and dichroic asymmetry results for Fe 2p3/2 

around the < 001 > photoelectron diffraction maximum, shown as a contour plot of the 

intensity (dashed lines) overlaid with a grey-scale contour map of the MUDAD asym

metry. (c) Theoretical simulation corresponding to (b), calculated for a two-atom Fe 

cluster using single-scattering photoelectron diffraction theory, and assuming a uniform 

exchange splitting of 0.30 e V between the 4 mj sublevels of Fe 2P3/2. 
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Figure 6.4: Intensity (top panel) and asymmetry (bottom panel) contour lines for Fe 

2P3/2, calculated using a 79-atom cluster, and with multiple-scattering included. The 

intensity contours are labelled in arbitrary units; the asymmetry contours are in %. 

The three forward-scattering peaks in the intensity contours and the corresponding 

chessboard pattern in the asymmetry contours are dearly visible. 
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Chapter 7 

Conclusion 

7.1 Thesis Summary 

In this thesis we have presented a theoretical investigation of core-level photoemis

sion from ferromagnetic Fe and Ni. We have explicitly considered the spin-orbit and 

exchange interactions, and included the most general photon polarization within the 

electric dipole approximation. The resulting formalism allows the calculation of angle

and spin-resolved photoemission spectra. We have compared our theoretical spectra 

with numerous experimental results, and the favorable agreement indicates that the 

theory of photoemission from such systems is sufficiently well advanced to understand 

the spectra at the quantitative level. 

In Chapter 2 we treated the ferromagnetism in a phenomenological way; the effect 

of the spin-polarized valence band was to introduce an exchange splitting between the 

different mj sublevels. This approach is eJ<;pected to work well for systems with weak 

many-body interactions. We applied our phenomenological model to the case of Fe, and 

found good agreement with experiment in both the spin polarization and the magnetic 

dichroism. There was, however, experimental evidence of mixing between the levels and 

spin-dependent lineshapes. These effects were not accounted for in a natural way by 

our model. We have argued that the spin-dependent lineshapes are indicative of weak 

satellite structures. 

In Chapter 3 we introduced a much more sophisticated model which treats many

body interactions and extra-atomic screening effects in a realistic way. The model was 



applied to the case of photo emission from the Ni 2p core level, for which the spin-orbit 

interaction is significantly larger than the core-valence exchange interaction, and the 

resulting spectra were in excellent agreement with experiment. We also analyzed the 

nature of the final state, and assigned physical meaning to the various peaks in the 

spectrum. We showed that the satellite intensity depends sensitively on the energetic 

separation between the main line peak and the satellite position. We also showed that 

this effect explains the' spin polarization of the spectrum. As an appendix to this chap

ter, we detailed the group-theoretical formulation employed in the construction of our 

symmetrized basis states. This construction, though laborious, ultimately saves three 

orders of magnitude in computational effort, thereby making the problem tractable. 

In Chapter 4 we used the model to investigate the spin polarization and magnetic 

circular dichroism of the Ni 3p core level, for which the spin-orbit and exchange interac

tions are comparable. Again, the theoretical results were in very good agreement with 

experiment. We provided physical interpretation of the various spectral features, and 

also presented a simple 2x2 model that explained the satellite intensity and transfer of 

spectral weight in a physically intuitive way. 

In Chapter ·5 we considered the case ~f magnetic dichroism with linear-polarized 

excitation. We presented recent experimental data which constitute the best dichroism 

data presently available for Ni 3p, and obtained very good agreement using our theo

retical model. This case is important because it relates to a current controversy on the 

surface orbital magnetic moment of Ni. We argued that the magnetic dichroism data 

do not support the existence of an enhanced moment. 

In Chapter 6 we examined the effect of photoelectron diffraction on magnetic dichro

ism with unpolarized light. We discussed recent experimental results that demonstrate 

the fundamental importance of photoelectron diffraction in the analysis of such data. 

We also presented theoretical spectra based on a finite-cluster multiple-scattering calcu-
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lation, and these results were found to compare very favorably with experiment. Finally, 

we provided an intuitive physical argument that correctly explained the underlying ef

fect. 

