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Abstract 

Hydrogen Local Vibrational Modes in Semiconductors 

by 

Matthew Douglas McCluskey 

Doctor of Philosophy in Physics 

University of California. Berkeley 

Professor Eugene E. Haller. Cochair 

Professor Peter Y. Yu. Cochair 

Following a review of expeIimental techniques. theory. and previous work. the 

results of local vibrational mode (L YM) spectroscopy on hydrogen-related complexes in 

several different semiconductors are discussed. Hydrogen is introduced either by 

annealing in a hydrogen ambient, exposure to a hydrogen plasma, or duIing growth. The 

hydrogen passivates donors and acceptors in semiconductors. forming neutral 

complexes. When deuterium is substituted for hydrogen, the frequency of the LYM 

decreases by approximately the square root of two. By varying the temperature and 

pressure of the samples. the microscopic structures of hydrogen-related complexes are 

detelmined. 

For group II acceptor-hydrogen complexes in GaAs, InP, and GaP. hydrogen 

binds to the host anion in a bond-centered Olientation. along the [111] direction. adjacent 



to the acceptor. The temperature dependent shift of the L VMs are proportional to the 

lattice thelmal energy VeT), a consequence of anharmonic coupling between the L VM 

and acoustical phonons. In the wide band gap semiconductor ZnSe. epilayers grown by 

metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H 

complexes. The hydrogen assumes a bond-centered Olientation. adjacent to a host Zn. 

In AlSb, the DX centers Se and Te are passivated by hydrogen. The second. 

third. and fourth harmonics of the wag modes are observed. Although the Se-D complex 

has only one stretch mode. the Se-H stretch mode splits into three peaks. The anomalous 

splitting is explained by a new interaction between the stretch L VM and multi-phonon 

modes of the lattice. As the temperature or pressure is varied. an anti-crossing is 

observed between the L VM and phonon modes. 
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1. Introduction 

Since the invention of the transistor in 1949, the integrated circuit in 1959, and 

the subsequent growth of the semiconductor industry (Braun and MacDonald, 1978), a 

great deal of research has focused on the physics of semiconductors. The ability to 

manipulate the conductivity of these materials over more than fifteen orders of 

magnitude through controlled doping has made them indispensable in electronics 

applications (Seeger, 1989). Impurities and structural defects drastically affect the 

electrical and optical properties of semiconductors, both beneficially and detrimentally. 

In this thesis, I will concentrate on hydrogen-related defects. 

A semiconductor crystal such as silicon is composed of atoms arranged in a 

periodic lattice, with covalent bonds between neighboring atoms. A specific minimum 

amount of energy is required to excite a valence electron out of the valence band and 

into the conduction band, where the electron can move freely and carry current. The 

"missing electron" in the otherwise filled valence band is called a hole and has a positive 

charge. Analogous to an electron, a hole can move freely in the valence band. The 

minimum energy difference between the conduction and valence bands is known as the 

band gap, and for silicon it is 1.1 e V. At room temperature. only a small fraction of the 

intrinsic electrons (holes) are in the conduction (valence) band. so an intrinsic 

semiconductor is semi-insulating. The band gap of an intrinsic semiconductor may be 



determined by measuring the thermal population of electrons (holes) in the conduction 

(valence) band as a function of temperature. An Anhenius plot of the logarithm of the 

free carrier concentration yields the band gap energy. The band gap may also be 

measured by optical absorption, in which a photon excites an electron into the 

conduction band. The band gaps of semiconductors such as germanium (Newman and 

Tyler, 1959) and GaAs (Moss and Hawkins, 1962) have been measured in this way. 

The band structure of a solid arises from the periodicity of the atomic potentials 

in the lattice. According to Bloch's theorem, the translational symmetry of a lattice leads 

to electronic wavefunctions that have a well-defined wavevector k (Yu and Cardona, 

1996). In all diamond and zincblende semiconductors, the valence band maximum 

occurs at k = 0 (Kittel and Mitchell, 1954). If the conduction band minimum also occurs 

at k = 0, then the semiconductor has a direct band gap. Otherwise, the band gap is 

indirect. A simple model of a one-dimensional periodic potential was offered by Kronig 

and Penney (1930). The Kronig-Penney model consists of an infinite series of square 

wells and yields allowed and forbidden energy bands that depend on the height and 

spacing of the wells. 

Detailed band structure calculations have been performed for semiconductors 

using the tight-binding, or linear combination of atomic orbitals (LCAO) approach 

(Chadi and Cohen, 1975). Alternatively, the orthogonalized plane wave (OPW) method 

uses a plane-wave basis set with the atomic core electron wavefunctions subtracted from 

the plane waves (Herring 1940). The pseudopotential model (Cohen and Heine. 1976) 

replaces the rapidly varying part of the wavefunction near the nucleus with a smooth 
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function. The theory of ab initio pseudopotentials was developed (Louie et aI., 1977; 

Starkoff and Joannopoulos, 1977; Zunger and Cohen, 1978; Hamann et aI., 1979; Kerker 

1980) to model, from fIrst principles, the interaction of the valence electron with the core 

electrons. 

Introducing impurities into a semiconductor can increase the free electron or hole 

concentration. A donor such as phosphorus in silicon has one more valence electron 

than the silicon atom that it replaces. The additional electron is bound to the positively 

charged phosphorus ion, forming a hydrogenic system. In the case of phosphorus in 

silicon, the electron binding energy is 45 meV, which is sufficiently low such that 

practically all the electrons are ionized into the conduction band at room temperature. 

An impurity such as boron has one less valence electron than silicon, so it is an acceptor. 

The hole is bound to the negatively charged B ion and it can be excited into the valence 

band. 

Hydrogenic impurities are described well by the effective mass theory (Luttinger 

and Kohn, 1955; Kohn 1957). In a direct gap semiconductor, the energy of an electron 

in the conduction band is approximated by 

2 2 * 
E = ECBM + 11 k 12m , (1.1) 

where ECBM is the conduction band minimum and m* is the effective electron mass. In 

generaL the effective mass of an electron or hole is inversely proportional to the 

curvature of the conduction or valence band. If an electron is bound to a donor. it forms 

a hydrogenic system, with the electron wavefunction centered around the positively 

charged donor. The binding energy is given by 
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* 2 EB = 13.6 eV (m ImeE ) (1.2) 

and the effective Bohr radius is given by 

o * ao = 0.5 A (E me 1m ), 0.3) 

where E is the spatially averaged dielectric constant, me is the free-space electron mass, 

and m* is the effective mass defined in Eq. 1.1. Since E» 1 and m* < me in most 

diamond and zincblende semiconductors, the effective Bohr radius is typically much 

larger than 0.5 A. In GaAs, for example, m* = 0.066 me and E = 12.5, yielding effective 

mass theory values of ao = 95 A and EB = 5.7 meV (Kohn 1957; Lanno and Bourgoin, 

1981). The large radius means that the electron wavefunction samples many atoms, 

thereby justifying the use of a uniform dielectric constant. 

The addition of impurities to a semiconductor introduces energy levels into the 

band gap. For donors, this impurity level is below the conduction band by an amount 

equal to the binding energy EB. For acceptors, the level is above the valence band by EB. 

Doping a pure semiconductor with acceptors or donors makes the semiconductor p- or n-

type, respectively. As discussed in Sec. 1.1, hydrogen is a particularly important 

impurity because it neutralizes, or passivates, donor and acceptor levels. The impurity 

levels are removed from the band gap. 

In addition to altering the electronic properties of semiconductors, impurities 

such as hydrogen can also affect the vibrational properties. As discussed in Sec. 2.2. 

atoms in a crystalline solid can collectively oscillate about their equilibrium positions. 

resulting in quantized vibrational modes called phonons. Einstein (907) first treated the 
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problem of phonons by assuming that the atoms in a solid vibrate independently of one 

another. Debye (1912) improved upon the Einstein model by treating a solid as an 

elastic continuum. The Debye approximation is good for long wavelength phonons but it 

breaks down as the wavelength approaches the lattice spacing. To remedy this situation, 

an arbitrary cut-off frequency is introduced (Sec. 2.2.3). The cut-off frequency is 

typically expressed as a temperature and is known as the Debye temperature. The Debye 

temperatures for numerous cubic crystals have been measured by Betts, Bhatia, and 

Wyman (1956). 

As in the case of electrons in a perfect lattice, phonons in a perfect lattice have a 

well-defined wavevector q. The (0 vs. q dispersion relation can be experimentally 

determined via neutron scattering (Brockhouse and Iyengar, 1958). When an impurity is 

introduced, the translational symmetry is broken and one or more new vibrational modes 

may appear. If a mass defect replaces a heavier host atom, for example, its vibrational 

frequency will lie above the phonon frequency range. As discussed in Sec. 2.3, the 

vibrational mode of the defect is localized in real space and frequency space, and is 

referred to as a local vibrational mode (L VM). Hydrogen, with its low mass, typically 

has L VM frequencies 5-10 times the maximum phonon frequency and has narrow 

infrared absorption peaks (Sec. 2.4). 

In the following sections, I discuss hydrogen passivation and the microscopic 

structure of impurity-hydrogen complexes. In addition, I briefly describe the methods of 

hydrogenation that I used in this study. 
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1.1 Hydrogen Passivation 

In germanium, hydrogen has been found to activate the isoelectronic impurities C 

and Si (Sec. 1.2). Hydrogen is also important because it neutralizes, or passivates, 

electrically active impurities by supplying the additional electron needed to complete the 

Lewis octet. In hydrogen passivation, the impurity level is removed from the band gap, 

resulting in a decrease in the free carrier concentration. In addition, since neutral 

complexes are formed, the decrease in ionized impurity scattering increases the mobility. 

Passivation is not the same as compensation. The latter results in a decrease in both the 

free carrier concentration and the mobility. Hydrogen passivation has both beneficial 

and detrimental effects. Hydrogen passivation of deep levels increases the minority 

carrier lifetime. However, the omnipresence of hydrogen in growth processes can hinder 

reliable p- or n-type doping of semiconductors. 

The passivation process is shown schematically Figure 1.1 for the case of Si:B. 

The hydrogen acts as a donor, its electron annihilating a free hole (b). The proton feels 

the Coulomb attraction of the negatively ionized boron acceptor. As will be explained in 

Sec. 1.3.1, the hydrogen assumes a bond-centered orientation, between a silicon and 

boron. forming a neutral complex. The electrostatic energy is minimized when the 

proton sits in the covalent bond. 
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(a) (b) 

Figure 1.1. Hydrogen passivation of p-type silicon. 

In the case of an n-type semiconductor such as Si:P, the hydrogen acts as an 

acceptor (Figure 1.2). An electron in the conduction band (a) ionizes the hydrogen, 

forming H- (b). Then, the H- feels the Coulomb attraction of the positively ionized 

phosphorus donor. The hydrogen assumes an anti-bonding orientation (c), attached to a 

silicon in a direction opposite to the donor (Sec. 1.3.3). The bond-centered orientation is 

energetically unfavorable because the electrostatic repulsion of the electrons is too high. 

To summarize, hydrogen is an amphoteric defect that can passivate donors as 

well as acceptors. The fonnation of neutral complexes occurs by compensation followed 

by passivation. 
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(a) (b) 

(c) 

Figure 1.2. Hydrogen passivation ofn-type silicon. 
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1.2 Hydrogen in Germanium 

Hydrogen plays many interesting roles in crystalline semiconductors. Hydrogen­

related centers were first discovered and studied in ultra-pure Ge (Haller and Hansen 

1974, Haller 1978) which was grown for use in radiation detectors. During Ge crystal 

growth, ambient hydrogen saturates the Ge melt in the crucible and enters the bulk as 

atomic hydrogen. It passivates electrically active defects and impurities, especially deep 

level centers, resulting in improved mobility and minority carrier lifetime. 

The first hydrogen-related complexes that were discovered, however, were 

electrically active (Haller 1991). Hydrogen was found to activate the neutral 

isoelectronic impurities silicon (Hall 1974; Haller et aZ., 1980), carbon (Haller et aZ., 

1980), and interstitial bond-centered oxygen (Haller 1978; J06s et aZ., 1980). The 

concentration of electrically active hydrogen-related complexes in ultra-pure Ge is as low 

as lOll cm-:'l. The only way to study such low concentrations is with photothermal 

ionization spectroscopy (PTIS) (Lifshits and Nad, 1965; Haller et aI., 1974, 1975; Kogan 

and Lifshits, 1977). In PTIS, an incoming photon promotes a dopant-bound electron or 

hole from the ground state to a bound excited state. Bound excited states in pure 

semiconductors have lifetimes which are sufficiently long for the carrier to be thermally 

ionized into the nearest band at temperatures between 6 - 10K. When the electron (hole) 

has reached the conduction (valence) band. an applied bias produces a current. The 

current is plotted as a function of photon wave numbers, yielding a spectrum of the 

excited states of the complex. PTIS has the advantages that it is highly selective and 
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sensitive. 

Using PTIS, Kahn et ai. (1987) determined from ground state splitting that the 

Si-H and C-H acceptor complexes have trigonal C3v symmetry, with the hydrogen 

oriented along a [111] crystallographic axis. In the O-H donor complex, tunneling of the 

hydrogen between equivalent [Ill] sites results in a complicated manifold of Is states. 

Upon substitution of deuterium for hydrogen, the O-H and Si-H ground states shift 

downward by 51 Jle V and 21 Jle V, respectively. The isotope shift was the first 

conclusive evidence that these complexes are hydrogen-related. 

The double acceptors Be and Zn, and the triple acceptor Cu, are partially 

passivated by hydrogen. The Be-H and Zn-H complexes are shallow acceptors with 

binding energies of 11.29 and 12.53 meV, respectively, with C3v symmetry (Haller et ai., 

1977~ McMurray et ai., 1987~ Kahn et ai., 1987). The lowering of the symmetry from Td 

to e3v leads to a splitting of the ground state. Cu binds two hydrogen atoms and is also a 

shallow acceptor with a binding energy of 17.81 meV (Kahn et ai., 1986). Like the O-H 

complex, the CU-H2 complex exhibits hydrogen tunneling that splits the Is state into a 

broad manifold of states. In Ge:Cu samples grown in a deuterium ambient, a CU-D2 

complex is found, with a binding energy of 18.20 meV. The heavier mass hinders 

tunneling so the 1 s state does not broaden as in the CU-H2 complex. When Ge:Cu 

samples are grown in an ambient of hydrogen and deuterium, a new set of transition 

lines appears, corresponding to a Cu-HD complex with a binding energy of 18.10 me V 

(Haller et ai .. 1977). In generaL the appearance of new electronic or vibrational peaks in 

a sample exposed to hydrogen and deuterium is a strong indicator of a multi-hydrogen 
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complex. 

1.3 Hydrogen in Silicon 

1.3.1 Acceptor-Hydrogen Complexes 

The semiconductor industry became very interested in hydrogen when it was 

found by Sah et al. (1983) that hydrogen neutralizes boron acceptors in silicon. They 

demonstrated that hydrogen from water-related molecular species in the oxide layer in 

metal-oxide-semiconductor (MOS) capacitors diffuses into the silicon and passivates the 

acceptors. Spreading resistance profiles of silicon samples exposed to a hydrogen 

plasma show that the boron acceptors are neutralized to a depth of 1-2 Jl.m (Pankove et 

aI., 1984). When the samples are annealed at temperatures above 200°C, the boron­

hydrogen complexes dissociate and the resistivities decrease to the as-grown values. 

Johnson (1985) used secondary ion mass spectrometry (SIMS) to measure the 

concentration profile of deuterium and boron in Si:B exposed to a deuterium plasma. 

The deuterium and boron concentrations are nearly identical to a depth of 0.6 Jl.m, 

suggesting the presence of B-D pairs. 

Compelling evidence for boron-hydrogen complexes Came from the infrared 

spectra of hydrogenated Si:B samples. In addition to a reduction in the free carrier 

absorption, Pankove et al. (1985) discovered an infrared absorption peak at 1870 cm- 1 in 

Si:B samples exposed to a hydrogen plasma. Upon substitution of deuterium for 

hydrogen, the peak shifts to a frequency of 1360 cm-1 (Johnson 1985). The isotopic 
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frequency ratio is r = VH/vD = 1.375, which is close to the square root of the reduced 

mass-ratio (Sec. 2.3.3) of 1.395 expected for the bond-stretching mode of a diatomic Si-

H molecule. 

Using cluster methods, DeLeo and Fowler (1985) found that the total energy of 

the B-H complex is a minimum when the hydrogen is oriented along the [111] axis in a 

bond-centered configuration (Figure 1.3). To test this model, Stavola et al. measured the 

local vibrational modes (LVMs) of the acceptor-hydrogen complexes B-H, AI-H, and Ga-

H at liquid helium temperatures to be 1907, 2201, and 2171 cm-I, respectively. The 

vibrational frequencies are fairly close to the predicted values. 

The bond-centered model received further support when Pajot et al. (1988) 

discovered that the B-H LVM frequency increases by 0.8 cm-I when lOB is substituted 

for lIB, in agreement with theoretical calculations (Estreicher et aI., 1989) that predicted 

a weak B-H bond. The B-D mode shifts by 3.3 cm-I when lOB is substituted for lIB, 

over four times the shift of the B-H mode. The unusual shift of the B-D mode can be 

explained by a Fermi resonance, as explained below. 

[111 ] 

I H 

Figure 1.3. Bond centered model for acceptor-hydrogen complexes in silicon. The distribution of the 
bond between B-H and Si-H is shown (Estreicher et at.. 1989). 
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1~3. 2 Fermi Resonance of B·H in Si 

In addition to the B-H bond-stretching mode, the boron atom can oscillate 

transversely, with an LVM frequency of 652 or 680 cm-l for llB or lOB, respectively 

(Herrero and Stutzmann, 1988). The second harmonic of the lOB mode is nearly 

degenerate with the D stretch mode. The two modes interact anharmonically and repel 

each other, so that the D stretch mode is pushed upward in frequency. The second 

harmonic of the lIB mode is further from the D stretch mode, so the interaction is 

weaker. The H stretch mode, in contrast, is not degenerate with any modes, so the boron 

isotope shift is not enhanced by a Penni resonance. The Penni resonance was found by 

Watkins et al. (1990), who observed the lOB and lIB second hannonics near the D stretch 

modes. The anhannonic interaction between the Band D modes causes mode mixing 

which results in an increased intensity of the B modes. 

1.3.3 Donor·Hydrogen Complexes 

Passivation of donors in silicon was first demonstrated by Johnson et al. (1986), 

who showed that exposing an n-type layer of silicon to a hydrogen plasma at 150°C 

reduces the free carrier concentration and increases the mobility. The increase in the 

mobility is due to a decrease in ionized impurity scattering. The authors presented 

semiempirical calculations which predicted that the hydrogen attaches to a silicon atom 

in a [111] antibonding orientation. In contrast to the bond-centered model. the hydrogen 

in the anti bonding orientation sits opposite to the donor. (Figure 1.4) Subsequent 
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theoretical calculations agreed with the anti bonding model (Chang and Chadi. 1988; 

Amore-Bonapasta et ai., 1989; Estreicher et ai., 1989; DeLeo and Fowler, 1989). 

To test this model, silicon samples were implanted with the donors P, As, or Sb 

and exposed to a hydrogen or deuterium plasma for 6 hr at a temperature of 120°C 

(Bergman et ai., 1988). Hydrogen stretch modes were observed near 1500 cm- I and wag 

modes at 809 cm- I
. The deuterium stretch and wag modes shift downward in frequency 

by a factors of 1.37 and 1.39, respectively. The frequencies are very insensitive to the 

donor species - the stretch and wag modes shift less than 10 and 1 cm- I
, respectively, 

from P to Sb. This insensitivity to the donor species is strong evidence in favor of the 

antibonding model, in which the hydrogen is well isolated from the donor. 

[111] 
Si 

Figure 1.4. Antibonding model for donor-hydrogen complexes in silicon. 
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It has recently been pointed out that in these donor-hydrogen complexes, there 

exists a Fermi resonance between the second harmonic wag mode and the stretch mode 

(Zheng and Stavola, 1996). The second harmonic wag mode anharmonically interacts 

with the stretch mode. Since they are nearly degenerate, they split into modes which are 

linear combinations of a wag and a stretch. This is similar to the Fermi resonance in the 

B-D mode described in Sec. 1.3.2. In Chapter 5, I describe a new kind of resonant 

interaction, between a Se-H stretch mode and a multi-phonon mode in AISb. 

1.4 Hydrogen in GaAs and InP 

Since the discovery of hydrogen passivation of acceptors (Johnson et aI., 1985) 

and donors (Chevallier et aI., 1991) in GaAs, a great deal of research has been done on 

hydrogen in compound semiconductors. In hydrogenated n-type GaAs:Si, Pajot et al. 

(1988) observed infrared absorption peaks at 896.8 and 1717.2 cm- I
, corresponding to 

hydrogen wag and stretch modes, respectively. The 29Si_H stretch frequency was found 

to be 0.64 cm- I lower than the 28Si_H stretch frequency, providing strong evidence that 

the hydrogen attaches directly to the silicon donor. 

Infrared absorption measurements by Pajot et al. (1987) and Nandra et al. (1988) 

provided direct evidence for acceptor-hydrogen complexes in GaAs:Zn and GaAs:Be. 

respectively. An LVM peak was found in GaAs:Zn,H at 2145.0 cm- I
. a frequency 

similar to the As-H bond-stretching mode in AsH3 (2116 cm- I
) (Shimanouchi 1972) but 
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different from ZnH (1553 cm- I ) (Rosen 1970). The hydrogen is therefore believed to 

bind to the host arsenic. As in the case of acceptor~hydrogen complexes in silicon, the 

frequency shifts by -100 cm-1 when the acceptor is changed, indicating a bond-centered 

orientation (Rahbi 1993). Additional evidence for the bond-centered model was 

provided by uniaxial stress measurements which demonstrated unambiguously that the 

GaAs:Be,H complex has C3v symmetry. 

Epitaxial layers of GaAs:C exposed to a hydrogen or deuterium plasma have 

stretch modes at 2635.2 and 1968.6 cm-1, respectively, for an isotopic frequency ratio r = 

1.3386 (Clerjaud et ai., 1990). The small r value is caused in part by the small mass of 

the carbon atom (Sec. 2.3.3). Replacing 12C with BC results in a shift to lower 

frequency, indicating that the hydrogen attaches directly to the carbon acceptor. The 12(: 

complex has four modes, corresponding to combinations of longitudinal and transverse 

oscillations of hydrogen and carbon (Woodhouse et ai., 1993). For the isotopic 

combinations 12C_H, 13C_H, 12C_D, and BC_D, there are sixteen modes, all of which have 

been observed experimentally (Davidson et ai., 1993). 

In p-type InP exposed to a hydrogen or deuterium plasma, group II acceptor­

hydrogen complexes were observed by Darwich et ai. (1993). As in the case of GaAs, 

the hydrogen attaches to the host anion (P) in a bond-centered orientation. By measuring 

the overtones of the stretch modes and fitting the results to a Morse potential (Sec. 

2.3.4). they found that as the impurity mass increased from Be to Cd, the anhannonicity 

decreased. The reduction in anhannonicity accounts at least in part for the increase in 

the isotopic frequency ratio r. 
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In Sec. 4.1 I extend the studies of acceptor-hydrogen complexes to GaP. The 

trends in LVM frequencies and r values are discussed, as well as the temperature 

dependent behavior of the vibrational modes. 

1.5 Methods of Hydrogenation 

Hydrogen can be introduced into a sample by boiling in water, electrolysis, 

implantation, exposure to a hydrogen plasma, or contamination during the growth 

process (Haller 1994). In general, the omnipresence of hydrogen makes contamination 

with the "simplest element" difficult to avoid. In Sec. 4.2, I discuss arsenic-hydrogen 

complexes in ZnSe:As grown by metalorganic chemical phase epitaxy (MOCVD), in 

which the hydrogen originates from the metal organic molecules and the carrier gas. To 

obtain acceptor-hydrogen complexes in GaP, a hydrogen plasma was used (Sec. 4.1). 

Finally, in Sec. 4.3, I discuss annealing in a hydrogen ambient as a method of bulk 

passivation in AISb. In the following two sections, I describe the methods of hydrogen 

plasma exposure and hydrogen annealing. 

1.5.1 Annealing in Hydrogen. 

One of the simplest ways to introduce hydrogen into a semiconductor is to heat 

the sample in the presence of hydrogen gas. The sample is typically sealed in a quartz 

ampoule with H2 and annealed in a vertical furnace. After completion of the annealing. 
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the ampoule is rapidly quenched to room temperature by dropping it in ethylene glycol. 

Hydrogen annealing at a temperature of 1200°C was shown to passivate acceptors in 

silicon by Veloarisoa et al. (1991), but hydrogen annealing did not passivate donors. In 

AISb, Se and Te donors were passivated by annealing in H2 and D2 for temperatures as 

low as 700°C (Chapter 4.3). 

When an H2 molecule hits the surface of a semiconductor, it can dissociate into 

two hydrogen atoms: 

H2H2H (1.4) 

The law of mass action (Reif 1965) states 

11 
H~ = k(T,V) (1.5) 

I1H 

where I1H2 and I1H are the concentrations of molecular and atomic hydrogen, respectively. 

As discussed in Sec. 1.6, H2 molecules are extremely immobile in semiconductors so 

they cannot diffuse. Atomic hydrogen, however, can diffuse quite rapidly. The 

concentration of atomic hydrogen is given by 

k(T,V) 
(1 .. 6) 

For a given temperature, therefore, the solubility of atomic hydrogen is proportional to 

the square root of the H2 pressure. The solubility and transport of hydrogen in silicon 

was studied in detail by van Wieringen and Warmoltz (1956). The relation (Eq. 1.3) was 

recently shown experimentally for the case of hydrogen in p-type silicon (McQuaid et 

ai., 1993). 
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Annealing in hydrogen is an excellent method of introducing hydrogen into bulk 

semiconductors such as Si and AISb. In many semiconductors, however, annealing is 

not an effective method of hydrogen passivation, since the solubility of hydrogen is too 

low and/or the hydrogen- related complexes are unstable at the annealing temperatures. 

1.5.2 Plasma Exposure 

Exposure to a hydrogen plasma is common method of introducing atomic 

hydrogen into semiconductors to a depth of a few microns. The first hydrogen plasmas 

used for semiconductor passivation were produced in glow discharge tubes (Boening 

1982), in which a dc bias of several hundred volts is applied between a metal anode and 

the sample, which acts as the cathode. Energetic electrons ionize hydrogen molecules ' 

and the resultant protons travel toward the sample with a steady current of several rnA. 

A disadvantage of this simple technique is that the protons impinge on the sample 

surface with an energies of several hundred e V. resulting in significant bombardment 

damage. 

If an alternating electric field is used, however, the protons arrive at the surface 

with energies of only a few eV. The sample is typically located downstream from the 

radio frequency plasma to minimize charged particle bombardment damage. In a remote 

hydrogen plasma system (Johnson 1991), shown in Figure 1.5, hydrogen (or deuterium) 

and trace amounts of oxygen flow into the microwave cavity. Oxygen is used to 

suppress hydrogen recombination on the chamber walls, thereby increasing the fraction 

of atomic hydrogen (Kaufman 1969). The pressure in the chamber is kept at 2 TOlT and 
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the flow rates for the H2 and O2 are 50 and 0.3 sccm, respectively. The right-angle bends 

in the silica tube isolate the sample from UV radiation and charged particles. 

Exposure to the low energy ions and neutral atoms introduces a subsurface layer 

of hydrogen which diffuses into the semiconductor. The concentration of the hydrogen 

near the surface depends on the hydrogen flux, surface absorption, diffusion rate, and the 

rate of recombination and desorption into H2. 

Microwave Cavity Heated Substrate Holder 

~ FU,edrTUbe 

~----~------~ 

Microwave Generator 
(2.45 GHz, 100 W) 

Water Lines 

1 
To Vacuum Pump 

Figure 1.5. Schematic diagram of a remote hydrogen plasma system (from Johnson 1991). 

1.6 Hydrogen Diffusion 

Isolated hydrogen has been found to be an amphoteric impurity in several 

semiconductors. It diffuses interstitially as H+. HO. or H-. depending on the position of 
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the Fermi level. In p-type Si, for example, the isolated hydrogen atoms give up their 

electrons to the acceptors and diffuse as protons. They then feel the Coulomb attraction 

of the negatively charged acceptors and form neutral complexes. Since the protons repel 

each other, they do not recombine to form H2• In n-type Si, the situation is reversed: 

diffusing H- atoms form neutral complexes with positively charged donors. The 

discovery of donor passivation was delayed because H- can more easily recombine to 

form H2, which becomes immobile in the lattice. 

In Si, hydrogen is believed to be a "negative-U" center (Johnson et ai., 1995): the 

HOI+ donor level lies above the HOI- acceptor level. In their study of the formation of 

carbon-hydrogen complexes in GaAs, Clerjaud et al. (1990) determined the HOI+ level to 

be Ev + 0.5 eV. In p-type GaAs, therefore, hydrogen atoms diffuse as protons, whereas 

in n-type GaAs, they diffuse as a mixture ofHo and H-. 

The positively charged hydrogen species in GaAs:Zn was observed in reverse bias 

annealing experiments (Tavendale, 1990). After the GaAs:Zn samples were passivated 

by a deuterium plasma, an aluminum Shottky barrier was evaporated onto the front face. 

Then, a reverse bias was applied while the samples were annealed at temperatures around 

150oC. SIMS measurements and net dopant profiles show that the deuterium drifts out 

of the depletion region, along the direction of the applied electric field. It was thereby 

determined that at least some of the thermally dissociated deuterium atoms are positively 

charged. 

The negative charge state of hydrogen was similarly measured in GaAs:Te (Yuan, 

1991), GaAs:Se (Leitch. 1991). and GaAs:Si (Cho. 1991). The dissociation of donor-
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hydrogen complexes was shown to follow first-order kinetics. To accurately determine 

the dissociation energies and attempt frequencies, it is important to apply a reverse bias 

which can sweep the free hydrogen atoms out of the depletion region. If this is not done, 

the negatively (positively) charged hydrogen ions will readily recombine with the ionized 

donors (acceptors), leading to a value for the dissociation energy which is artificially 

high. 

Many deuterium diffusion studies have been performed on n-type GaAs:Si. 

Secondary ion mass spectroscopy (SIMS) is used to measure the concentration of 

deuterium in the sample. In bulk GaAs:Si exposed to a capacitively coupled deuterium 

plasma, the deuterium concentration profiles at various temperatures closely follow 

complementary error functions (erfc). The diffusion coefficient is given by 

D = Do exp (-EAlkT), (1.7) 

where Do = 115 cm/s2 and EA = 1.38 eV (Chevallier et a/., 1991). 

In p-type compound semiconductors, diffusion studies have been performed on 

highly doped (p > 1018 cm-3 ) GaAs:Zn, GaAs:Si, and InP:Zn. Typically, the deuterium 

concentration profiles consist of a plateau region, where the deuterium concentration 

closely matches the acceptor concentration, followed by an abrupt decrease. The 

diffusion process is dominated by hydrogen trapping on shallow acceptors. An 

exception to this rule is the case of GaAs:Zn for hydrogenation temperatures above 

250oC. The Zn-H complex in GaAs begins to decompose at 21 OOC, so hydrogen 

trapping at higher temperatures no longer plays a dominant role in the diffusion process. 

By way of comparison, the Zn-H complex in InP is stable for temperatures below 275°C. 
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2. Theory of Vibrational Modes in Semiconductors 

2.1 The Hannonic Oscillator 

The simple harmonic oscillator describes, to first order, the vibration of an object 

about a stable equilibrium point. A particle that resides in a local minimum of a 

potential V(x) can oscillate about its equilibrium position x = O. For small deviations 

from equilibrium, the potential can be expanded in a Taylor series: 

1 a2v 2 
V(x)=V: +-- x + ... 

o 2 ax2 
0 

(2.1) . 

where the equilibrium condition means that the first derivative is zero. Since it does not 

affect the equation of motion, the arbitrary constant Vo may be set to zero. The harmonic 

potential is written 

(2.2) 

where 

(2.3) 

For sufficiently small displacements about equilibrium, any arbitrary potential can be 

approximated to first order as a harmonic potential. 
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2.1.1 Classical Treatment 

Classically, the restoring force is given by 

F = -dV/dx = -kx, (2.4) 

which is simply a restatement of Hooke's law. Eq. 2.4 is solved by the function 

x(t) =A cos (Wt + <1», (2.5) 

where 

(2.6) 

and A and <1> are parameters determined by the initial conditions. This simple harmonic 

oscillator equation describes a wide range of vibrational systems. 

2.1.2 Quantum Mechanical Treatment 

The quantum mechanical problem is solved via Schrodinger's equation 

(2.7) 

where E is the energy eigenvalue and the Hamiltonian is given by 

(2.8) 

where m is the mass of the particle and p and x are the momentum and position 

operators, respectively. Since this is an eigenvalue equation. there exist a number of 

solutions in which wavefunctions are associated with specific eigenvalues. Following 

the treatment given by Gasiorowicz (1974). one can define the following operators 

24 



~mw . p a= -X+l ~ 
2 ....; 2mm 

(2.9) 

(2.10) 

such that the Hamiltonian (2.8) can be written 

(2.11) 

where the fundamental relation 

[X,p] = in (2.12) 

has been used. The bracketed term is a commutator and is defined by [A,B] = AB - BA. 

Two commutation relations can immediately be derived, 

[H,a] = -nma (2.13) 

(2.14) 

When Eq. 2.13 acts on a wavefunction \jI, we have 

Ha\jl - aH\jI = -nma\jl , (2.15) 

and inserting Eq. 2.7, 

Ha\jl= (E - nm) a\jl . (2.16) 

Thus, the wavefunction a\jl has an energy eigenvalue that is nm less than that of the 

wavefunction \jI. a is therefore called a lowering operator, since it lowers the energy of 

a given state. It can similarly be shown that a+ is a raising operator, as it raises the 

energy of a state by nm. Since the energy E must be positive, the lowering operator a 

will reach a limit when it hits the ground state. At the ground state \jim 
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a\j1o = 0 . (2.17) 

The energy of the ground state is then given by 

(2.18) 

Combining this result with the fact that the energy levels are quantized in units of 110), 

the energy eigerivalues of a simple harmonic oscillator are given by 

E = (n+ 112) 110) . (2.19) 

The wavefunctions corresponding to each energy eigenvalue can be derived by solving 

Schrodinger's equation: 

(2.20) 

where x is in units of .J11 / mO) , Nn is a normalization factor given by 

(2.21 ) 

and Hn(x) is a Hermite polynomial, listed in Table 2.1. 

Table 2.2. Hermite polynomials 

o 1 

1 2x 

3 8x3 
- 12x 

5 32x5 
- 160x3 + 120x 

6 64x6 
- 480x4 + 720x2 

- 120 
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For a three dimensional harmonic oscillator, the Hamiltonian is given by 

(2.22) 

The solution is obtained by separating the wavefunction into the three normal 

coordinates, 

(2.23) 

where 'JIxCx) refers to the one-dimensional harmonic oscillator wavefunction. The energy 

eigenvalues of the three dimensional system are then obtained by adding the energies of 

the normal modes: 

(2.24) 

2.2 Lattice Vibrations 

The constituent atoms of a crystalline solid occupy a set of equilibrium positions. 

The lattice displacement from a given atom's equilibrium position can be described by 

the vector usb where s labels an atom in the Ith unit cell. Following the treatment given 

in Ziman (1972), the total kinetic energy of the solid is given by 

1 . 2 
2" 'EM sUsl ' 

s,1 
(2.25) 

where Ms is the mass of the sth atom. We assume that the potential energy of the solid is 

a function of the lattice displacements usl. The potential energy can be expanded in a 

Taylor series about the equilibrium positions: 
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(2.26) 

where j denotes the coordinates x,y,z. The derivatives are evaluated at the equilibrium 

positions. 

The first term in this series is just a constant which can be neglected. The second 

term vanishes, since the system is at equilibrium. The third term is the harmonic term, 

which determines most of the vibrational properties of the crystal. Sec. (2.3.4) and 

Appendix B.2 deal with the effects of higher-order anharmonic terms. 

where 

To first order, the equations of motion are 

.. a 2V 
GJJ -----1 

sl,sT = a j a j' 
Usl UsT 0 

(2.27) 

(2.28) 

The coefficients G!/':T are the components of a second rank Cartesian tensor, denoted 

Gsl,s'[" Eq. 2.27 can be written in matrix form: 

Msiisl = - L. G sl.sT· us?' . 
s7' 

(2.29) 

The translational in variance of the crystal demands that G cannot depend on the absolute 

positions of the lattice vectors rand [', but only on their relative positIons. Eq. 2.29 can 

thus be written 

Msiisl = - L. Gss,(b). U<',1+h , 

s1l 

(2.30) 

where b = 1 - I'. The tensor G ss ' (b) gives the force on atom s due to the displacement of 
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atom s' in a unit cell whose relative position is given by the vector h. 

The lattice displacements usl which solve this system of equations are plane 

waves with wavevector q and frequency w: 

U = U ei(q'/-Olt) 
s[ sq • 

Inserting Eq. 2.31 into Eq. 2.30 yields 

If we define 

- 2M - - "'[G (h) iq.b]. ro sUsq - £..J ss' e u"'q' 
sb 

Gss,(q) = IGss·(h)eiq'h, 
h 

then Eq. 2.32 can be written 

I[Gss·(q)- Msw 20ss.I].us.q =0, 
s· 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

where I is the identity matrix and oss' is the Kronecker delta function. Gss' (q) is simply 

the Fourier transform of the force tensor Gss ' (h). This is a set of linear equations, one for 

each value of s, which can be solved by setting the determinant of the matrix in brackets 

to zero. The problem has been reduced from a many-body problem to one involving only 

3n degrees of freedom, where n is the number of atoms in a unit cell. Additional 

assumptions, presented in the following sections, simplify the problem further. 