7.2 Prospects for Future Work 

Presently, the field of core-level photoemission is very active, and finds itself in the 

fortunate position of having its theoretical and experimental communities at roughly 

the same level. New experimental discoveries are constantly leading to new theories, 

and these theories are in turn motivating experimental work. All of the experimental 

spectra which have been presented in this thesis are either pending publication, or have 

been published only within the last three years. 

) While we have demonstrated that the theory of core photoemission is sufficiently 

well advanced to explain experiment at the quantitative level, several interesting prob

lems stand out for future theoretical work. For instance, in this thesis we applied a 

phenomenological one-electron model to describe photoemission from Fe, but used a 

more rigorous small-cluster many-body scheme to treat the case of Ni. The connection 

between the two is ambiguous. In the limit of a large cluster, of course, the many-body 

approach must converge to the correct result. However, the calculation quickly becomes 

intractable with increasing cluster size. A two-atom cluster, with periodic boundary 

conditions, will generate the full Fe bee lattice. Even with such a small cluster, however, 

the problem is formidable, due to the large number of holes in the valence band. Nev

ertheless, it would be fascinating to calculate the photoemission spectrum of Fe within 

a many-body small-cluster model. Such an analysis would certainly provide important 

insights into the physical nature of the screening process and answer questions regarding 

the existence of satellite structures in Fe. 

A more comprehensive treatment of final-state effects is another area that appears 



promising for future work. Final-state effects may be divided into two categories: 

(1) Photoelectron diffraction. This final-state effect results from the outgoing pho

toelectron scattering off the lattice and interfering with the primary wave, thereby pro

ducing intensity modulations in angle and/or energy. 

(2) Many-body effects. This type of final-state effect results from the electron re

sponse to the sudden creation of a core hole. The excitations that arise from this include 

Doniach-Sunjic type electron-hole pairs, as well as satellite structures. 

Up until now, no theoretical work has incorporated both effects into the same calcula

tion; i.e., either the diffraction effects are calculated accurately within a one-electron the

ory, or the many-body effects are calculated accurately while the photoelectron diffrac

tion effects are neglected. However, a combination of the two is in principle relatively 

simple. The calculation of the spectra in the many-body theory requires the matrix 

elements of the dipole operator, which is a one-electron operator. Typically, only the 

primary wave is considered when calculating these matrix elements within a many-body 

approach. However, it is a straighforward matter to utilize the amplitudes from diffrac

tion calculations to construct the matrix elements for the dipole operator. These matrix 

elements could in turn be used as input into the many-body calculation. An interesting 

first case to consider for such a calculation would be the Ni 3p MCD spectrum. It was 

argued by van der Laan that the large experimentally observed dichroism was evidence 

of a strongly enhanced surface orbital magnetic moment. The improved calculation pro

posed here would test whether this large dichroism were in fact due to photoelectron 

diffraction effects. 
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Appendix A 

Group Theory: Symmetrization of Basis Functions 

Our model consists of a tetrahedral cluster of four Ni atoms, with periodic boundary 

conditions imposed to generate the full fcc lattice. Each atom in the crystal can be 

labeled by an index 1-4 - as shown in Fig. A.1(a) - and is surrounded by twelve nearest 

neighbors of a different index. 

As our basis states, we use five d-orbitals per site for the valence electrons, and 

three p-orbitals for the core electrons on the emitting site. We simulate the electronic 

structure of Ni in the ground state by placing two d-holes on the fout-atom cluster. The 

spectral weight of a line is determined by the projection of the N - 1 many-body final 

state onto the N -electron ground state (excluding the orbital from which photoemission 

occurs). Calculation of the photoemission spectrum therefore requires knowledge of the 

ground-state wavefunction as well as all eigenstates of the system upon the introduction 

of a core hole. The Hamiltonian considered here includes same-site hole-hole Coulomb 

repulsion, valence-band hopping, and spin-.orbit interaction in the core level (but not 

the valence states). 

With five d-orbitals per site, there are a total of 20 spatial orbitals. Therefore, 

including spin, one valence hole can occupy one of 40 states, and a second hole can occupy 

one of the remaining 39 states. The number of many-body basis states to describe the 

initial-state manifold is therefore 40x39/2! = 780. When a core hole is introduced, the 

number of many-body states increases to 780x6 = 4680. It is quite a formidable task to 

diagonalize and. manipulate such large matrices-even with the most powerful computers. 