2.2.1 Linear Chain Model 

The simplest model is that of a linear chain of identical atoms which interact only 

via nearest-neighbor forces. The lattice constant is equal to the interatomic spacing a. 
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Only one spatial dimension is considered, so all the quantities in Eq. 2.34 are scalars. In 

addition, since there is one atom per unit cell, the subscripts s and s' can be dropped. We 

are left with the following: 

(2.35) 

The nth atom in the linear chain experiences forces from its two nearest 

neighbors, n-l and n+ 1. The sum of the forces is 

F = k(un+1 - uJ+ k(un_ 1 - uJ 
= k(un+1 + un- 1 - 2un ) 

(2.36) 

where k is the force constant. From this expression, the components of the force tensor 

can be derived: 

h=O 

h=±a 

otherwise 

Inserting this into Eq. 2.33 yields 

.G(q) = k(2 - e iqa 
_ e-- iqa

) 

= 2k[l- cos(qa)] 

= 4k sin 2 (qa/2) 

Finally, inserting Eq. 2.38 into Eq.2.35 yields the dispersion relation 

w = 2~ ~ sin(qa/2) . 

(2.37) 

(2.38) 

(2.39) 

where the positive root is assumed without loss of generality (Figure 2.1). Because the 

atoms occupy discrete positions, a phonon wavelength of a is equivalent to a/2. a/3. etc. 

The range of wavevectors necessary to describe all the phonon modes is called the first 
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Brillouin zone. It the case of a linear chain, the first Brillouin zone consists of Iql < Tria. 

Wavevectors beyond the Brillouin zone edge can be "folded" back into the first Brillouin 

zone. 

2(k/M) 1/2 

8 

1t 
a o 

q 

Figure 2.1. Dispersion relation in the first Brillouin zone for a monatomic linear chain. 

2.2.2 Diatomic Linear Chain 

1t 
a 

A slightly more complicated system is a linear chain of atoms with alternating 

masses M] and M2. Since there are two atoms per unit cell, the subscripts sand s' can 

each take on two values. The interatomic distance is aJ2, the lattice constant is a, and 

atoms experience nearest-neighbor interactions with a force constant k. As in the 

previous case, only one spatial dimension is considered, so all the quantities in Eq. 2.34 

are scalars: 
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2 

I.[ Gss·(q)- Min 28 ss'] uS'q = 0 . 
s'=l 

This is a set of two linear equations, corresponding to s= 1 and s=2: . 

[
G

ll 
(q) - M

l
()) 2 

G2, (q) 

(2.40) 

(2.41) 

To evaluate the components of the force tensor Gss" we write down the forces acting on 

atoms 1 and 2 which are in the nth unit cell, 

from which we obtain 

F;, = k(u2•n_, + u2•n - 2u,.n) 

F2 = k(u l •n + U l •n+l - 2u2•n) , 

Gll (q) = 2k 

G22 (q) = 2k 

G
l2 

(q) = -k(e-;qa + 1) 

G2l (q) = -k(e;qa + 1) 

(2.42) 

(2.43) 

To solve the set oflinear equations 2.41, we set the detenninant of the matrix equal to 

zero 

2k - M,()) 2 

- k(eiqa + 1) 

and solve the resultant quadratic equation 

2 (1 1 J (1 1 J2 =>()) =k -+- ±k -+-
M] M2 M] M2 
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(2.44) 

(2.45) 

(2.46) 



e 

1t 

a o 
q 

1t 

a 

Figure 2.2. Dispersion relation in the fIrst Brillouin zone for a diatomic linear chain. In this diagram, M2 = 
2M l • 

For each value of q, there are two values of co. The two branches are plotted in 

Figure 2.2 for the first Brillouin zone. It is instructive to evaluate this expression for the 

center of the Brillouin zone, q = O. The sin(qa/2) tenn vanishes and we have 

w = 0, 2k(_1_+_1_J. 
MJ M2 

(2.47) 

-
The nonnal mode eigenvector (uJO, u20) can be obtained by inserting the corresponding 

frequency into Eq. 2.41. For the co = 0 case. 

[ 2k - 2k][UIO] = O. 
- 2k 2k u20 

(2.48) 
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The nonnalized eigenvector which solves this matrix equation is 

(2.49) 

This means that the atomic displacements are in the same direction. The lower branch of 

the dispersion relation is called the acoustic branch because the atoms oscillate in phase, 

like a sound wave in an elastic continuum. 

For the (0 = ~2k(1/ Ml + 1/ M 2) case, 

(2.50) 

and the normalized eigenvector is 

(2.51) 

This corresponds to atomic displacements in opposite directions which are inversely 

proportional to the atomic mass. The upper branch of the dispersion relation is called the 

optical branch because adjacent atoms oscillate out of phase and can be optically 

excited. 

In a real crystal, of course, there are three dimensions. If the number of atoms per 

unit cell is n, then a crystal will have 3 acoustical branches and 3n - 3 optical branches. 

A diatomic linear chain therefore has 3 optical branches and 3 acoustical branches. The 

branches are labeled according to whether the oscillations are longitudinal or transverse, 

so there are two transverse optical (TO) modes. one longitudinal optical (La) mode, two 

transverse acoustical (TA) modes, and one longitudinal acoustical (TA) mode. 
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2.2.3 Thennal Properties 

Although the dispersion relations for lattice waves are derived classically, 

quantum mechanics dictates that the energy of an oscillation must be quantized. If ro is 

the vibrational frequency, the energy is 

E = (n + 1/2 )hro n = 0,1,2, ... (2.52) 

One quantum Qf lattice vibrational energy is called a phonon. Following the treatment 

given in Kittel (1986), the thermal properties of phonons can be derived. The average 

number of phonons (n) is given by the Planck distribution 

(2.53) 

To find the total phonon energy U, we sum the modes from all the branches p and 

wavevectors q: 

U = I. I.((nq •p ) + 1/2)liroq.p . (2.54) 
p q 

The 112 term is a constant which, for thermodynamical calculations, may be dropped. 

Inserting the Planck distribution function (2.53) into Eq. 2.54 yields 

1 
U = ~ ~ h Ik T liw . L.. L.. Olq,pl B 1 q.p 

p q e -
(2.55) 

The points in q space are extremely dense, so the sum over wavevectors may be 

converted to an integral 

(2.56) 

whereDA (ro )dro is the number of modes between ro and ro+dro. for a polarization A (e.g., 
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transverse or longitudinal). 

To obtain an analytical expression for the phonon energy, the Debye model 

assumes that the dispersion relation for a solid is given by 

(2.57) 

where Vs is the classical speed of sound. This model is good for the acoustical branch for 

small q, where the dispersion relation is approximately linear. The density of states is 

given by 

1 2 dk 
D(w) = --41t k -

(21t)3 dw 

1 2 
= 2 3 ro dro 

21t v; 

(2.58) 

With the additional assumption that the three branches are degenerate, Eq. 2.56 becomes 

(2.59) 

where ffiD , the Debye frequency, is the cut-off point at the Brillouin zone edge. Defining 

the dimensionless variable x == nw/ kBT yields 

(2.60) 

where TD == nffiD/kB is the Debye temperature. 
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2.3 Local Vibrational Modes (L VMs) 

2.3.1 Analytical Approach 

The translational symmetry of a perfect lattice is broken when a defect is 

introduced. As a simple example, consider the monatomic linear chain described in Sec. 

2.2.1, but where one lattice mass M is replaced by a smaller mass m. Following the 

treatment given by Kittel (1966), we can show that one of the normal modes of the lattice 

will be localized around the light atom. Letting the light atom occupy the n = 0 position, 

the lattice equations of motion are given by 

muo = k(u l + U_ l - 2uo) 

MU l = k(u2 +uo -2uJ ... 

The solution to the perfect linear chain is given by Eq. 2.39, 

Euler's equation states 

sin z = [exp(iz) - exp(-iz)]/2i, 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

so that a mode with a frequency higher than the phonon frequencies can be obtained by 

letting the wave number q be complex: 

(2.65) 

From Eq. 2.64, we have the identity 

sin(qa/2) = [exp(iqRa/2) exp(-q/a/2) - exp(-iqRa/2) exp(q/al2)]l2i (2.66) 
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For the frequency (2.63) to be real, the imaginary component must equal zero. This 

implies that qR = 1tla. The displacement of atom n is then given by Eq. 2.31: 

Un = Uo exp(i1tn) exp(-q/na) exp(-irot) (2.67) 

= Uo (_1)n exp(-q/an) exp(-irot) . 

Substituting this into Eq. 2.61 yields 

ro2 = (klm)[2 + 2exp(-q/a)] (2.68) 

while substituting into Eq. 2.62 yields 

(2.69) 

Solving these simultaneous equations yields 

exp(q/a)=(2M - m)lm (2.70) 

and 

22M2 
ro = Wmax 2 ' 

2Mm-m 
(2.71) 

where Olmax = (4k/M)112 is the maximum frequency of the unperturbed linear chain. If 

m« M, then Eq. 2.71 can be approximated 

(2.72) 
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2.3.2 Numerical Approach 

If a mass defect is introduced into a compound semiconductor, new vibrational 

modes will arise depending on whether the defect replaces the heavy or the light lattice 

atom (Barker and Sievers, 1975). In the diatomic linear chain model discussed in Sec. 

2.2.2, the equations of motion in the nth unit cell are given by 

M1u1.n = k(u2.n_1 + u2.n - 2ul.n) 

M 2 U2.n = k( U1•n + U1•n+1 - 2u2•n )' 
(2.73) 

where MI and M2 are the light and heavy masses, respectively. The normal modes are 

given by 

o iwr Uz,n=U2,ne, (2.74) 

where the lack of translational invariance means that the normal modes do not have real 

wave numbers. Substituting the normal modes into Eq. 2.73 yields 

(00
2 

- 2k/ Ml)~.n + k/ Ml (Uz.n-l + Uz.n) = 0 

(0) 2 - 2 k/ M 2 )U2.n + k/ M 2 (~.n-l + ~.n ) = 0 . 

In matrix form, this set of equations is written 

k/M1 0 0 
0)2 -2k/ M2 k/ M2 0 

o o o 

o 
o 

(2.75) 

Uz,1 = 0 

(2.76) 

where I have assumed periodic boundary conditions. The eigenvalues co and 

eigenvectors Un can be determined numerically. A mass defect can be introduced by 
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changing the MI or M2 values on the first or second line, respectively, of the matrix. The 

phonon density of states is then produced by plotting a histogram of the eigenvalues. 

As an example, consider the compound semiconductor GaP, with MI = 70 and 

M2 = 31. Using MATLAB to diagonalize the matrix (2.77), I calculated the phonon 

density of states for a linear chain with N = 128 unit cells (Figure 2.3), where the spring 

constant k is chosen such that IDro = 366 cm-.I. If a carbon atom (m = 12) replaces a 

phosphorus, a new mode appears at (J) = 510 cm -I. The exponentially decaying 

vibrational amplitudes are shown in Figure 2.4. Experimentally, the 12C L YM has a 

frequency of 606 cm- l (Hayes etal., 1970). 
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Figure 2.3. Calculated density of states for a GaP linear chain without (a) and with (b) a 12C mass defect. 
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Figure 2.4. Plot of the vibrational amplitudes around the 12C mass defect in a GaP linear chain. 

If the phosphorus is replaced by an atom heavier than phosphorus but lighter than 

gallium, a gap mode will appear: in the gap between the acoustic and optical phonons. 

As an example, consider the Asp impurity (m = 75). As shown in Figure 2.5, a mode 

appears at (0 = 240 cm-!. Although the vibrations are localized around the impurity 

(Figure 2.6), the decay in the amplitudes is not exponential. Experimentally, Grosche et 

al. (1995) have observed the Asp gap mode at 269 cm -! _ In addition, they have resolved 

the fine structure arising from the different combinations of the neighboring gallium 

isotopes. 
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Figure 2.6. Vibrational amplitudes around an Asp mass defect in a GaP linear chain. 
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Figure 2.7. Diatomic model for L VMs. 

2.3.3 Diatomic Model 

The diatomic model is a useful empirical model that has been used to 

quantitatively describe the frequencies and isotope shifts of numerous L VMs (Haller 

1995). In this model, an impurity of mass m is attached by a spring k to the lattice, 

whose mass is represented by Mlattice. The vibrational frequency of this diatomic 

molecule is given by 

W = ~k(l/ Mlattice + l/m) == ~, (2.78) 

where Il is the reduced mass. In the case of hydrogen, m = 1 amu. To verify that a 

L VM is in fact hydrogen-related, the hydrogen can be replaced by deuterium (m = 2 

amu). The isotopic frequency ratio is given by 

2 M lattice + 1 
M lattice + 2 ' 

(2.79) 

where WH and WD are the hydrogen and deuterium frequencies, respectively. r is slightly 

less than the square root of two, owing to the fact that M lattice is finite. 
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2.3.4 Anharmonicity 

Another effect which reduces the isotopic frequency ratio is the anharmonicity of 

the potential. The hydrogen does not reside in a perfectly parabolic potential~ rather, the 

potential becomes weaker'for larger displacements. The Morse potential (Morse 1929), 

for example, is given by 

Vex) = De [exp(-~x)-1]2 , (2.80) 

where De is the binding energy. For small x, the Morse potential approximates a 

harmonic potential, with a spring constant k = 2De~2. The hydrogen has a larger 

vibrational amplitude than the deuterium and its wavefunction samples more of the 

anharmonicity. Its frequency is lowered relative to the deuterium frequency, so that the 

factor r = WH fWD is reduced. 

To show this quantitatively, the energy eigenvalues of the Morse potential are 

given by 

(2.81) 

where 

(2.82) 

and 

(2.83) 

The first excited state is given by 

M = E) - Eo = nWe -2nwexe' (2.84) 

The anharmonic term We Xe is inversely proportional to the reduced mass. Therefore, the 
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anhannonic tenn is greater for hydrogen than for deuterium and the isotopic frequency 

ratio r is reduced. 

-X -> 

\ 

\ 

\ 

I 

r-----.--.~ , 

x 

, 
I 

I , 

D 

H 

Figure 2.8. Hydrogen and deuterium ground states in a Morse potential (solid line). For comparison. the 
parabolic potential (dashed line) is shown. 

2.4 Infrared Absorption 

An important technique for probing the vibrational spectrum of a defect is 

infrared absorption. A photon can be absorbed by the defect, its energy going into a 

vibrational excitation. Most of the results presented in this thesis were obtained via 

infrared absorption spectroscopy. 
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2.4.1 Classical Treatment 

Classically, an oscillating dipole can be modeled as two masses M and m, with 

electric charges ±e, attached to each other by a spring with a spring constant k. The 

equation of motion is given by 

.x + yi + co~x = eE(t )/Il , (2.85) 

where y is a damping constant, roo = J kill is the natural angular frequency. Il = 1I( 11M 

+ 11m) is the reduced mass, and E(t) is the electric field. At the dipole, the electric field 

of a plane wave is given by 

E(t) = Eo exp(irot). (2.86) 

The solution to Eq. 2.85 is also a complex exponential, 

x(t) = Xo exp(irot), (2.87) 

with an amplitude given by 

(2.88) 

For n dipoles per unit volume, the polarization is given by 

2E ' ne olll . 
P = nex = 2 2. exp(lrot) 

roo -ro +lyro 
(2.89) 

and the dielectric constant £ =1 +4nPIE is given by 

41t ne2 
£( co) = I + ------".---­

co; - co 2 + iy ro . 
(2.90) 

Il 

The oscillator strength of this simple dipole is equal to unity. 

Differentiating Eq. 2.87 with respect to time yields the relative velocity of the two 
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masses, 

v(t) = Xo iro exp(irot). (2.91) 

The power dissipated by the dipole is given by 

pet) = eRe{E(t)}Re{v(t)}. (2.92) 

Assuming for simplicity that Eo is real, Eq. 2.92 becomes 

(2.93) 

Using the fact that 

(cos2 oot) = 1/2 (2.94) 

and 

\sinrotcosc.ot) = 0, (2.95) 

the time-averaged power dissipation can be written 

(2.96) 

The peak in the power spectrum occurs near ffi=ro~, where the amplitude of 

vibration is greatest. The cross section of absorption is given by the ratio of the power 

dissipation to the intensity of the electromagnetic wave, 

(p) 
(2.97) 
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Figure 2.9. Cross section of absorption for oscillators with different damping coefficients. 

The cross section is in units of cm2 and defines an effective area in which 

incident light is totally absorbed. The damping factor yis approximately the full width 

half maximum (FWHM) of the absorption peak. 

If an electromagnetic wave of intensity / impinges on a material with n dipoles 

per cm3 and a thickness dx, then the transmitted intensity will be given by 

/(x+dx)=/(x) (I-an dx). (2.98) 

Rearranging terms yields 

[/(x+dx)-/(x)]/dx = -an/(x) (2.99) 

and as the thickness dx goes to zero. 

d/(x)/dx = -an/ex). (2.100) 

The solution to this differential equation is a decaying exponential. 
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lex) = loexp(-anx) == loexp(-ux), (2.101) 

where a is the absorption coefficient and has units of em-I. 

The integrated absorption is defined 

00 00 

Al = f a (oo)doo = n f a (oo)doo . (2.102) 
o 0 

Substituting Eq. 2.97 into Eq. 2.102 yields 

(2.103) 

For a "high-Q" oscillator, ro<.<y. In this limit, the integrand is nonzero only in a narrow 

range about Wo. We can therefore write 

00=000+ 000 , (2.104) 

where oro<.<wo. Making this substitution into the integral (2.103) and keeping the lowest 

order ow tenns yields 

A = 41t ne2y foo d(O 00) 

I J..lc 048W2+y2' 
(2.105) 

where the integrand is a Lorentzian line shape. The integral can be solved by a 

trigonometric substitution which yields 

(2.106) 

As noted, the integrated absorption in Eq. 2.106 is given in units of cm-Irad/s. In 

spectroscopy it is more convenient to use wave numbers, defined as 1IA, where A is the 

wavelength of incoming light. instead of 00. To convert to wave numbers, we use the 
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relation 

1IA = rol21tC, (2.107) 

yielding 

(2.108) 

Note that the integrated absorption is independent of the width y and the frequency roo of 

the peak. If the e is equal to the charge of an electron and ~ is the mass of a proton, then 

(2.109) 

This simple classical result is a reasonable order-of-magnitude estimate. For example. 

the Zn-H complex in InP has a~ experimental integrated absorption given by AI (cm-2
) = 

5 X 10-15 n(cm-3
) (Chevallier et aI., 1991). The theoretical model given here neglects 

screening effects in the solid that reduce the dipole moment, and therefore the integrated 

absorption, of the complex. 