By using group theory to fully exploit the symmetries, however, the computational effort 



can be greatly reduced. Furthermore, the classification of symmetries often gives insights 

into the underlying structure of a problem. Consequently, it is well worth the time and 

effort in symmetrizing the basis functions. ' 

If the origin is chosen to coincide with one of the atoms - say atom 1 - then it may be 

readily verified that the system has point-group symmtery 0, i.e., the set of all proper 

rotations that map a cube onto itself. These 24 rotations are shown in Fig. A.l(b) and 

consist of the following: the identity operation E, eight rotations of ±120° about the 

corners of the cube (a, b, c, d), six rotations of 1800 about the midpoints of the edges 

(e, j,9, h, i,j), six rotations of ±90° about the centers of the square faces (x, y, z), and 

three rotations of 1800
, again about the centers of the square faces. The character 

table for point-group 0 is presented in Table A.I. Functions transform according to 

the first five irreducible representations. The last three - r6, r7, and r8 - are the 

so-called double-group representations, and are necessary for describing particles with 

half-integer spin. Such objects do not transform into themselves upon a rotation of 

2r., but rather undergo a sign change. For every operation R in the ordinary group, 

there is an associated operation R in the double group, whose action corresponds to 

R followed by rotation of 2r.. As we shall see, the double-group representations are 

not necessary for describing the ground state. This is a consequence of the absence of 

spin-orbit coupling in the valence band, which permits the spin part of the wavefunction 

to be treated completely independently from the orbital part. Upon introduction of a 

core hole. with strong spin-orbit interaction, it becomes essential of course to use the 

double-group description. 

The d-orbitals form a basis for a reducible representation of the point-group 0, and 

are given by: 
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h = 3z2 _ r2 ( eg) (A.l) 

12 = V3(x2 _ y2) ( eg) 

is = yz (t2g) 

i4 = xz (t2g) 

is xy (t2g) . 

The first two functions transform according to E (eg ), and the last three according to 

The 20 one-particle basis functions can be written in the localized basis as ii(j), 

where i = 1,5 defines the d-orbital and j = 1,4 gives the site index. These functions also 

form a basis for a reducible representation of the point-group 0, whose decomposition 

can be uniquely determined by [62]: 

a(n) = ~ LNkX(n)(Ck)*X(Ck) . 
k 

(A.2) 

Here a( n) is the number of times the nth irreducible representation appears (n = 

AI, A2, E, etc.), h is the number of elements in the group, Nk is the number of ele

ments in the kth class, X(n)(Ck) is the character of representation n and class k, and 

x( Ck) is the trace of the basis functions under the action of an operator in class k. 

The traces, x( Ck), are determined through the transformation of the basis func-

tions. In this work we adopt the active viewpoint. The transformation of sites 1-4 and 

coordinates x, y, z under the action of the point-group 0 is given in Table A.2, and the 

transformation of the d-orbitals is presented in Table A.3. The traces can be determined 

by inspection. For instance, given a rotation C3 (class 5), h -;. -1/2(11 ± V312) and 

12 -;. -1/2(12 ± V3h). Therefore, hand h each contribute -1/2 to the trace, for a 

total of -1. The other basis functions, is, /4, and /5 do not contribute to the trace; 



e.g., is always transforms into 14 or 15, but never into itself. Only sites that remain 

invariant can contribute to the trace. From Table A.2 we see that only site 1 remains 

invariant under a rotation C3 , so that X(C3 ) = -1. The other traces can be determined 

similarly: X(E) = 20, X(Cl) = 4, X(C4 ) = -2, and X(C2 ) = 2. Therefore, from Eq. A.2 

the irreducible representations appear as 

(A.3) 

a(Al) = 2~ [(1)(1)(20) + (3)(1)(4) + (6)(1)( -2) + (6)(1)(2) + (8)(1)( -1)] = 1 

a(A2) = 2
1
4 [(1)(1)(20) + (3)(1)(4) + (6)( -1)( -2) + (6)( -1)(2) + (8)(1)( -1)] = 1 

aCE) = 2~ [(1)(2)(20) + (3)(2)(4) + (6)(0)( -2) + (6)(0)(2) + (8)( -1)( -1)] = 3 

a(Tl ) = 2
1
4 [(1)(3)(20) + (3)( -1)(4) + (6)(1)( -2) + (6)( -1)(2) + (8)(0)( -1)] = 1 

a(T2) = 2~ [(1)(3)(20) + (3)( -1)(4) + (6)( -1)( -2) + (6)(1)(2) + (8)(0)( -1)] = 3, 

leading to a decomposition 

(A.4) 