2.4.2 Quantum Mechanical Treatment 

A quantum mechanical approach yields a similar result. Following the treatment 

given by Sakurai (1985), the absorption cross section for exciting a transition from an 

initial state i to a final state f is given by 

(2.110) 

where k an d ro are the wave vector and angular frequency, respectively. of the 
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electromagnetic wave, p is the momentum operator, and 8 is the Dirac delta function. In 

the absence of damping, the transition is infinitely sharp, so that the cross section is 

nonzero only when the energy of the incoming light equals the transition energy. In the 

electric dipole approximation, the wavelength of the light is assumed to be much longer 

than the dipole, so that the exponential in Eq. 2.110 can be approximated 

(2.111) 

If P is directed along the x axis, then Eq. 2.110 can be written 

(2.112) 

Given the commutation relation 

[ H] = i11px 
x, 0 ' 

Jl 
(2.113) 

the matrix element in Eq. 2.112 can be written 

(2.114) 

where ~fi= (Or (Oi· Substituting Eq. 2.114 into Eq. 2.112 yields 

(2.115) 

To compare this with the classical result, we integrate over all frequencies to obtain the 

integrated absorption: 

Joo 41t 2ne
2 
"" I( )1 2 

AI = n a(w)dw = 11. L..J(j)fi flxli . 
o £ f 

(2.116) 

The oscillator strength is defined 
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(2.117) 

and is a dimensionless quantity that is proportional to the probability of a transition from 

i to! According to the Thomas-Reiche-Kuhn sum rule (Sakuri 1985), 

(2.118) 

Applying this rule to Eq. 2.l17 yields 

(2.119) 

which differs from the classical result (2.106) by a factor of two. 
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3. Experimental Techniques 

3.1 Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FTIR) is a characterization technique 

widely used in physics, chemistry, and biology. It has the advantages of high spectral 

resolution, good signal-to-noise ratios, and the ability to measure a broad region of the 

spectrum in a short amount of time. At the heart of a FTIR spectrometer is a Michelson 

interferometer (Figure 3.1), A parallel beam of collimated light from a broadband source 

is directed at a semitransparent beamsplitter. One of the two beams reflects off a 

movable mirror while the other beam reflects off a fixed mirror. The two beams 

recombine at the beamsplitter, travel through the sample, and finally impinge upon a 

detector. The detector signal is proportional to the intensity of the interfered beam and 

the plot of intensity versus optical path difference in real space is the inteiferogram. As 

shown in the following section, when the interferogram is Fourier transformed, the 

resulting function is a plot of the spectrum in frequency space. In practice, to maximize 

the signal-to-noise ratio, several hundred to several thousand interferograms are taken 

and averaged before the Fourier transfOlm is pelformed. 

As shown in Figure 3.1, the sample may be placed in a liquid helium cryostat. A 
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photoconductor such as Ge:Cu is mounted directly behind the sample and kept at a 

temperature of 10K. A DC bias of a few volts is applied across the photoconductor, and· 

when light of sufficient energy excites a hole (electron) into the valence (conductiori) 

band, current is produced. For variable temperature measurements, a detector such as a 

mercury- cadmium-telluride (MCT) diode cooled to 77 K may be placed external to the 

cryostat. A detailed description of our spectrometer is given in Sec. 3.1.5. 

3.1.1 Advantages of Fourier Transfonn Spectroscopy 

There are two major advantages of a Fourier transform spectrometer over a 

grating spectrometer. First, a Fourier transform spectrometer can obtain a broad 

spectrum in a time that is short compared to a grating spectrometer. This is known as 

Felgett advantage (Felgett, 1958). In a broad spectrum ranging in frequency from VI to 

V2, the number of spectral elements is given by 

(3.1) 

where 8v is the resolution. If the time to observe the entire spectrum is T, then the time 

to observe a single spectral element it TIM. Assuming the detector noise is independent 

of the signal intensity, the signal-to-noise ratio for a grating spectrometer is given by 

(3.2) 

In an interferometer, however, all the spectral elements are measured simultaneously. 

Therefore, the signal-to-noise ratio for a Fourier transform spectrometer is independent 

ofM: 
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(3.3) 

For a given time T, the advantage of a Fourier transform spectrometer over a grating 

spectrometer is .fM. Since M is often on the order of 10,000, this represents a 

significant advantage. In the visible spectral range, where detectors typically operate in 

the photon-counting regime, the signal-to-noise ratio is proportional to the square root of 

the signal and the Felgett advantage is no longer important. 

As second advantage that interferometers have over grating spectrometers is the 

throughput, or Jacquinot (1960) advantage. In a grating spectrometer, the resolution is 

limited by the width of the entrance and exit slits. In a Fourier transform spectrometer, 

however, the resolution is determined by the length of the mirror path (Sec. 3.1.3). 

Therefore, for high resolution measurements the Fourier transform spectrometer is 

preferred. 

3.1.2 Derivation of Fourier Result 

Following the treatment given by Bell (1972), I derive the equation used in 

Fourier transform spectroscopy. The two beams in the Michelson interferometer are 

separated by an optical path difference 8. The superposition of the two beams is given 

by 

00 

E(z) = j[Eo(k)e ikZ + Eo(k)eik(Z-ol}tk . (3.4) 

where k=2rrIA. E is electric field, and z is distance along the beam. From Eq. 3.4 is can 
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be seen that the resultant electric field is given by 

(3.5) 

The intensity of the electromagnetic wave is given by the magnitude of its Poynting's 

vector (Jackson 1975): 
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Figure 3.1. Schematic of the Fourier Transform infrared (FTIR) spectrometer. 

58 

(3.6) 



Since the phases of different frequencies of light are random with respect to each other, 

the intensities add linearly: 

(3.7) 

where the integrals are semi-infinite because the integrands are even functions. This is 

the interferograrn. Only the second integral varies with 8 ; the first is an offset term. The 

second integral is given by 

~ 

1(8) = 4f lo(k)cosk8 dk, (3.8) 
o 

where 

(3.9) 

Eq. 3.8 is simply the Fourier transform of the intensity lo(k). To obtain the spectrum 

lo(k), we perform an inverse Fourier transform: 

~ 

10 (k ) = ( const.) f 1(8 ) cos k8 d8 
o 

(3.10) 

In practice, a computer uses a fast Fourier transform (FFT) algorithm (e.g., Cooley and 

Tukey, 1965) to evaluate the integral (3.10). 

3.1. 3 Resolution 

In the preceding derivation, the path length 8 was assumed to vary from 0 to 00. 

In an experiment, however, the scanning mirror can only travel a finite distance. 
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Suppose that the light source is monochromatic, with an intensity given by 

lo(k) = 108 (k - ko), (3.11) 

where ko is the wave number in cm·
j 

and 8 is the Dirac delta function. The delta 

function can also describe a perfectly sharp absorption peak. Substituting this function 

into Eq. 3.8 yields 

1(8 ) = 4/0 cos(ko8 ). (3.12) 

As described in Sec. 3.1.5, the cosine interferogram from a laser is used to accurately 

measure the optical length difference 8. 

If an absorption peak is described by a delta function, the peak measured by the 

FTIR spectrometer will be broadened by the finite scanning length L. The Fourier 

transfonn of the interferogram is given by 

L 

lo(k) = (const.)f 1(8)cosk8 d8 , 
o 

(3.13) 

where the interferogram is abruptly truncated at a distance L. Substituting the delta 

function interferogram (3.12) into Eq. 3.l3 yields 

L 

I (k) = (const. ) f cos ko8 cos k8 d8 . 
o 

Using the a trigonometric identity, this can be written 

L 

I(k) = (const.) f (cos(k + ko)8 + cos(k - ko)8) d8 
o 
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For a typical mid-infrared spectrum, L - 1 cm- I and ko - 1000 cm- I
. Therefore, koL» 1 

and the second term can be neglected. The computed spectrum is then given by 

l(k) = (const.)L sinc(k - ko)L), (3.16) 

where 

sinc z = sin z / z . (3.17) 

The sinc function has a central maximum with sidelobes (Figure 3.2). The sinc function 

is zero at z = ±1c/2, or k = ko ± n/(2L). The width of the central peak is therefore given by 

11k - IlL. (3.18) 

Thus, the resolution of the spectrometer is inversely proportional to the scanning length. 

3.1. 4 Apodization 

As shown in Figure 3.2, abruptly truncating the spectrum at b = L produces 

sidelobes that can be quite large. Apodization is a method which numerically "corrects" 

the interferogram in a way that reduces the size of the sidelobes. The most common 

apodization function is a linear function that goes to zero at b = L. For a delta function 

peak, the apodized spectrum is given by 

L 

I (k ) = ( const. ) f (1 - b / L) cos( k - ko)8 db . (3.19) 
o 

where the cos(k + ko) term is neglected as before. Integrating by parts yields 

(3.20) 
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and using a trigonometric identity, we have 

J(k) = (const.) sinc2[(k - ko)L]. (3.21) 

The sinc2z function is shown in Figure 3.2 and has smaller sidelobes than the sinc z 

function. 
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Figure 3.2. Plots of sinc(z) and sinc2z. 

3.1. 5 Experimental Apparatus 

Two spectrometers were used to obtain the infrared spectra presented in this 

thesis: the Digilab 80-E and Bomem DA8 vacuum Fourier Transform infrared (FTIR) 

spectrometers. The Digilab 80-E (see Wolk 1992) is capable of an instrumental 

resolution of 0.1 cm- l
. The Bomem DA8 is a newer instrument and is capable of a. 
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resolution of 0.02 cm- I
. In addition, the Bomem is a more versatile spectrometer, with 

several beamsplitters and optical ports, and detector modules. 

Unlike the Digilab spectrometer, which uses a horizontally scanning mirror on air 

bearings, the Bomem instrument has a scanning mirror that moves vertically, allowing 

for a large optical path difference with a small footprint. The upper section (Figure 3.3) 

houses the scanning motor, mirror, and tube. The mirror is moved by a torque motor and 

a tensioned belt drive. The speed is servo-controlled by a tachometer on the motor shaft, 

which keeps the scanning velocity constant to within ±6%. 

The middle section contains a beam switching compartment, which consists of a 

45° mirror that can rotate to direct the beam to one of several ports. Two sets of transfer 

and focusing mirrors direct the beam onto the left or right sample compartments. The 

beam travels through the sample and onto an off-axis ellipsoidal mirror in the detector 

module which focuses the beam onto the detector. In addition, the beam switching 

compartment can direct the beam to the rear compartment, where a Janis continuous­

flow liquid helium cryostat is housed. 

The beamsplitters and water-cooled light sources are also in the middle section. 

Mylar beamsplitters are used for far-infrared studies (below 700 cm- I
). For mid-infrared 

studies, a KBr (450 to 4000 cm- I
) or a CaF2 (1200 to 8000 cm- I

) beamsplitter is used. 

The beam splitter can easily be changed by removing the beamsplitter cover plate. For a 

light source. we use a globar, which is a SiC bar heated to 1200°C. The blackbody 

radiation emitted by the globar extends from -300 to 4000 cm- I
. In addition, there is a 

quartz-halogen source that emits light from -2000 to 20.000 cm- I
. The light sources are 
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mounted on a rotating wheel, so that one can choose a source without breaking vacuum. 

The lower section of the spectrometer contains vacuum valves and electronics. 

The spectrometer is kept under vacuum (100 mTorr) by a roughing pump, in order to 

minimize infrared absorption peaks arising from CO2 and H20 in the air. A High 

Performance Vector Processor (HPVP) system executes the fast Fourier transforms 

(FFTs) and communicates with a 486 PC computer via a high-speed Ethernet 

connection. 

The position of the scanning mirror is accurately measured by counting fringes of 

a single-mode He-Ne laser. All modes except the 632 nm line are suppressed, so it is a 

monochromatic source. The narrow laser beam, centered in the 2" diameter infrared 

light beam, is sent into the interferometer, where it produces a cosine interferogram (Eq. 

3.12). The centers of the beamsplitters are all quartz, to split the laser beam. The 

wavelength is such that the laser interferogram passes through 31600 cycles per cm 

displacement of the scanning mirror. Before the laser beam can reach the sample, it is 

diverted by a 90° prism that directs the beam to detectors located on the laser reference 

detector card. By monitoring the laser interferogram, electronics on the card calculate 

the optical path difference 8. 

Since the cosine interferogram produced by the He-Ne laser is periodic, it cannot 

be used to determine where the zero path differenceJZPD) occurs. To determine the 

ZPD, white light emitted by an incandescent bulb is also sent into the interferometer. 

Since the white light is a broadband source of light, its interferogram has a large 

maximum at zero path difference, where all wavelengths of light constructively interfere. 
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The white light travels through the same optics as the light from the globar. As with the 

laser, the white light is split by the quartz at the center of the beamsplitter and is sent to 

the detector card. When the fringes of the white light interferogram exceed a certain 

threshold (typically 0.7 to 1.5 volts), a pulse is produced. By locating the center pulse, 

the computer determines where ZPD occurs. 

If the fixed and scanning mirrors are not properly aligned, different parts of the 

two beams will have different optical path lengths and the resolution will be limited. To 

align the mirrors, the Bomem spectrometer uses a dynamic alignment process, in which 

electromagnetic mirror tilt transducers adjust the mirrors continuously during each scan. 

The feedback is provided by the interfered He-Ne laser beam. Different parts of the 

beam impinge upon several detectors on the detector card, and the slight phase difference 

between the detectors provides information about the misalignment. With dynamic 

alignment, the angular deviation from optimal alignment is less than 10-6 radians. 
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3.2 Raman Scattering 

Raman scattering involves inelastic scattering of laser light from a complex such 

as a molecule or crystal. In Stokes Raman scattering, the incoming photon loses some of 

its energy by exciting rotational, vibrational or electronic modes. In anti-Stokes Raman 

scattering, the photon gains energy from a thermally populated mode. The photon 

polarization vector can also be changed. Since selection rules for Raman scattering and 

infrared absorption are generally different, the two complementary techniques can be 

used to accurately determine the symmetry of a complex. 

The fundamental properties of Raman scattering can be described by classical 

theory (Cardona 1982). The starting point is the time-averaged power emitted per solid 

angle by an oscillating dipole 

(3.22) 

where (0 is the oscillation frequency, c is the speed of light in the medium, fs is the 

polarization of emitted light, and p is the electric dipole moment. The dipole p is 

induced by the incoming laser light, which has polarization fL' electric field amplitude 

E L' and frequency (OL : 

(3.23) 

where ex is the polarizability tensor. 

We now consider the specific case of vibrational Raman scattering. A defect in a 
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crystal (or molecule in a vacuum) has one or more local vibrational modes, as explained 

in Sec. 2.3. A particular mode has a frequency COv and nonnal mode coordinate 

u(t) = Uo cos(coJ). (3.24) 

The vibration is assumed to be adiabatic. so that at any point in time, the polarizability ex 

is given by an equilibrium value which depends on the nonnal mode coordinate. ex can 

be expanded in a Taylor series in small u: 

(3.25) 

Inserting this expression into Eq. 3.22 yields 

(3.26) 

The first term on the right-hand-side is simply the Rayleigh scattering term. By a 

trigonometric identity, the second tenn can be written 

(3.27) 

The cosine tenns describe scattered light with frequencies COL - CO v (Stokes) and COL + CO v 

(anti-Stokes). The Stokes line is produced by the emission of a phonon and the anti-

Stokes line is produced by the absorption of a phonon. 

By inserting the expression for the dipole (3.26) into Eq. 3.22, the time-averaged 

scattering efficiency can be obtained: 

2 

dP ~ a ex ~ 
-oc e ·-·e . 
dO. s au L 

(3.28) 
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The Raman tensor R is proportional to a a/a u; for the purposes of determining the 

symmetry of a complex, the constant of proportionality is unimportant. 

The quantity (3.28) must be invariant under all the operations of the crystal point 

group (Appendix A). The vectors es and eL belong to irreducible representations of the 

point group, designated rs and r L' respectively. To make (3.28) invariant, R must 

possess the symmetry of r R': 
I 

(3.29) 

The different r Rj representations correspond to Raman-active vibrational modes. 

3.3 Diamond Anvil Cell (DAC) 

The study of solids under large hydrostatic pressures is an active area of research 

in geology, physics, and materials science (Jayaraman 1983). One method of producing 

pressure is via a piston cylinder cell in which a pressure transmitting medium such as oil 

is compressed. Although these cells are useful for electrical measurements, the 

maximum pressure attainable by them is approximately 15 kbar. For higher pressures, a 

diamond anvil cell (DAC) is used. 

In a DAC, the flat parallel faces of two diamonds press on a metal gasket. The 

sample is placed in a pressure transmitting medium in the gasket hole. Although a 4: 1 

methanol-ethanol mix is a commonly used medium, it has the disadvantage that it 

absorbs infrared light. Therefore, in variable pressure infrared transmission experiments, 
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liquid nitrogen is commonly employed. At room temperature. N2 solidifies at -25 kbar 

(Figure 3.5). Although the N2 is a solid at low temperatures and/or high pressures. it is a 

weakly bound Van der Walls solid which produces very hydrostatic pressures up to 130 

kbar (Jayaraman 1983). 

Figure 3.4. Exploded view of the modified Merrill-Basset diamond anvil cell: 1) Allen screws to generate 
pressure. 2) platens. 3) fixed backing plate. 4) gasket. 5) diamond anvils. 6) adjustable backing plate. 7) 
positioning and gasket holder pins. 8) set screws. 9) cell holder (Sterer. 1990). 
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The DAC which I use in this study is a modified Merrill-Bassett cell (Merrill and 

Bassett. 1974) (Sterer et al., 1990), in which two platens are pulled together by six 

screws, pressing the diamonds against each other. The diamonds are mounted on 

backing plates with epoxy, and the backing plates are gold-plated with light­

concentrating cones to focus the light on the sample. To ensure that the diamonds are 

aligned parallel to each other, before the gasket is inserted, the six screws are adjusted 

until the Newton interference fringes formed between the two diamond surfaces 

disappear. In addition, set screws (Figure 3.4) allow for translational adjustment of one 

of the diamonds. When the diamonds are properly aligned, the distances between the 

platens are measured in three locations with a micrometer and recorded for future 

reference. 

3.3.1 Loading the Sample 

I used 0.25 carat type I diamonds with flat octagonal culets 750 pm in diameter. 

Type I diamonds contain a nitrogen absorption band from 1100 to 1400 cm-! (Seal 

1984). Type II diamonds. which do not contain nitrogen, are transparent in that region of 

the spectrum but cost twice as much as type I diamonds. The gasket is made from 

stainless steel and is pre-indented to a thickness ranging from 50 to 100 J..Lm. For 200 J..Lffi 

thick samples. I used heat-treated Cu-Be gaskets. pre-indented to a thickness of -300J..Lffi. 

After the pre-indentation. a hole is dlilled in the center of the pre-indented area with a 

#78 carbide drill. The sample and liquid nitrogen are then placed in the hole, along with 
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a ruby chip for pressure calibration (Sec. 3.3.2). The screws are loosely adjusted so that 

the diamonds are properly aligned. Finally, the DAC is immersed in liquid nitrogen 

(Schiferl et ai., 1978) so that the nitrogen can seep into the sample space. Helium gas is 

continuously blown into the liquid nitrogen to suppress the formation of N2 bubbles. 

The screws are then tightened so that the diamonds press down on the gasket and form a 

seal, trapping the nitrogen in the sample space. 

3.3.2 Ruby Fluorescence Pressure Calibration 

In high pressure x-ray studies, the lattice constants of NaCl and Ag are used as 

pressure markers. In Raman, photoluminescence, and infrared studies, however, the ruby 

fluorescence pressure calibration is commonly used. The R lines of Cr3
+ in Al20 3 shift 

linearly with pressure (Forman et al., 1972) up to. 190 kbar (Piermarini et al., 1975). 