Thus, group theory predicts that one valence electron in this system will split into 

nine energy levels - three of which are two-fold degenerate and four of which are three

fold degenerate. Any Hamiltonian possessing such symmetry should lead to the above 

degeneracies. However, if we use a tight-binding Hamiltonian and diagonalize the re

sulting matrix, we find that the spectrum does not split into nine energy levels, bit 

rather only six. These "accidental" degeneracies are a consequence of not considering 
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other ';hidden" symmetries. In addition to the 24 rotational symmetries, the system 

also possesses four translational symmetries: the identity, and the three translations 

that map site 1 into sites 2-4. Therefore, the full space group contains 96 symmetry 

operations. The character table has been determined by Reich [98], and is presented in 

Table A.4. In order to obtain the decomposition, we must determine the traces of the 

basis functions under each class of operations. The traces of classes 1-5 are the same 

as previously determined. A characteristic element of class 6 is {Eli}, i.e., a simple 

translation. Under a simple translation, all sites are interchanged, and so the trace is 

zero. It is easy to verify that the traces for each class 6-10 are also zero. Therefore, 

Eq.(A.2) yields the decomposition 

(A.5) 

Thus, by considering the larger group of symmetry operations, we confirm that the 

spectrum should indeed split into six energy levels. Furthermore, the group-theoretical 

approach leads to basis functions of well:.defined Brillouin-zone symmetry, which can 

therefore be directly related to band-structure calculations. A tight-binding approach 

invariably requires the use of adjustable parameters, with a consequent loss of theoretical 

footing. 

The space-group to point-group compatibility relations are given in Table A.5, and it 

can be verified that the decompostions of Eq. (A.4) and Eq. (A.5) are indeed equivalent. 

In the point-group decomposition, some of the irreducible representations occur more 

than once. Therefore, matrix diagonalization is required to obtain the eigenstates. In the 

space-group decomposition, on the other hand, each irreducible representation occurs 

only once, and therefore these basis states must also be eigenfunctions of the one-electron 

Hamiltonian. 

The basis functions can now be symmetrized by applying the complete projection 
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operators [62], which project out of any state only that part which transforms according 

to a given row of a given irreducible representation. We are now faced with the following \ 

question: which set of projection operators (i.e., the space group or the point group) are 

we to use? 

Ultimately, we need to couple the valence holes to the core hole, which breaks trans

lational symmetry. Therefore, all valence states must be identified by a point-group 

symmetry. However, if we apply the point-group projection operators directly to the 

basis states, then states of different Brillouin-zone symmetry will be mixed. The solution 

is to first apply the space-group projection operators, thereby obtaining basis states of 

well-defined Brillouin-zone symmetry. The point-group projection operators can then 

be applied to these symmetrized basis functions. The resulting states, presented in 

Table A.6, now have well-defined space-group and point-group symmetries. 

With the one-particle valence states now fully symmetrized, we turn to the question 

of symmetrizing the many-body basis functions. For this, we must know how to couple 

basis states of definite symmetry to obtain coupled basis states of another definite sym

metry. This task can be accomplished by means of the point-group coupling coefficients 

[99], which may be regarded as "generalized" Clebsch-Gordan coefficients; just as the 

Clebsch-Gordan coefficients give the appropriate linear combinations of 11, m[ > and 

Ii' ,m; > required to form new basis states for 1 0 z', the coupling coefficients give the 

appropriate linear combinations of two point-group symmetries required to form new 

states of definite point-group symmetry. 

As an example, consider the coupling of two sets of orbital wavefunctions, both of 

symmetry E. To distinguish these, we label them by E" and Ef3, although we also allow 

for the possibility that a: = f3. The direct product is given by: 

(A.6) 
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Let ef (ef) and e~ (eg) be functions transforming according to the first and second rows 

of E OI (Ei3), respectively. Let a}, a2, el and e2 be functions transforming according to 

the new representations. The coupling coefficients [99] tell us that these states are given 

by: 

al = jlj2[efei + e2eg] (A.7) 

a2 = jlj2[e2ef - ereg] 

el = #[-eref + e2eg] 

e2 jlj2[ e2 ef + er eg] . 

As they stand, these coupled wavefunctions are neither symmetric nor antisymmet

ric. The many-body wavefunction, including spin, must of course be antisymmetric 

with respect to particle exchange. If Q "# (3, then the above functions can be either 

symmetrized or antisymmetrized, and then coupled to singlet or triplet spinnors re

spectively, thereby yielding antisymmetric states with respect to particle exchange. If 

Q = (3, however, then a2 is necessarily antisymmetric and must be coupled to a spin 

triplet, while the other three are necessarily symmetric and so must be coupled to a spin 

singlet. In other words, including spin 

I Al E9 3 A2 E9 1 E 

1 Al E9 1 A2 E9 IE E9 3 Al E9 3 A2 E9 3 E (Q"# (3), 

where the left superscript refers to the 28 + 1 spin multiplicity. 

(A.8) 

(A.9) 

Every orbital symmetry in Eq. (A A) must be coupled to every other orbital symmetry 

to form the two-hole symmetrized orbital basis states. These states are then coupled 

to the appropriate spinnor, as in the above example. In this way, the 780 many-body 

wavefunctions in the initial-state manifold are systematically generated, and decompose 



with the following point-group symmetries: 

15 lAI ED 7 1 A2 ED 22 IE EEl 22 ITI EB 26 IT2 ED 

6 3 Al ED 10 3 A2 EEl 15 3 E EB 26 3TI ED 22 3T2 . 

(A.I0) 

The above decomposition is perfectly adequate for describing valence states with 

no spin-orbit coupling. However, these states must eventually be coupled to the core 

hole, for which spin-orbit cannot be ignored. Therefore, the spin and orbital parts of 

Eq. (A.I0) must be appropriately coupled. A single spin transforms according to the 

double-group representation r 6 . Therefore, two coupled spins transform according to 

(A.ll) 

with Al being the spin singlet, and TI being the spin triplet. The coupled decomposition 

is determined by the direct product. For example, 

(A.12) 

The decomposition of the fully-coupled many-body basis states in the initial-state 

manifold is therefore given by: 

(A.13) 

Assuming (correctly) that X 5 is the highest-energy Bloch state, the many-body 

ground state can be determined by inspection. The one-hole ground state is formed 

by placing the hole in any of the six Xs Bloch states. In general, however, putting 

two holes in Xs Bloch states will lead to charge fluctuations that place both holes on 

the same site. The Coulomb interaction then mixes Bloch states of different symmetry 

in a complicated way, and so the ground-state wavefunction can only be determined 

numerically. However, for the problem at hand, it is fortunately possible to place both 
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holes in states of Xs symmetry with zero probability of having the holes on the same 

site. The ground state can therefore be written analytically: 

IGS1 > = cT (99)CT (91s)IO > 

IGS2 > = ct (91O)Ct (919)10 > 

IGS3 > = ct (9n)ct (920)10 > 

(A.14) 

With the valence states now fully symmetrized, we may couple them to the core 

wavefunction. A p-electron has orbital symmetry Tl and spin symmetry f 6· Therefore, 

the core states decompose as. 

(A.15) 

The j = 1/2 level transforms according to f6, and j = 3/2 has symmetry f s . 

Using the coupling coefficients, the j = 1/2 and j = 3/2 core levels can be coupled 

to the 780 basis states in Eq.(A.13), yielding the 4680 fully symmetrized many-body 

basis functions: 

392f 6 EB 388f 7 EB 780f s . (A.16) 

By symmetrizing the basis functions in tl>Js systematic way, the Hamiltonian matrices 

for the different rows of a given irreducible representation are identical. Therefore, rather 

than diagonalize a single matrix of dimension 4680, we can obtain all the eigenstates 

by diagonalizing only three matrices of dimension 392, 388, and 780. Furthermore, 

it turns out that the spectra obtained by considering only f6 and f7 symmetries are 

visually indistin9uishable from those obtained by including fs, for all cases examined. 