Beyond 190 kbar, the shift in the R lines deviates from the linear approximation. The 

following empirical fonnula is used (Mao et al., 1978) to determine the pressure: 

(3.30) 

where P is the pressure in GPa, Ap is the wavelength of the ruby R] line at pressure P and 

temperature T, and Ao is the corresponding wavelength at the same temperature and 

atmospheric pressure. 

For infrared transmission studies performed at liquid helium temperatures, it is 

difficult to obtain the in situ pressure using ruby fluorescence, since the laser beam must 

enter the spectrometer and cryostat and the fluorescence must be detected by a 
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monochromator. Although Chen and Weinstein (1996) have developed such a system, 

for mid-infrared measurements it is much easier to exploit the fact that infrared 

absorption peaks in the N2 ambient shift linearly with pressure. In the following section I 

discuss the physics of N2 under pressure at liquid helium pressures and give the 

quantitative pressure dependence of the infrared peaks (McCluskey et aI., 1996c). In all 

subsequent measurements in this thesis, these peaks are used as a precise in situ pressure 

calibration. 

3.4 Infrared Absorption of Solid Nitrogen Under Pressure 

3.4.1 Introduction 

The development of high-pressure diamond-anvil cells has led to extensive 

experimental research on the properties of high density molecular solids (Polian et al., 

1989). N2 is in many respects a model molecular system because its triple bond is very 

stable and its low atomic number simplifies theoretical calculations (Nose and Klein, 

1983). At low temperatures and pressures (Figure 3.5), N2 crystallizes into the cubic a 

phase (space group Pa3) (Schiferl et al.. 1989). At pressures between 0.4 and 1.9 GPa, 

N2 is in the tetragonal y (P42 / mnm) phase (Medina and Daniels 1976, Thiery et al.. 

1973). For pressures higher than 1.9 GPa, x-ray diffraction (Mills et al .. 1986) and 

Raman (Schiferl et al.. 1985) studies have provided evidence that E-N2 has a structure 
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which belongs to the rhombohedral space group R3C. Theoretical studies predict that E-

N2 has a tetragonal structure with 32 molecules per unit cell, but that the structure is very 

similar to R3C (Belak et aI., 1990). In the following sections I present the results of 

infrared absorption studies that lend further support to the R3C model. 

The infrared absorption spectrum of solid nitrogen at nonnal vapor pressure has 

been measured in a-N2 (JodI et aI., 1987) and I3-N2 (Tryka et aI., 1995). The a and 13 

phases have infrared absorption features near the fundamental N-N stretch frequency 

which are attributed to nonlinear coupling between the N-N vibrons and lower frequency 

phonons (Lowen et aI., 1990). Recently the profile of the N-N stretch overtone has been 

used to detennine the temperature of solid nitrogen on the surface of Pluto (Tryka et aI., 

1994). In this section, I discuss the observation of an infrared active peak in nitrogen in 

the high-pressure E phase. In addition, for all measured pressures, I observe the V3 

vibrational mode of CO2 impurities. The pressure dependence of these peaks serve as a 

useful in situ pressure calibration in Sec. 5.1.2. 

100 -:r--------------, 

10 

(J(oN, 
(Pa3) 

o 

EoN, 
(R3c) 

100 
T(K) 

Figure 3.5. Phase diagram of nitrogen (Belak 1990). 
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3.4.2 Experimental Techniques 

As discussed in Sec. 3.3, we used a modified Merrill-Basset diamond-anvil cell to 

generate pressures up to 7 GPa. The liquid-immersion technique was used to load the 

cell with liquid nitrogen. To determine the pressure at liquid-helium temperatures, a few 

grains of ruby were placed in the cell and on the outside face of one of the diamonds. 

The cell was then placed in a liquid-helium cryostat and the rubies were excited by an 

Argon ion laser. The ruby fluorescence was dispersed by a double monochromator and 

detected by a photomultiplier tube. The atmospheric and high pressure fluorescence 

lines were recorded by computer, and pressures were determined with the relation (4.30). 

Following the fluorescence measurements, each sample was warmed to room 

temperature and then placed in the infrared spectrometer liquid-helium cryostat. Mid­

infrared absorption spectra were obtained with a Digilab 80-E vacuum Fourier transform 

spectrometer with a KBr beamsplitter, with a spectral range of 450 to 3400 cm- I
. Spectra 

were taken at a temperature of 7 K with an instrumental resolution of 0.5 cm -I. A light 

concentrating cone focused the light through the diamonds and sample into a Ge:Cu 

photoconductor mounted directly behind the sample. 

To obtain a more precise measurement of the pressure, we loaded some diamond­

anvil cells with AISb: Se,C samples which were cut into discs 300 J,.Lm in diameter and 

polished to a thickness of 50 J,.Lm. The 12CSh acceptor has a local vibrational mode 

(LVM) peak at 591.0 cm- I at a temperature of 10K and atmospheric pressure (Figure 

3.6). Our samples are co-doped with Se so that they are !Hype. Since Se is a deep donor 
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(Becla et ai., 1995), the free carriers freeze out at low temperatures, and the samples are 

infrared transparent even for high (-1017 cm ~3) concentrations of CSb' We assume that 

the position of the CSb L VM varies linearly with pressure, as is observed in the case of 

GaAs:SiGa (Wolk et ai., 1991). The observation that the pressure-induced shift of the CSb 

LVM varies linearly with the shifts of the CO2 and N2 vibrational modes (Figure 3.8) 

supports this assumption. We therefore use the position of the CSb L VM peak as a 

precise pressure calibration. 

(J.) 
U 
c: 
CCS 
..c 
~ 

o 
tJ) 
..c « 

580 

AISb: 12CSb 

P = 0 GPa 

590 600 610 

Wave numbers (cm-1 ) 

Figure 3.6. Pressure dependence of the AISb: 12CSb local vibrational mode (L VM) at a temperature of 10 
K. The position of the LVM is used as an in situ pressure calibration. 

76 



3.4.3 Results 

For all pressures, we observe an infrared absorption peak which we attribute to 

the v~ vibrational mode of CO2 impurities in the N2 matrix (Figure 3.7). In Figure 3.8, 

the open and filled circles refer to CO2 vibrational frequencies measured by the CSb 

LVMs and ruby fluorescence lines, respectively. By matching the two sets of points, we 

obtain the relation 

P = 0.073 [v (CSb) - 591.0] , (3.31) 

where P is the pressure in GPa and v (CSb) is the position of the CSb LVM peak in cm -I at 

liquid-helium temperatures. This pressure calibration is used in the subsequent analysis. 

The pressure-induced phase transitions of solid N2 can be inferred from 

discontinuities in the positions of the CO2 and N 2 peaks (Figure 3.8). For low pressures, 

N2 is in the a phase, and the CO2 peak shifts linearly: 

v~ (C02) = 2349.3 + 12.3 P 0::;; P::;; 0.45 (3.32) 

where v~ (C02) is the frequency in em-I and P is the pressure in GPa. At 0.45 GPa, two 

CO2 peaks are observed, indicating a coexistence of the a and "{ phases. This transition 

pressure differs from the value obtained by Thiery et al. (1973), who found a transition 

pressure of 0.35 GPa at a temperature of 4.2 K. Thiery et al. determined the pressure by 

estimating the force per area of a piston-cylinder cell. Although they did not state the 

error in their pressure calibration, it is probably large enough to account for the 

discrepancy. 

In the 'Y phase, the position of the CO2 peak is best described by two piece-wise 
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linear fits, 

_ {2347.6 + 8.4P 0.45::; P::; 1.3 
V3 (C02 ) - 23495 + 6.9P 1.3::; P::; 1.9 (3.33) 

The reason for the two linear regimes is currently not known. In the £ phase, the CO2 

peak shifts linearly: 

V3 (C02) = 2345.1 + 6.6 P 1.9::; P ::; 7 (3.34) 

In addition, a new infrared absorption peak appears (Figure 3.7). We attribute this new 

peak to a N-N stretch mode, since its frequency is similar to that of the Raman-active N-

N stretch mode of solid nitrogen under pressure (Figure 3.8). In keeping with the 

notation of Schiferl, et al. (1985), we label this mode V3. The pressure dependence of the 

peak position can be described by a least-squares linear fit 

1.9 ::; P ::; 7 (3.35) 

The N-N stretch mode of a N2 molecule in free space is not infrared active, since no 

electric dipole is induced by the symmetric vibration. In the y phase, however, the 

symmetry is lowered so that a small dipole moment is induced by the N-N vibration. 

This is the first observation of an infrared active N-N stretch mode in solid nitrogen. 

The infrared activity of this mode is consistent with the rhombohedral space 

group R3C (D:d ), which has one infrared-active and three Raman-active stretch modes 

(Table 3.1). N2 molecules on the 2b site have one Raman-active stretch mode while those 

on the 6e site have two Raman-active modes and one infrared-active mode. Previous 

Raman studies have only revealed two of the three Raman-active peaks (Schiferl et al.. 
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1985), perhaps because the frequency difference between the A1g and Eg modes is too 

small to be resolved. The V3 infrared-active mode has a frequency very similar to the V2 

Raman-active mode (Figure 3.8), an observation which suggests that they both arise 

from N2 molecules on the 6e site. If that is the case, then the factor group splitting is 

much smaller than the site splitting for the R3C structure. The absence of a N-N 

infrared-active absorption peak for pressures below 1.9 GPa is consistent with the 

symmetries of the cubic a. phase Pa3 (Schiferl et al. 1989) and tetragonal 'Y phase 

P42 / mnm (Medina and Daniels 1976). 

Table 3.1. Correlation diagram for the N-N stretch mode of solid nitrogen in the £ (R3C) phase. at the 
center of the Brillouin zone. 

Site Molecular Site Factor Group Activity 
Symmetry Symmetry Symmetry 

2b D..,h S6 == C3i D3d 

L/ (N-N stretch) ~ Ao ~Alg(1) Raman 
c 

A2g (1) 

6e D..,h C2 D3d 

Lo+ (N-N stretch) ~ A ~AJ,(I) Raman 
e 

Eo (1) Raman 
c 

A1u (1) 

Eu (1) Infrared 
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Figure 3.7. Infrared absorption spectra of solid nitrogen under pressure. For all measured pressures. the 
v, vibrational mode of CO2 impurities is observed. For pressures above 1.9 GPa. the N~N stretch mode 
becomes infrared-active. 
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3.4.4 Conclusions 

In conclusion, we have observed infrared absorption peaks in solid nitrogen under 

large hydrostatic pressures and liquid-helium temperatures. The V3 mode of CO2 was 

observed for all measured pressures. For pressures greater than 1.9 GPa, we observe the 

N-N stretch mode of solid nitrogen in the £ (R3C) phase. Using the shift of the 

AISb: 12CSb LVM as an in situ pressure calibration, we measured the pressure-dependent 

shifts of the CO2 and N2 vibrational modes. These shifts are used as a precise pressure 

calibration for infrared absorption experiments. 
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4. Hydrogen Related Complexes in Compound Semiconductors 

4.1 Acceptor-Hydrogen Complexes in GaP 

4.1.1 Introduction 

Although most studies of L VMs in compound semiconductors have focused on 

GaAs and InP (Sec. 1.4), significant work has also been done on hydrogen LVMs in 

GaP. Clerjaud et al. (1991) observed the C-Hand C-D bond-stretching L VMs and the 

N-H mode (1992) in GaP grown by the liquid-encapsulation Czochralski (LEC) 

technique. L VMs corresponding to hydrogen-defect complexes in LEC-grown GaP have 

also been observed (Dischler et al., 1991). McCluskey et al. reported L VMs 

corresponding to zinc-hydrogen (1994a) and beryllium-hydrogen (1994b) complexes in 

GaP. In the following sections, I discuss the modes arising from beryllium-, zinc-, and 

cadmium-hydrogen complexes and compare them to similar complexes in GaAs and InP. 

In addition, I describe a simple model which accounts for the temperature dependence of 

the hydrogen LVMs (McCluskey et al .. 1995), 

The GaP samples used for this study had a (100) orientation and were n-type, 

with a sulfur concentration of approximately 1017 cm-3. GaP:Be samples were obtained 
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by implanting the undoped samples with 40 keV beryllium ions at a dose of 5 X 1014 cm-

. 2, and 100 and 200 ke V ions at doses of 1 X 1015 cm-2 each, for a total dose of 2.5 X 

1015 cm-2. To activate the beryllium acceptors, the implantation was followed by rapid 

thermal annealing at 10000 C for 10 s. To obtain GaP:Zn, the undoped samples were 

placed in a 100 ml evacuated quartz ampoule with 0.5 g metallic zinc and diffused in a 

vertical furnace for 10 min at a temperature of 860°C. After completion of the diffusion, 

the samples were quenched to room temperature by dropping the ampoule into ethylene 

glycol. To obtain GaP:Cd, the undoped samples were placed with 200 mg cadmium and 

113 atm H2 ambient in an ampoule and diffused for 22 hr at a temperature of 950oC, 

followed by quenching to room temperature. Room temperature Hall effect 

measurements with the Van der Pauw geometry indicated sheet hole concentrations of 

p(Be) = 1 X 1015 cm-2, p(Zn) = 5 X 1015 cm-2, and p(Cd) = 2 X 1014 cm-2. 

Some of the samples were then exposed to monatomic hydrogen or deuterium in a 

remote plasma system as described in Sec. 1.5.2. The hydrogenation temperature was 

3000 C and the duration of the exposure was 1 hr. GaP samples which were doped p-type 

but not H- or D-plasma exposed were used as reference samples. 

Infrared absorption spectra were obtained at liquid helium temperature with a 

Digilab 80-E vacuum Fourier transform spectrometer with a KBr beamsplitter and an 

instrumental resolution of 0.25 cm-1• A Ge:Cu photoconductor was used as a detector. 

For temperatures above 10K. spectra were obtained with a Bomem DA8 spectrometer 

with a KBr beamsplitter and external mercury cadmium telluride (MCT) detector. The 

instrumental resolution for the variable temperature measurements ranged from 0.5 to 
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Figure 4.1. Infrared absorption spectra of deuterated and hydrogenated (a.) GaP:Be. (b.) GaP:Zn. and (c.) 
GaP:Cd. The vibrational modes are associated with P-H (P-D) complexes adjacent to the group II 
acceptors. 

4.1. 2 Results 

Hydrogenated and deuterated GaP:Zn samples have infrared absorption peaks at 

2379.0 and 1729.4 em-I, respectively (Figure 4.1b). The isotopic ratio of these 

frequencies, r = vHIvD. is 1.3756. By way of comparison, hydrogenated InP:Zn has a 
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bond-stretching mode at 2287.7 cm- I and an isotopic ratio r = 1.3744 (Darwich et ai., 

1993). Tbe bond-stretching mode has been attributed to a P-H complex oriented along a 

[1 i 1] bond-centered direction, adjacent to the zinc acceptor, with the zinc relaxed into 

the plane of phosphorus atoms (Figure 4.2). Since the L VMs and the r-factor for GaP:Zn 

are similar to the corresponding values for InP:Zn, we assume that the structures are the 

same. The P-H model receives further support from the observation that the Zn-H bond­

stretching frequency is 1600 cm- I , far lower than the P-H bond-stretching mode of 

phosphine, which is 2328 cm- I . 

The hydrogenated and deuterated GaP:Be samples have infrared absorption peaks 

at 2292.2 and 1669.8 cm- I , respectively, at a temperature of 10 K (Figure 4.1a). The 

isotopic ratio of these frequencies is r = 1.3727. Neither peak was seen in GaP:Be which 

was not H- or D-plasma exposed. These values are similar to the corresponding values in 

InP:Be, which has a P-H bond-stretching mode at 2236.5 cm- I and isotopic ratio r = 

1.3714. We therefore assume that the absorption peaks arise from a P-H complex, 

oriented in a bond-centered direction, adjacent to the beryllium acceptor. 

The hydrogenated and deuterated GaP:Cd samples have infrared absorption peaks 

at 2434.0 and 1768.3 cm- I , respectively, at a temperature of 7 K (Figure 4.1c). The 

isotopic ratio of these frequencies is r = 1.3765. Although the samples were diffused in a 

H2 ambient, GaP:~d which was not exposed to a hydrogen plasma did not have the 

hydrogen related absorption peak. Once again, these values are similar to the 

corresponding values for InP:Cd, which has a P-H bond-stretching mode at 2332.4 cm-1 

and isotopic ratio r = 1.3757. It therefore appears that for all group II acceptor-hydrogen 
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complexes in GaAs (Rahbi et ai., 1993), InP, and GaP, the hydrogen binds to the host 

anion in a [111] bond-centered orientation. 

The positions and FWHM of the observed peaks are listed in Table 4.2. The 

FWHMs of the P-D peaks are smaller than those of the P-H peaks. This narrowing effect 

has been observed in all group II acceptor-hydrogen complexes in III-V semiconductors 

and is correlated with the smaller vibrational amplitude of the deuterium as compared to 

the hydrogen. It has been suggested (Chevallier, 1991) that the smaller vibrational 

amplitude of deuterium leads to a weaker coupling with the lattice and thus an increase 

in the lifetime. Other hydrogen/deuterium-related complexes do not follow this trend, 

however, so the question is still open. 

In addition to the change in linewidth, several trends are immediately apparent. 

First, the P-H modes in GaP are higher than the corresponding P-H modes in InP (Figure 

4.3a). This is due to the fact that GaP has a smaller lattice constant than InP. Second, as 

the size of the group II acceptor increases, the frequency of the P-H mode increases. The 

significant upward shift in frequency is evidence for hydrogen residing in a bond­

centered, rather than an anti bonding. position. As explained below, as the acceptor 

atomic number increases from Be to Cd, the acceptor-hydrogen bond is compressed, 

increasing the LVM frequency. Finally, the isotopic ratio r = vHIvD increases with 

increasing acceptor mass (Figure 4.3b). Darwich et al. (1993) noted that the 

anharmonicity decreases from Be to Cd. increasing r (Sec. 2.3.4). 
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H 

Figure 4.2. Model for H passivation of the Zn acceptor with the H atom attached to a P atom in a bond­
centered orientation. This model applies for all observed group II acceptor-hydrogen complexes in GaP 
and InP. 
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Figure 4.3. (a.) Hydrogen bond-stretching modes for group II acceptor-hydrogen complexes in GaAs. InP. 
and GaP. Note that the LVM frequency shifts upward with increasing acceptor size. evidence that the 
hydrogen is in a bond-centered orientation. (b.) Isotopic ratio r = vHIvD . As the size of the acceptor 
increases. so does the r-factor. 
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4.1. 3 Bond Compression 

The increase in the hydrogen L VM frequency can be described empirically by 

considering the equilibrium bond lengths of the diatomic molecules BeH, ZnH, and 

CdH. I define the compression factor 

~ = d(X-H) + deY-H) - dnn , (4.1) 

where X is Be, Zn, or Cd, Y is P or As, and d(X-H) and deY-H) are equal to the molecular 

bond lengths (Table 4.1). dnn is the nearest neighbor lattice distance, given by 

(4.2) 

where a is the lattice constant. This simple model does not account for the distribution 

of between the X-H and Y-H bonds or the influence of other atoms in the lattice. 

Table 4. I. Equilibrium bond lengths of free molecules (Rosen 1970) and semiconductors (Landolt­
Bornstein. 1987). 