This fortuitous result implies that f6 ttl f7 spans a large enough portion of the Hilbert 

space to accurately describe all of the eigenstates, and so the spectra can be determined 

by diagonalizing only these two matrices. Assuming that diagonalization time scales 



as '" n3 , the group-theoretical approach therefore saves approximately three orders of 

magnitude in computational time. This makes possible efficient sampling in parameter 

space. Also, because the ground state (Eq. (A)) contains only a few components, only 

those few components of the final eigenstates need be written out and saved. Using 

brute force, 46802 numbers are required to define the projection of the N -1 eigenstates 

onto the N electron ground state. Using the group theoretical approach, therefore, we 

save nearly four orders of magnitude in hard disk space. 
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Table A.l: Point-group character table, Group O. 

Class ID: 1 2 3 4 5 6 7 8 

Elements: 1 3/3 6 6/6 8 1 8 6 

Rotation: E Cl!C4
2 C4 C2/C2 C3 E C3 C4 

Al 1 1 1 1 1 1 1 1 

A2 1 1 -1 -1 1 1 1 -1 

E 2 2 0 0 -1 2 -1 0 

TI 3 -1 1 -1 0 3 0 1 

T2 3 -1 -1 1 0 3 0 -1 

re 2 0 V2 0 1 -2 -1 -V2 

r7 2 0 -v'2 0 1 -2 -1 V2 

rs 4 0 0 0 -1 -4 1 0 
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Table A.2: Transformation of sites 1-4 and coordinates x, y, z, point-group O. 

Rotation Site 1 Site 2 Site 3 Site 4 x y z 

E 1 2 3 4 x y z 

C3a 1 4 2 3 y '" x 

C3b 1 3 4 2 -z -x Y 

C3c 1 3 4 2 z -x -y 

C3d 1 4 2 3 y -z -x 

C-1 
3a 1 3 4 2 z x Y 

C-1 
3b 1 4 2 3 -y z -x 

C-1 
3c 1 4 2 3 -y -z X 

C-1 
3d 1 3 4 2 -z x -y 

C4x 1 3 2 4 x z -y 

C4y 1 4 3 2 -z y X 

C4z 1 2 4 3 y -x Z 

C-1 
4x 1 3 2 4 x -z Y 

C-1 4y 1 4 3 2 z y -x 

C-1 
4z 1 2 4 3 -y x Z 

Clx 1 2" 3 4 x -y -z 

Cly 1 2 3 4 -x Y -z 

clz 1 2 3 4 -x -y z 

C2e 1 2 4 3 y x -z 

C2j 1 2 4 3 -y -x -z 

C2g 1 3 2 4 -x z Y 

C2h 1 3 2 4 -x -z -y 

C2i 1 4 3 2 z -y X 

C2j 1 4 3 2 -z -y -x 
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Table A.3: Transformation of basis functions under the action of point group o. 

Rotation h 12 /3 14 Is 

·E h 12 /3 14 Is 

C3a 1/2( - h + V3h) 1/2(-12 - V3/d 14 Is /3 

C3b 1/2( - h - V3h) 1/2(-12 + V3h) -Is -/3 J4 

C3c 1/2( - h - V3h) 1/2(-12 + V3h) Is -/3 -/4 

C3d 1/2( - h + V3h) 1/2(-12 - V3fd 14 -Is -/3 

C-1 
3a 1/2( - h - V3h) 1/2(-12 + V3/d Is /3 14 

C-1 
3b 1/2( - h + V3h) 1/2(-12 ~ V3h) -/4 Is -/3 

C-1 
3c 1/2( - h + V3h) 1/2(-12 - V3h) -/4 -Is /3 

C-1 
3d 1/2( - h - V3h) 1/2(-12 + V3h) -Is /3 -/4 

C4x 1/2( - h - V3h) 1/2(12- V3h) -/3 -Is 14 

C4y 1/2( - h + V3h) 1/2(12 + V3h) Is -/4 -/3 

C4z h -12 -/4 /3 -Is 

C-1 
4x 1/2( - h - V3h) 1/2(12 - V3h) -/3 Is -/4 

C-1 4y 1/2( - h + V3h) 1/2(12 + V3h) -Is -/4 /3 

C-1 
4z h -12 14 -13 -Is 

Clx h 12 /3 -/4 -Is 

ely h 12 -/3 14 -Is 

clz h 12 -/3 -/4 Is 

C2e h -12 -/4 -/3 Is 

C2! h -12 14 /3 Is 

C2g 1/2( - h - V3h) 1/2(12 - V3h) /3 -Is -14 

C2h 1/2( - h - V3h) 1/2(12 - V3h) /3 Is 14 

C2 i 1/2( - h + V3h) 1/2(12 + V3h) -Is 14 -13 

C2j 1/2( - h + V3h) 1/2(12 + V3h) Is 14 /3 
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Table A.4: Space-group character table. 

Class ID: 1 2 3 4 5 6 7 8 9 10 

Elements: 1 3 6/6 6/6 8/24 3 3 6 12 12 

Rotation: E Cl C4 C2 C3 E Cl C4 C2 C3 

Translation: 0 0 O/,l. 0/'11 0/,> T 'l. ,< ,< T< 

f1 1 1 1 1 1 1 1 1 1 1 

f2 1 1 -1 -1 1 1 1 1 -1 -1 

[12 2 2 0 0 -1 2 2 2 0 0 

f~s 3 -1 1 -1 0 3 -1 -1 1 -1 

f~s 3 -1 -1 1 0 3 -1 -1 -1 1 

Xl 3 3 1 1 0 -1 -1 -1 -1 -1 

X 2 3 3 -1 -1 0 -1 -1 -1 1 1 

X3 3 -1 -1 1 0 -1 3 -1 1 -1 

X4 3 -1 1 -1 0 -1 3 -1 -1 1 

Xs 6 -2 0 0 0 -2 -2 2 0 0 

Table A.5: Compatibility relations. 

f X 

f1 - Al Xl - Al EEl E 

f2 - A2 X2 - A2 EEl E 

f12 -. E X3 - T2 

f~s -. Tl X4 -. Tl 

f~s - T2 Xs - Tl EEl T2 



, 
154 

Table A.6: Fully symmetrized one-electron basis functions. The Ni are the appropriate 

normalization constants, and 1i(j) corresponds to d-orbital Ii on site j. 

Function Pt. Sym. Sp. Sym. Basis State 

91 Al Xl N1[2h(2) - h(3) - h(4) - V312(3) + V312(4)] 

92 A2 X2 N2[V311 (3) - V3h(4) + 212(2) - 12(3) - 12(4)] 

93 . E(l) r 12 N3[h(1) + h(2) + h(3) + 11(4)] 

94 E(2) r 12 N4[12(1) + 12(2) + 12(3) + 12(4)] 

9s E(l) Xl Ns[3h(1) + h(2) - 2h(3) - 2h(4) 

+V312(3) - V312(4)] 

96 E(2) Xl N6[V3h(3) - V3h(4) + 312(1) - 312(2)] 

9i E(l) X2 N i [3h(1) - 311(2)·- V312(3) + V312(4)] 

98 E(2) X2 N8[-V3h(3) + V3h(4) + 312(1) + 12(2) 

-212(3) - 212(4)] 

99 T1(1) Xs N9[h(2) - h(3)] 

910 Ti(2) Xs NlO[-14(2) + 14(4)] 

911 Tl(3) Xs N11 [1s(3) - 1s(4)] 

912 T2(1) r;s N12[h(1) + h(2) + h(3) + h(4)] 

913 T2(2) r;s N13[J4(1) + 14(2) + 14(3) + 14(4)] 

914 T2(3) r;s N14[JS(1) + 1s(2) + Is(3) + fs( 4)] 

91S T2(1) X3 N1S [h(1) - h(2) - h(3) + h(4)] 

916 T2(2) X3 N16[J4(1) - 14(2) + 14(3) - 14(4)] 

91i T2(3) X3 N17[Js(l) + Is(2) - Is(3) - 1s(4)] 

918 T2(1) Xs N18[h(1) - h(4)] 

919 T2(2) Xs N19[J4(1) - 14(3)] 

920 T2(3) Xs N20[Js(1) - Is(2)] 



a) 

3 
4 

2 

b) 

b 

f 

Figure A.l: The model. (a) Tetrahedral cluster of four atoms. Periodic boundary 

conditions are imposed to generate the full fcc lattice. (b) The set of all proper rotations 

about atom 1 that map the lattice onto itself (point group 0). 
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