Bond 

Free Molecules 

P-H 

As-H 

Be-H 

Zn-H 

Cd-H 

Semiconductors 

GaP 

InP 

GaAs 

90 

Length (A) 

1.42 

1.52 

1.30 

1.59 

1.76 

2.36 

2.54 

2.45 



~ is a crude measure of how much the bonds are compressed. As ~ increases, the 

LVM frequency and r value increase. Figure 4.4 shows the LVM frequencies and r 

values as a function of ~ for acceptor-hydrogen complexes in GaAs, GaP, and InP. For 

GaAs and GaP, the L VMs vary linearly with~. The r values for GaP and InP lie on the 

same curve, since the complexes are so similar. In the future, it would be interesting to 

use hydrostatic pressure to determine whether varying dnn has the same effect as varying 

the acceptor species. 
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Figure 4.4. L YM frequencies and r values for group II acceptor - hydrogen complexes in GaAs. GaP. and 
InP as a function of bond compression .1. 
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Figure 4.5. Variable temperature spectra of GaP:Be.H and GaP:Zn.H LVMs. The LVM shift and 
linewidth broadening of the GaP:Zn.H mode is much greater than the GaP:Be.H mode. 
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4.1. 4 Temperature Dependence of L VMs 

The temperature dependence of the hydrogen related L VMs in GaP: Be and 

GaP:Zn was observed between 7 and 150 K (Figure 4.5). Unfortunately, the small 

signal-to-noise ratio of the GaP:Cd,H L VM precluded variable temperature 

measurements. We obtained the frequencies and linewidths of the peaks by fitting the 

data to Lorentzian functions. The linewidth broadening and shift to lower energy with 

increasing temperature have been observed in numerous systems and are believed to be 

caused by anharmonic coupling between the localized mode and the extended lattice 

phonons. The temperature dependence of hydrogen L VMs in GaAs (Tuncel and Sigg, 

1993) and InP (Darwich et aI., 1993) has been explained with a model which assumes 

that the L VM interacts with a single phonon mode. In our case, however, we assume 

that the L VM interacts with all the phonons and does not couple preferentially to anyone 

mode. 

Elliot et al. (1965) quantitatively described the temperature dependence of L VMs 

in alkali halides. In our case, we assume that the hydrogen's potential is perturbed by the 

neighboring acceptor. The phosphorus-acceptor distance is given by 

x(t) = Xo + 8x(t), (4.3) 

where Xo is the equilibrium distance. 8x(t) is a perturbation due to thermal fluctuation. 

and t is time. The resultant shift in the L VM energy can be expanded in a Taylor series 

about small 8x: 

8 (11Cl)(t») = a(8 x)+ b(8 x t +- .. (4.4) 
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When averaged over time, the linear term does not contribute to the L VM shift. To 

lowest order, the shift is given by 

(4.5) 

\ (8 x t) is calculated by summing the contributions from all the lattice modes q: 

\ (8 X )2) = L \ (8 Xq r) = L Aq 
2 /2 . 

q q 

(4.6) 

where Aq is the amplitude of vibration. In this simple model, the lattice modes are 

assumed to be unperturbed by the defect. Classically, the mean vibrational energy of the 

crystal is given by 

(4.7) 

where N is the number of atoms and y is the nearest-neighbor force constant. From Eqs. 

4.5-4.7, it can be seen that the L VM shift is proportional to the thermal lattice energy 

U(1). Eq. 4.5 can therefore be written as 

(4.8) 

where U(1) is given in units of energy per mole, NA is Avagadro's number, and ~ is a 

dimensionless constant. Roughly speaking, ~ is the fraction of thermal energy that is 

transferred to the hydrogen's vibrational motion from its neighboring atoms. 

Figure 4.6 shows the L VM shifts plotted against U(1). We obtained the values 

of U(1) by numerically integrating the reported experimental values of the specific heat 

Cvf,..1) (Irwin and LaCombe, 1974), neglecting the zero temperature energy. The data can 
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be approximated by linear least-squares fits, with coefficients given in Table 4.3. 

Evidently, the larger zinc acceptor has more influence than the beryllium on the LVM 

frequency. 

The temperature dependent increase of the linewidth is determined by the lifetime 

of the mode. It is unlikely that the hydrogen related L VMs decay via the creation of 

phonons, since at least six optical phonons would be required to conserve energy. 

Instead, elastic phonon scattering reduces the lifetime of the over-all mode (Barker and 

Sievers, 1975). This process is given by 

(4.9) 

where 11) is the LVM and the llq'S are the phonon modes. In the Debye approximation, 

this process leads to a temperature dependent linewidth 

(4.10) 

where k8c /n is an effective cutoff frequency and A is an empirical constant. These two 

parameters have been adjusted to give reasonable fits to the data (Table 4.3). The value 

of 8c = 400 K that we used is physically reasonable. since the Debye temperature for 

GaP ranges from 300 to 500 K as the sample is warmed from 10 to 150 K. The data and 

the fits are plotted in Figure 4.8. Again, it can be seen that the GaP:Zn,H LVM is more 

sensitive to temperature variation than the GaP:Be.H L VM. 

It should be noted that the thermal expansion of the lattice may contribute to the 

temperature-dependent shifts of the hydrogen L VMs. From 0 to 125 K, however, the 
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lattice constant increases by only l1a/a-1 0-4 (Landolt-Bornstein, 1987). From 

hydrostatic pressure measurements done on GaAs:Si (Wolk et aI., 1991), it can be shown 

that a strain of -l1a/a = 10-4 yields a LVM shift of less than 0.1 em-I. It is therefore 

unlikely that the small lattice expansion from 0 to 125 K plays a dominant role in the 

LVM shifts. 

4.1. 5 Conclusions 

In conclusion, we have discovered vibrational modes in GaP:Be, GaP:Zn, and 

GaP:Cd exposed to H- and D-plasma. It appears that for all observed group II acceptor­

hydrogen complexes in III-V semiconductors, the hydrogen binds to the host anion in a 

bond-centered orientation. The temperature dependent shifts of the L VMs are 

proportional to the lattice thermal energy U(1), an observation which probably holds for 

hydrogen LYMs in other semiconductors as well. 
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Table 4.2. Frequencies and FWHM ofP-H and P-D LVM peaks in group II acceptor-hydrogen complexes 
in GaP and InP. 

P-H stretch mode P-D stretch mode 
Compound Peak FWHM Peak ·FWHM r=vHivD 

(em-I) (em-I) (em-I) (em-I) 

GaP:Be 2292.2 2.7 1669.8 0.8 1.3727 

GaP:Zn 2379.0 1.1 1729.4 0.5 1.3756 

GaP:Cd 2434.0 1.2 1768.3 0.6 1.3765 

InP:B& 2236.5 0.43 1630.9 0.2 1.3714 

InP:Zna 2287.7 0.23 1664.5 0.08 1.3744 

InP:Cda 2332.4 0.12 1695.4 0.10 1.3757 

aSee Darwieh et al. (1993). 

Table 4.3. Parameters from Eqs. (4.8) and (4.10) which describe the temperature dependence of the 
GaP:Be.H and GaP:Zn.H L VMs. 

LVM Se(K) A (em-l) 

GaP:Be,H -0.050 400 200 

GaP:Zn,H -0.15 400 4900 
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Figure 4.6. Shifts of the GaP:Be.H and GaP:Zn.H L VMs as a function of temperature. The solid lines are 
fits according to Eg. 4.8. with the ~ parameters given in Table 4.3. 
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solid lines are fits according to Eq. 4.8. with the P parameters given in Table 4.3. 
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Figure 4.8. Temperature dependent shifts of the linewidth or for the GaP:Be.H and GaP:Zn.H modes. 
The solid lines are fits according to Eq. 4.10. with the 8C and A parameters given in Table 4.3. 
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4.2 Arsenic-Hydrogen Complexes in ZnSe 

4.2.1 Introduction 

The interest in developing blue light-emitting diodes and diode lasers has focused 

a great deal of research on the growth and doping of wide-band-gap semiconductors. 

Continuous wave ZnSe-based laser diodes have been fabricated from epilayers grown by 

molecular beam epitaxy (MBE), with high p-type doping achieved using a radio 

frequency plasma nitrogen source (Park et al., 1990; Ohkawa et aI., 1992). Epilayers 

grown by metal organic chemical vapor deposition (MOCVD), however, have proved 

resistant to p-type doping (Morimoto and Fujino, 1993; Nishimura et al., 1993). 

Hydrogen plays a role in neutralizing the nitrogen acceptors, as shown by the observation 

of the local vibrational mode (L VM) of the N-H complex in MOCVD-grown ZnSe layers 

(Wolk et aI., 1993; Kamata et aI., 1993). Although arsenic-doped bulk ZnSe has only 

deep-level photoluminescence peaks (Watts et aI., 1971), there is evidence that arsenic 

has a shallow acceptor level in ZnSe epilayers grown by MBE (Li et aI., 1994). The 

incorporation of hydrogen in arsenic and nitrogen doped MOCVD-grown ZnSe has been 

studied by secondary ion mass spectrometry (SIMS) (Bourret 1996). In this chapter, I 

discuss the observation of L VMs of As-H complexes in ZnSe (McCluskey et al .. 1996a). 
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Figure 4.9. Infrared absorption peaks corresponding to the L VMs of As-H and As-D complexes in 
MOCVD-grown ZnSe. The shift and linewidth broadening of the As-H L VM at higher temperatures is due 
to interactions with the lattice phonons (see text). 

The epitaxial ZnSe films were deposited on (100) GaAs substrates by MOCVD. 

The precursors to ZnSe were diisopropylselenide (DIPS e) and diethylzinc (DEZn) and 

the source of arsenic was tertiarybutylarsine (TBA). Pd-purified hydrogen, deuterium, or 

high-pUlity nitrogen was used as the canier gas. The growth temperature was 464°C, the 

molar flow ratio DIPSelDEZn was 4, and the layers were -3 J..lm thick. 
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4.2.2 Results 

The sample that was grown with hydrogen as a carrier gas has an infrared 

absorption peak at 2165.6 cm- 1 at a sample temperature of 7 K. When nitrogen is used 

as a carrier gas, we find the same peak, but its area is reduced by a factor of 14, in good 

agreement with SIMS measurements (Bourret 1996) which show that the sample grown 

with hydrogen has [H) = 1.5 X 1019 cm-3 while the sample grown with nitrogen has [H) 

= 1 X 1018 cm-3. In this case, the hydrogen most likely comes from the metalorganic 

molecules. The sample that was grown with deuterium as a carrier gas has an 

absorption peak at 1557.1 cm-1, along with the hydrogen-related peak at 2165.6 cm-1 

(Figure 4.9). The isotopic ratio is r = VH IvD = 1.3908. The peak positions, widths, 

areas, and r values of the LVMs are given in Table 4.1. The area of the hydrogen-related 

peak is approximately 3 times that of the deuterium-related peak. Previous SIMS 

measurements of the samples show [H] = 6 X 1018 cm-3 and [D) = 1 X 10 18 cm-3 

(Bourret 1996). These results indicate that most of the hydrogen incorporation comes 

from by-products of reactions involving the hydrogen carrier gas and the metal organic 

molecules. A sample which was grown at a lower temperature (3600 C) contains high 

concentrations of hydrogen and arsenic ([H) = 3 X 1020 cm-3 and [As] = 1.8 X 1021 cm-

3) but does not show the hydrogen-related peak. At the lower growth temperature, 

hydrogen may be incorporated in forms that are infrared inactive, such as interstitial H2 

molecules. 

The hydrogen bond-stretching mode frequencies of the free molecules H2Se. 

AsH3• and ZnH are 2345.2116 (Shimanouchi 1972). and 1553 cm- I (Rosen 1970). 
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respectively. Since the frequency of the ~nSe:As,H mode is 2165.6 cm- l , we propose 

that the hydrogen binds directly to the arsenic acceptor. In several respects, the As-H 

complex in ZnSe is similar to the Zn-H complex in GaAs (Chevallier et al., 1991). In 

GaAs, zinc is an acceptor which occupies a substitutional gallium site. Hydrogen 

passivates zinc by attaching to a host arsenic atom, in a bond-centered orientation, 

adjacent to the zinc acceptor. In ZnSe:As it is likely that the hydrogen attaches to the 

arsenic acceptor, in a bond-centered orientation, adjacent to the host zinc atom (Figure 

4.10). The stretch mode of the GaAs:Zn,H complex is 2146.0 cm- l at a temperature of 6 

K and the isotopic ratio is r = 1.3860 (Table 4.4). The fact that the isotopic ratios and 

L VM frequencies of the two complexes are very similar lends further support to the 

bond-centered model. 

[111 ] Ga 

Se 

GaAs:Zn,H ZnSe:As,H 

Figure 4.10. Model of ZnSe:As.H complex. as compared with the GaAs:Zn.H complex. In both 
complexes. the hydrogen resides in a bond-centered orientation between an arsenic and a zinc. 
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4.2.3 Temperature Dependence 

The temperature dependent behavior of the ZnSe:As,H L VM is shown in Figure 

4.9. As explained in Sec. 4.1.4, to first order the LVM shift is proportional to the lattice 

thermal energy VeT), 

(4.11) 

where V(T) is given in units of energy per mole, NA is Avagadro's number, and ~ is a 

dimensionless constant. We obtained the values of V(T) by numerically integrating the 

experimental values of the specific heat eveT) reported by Irwin and LaCombe (1974), 

neglecting the zero temperature energy. The data can be approximated by a linear least-

squares fit to Eq. 4.11, with ~ = -0.17. The temperature dependent shift and the fit are 

shown in Figure 4.11. At 77 K, the shift of the ZnSe:As,H mode is approximately twice 

that of the GaAs:Zn,H mode. 

As discussed in Sec. 4.1.4, elastic phonon scattering leads to a temperature 

dependent linewidth 

(4.12) 

where We/Ii is the effective cutoff frequency and A is an empirical constant. For high 

temperatures, Eq. 4.12 reduces to 

(4.13) 

Elliot et al. point out that Eq. 4.13 is a good approximation even when T is a fraction of 
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8c. Using Eq. 4.13, we obtain a fit to the data with ex = 4 X 10-3 cm-1JK2. The 

temperature dependent linewidth and the fit are plotted in Figure 4.12. 

The ZnSe:As,H mode has a slightly higher frequency, higher r-factor, and 

stronger temperature dependence than the GaAs:Zn,H mode. These observations suggest 

that the coupling between the zinc and the hydrogen is slightly weaker in GaAs than in 

ZnSe. The effect of the zinc can be modeled as a repulsive potential which confines the 

hydrogen atom. The potential increases the frequency and the r-factor, the latter because 

hydrogen has a larger amplitude than deuterium and overlaps the potential more. The 

temperature dependent shift of the frequency and linewidth are caused primarily by 

coupling between the hydrogen and the thermal motion of the zinc atom. Greater 

coupling leads to an L VM with a more pronounced temperature dependence. Although 

the cause of this greater coupling is not currently understood, it may be related to the fact 

that ZnSe is more ionic than GaAs. 

4.2.4 Conclusions 

In conclusion, we have discovered LVM peaks which we attribute to bond­

stretching modes of As-H and As-D complexes in MOCVD-grown ZnSe. By analogy 

with the Zn-H complex in GaAs. we propose that the hydrogen binds directly to the 

arsenic acceptor in a bond-centered orientation. adjacent to a host zinc atom. Samples 

which were grown with deuterium as a canier gas have a strong As-H peak and a weak 

As-D peak, indicating that the hydrogen originates primarily from by-products of 
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reactions involving the metal organic molecules and the carrier gas. Furthermore, it is 

clear that in p-type doping of MOCVD-grown ZnSe, hydrogen passivation plays a 

significant role. 

Table 4.4. Peak positions, widths. and isotopic frequency ratios of As-H and As-D LVMs in GaAs:Zn and 
ZnSe:As. 

As-H stretch mode As-D stretch mode 

Compound Peak (cm-I) FWHM (cm- I) Peak (cm-I) FWHM (cm-I) 

GaAs:Zna 2146.9 1.8 1549.1 0.9 

ZnSe:As 2165.6 2.8 1557.1 1.9 

a See Chevallier et al. (1991) 
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Figure 4.11. Shift of the As-H LVM frequency with temperature for ZnSe (this work) and GaAs 
(Cheval1ier et al .. 1991). The solid line is a fii according to Eq. 4.11. with 13 = -0.17. 
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Figure 4.12. Shift of the As-H LYM linewidth with temperature for ZnSe (this work) and GaAs 
(Chevallier et al .. 1991). The solid line is a fit according to Eq. 4.13. with (X = 4 X 10-3 cm- 1/K2. 
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4.3 Hydrogen Passivation of DX Centers in AISb 

In this chapter, I describe LVMs of DX-hydrogen complexes in AISb (McCluskey 

et al., 1996b). A DX center is a donor that has a deep ground state in an off­

substitutional configuration. As shown in Figure 4.13, the coordinates of the defect are 

represented by the configuration coordinate Q. A donor can be transferred from the deep 

DX state (binding energy ED)d into the substitutional hydrogenic state (binding energy 

ED) by absorbing a photon of energy greater than EoPT. If the temperature is low enough, 

typically 120 K or below, the hydrogenic state is metastable. As discussed in Sec. 4.3.3, 

in AISb:Se, the persistent photoionization of the hydrogenic state is measured to obtain 

the relative concentration of DX centers. The first DX centers were observed in AlxGaJ_ 

xAs for x> 0.22 (Nelson 1977; Lang and Logan, 1977) and GaAs under pressure (Mizuta 

et aI., 1985; Wolket al., 1991). 

In most semiconductors, the DX state is the ground state only when the 

semiconductor is an alloy or when hydrostatic pressure is applied. In AISb, however, the 

ground states of Se (Becla et aI., 1995) and Te (Jost et aI., 1994) donors are DX states, 

making them convenient for spectroscopic studies. This is the first infrared 

spectroscopic study of DX-hydrogen complexes. 
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Figure 4.13. Configuration diagram of a DX center. 

4.3.1 Introduction 

As mentioned in Sec. 1.5, hydrogen can be introduced into a sample by boiling in 

water, electrolysis, implantation, exposure to a hydrogen plasma, or contamination 

during the growth process (Haller 1994). In this section, I show that annealing bulk 

AISb:Se or AISb:Te in a hydrogen atmosphere at temperatures as low as 7000 C followed 

by a rapid quench leads to the formation of DX-hydrogen complexes. We have also 

found that hydrogen passivation can occur by annealing in methanol (CH30H) vapor. It 

has been demonstrated that annealing in hydrogen passivates shallow acceptors 

(Veloarisoa et ai., 1991) and platinum (Williams et aL 1993) in silicon. Annealing of 

heavily doped epitaxial GaAs:C layers in a hydrogen ambient was shown to passivate the 
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carbon acceptor (Kozuch et at., 1993). This is the first study in which n-type 

semiconductors have been passivated by annealing in hydrogen. 

The AISb crystals were grown by the Czochralski technique from selenium or 

tellurium doped melts. The growth was performed in a Sb-enriched melt, with an atomic 

fraction [Sb]/([Sb]+[AI])=0.515. Some of the samples were sealed in evacuated quartz 

ampoules with a 1/3 atm H2 or D2 ambient and annealed for 1 hr at temperatures ranging 

from 7000 C to 950°C. After completion of the diffusion, the samples were quenched to 

room temperature by dropping the ampoules into ethylene glycol. Some AlSb samples 

were sealed in quartz ampoules with 0.3 ml CH30H or methanol-d4 (CD30D) and 

annealed for 1 hr at 900oC, followed by a rapid quench. Since an unknown fraction of 

the methanol evaporated before the ampoules were completely sealed, it was not possible 

to determine the methanol vapor pressure. To remove the surface damage from 

annealing in hydrogen, approximately 50 ~m of the surfaces were lapped with a slurry of 

3 ~m SiC grit and water, followed by polishing with a slurry of 0.3 ~m Al20 3 powder 

and methanol. After polishing, the samples were approximately 2 mm thick. Since AISb 

is hygroscopic, samples were kept with desiccant in sealed containers. 

Infrared absorption spectra above 500 cm-1 were obtained with a Bomem DA8 

spectrometer with a KBr beamsplitter and an external mercury cadmium telluride (MCT) 

detector. For spectra below 500 cm- l we used a 3 ~m Mylar beamsplitter and a 

deuterated try glycine sulfate (DTGS) detector. The samples were placed in a Janis 

continuous-flow liquid helium cryostat with ZnSe windows for spectra above 500 cm-1 
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and polypropylene windows for spectra below 500 em-I. We used instrumental 

resolutions ranging from 0.1 to 1 cm- I such that all the L VM peaks were fully resolved. 
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Figure 4.14. Infrared absorption peaks of deuterated and hydrogenated AISb:Se at a temperature of 10 K. 
The peaks are attributed to bond-stretching modes. with the deuteriumlhydrogen attached to an aluminum 
atom. 

4.3.2 LVMs in AISb:Se,H 

AISb:Se samples that were annealed in H2 or CH30H at 9000 C for 1 hr have 

infrared absorption peaks at 1608.6 and 1615.7 at a temperature of 10 K (Figure 4.14). 

Some of the as-grown samples also show these peaks with much smaller absorption 
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strengths, indicating the presence of hydrogen in the growth process. Longer H2-

annealing times do not increase the size of the peaks, so a 1 hr Hranneal is probably 

sufficient to diffuse the hydrogen through the entire bulk. We attribute the peaks at 

1608.6 and 1615.7 cm-1 to hydrogen stretch modes. Since the bond-stretching mode of 

the free diatomic molecule AIH is 1624 cm- 1 (Rosen 1970), while the hydrogen stretch 

modes ofH2Se and SbH3 are 2345 and 1891 cm- 1, respectively (Shimanouchi 1972), we 
( 

propose that the hydrogen binds to an aluminum atom. 

AISb:Se samples that were annealed in D2 or CD30D at 9000 C for 1 hr have only 

one stretch mode at 1173.4 cm- 1 at a temperature of 10K. AISb:Se samples that were 

annealed in a mixture of H2 and D2 have the hydrogen- and deuterium-related peaks but 

no new peaks which would have indicated a multihydrogen complex. The isotopic 

ratios, r = VH/vD' are close to -J2 , indicating that the vibrational modes are dominated 

by the motion of the hydrogen and not the aluminum (Sec. 2.3.3). For the stretch modes, 

since there are two hydrogen peaks, there are two r values, r = 1.3709 and 1.3769. The 

peak positions, widths, areas, and r values of the L VMs are given in Table 4.5. 

The fundamental transitions of the Se-D and Se-H wag modes are not observed, 

since the spectral regions where we expect to find them have significant phonon 

absorption features. The second, third, and fourth harmonics of the Se-D and Se-H wag 

modes have been observed (Figure 4.15). The splittings of the peaks are a result of the 

threefold symmetry of the complex, as explained below. The energy level spacings are 

approximately 240 and 330 cm- 1 for the Se-D and Se-H wag modes, respectively. It 

should be noted that the fine structure and broadening of the Se-H third harmonic are 
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currently not understood. In addition, there are small peaks at 486 and 673cm-J which 

may correspond to unidentified deuterium- and hydrogen-related complexes. 

The spliuings of the wag harmonics are consistent with a complex which 

possesses C3v symmetry. In the plane perpendicular to the [111] axis, the C3v potential 

is given by (Newman 1969~ Sciacca et aI., 1995) 

(4.14) 

where x and yare parallel to the [1 TO] and [112] crystallographic axes, respectively. 

For simplicity, we have omitted the wag-stretch coupling terms. The anharmonic terms 

in Eq. 4.14 lift the threefold degeneracy of the wavefunctions for N = nx + ny> 1. The 

predicted spliuings are shown in Figure 4.16. The dipole allowed transitions are the r 1 

~ r J and r J ~ r3 transitions. The higher harmonics give rise to weaker peaks, since 

they require higher order anharmonic terms in Eq. 4.14. 
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Figure 4.15. Infrared absorption peaks of deuterated and hydrogenated AISb:Se. The peaks are attributed 
to the second. third. and fourth harmonics of the hydrogen/deuterium wag modes. The peak assignments 
are discussed in Appendix B. 
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Figure 4.16. The splitting of the hydrogen/deuterium wag modes in C3v symmetry. Splittings are 
expanded for clarity. The dipole allowed transitions are the r] ~ rl and rl ~ r3 transitions. The r] 
and r 2 states are accidentally degenerate. The theoretical level spacing ~ is defined in Appendix B. 

4.3.3 Electronic spectrum of passivated AISb:Se 

In addition to LVMs, we observed the effect of hydrogenation on the Se 

electronic spectrum. At temperatures below 90 K. AISb:Se exhibits a large photoinduced 

persistent optical absorption (Becla et al.. 1995). When AISb:Se samples are exposed to 

light of energy I eV or more, the Se donors are transformed from a deep DX-like state to 

a metastable hydrogenic state. The hydrogenic absorption spectrum extends from 0.1 to 
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1.5 eV and is due to the excitation of the electron from the ground state to the Xl and X3 

conduction bands. The hydrogenic spectrum was fIrst measured by Ahlburn and Ramdas 

(1968), long before the existence of DX centers was established. 

We measured the persistent optical absorption of AlSb:Se samples that were 

annealed in a D2 atmosphere at several temperatures ranging from 7000 C to 950°C. The 

absorption spectra at 10K after 2 min exposures to a white filament light bulb were 

measured and referenced to the spectra prior to exposure. Although only a fraction of the 

SeDX centers are transferred into their hydro genic states, the strength of the photoinduced 

absorption gives a relative measure of the SeDX concentration. As shown in Figure 4.17. 

the persistent absorption decreases with increasing annealing temperature, while the 

height of the Se-D stretch mode increases. The correlation between the L VM increase 

and the persistent absorption decrease indicates that the deuterium passivates a 

signifIcant fraction of the Se DX centers. 
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Figure 4.17. (a.) Integrated absorption of the Se-D peak in AISb:Se as a function of D2-annealing 
temperature. Samples were annealed in 1/3 atm D2 for 1 hr. (b.) Persistent photoabsorption in AlSb:Se 
for annealing temperatures of 700oC. 8000 C. and 900°C. The correlation between the increasing Se-D 
peak area and decreasing photoabsorption indicates that a significant fraction of Se DX centers are 
passivated. 
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4.3.4 L VMs in AISb:Te,H 

AISb:Te samples that were annealed in H2 or D2 atmospheres at 9000 C for I hr 

have stretch modes at 1599.0 and 1164.4 cm- I , and second harmonic wag modes at 

665.0 and 478.2 cm- I , respectively (Figure 4.18). Like Se, Te also exhibits. a DX-like 

bistability in AISb (Jost et ai., 1994). In the samples that we studied, the Te-H peaks 

were 4 to 8 times weaker than the Se-H peaks, perhaps because hydrogen does not 

passivate Te as efficiently as Se. The fact that the hydrogen stretch and wag modes of 

AISb:Se and AISb:Te have similar vibrational frequencies and r-values provides 

evidence that the hydrogen attaches to an aluminum atom in an antibonding, rather than 

a bonding, orientation (Figure 4.19). As described in Sec. 1.3.3, the anti bonding model 

also applies to donor-hydrogen complexes in Si. This finding is consistent with the study 

of Rabbi et al. (1994) and VetterhOffer et al. (1994), who measured the hydrogen modes 

in GaAs:Se and GaAs:Te to be 1507.5 and 1499.9 cm- I , respectively. Those LVMs were 

attributed to hydrogen stretch modes, with the hydrogen attached to a gallium atom in an 

anti bonding orientation. Since the hydrogen is weakly coupled to the donor, the L VM 

frequency does not depend strongly on the donor species. 

Theoretical studies (Chang et al., 1992) of the DX-hydrogen complex of GaAs:S 

under hydrostatic pressure suggest that two neutral hydrogen atoms can passivate a 

positively ionized donor and a negatively ionized DX center, resulting in two neutral 

complexes. The structures of the DX-hydrogen and donor-hydrogen complexes are 

identicaL with the hydrogen in an antibonding [111] orientation. Our results for DX­

hydrogen complexes in AISb lend furthersupport to the antibonding model. 
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4.3.5 Conclusions 

In conclusion, we have discovered that annealing AISb:Se and AISb:Te in 

hydrogen gas or methanol vapor results in the passivation of the Se and Te donors. The 

hydrogen stretch and wag mode hannonics are consistent with complexes which possess 

C3v symmetry, with the hydrogen attached to an aluminum atom in a [111] antibonding 

orientation. The anti bonding model is similar to that of group VI donor-hydrogen 

complexes in GaAs. The anomalous splitting of the Se-H stretch mode is discussed in 

the following section. 
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Table 4.5. Peak positions. widths. areas. and isotopic ratios of hydrogen and deuterium related LVMs in 
AISb:Se and AISb:Te at liquid-helium temperature. The areas of the stretch modes are normalized to 
unity. 

H-mode V FWHM Area D-mode v FWHM Area r=vH!VD 
(em-I) (em-I) (em-I) (em-I) 

Se-H Se-D 

Stretch #1 1608.6 1.5 1 Stretch 1173.4 1.4 1 1.3709 

#2 1615.7 2.2 2.4 1.3769 

Wag Wag 

2nd 665.7 1.2 8.0 2nd 478.3 1.5 3.7 1.3921 

harmonics 692.2 0.5 0.91 harmonics 497.4 0.5 0.44 1.3916 

3rd 992.6 4.7 0.83 3rd 717.5 0.4 0.2 1.3834 

harmonics 1031.8 0.9 0.048 harmonics 742.2 1.0 0.033 1.3902 

4th 1315.8 1.5 0.25 4th 948.4 1.2 0.046 1.3874 

harmonics 1333.0 1.5 0.16 harmonics 957.4 1.3 0.014 1.3923 

Te-H Te-D 

Stretch 1599.0 1.3 Stretch 1164.4 1.0 1.3732 

Wag (2nd 665.0 1.0 Wag (2nd 478.2 1.3 1.3906 
harmonic) harmonic) 
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Figure 4.18. Infrared absorption peaks of deuterated and hydrogenated AlSb:Te. (a.) Bond-stretching 
modes. (b.) Second harmonic wag modes. The LYM frequencies are similar to the Se-D and Se-H 
modes. providing evidence for the antibonding model. 
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Figure 4.19. Model for the structure of the DX-hydrogen complexes in AISb. The hydrogen attaches to an 
aluminum atom in a [Ill] antibonding orientation. 
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5. Resonant LVM-Phonon Interactions: the Localon 

Resonant interactions between weakly coupled systems play an important role in 

a variety of phenomena in solid state physics. The study of such interactions has led to 

discoveries of new quasi-particles such as polarons (Frolich et ai., 1950) and polaritons 

(Kittel, 1986). Thus far most of these studies have been limited to interactions between 

electronic and vibronic subsystems of the lattice, since small changes in electronic 

properties can be easily detected and the energy levels may be tuned by external 

perturbations such as magnetic field or pressure. Recently, Zheng and Stavola (1996) 

have discovered a Fermi resonance between wag and stretch local vibrational modes 

(L VMs) in donor-hydrogen complexes in silicon. In this chapter, I discuss the first 

evidence of a resonant interaction between L VMs and extended lattice phonons that 

gives rise to a new collective excitation called a "local on" (McCluskey et ai., 1997). By 

varying the temperature and pressure to change the phonon energies, we have studied the 

evolution of the localon spectra in AISb and GaAs. 

5.1 AISb:Se,H 

As described in Sec. 4.3.2. at liquid-helium temperatures. hydrogenated AISb:Se 
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has stretch mode peaks at 1608.6 and 1615.7 cm-I
, whereas the Se-D, Te-H, and Te-D 

stretch modes have only one stretch vibration peak each. In addition, there is a small Se­

H peak at 1606.3 cm- I
. The ratio of the three Se-H peak areas is constant from sample to 

sample, which suggests that they are not due to additional impurity complexes. In the 

following discussion, we provide evidence that the Se-H stretch mode interacts with two 

multi-phonon modes, giving rise to several absorption peaks. The Se-D stretch mode, 

which is far away from these modes, does not split. The LVM-phonon interaction gives 

rise to a new quasiparticle that we refer to as the [oealon. 

5.1.1 Temperature Dependence 

The temperature dependence of the Se-H and Se-D stretch modes is shown in 

Figure 5.1. The linewidth broadening and shift to lower frequency with increasing 

temperature is seen in numerous semiconductor systems and is caused by an anharmonic 

interactio!l between the localized mode and acoustic phonons (Sec. 4.1.4). Although the 

broadening obscures peak 0, peaks 1 and 2 are clearly resolved up to a temperature of 

100 K. As the temperature increases, the area of peak 1 increases while the area of peak 

2 decreases. The peak 'areas were determined by a two-Lorentzian peak fit. The sum of 

the areas remains constant to within the experimental error. 
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Figure 5.1. Temperature dependence of Se-D and Se-H stretch modes in AlSb. 

To explain these observations, we propose a model in which the Se-H stretch 

mode and a multi-phonon mode are nearly degenerate and interact with an energy A. 

The Hamiltonian is given by: 

(5.1) 

The eigenvalues of this Hamiltonian are 

(5.2) 
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In our model, A = 3.45 cm- I
. The minimum frequency difference between the two peaks 

is 2A = 6.9 cm- I
. The eigenfunctions of the Hamiltonian (5.1) are linear combinations of 

an L VM and a multi-phonon, 

/\jI) = a/LVM)+b/phonon) (5.3) 

We refer to this linear combination of a local mode and a phonon as a localon. Since the 

multi-phonon mode is practically infrared inactive, the coefficient a can be determined 

experimentally from the normalized area of each peak. For peak 1, the lower frequency 

peak, 

(5.4) 

where AI and A2 are the integrated areas of peaks 1 and 2, respectively. The theoretical 

expression is given by: 

(5.5) 

The temperature dependence of the unperturbed stretch mode is given by 

OhVM = 1613.0 - 0.034 U(T), (5.6) 

where U(n is the mean vibrational energy of the lattice (Sec. 4.1.4) in callmole and COLVM 

is given in cm- I The multi-phonon mode can be described by the empirical relation 

COphonon= 1611.4 - 30/(exp(380fT)+1), (5.7) 

The parameters are adjusted to fit the data. 

As the temperature increases. the area of peak.1 increases as it becomes more 

"LVM-like" (Figure 5.2). Conversely, the area of peak 2 decreases as it becomes more 

"phonon-like. " 
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5.1.2 Pressure Dependence 

Variable pressure spectra were obtained with a Digilab SO-E spectrometer with a 

KBr beamsplitter and an instrumental resolution of 0.5 cm-I. To generate hydrostatic 

pressures up to 15 kbar, we used a modified Merrill-Basset diamond-anvil cell (Sec. 3.3). 

The liquid immersion-technique was used to load the cell with liquid nitrogen. A light-

concentrating cone focused the light through the diamonds and sample and into a Ge:Cu 

photoconductor mounted directly behind the sample. We use the pressure dependence of 

the AISb:Csb LVM as a precise in situ calibration of the sample pressure (Sec. 3.4). 

Anti-crossing is observed between the three peaks when the hydrostatic pressure 

is increased. Varying the pressure has the advantage of not broadening the lines, so that 

both multi-phonon modes are resolved. As shown in Figure 5.3, at pressures around 2 

kbar, there are three absorption peaks. In our three-level system, the Hamiltonian is 

given by 

[

CDLVM A B] 
H = A CD phonon.! 0 

B '0 CD phonon.2 

(5.S) 

where A = 3.45 cm- I and B = 1 cm- I
. For simplicity we have neglected the interaction 

between the multi-phonon modes. The pressure dependence of the modes are given by 

CD LVM = 1612.7 + 0.075 P (5.9) 

CD phonon,] = 1610.5 + 2.1 P (5.10) 

CD phonon.2 = 1605.8 + 2.1 P (5.11) 

where P is the pressure in kbar and the frequencies are in units of cm- I
. The eigenvalues 
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of the Hamiltonian (5.8) are calculated using MA TLAB. We obtain very good 

agreement between the model and experiment (Figure 5.4). 

The pressure dependence can be understood qualitatively as follows: the LVM 

interacts primarily with phonon 1, producing a localon. The localon then interacts with 

phonon 2, with a smaller coupling energy. The anti-crossing between the three modes 

yields three infrared active peaks at pressures of -2 kbar. For higher pressures, only the 

lowest branch, peak 0, is "LVM-like." 
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Figure 5.3. Se-H stretch mode peaks as a function of pressure. 
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and multi-phonon modes and the solid lines are plots of the three-level theory (Eq. 5.8-5.11). 

5.1.3 Summary of Results 

Using variable temperature and pressure infrared spectroscopy, we have observed 

an anti-crossing resonance between the AISb:Se,H stretch mode and two unknown 

modes. We propose that the modes are different combinations of five optical phonons, 

since 5 X IDro( r) - 1610 cm -1 is very close to the observed frequencies. The pressure 

dependence of the TO phonon at room temperature is 0.58±0.5 cm-1/kbar (Ves et ai., 

1986). This value is somewhat larger than the value predicted by Eq. 5.l0 and 5.11, 1/5 

X 2.1 = 0.4 cm -1 /kbar. Another possibility is that the modes are overtones of other Se-H 

L VMs. Only r 1 modes can interact with the r 1 stretch mode (Appendix A). The N=5, 
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r l wag mode has a predicted frequency of 1665 cm-1
, which is too far away from the 

stretch mode (1610 cm-I
) to interact. In addition, there is only one N=5, r 1 wag mode, 

and we observe two "unknown" modes. Although there may be other modes that have 

not been detected, the five-phonon modes remain the best candidates. 

5.2 GaAs:C 

In GaAs, the CAs substitutional impurity gives rise to a LVM peak at 580 cm- I 

and an unexplained sideband at 576.6 cm- I at room temperature (AIt and Dischler, 

1995). We extended the measurements of AIt and Dischler to temperatures as high as 

500 K. As the temperature increases, the main peak merges with the sideband and 

broadens (Figure 5.5). We propose that the sideband is produced by an interaction 

between the LVM and a two-optical-phonon mode. Unlike in the case of AlSb:Se,H, the 

energy of interaction is less than the width of the phonon mode, so we must use a 

Green's function approach to correctly describe the line shape. 

The Green's function of the local mode is given by 

(5.12) 

where O)L is the local mode center frequency./p (0) is the phonon density of states. C = 

(LVMIHint.1 phonon), and 11 ---70+ (Nakayama 1969). The local mode interacts with a 

distribution of phonon modes. Eq. 13 can be written 
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(5.13) 

The spectral weight function describes the local mode line shape and is given by 

(5.14) 

In our model, the two-phonon density of states is given by the empirical form 

(5.15) 

where a = 0.8 cm and (Op is the threshold frequency in cm- I
. This form describes an 

asymmetric phonon distribution with a sharp rise at (0 = (Op. The unperturbed L VM is 

assumed to have a Lorentzian line shape with a center frequency (fJL and a width of 

0.5 cm- I
. The LVM-phonon interaction energy is C = 1.5 cm- I

. The temperature 

dependence of the L VM and phonon frequencies are given by 

(OL = 581.6 - 0.014(T - 200) (5.16) 

(Op = 578.8 - 0.008(T - 200) (5.17) 

The theoretical and experimental spectra are plotted in Figure 5.5 for several 

temperatures. Note than unlike the case of AISb:Se,H, the interaction is not strong 

enough to produce an anti-crossing. Instead, at high temperatures the L VM merges with 

the phonon band, resulting in an increased linewidth. 
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5.3 Conclusions 

In conclusion, we have observed the first resonant interactions between L VMs 

and phonons in AISb and GaAs. In AISb, the Se-H stretch mode may interact with two 

different combinations of five optical phonons, resulting in three distinct peaks. How a 

5-phonon mode could be so sharp, however, is an open question. In GaAs, the 12CAs 

L VM interacts with a two-phonon mode, resulting in a sideband on the low energy side. 

Although it is unclear which phonons in the Brillouin zone interact most strongly with 

L VMs, the fact that resonant interactions are observed in two very different defects and 

hosts suggests thatthis is a general phenomenon. 
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Figure 5.5. GaAs: 12CAs L YM as a function of temperature. The dashed lines are plots of the theoretical 
model (Eq. 5.12-5.17). 
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6. Conclusions 

I have discussed a number of hydrogen-related complexes in compound 

semiconductors. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, 

results from L VM spectroscopy show conclusively that hydrogen binds to the host anion 

in a bond-centered orientation, along a [111] direction, adjacent to the acceptor. As the 

atomic number of group II acceptors is increased from Be to Cd, the stretch mode 

frequency and isotopic frequency ratio r = VH/vD increase. The increase in L VM 

frequency is due to the compression of the bonds. In addition, the temperature 

dependent shift of the L VMs are proportional to the lattice thermal energy V(l), a 

consequence of the anharmonic coupling between the L VM and acoustical phonons. 

In the wide band gap semiconductor ZnSe, epilayers grown by MOCVD and 

doped with As form As-H complexes. As is the case with the above mentioned systems, 

the hydrogen assumes a bond-centered orientation. A comparison was made between the 

GaAs:Zn,H and ZnSe:As,H complexes. It is clear that obtaining strongly p-type ZnSe 

grown by MOCVD is hindered at least in part by the formation of neutral acceptor­

hydrogen complexes. 

In AISb, the Se and Te DX centers are passivated by hydrogen, which is 

introduced into the bulk by annealing in H2 at a temperature of 900°C. The second, 

third, and fourth harmonics of Se-H and Se-D wag modes are observed and show 
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splittings that are consistent with C3v symmetry. Perturbation theory yields theoretical 

values of the wag modes that are in close agreement with experiment. In these 

complexes, the hydrogen attaches to a host aluminum atom in an antibonding 

orientation. 

Although the Se-D complex has one stretch mode, the Se-H stretch mode splits 

into three peaks. The anomalous splitting is explained by a new interaction between the 

stretch LVM and multi-phonon modes of the lattice. The anharmonic interaction mixes 

the L VM and phonon states, producing a quasiparticle that we refer to as a localon. As 

the temperature is varied, we observe an anti-crossing between the L VM and phonon 

modes. By developing a new in situ pressure calibration, we also performed variable 

pressure spectroscopic measurements that showed a distinct anti-crossing between the 

L VM and the two multi-phonon modes. 
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7. Future Work 

Since GaN and its alloys with InN and AIN are becoming important blue light­

emitting materials, it is important to understand the role of hydrogen-related defects in 

these wide band gap semiconductors. L VM spectroscopy has been used to identify the 

Mg-H complex in GaN (Gotz et al., 1996). It is well established that in acceptor­

hydrogen complexes in Si, GaAs, InP, and GaP, the hydrogen resides in a bond-centered 

position. In GaN:Mg, however, theoretical calculations (Neugebauer and Van de Walle, 

1995) have indicated that hydrogen resides in an anti-bonding position. Donor-hydrogen 

complexes have not been detected in GaN, despite high concentrations (1019 cm-3
) of 

donors in MOCVD-grown epilayers. The investigation of donor- and acceptor-hydrogen 

complexes in GaN is a promising avenue of research. 

LVM-phonon interactions will undoubtedly manifest themselves in other 

semiconductors. One unanswered question is: which phonons in the Brillouin zone 

interact most strongly with L VMs? The interaction between the defect and the lattice 

may arise from the deformation of the defect's environment by a lattice wave. In 

addition, optical phonons produce macroscopic electric fields that may interact with the 

dipole moment of a hydrogen-related complex. The combination of these factors and the 

multi-phonon density of states may yield sharp resonances that produce the distinct 

localons observed in AISb:Se,H. 
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8. Appendices 

Appendix A: Group Theory 

A.I Introduction 

In examining the nonnal modes of a system, group theory is often employed as a 

method to detennine the symmetries of the modes as well as their optical activity. The 

first step is to establish the symmetry of the complex. This is done by listing all the 

symmetry operations - rotations, reflections, and inversions - which leave the complex 

invariant. For systems such as perfect crystals which have translational invariance, space 

groups must be considered (Falicov 1966). In this thesis, however, I am concentrating 

on point defects, which necessarily break translational symmetry. All the operations are 

perfonned about a point, and a group of such operations is known as a point group. 

The elements of a group can be represented by a basis of matrices. The identity 

element, for example, is a member of every group and in a two dimensional 

representation it is written 

(A.8.1 ) 

A rotation by 1200 is written 
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[
COS21t /3 - sin 21t /3] 

C3 = sin21t /3 cos21t /3 
(A.8.2) 

and a reflection about the x axis is written 

(A.8.3) 

For a list of operations, groups and their labels, see Colton (1990). 

The elements of a group can be represented by irreducible matrices of any 

dimension, so long as they obey the properties of the group. The properties of a group 

are: 

1.) Closure. The product of any two elements in a group is another element in 

the group. Two successive rotations by 120°, for example, produce a rotation 

2.) Identity. The identity element, commonly labeled E, must be in any group. 

3.) Associativity. a(bc) = (ab)c. 

4.) Reciprocity. Every element a must have a reciprocal a-I in the group, such 

A.2 Irreducible Representations 

One can imagine creating any number of huge matrices which obey the four rules 

above. The requirement that the matrices be irreducible, however, limits the number of 

possible basis sets. A group of reducible matrices is defined as matrices which, upon a 

unitary transfonnation, can be written in block-diagonal fonn, such as: 
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(A.4) 

The matrices which occupy the diagonal positions are themselves elements of the group 

and obey all the properties. If we find a set of matrices that cannot be reduced into this 

block-diagonal form, then they are said to be irreducible. 

A.3 Character Table 

Every group has a character table, in which the traces of the irreducible 

representations are listed. Each row corresponds to a different irreducible representation. 

The first row is simply filled with l' s, since the set of l' s obey all the properties of a 

group. Successive rows contain more interesting representations. Each column in the 

character table corresponds to a class of operations (e.g., rotations), and the number 

before the label refers to the number of elements in that class. The first column is E, the 

identity element, which has a trace equal to its dimension. 

When a molecule begins to vibrate, its symmetry is lowered in a specific way 

which is given by the irreducible representation. As an important example, the character 

table of the C3v (trigonal) group is shown in Table A.I. The chemists' notation is shown 

in parentheses. In addition to the identity element, the C3v group has two threefold 

rotations (120° and 240°) labeled C3 and three reflections about vertical planes labeled 
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Table A.I. Character table of the C3v group. 

r] (AI) 

r 2 (A 2) 

r::;(E) 

x 

E 

1 

1 

2 

1 

1 

-1 

z 
... 

Figure A.I. Example of a hydrogen complex with C3> symmetry. 
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A.4 Hydrogen Motion in C3v Symmetry 

Now we want to find the nonnal modes of a hydrogen atom in an environment 

which possesses C3v symmetry. We choose the basis to be the Cartesian coordinates 

centered at the hydrogen atom (Fig. A.I), with the z axis pointing toward the nearest 

neighbor. To detennine the nonnal modes, we use a projection operator, defined as 

(A.5) 

where j is the representation, lj is the dimension of the representation, h is the order 

(number of elements) in the group, X is the character, and R is the element. When the 

projection operator is applied to a function, only the part of the function which 

transfonns as the representation j survives. When we apply prj to the function z, we get 

(A.6) 

Since z is invariant under all operations of the C3v group, it belongs to the r] 

representation. If we operate on z with either pr2 0r pr3, the result will be zero. The r] 

mode is called the hydrogen stretch mode and it corresponds to a vibration along the z 

axis. 

Applying the prJ operator to x yields 

(A.7) 

Similarly. applying the pr20perator to x yields zero. Applying the pr
3 operator to x 
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yields 

p r3 (X) = ~ ( 2x - (-1 x + 1 Y) - (-1 x -1 Y)) = x (A.8) 

The x function is therefore a member of the r3 representation. Applying the pr
3 operator 

to y verifies that it also belongs to the E representation. Since x and y transform into 

each other under rotations and reflections, they are degenerate. Vibrations in the x-y 

plane are called wag modes. 

A.5 Selection Rules 

Group theory can detennine which matrix elements are zero. Consider the matrix 

element 

(A.9) 

where the C's are functions with symmetries given by the C representations. Products of 

functions with certain symmetries will integrate to zero. For example, in an environment 

where parity is a good quantum number, the integral of two even functions times an odd 

function is always zero. The selection rules can be generalized by expressing the direct 

product rk ® r j ® r m as a direct sum of irreducible representations (Falicov 1966): 

(A.IO) 

To obtain the irreducible representations C, rk , etc .. we first multiply the characters of 

rb r" and r m, column by column. Then, we find a set of representations which add up 
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to the products. Those representations are C, rj , etc. If one of the representations is rj, 

the fully symmetric representation, then the integral may be nonzero. Otherwise, it is 

definitely zero. 

As an example, consider the selection rules for an optical transition from the 

ground state to an excited vibrational mode. The ground state has the fully symmetric 

representation r l . As described in the previous section, the stretch mode has a 

representation r l . Light polarized along the z direction also has r l symmetry. The direct 

product is determined by multiplying the characters: 

Table A.2. 

E 

1 1 1 

By inspection, 

(A.Il) 

so the transition is allowed. In a zincblende or diamond crystal, there are four equivalent 

[111] directions, so for randomly oriented complexes, light of any polarization will excite 

a stretch mode. 

Next, consider a wag mode, which has r3 symmetry. Light polarized in the x-y 

plane also has r3 symmetry. Multiplying the characters yields 
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Table A.3. 

E 

4 1 o 

By inspection, we find that 

r l ® r3 ® r3 = r l EEl r2 EEl r3, 

which contains rJ, so the transition is allowed. We can also show that 

r l ® r l ® r2 = r2 

r l ® r3 ® r2 = r3 

so that the r l ~r2 transition is dipole-forbidden. 

A.6 Perturbation Theory 

(A.12) 

(A. 13) 

(A. 14) 

In second order perturbation theory, states can interact via a matrix element 

(rk 18 HI r,), where 8 H is a perturbation due to the surrounding atoms and has symmetry 

r l . The direct product is given by 

(A.15) 

The product will only contain r l if rk = r /. In other words, states only interact if they 

have the same symmetry. 
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Table B.1. Wag modes in C3v symmetry. 

N Symmetry Wavefunction( s) 

° r j 10,0) 
1 r3 11,0)~lo,1) 

2 r j .h (12,0) + 10,2») 

2 r3 .h (12,0) -10,2) )~11,1) 

3 r j 1- (13,0) - .J311,2») 

3 r2 1-(10,3) - .J312,1») 

3 r3 1-(jO,3) + .J312,l) },1-(IO,3) + .J311,2») 

4 r j ~(l4,0) + 1-0,4») + 1-12,2) 
4 r (I) 3 .h (13,1) + 11,3»)~.h (14,0) -10,4») 

4 r (2) 3 Jt(l4,0) + 10,4») - JfI2,2)~.h (13,1) -11,3») 

5 r j ±(J515,0) -J213,2) - ~ 1,4») 

5 r2 ± (J51 0,5) - J212,3) - ~4,1») 

5 r (I) 
3 Jt(J515,0) + .J213,2) + 11,4) }, Jt(J51 0,5) + J212,3) + 14,1») 

5 r (2) 3 ±(j5,0) - MI3.2) + .J511,4) },±(IO,5) - MI2,3) + J514,l») 
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Appendix B: Calculation of Wag Modes in C3v symmetry. 

B.I Two Dimensional Wavefunctions 

I now apply the results from Appendix A to wag modes in a C3v potential. Wag 

modes are oscillations primarily in the x-y plane, and the wavefunctions are given by 

(Sec. 2.1.2) 

(B.l) 

with an energy 

E = (nx + ny + l)nm == (N + l)nco, (B.2) 

where N = nx + ny is the principal quantum number. For a perfectly parabolic potential, 

all states with the same N are degenerate. When a C3v perturbation is introduced, 

however, the states split according to their symmetries. Using the methods outlined in 

Appendix A, I derived the states up to N = 5 (Table B.l). Different states with the same 

symmetry and N value are differentiated by a subscript in parentheses. 

B.2 Anharmonic Terms 

To quantitatively estimate the splittings, the C3v potential is approximated by 

(Newman 1969~ Sciacca et aI., 1995) 

v(x,Y)=~k(X2+y2)+B(xl-X3/3)+C(X2+y2)2+ ... , (B.3) 

where x and yare parallel to the [11 OJ and [112] crystallographic axes, respectively. 

The cubic tenn shifts the energy of a state IN, r) via second order perturbation theory: 
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Table B.2. Matrix Elements of cubic and quartic tenns in Eq. B.3. 

Cubic Terms 

(N = 2,r) I~,IN = 3,r)) =-J3 

(N = 2,r31v31N = 3,r3) =-1 

(N = 3, r) I~, I N = 4, r) ) = J3 

(N = 3,~, I~, I N = 4,~, (I) ) = J3 

(N = 3,~, I~, I N = 4, r3 (Z) ) = J3 

(N = 4,r) I~,IN =5,r)) = -2J3 

(N = 4,~,(l)I~,IN = 5,~,(l») = -3/J2 

(N = 4,~,(l) I~,IN = 5,~,(Z») = J5 

(N = 4, r3 (Z) I~, IN = 5, r3 (I) ) = -J2 

(N = 4,r3(Z)I~,IN =5,r3(Z») = 0 

(N = 5,r) I~,IN = 6,r/1») = 2J3 

(N =5,r)I~,IN = 6,r/Z») = ~15/2 

(N =5,rzl~,IN = 6,rz) = ~15/2 

(N = 5,r3(l) I~,IN = 6,~,(1») = 3 

(N = 5,~,(1) I~,I N = 6,~,(2)) = 3 

(N =5,r3(Z) IV31N = 6,r/J») = -~5/2 

(N = 5,~,(2) I~,IN = 6,r3(2l) = ~5/2 

Quartic Terms 

(N = 2,r) IV41N = 2,r)) = 14 

(N = 2,r31v41N = 2,r3) = 12 

(N = 3,r11v41N = 3,r)) = 20 

(N = 3, rzlv41 N = 3, rz) = 20 

(N = 3,r31v41N = 3,~,) = 24 

(N = 4,r) IV41N = 4,r)) = 38 

(N = 4,r3(l)lv4IN = 4,r3()) = 36 

(N = 4,r3 (Z) IV41 N = 4,r3(Z») = 30 

(N =5,rJlv4IN =5,r)) =50 

(N = 5,rzlv4lN = 5,r2) = 50 

(N = 5,r3(1) IV41N = 5,~, (1») = 54 

(N = 5,r3(2) IV41N = 5,r3(2») = 42 

151 



The integrals of polynomials times Gaussians are given by the recursion relations: 

(B.7) 

f
OO 2n _x2 d 2n - 1 foo 2n-2 _x2 d x e x=-- x e x 

-00 2 -00 

Using these fonnulae and Mathematica, I calculated the matrix elements listed in 

Table B.2. 

B.4 Results and Comparison with Experiment 

Combining these results, the energy eigenvalues are given by 

(B.8) 

where N] and N2 are different for each state and are listed in Table B.3. It is immediately 

apparent that for N = 2, the r] mode is lower in energy than the r3 mode, contradicting 

the assumption given by McCluskey et al. (1996b), and in agreement with experimental 

results by Zheng and Stavola (1995). The N = 2 modes are split by an amount given by 

(B.9) 

For the N = 3 modes, the r] mode is higher in energy than the r3 mode, and the splitting 

is 2.1. This is in qualitative agreement with the experimental results, in which the N =3 

splitting is greater than the N = 2 splitting. However, the experimental ratio of the 

splittings is -1.5, so clearly the approximation is somewhat crude. For the N = 4 modes, 
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the r 1 and r3(1) ~odes split by ~, again in qualitative agreement with experiment. A 

schematic of the level splittings is shown in Figure 4.16. In the future, the inclusion of 

wag-stretch coupling terms in Eq. B.3 should help agreement between theory and 

experiment. 

Eq. B.8 can be written in a simpler form: 

(B.IO) 

where k, B', and C' are adjustable parameters and the reduced mass J..l is given in units of 

amu. The hydrogen is assumed to be attached to an aluminum atom (M = 27). The 

parameters that yielded the best least squares fit are k = 1.156 X 106 cm-2 amu, B' = 

8.915 cm-1 amu, and C' = 0.0674 cm-1 amu. With only three adjustable parameters, the 

agreement between experiment and theory is fairly good (Table B.3). 
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Table B.3. Theoretical values of Se-H and Se-D wag modes in AISb. 

N Symmetry NI N2 o ~N transition (em-I) 

0 r l 0 2 H (theory) H(expt) D(theory) D(expt) 

1 r3 -1/2 6 342 247 

2 r l -3 14 666 666 484 478 

2 r3 -112 12 689 692 496 497 

3 r l 0 20 1040 1032 748 742 

3 r2 0 20 " " 

3 r3 -5 24 994 993 724 718 

4 r l -9 38 1304 1316 955 948 

4 r (I) 3 -13/2 36 1327 1333 967 957 

4 r (2) 3 1 30 1396 1002 

5 r l -1512 50 1665 1212 

5 r2 -15/2 50 " " 

5 r (I) 3 -2312 54 . 1629 1193 

5 r (2) 3 0 42 1735 1247 
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