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Abstract 

We present a framework for enhancing images while preserving either the edge or 
the orientation-dependent texture information present in them. We do this by treating 
images as manifolds in a feature-space. This geometrical interpretation leads to a 
natural way for grey level,color, movies, volumetric medical data, and color-texture 
image enhancement. Following this, we invoke the Polyakov action from high-energy 
physics, and develop a minimization procedure through a geometric flow. This flow, ~ 
based on manifold volume minimization yields a natural enhancement procedure. We 
apply this framework to edge-preserving denoising of grey value and color images, 
for volumetric medical data, and orientation-preserving flows for grey level and color 
texture images. 

Keywords:Scale-space) Minimal surfaces) PDE based non-linear image diffusion) Selective 
smoothing) Color processing) Texture enhancement) Movies and volumetric medical data. 

1 Introduction 

In this paper, we present a general framework for processing images of various types like 
grey scale, color, and those that have orientation-dependent information such as textures. 
We do this by treating images as embedded maps that flow towards minimal surfaces. In 

*This work is supported in part by the Applied Mathematics Subprogram of the Office of Energy Research 
, under DE-AC03-76SF00098, ONR grant under N00014-96-1-0381, and in part by the National Science 

Foundation under grant PHY-90-21139. 
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other words, our view on images is that they are 2D or 3D manifolds embedded in higher 
dimensional space; for example a grey-scale image is a surface in (x, y, 1) space and a color 
image is a surface embedded in a 5D space, i.e. the (x, y, r,I9 ,Ib). We then use the 
Polyakov action, that is a general way of measuring area for a manifold embedded in a given 
space. The edge-preserving enhancement procedure is a result of minimizing this "action" 
and is expressed via a geometric flow. Our framework has the following properties: (1) It is 
the most general way of writing the geometrical scale-space and enhancement algorithms for 
grey-scale, color, volumetric, time-varying, and texture images, (2) it unifies many existing 
partial differential equation based schemes for image processing, and (3) the schemes are 
edge-preserving and hence suitable for segmentation tasks. 

The importance of edges in scale space construction is obvious. Our view is consistent 
with the rest of the vision community in that boundaries between objects should survive as 
long as possible along the scale space, while homogeneous regions should be simplified and 
flattened in a more rapid way. On the other hand, we still ,want to preserve the geometry 
that results in some interesting non-linear 'scale spaces'. Another important question, for 
which there are only partial answers, is how to treat multi-valued images. A color image is a 
good example since one actually talks about 3 images (Red, Green, Blue) that are composed 
into one. In what follows, we attempt to answer this question. 

Texture plays an important role in the understanding process of many images, specially 
those that involve natural scenes. Therefore, it became an important research subject in 
the fields of psychophysics and computer vision. The study of texture starts from the pre­
image that describes the physics and optics that transforms the 3D world into an image, 
through human perception that starts from the image formation on the retina and tracks its 
interpretation at the first perception steps in the brain. 

Preserving the orientation information while diffusing a given texture image is important 
in certain cases, say in denoising a fingerprint image. We imagine a procedure that pre­
serves domains of constant/homogeneous texture, enhances the texture in each domain, and 
thereby enhances the boundaries between neighboring domains with different textures. In 
this paper, we introduce a geometrical way to improve and enhance texture based images. 
The geometrical feature enhancement procedure we introduce may serve as a step towards 
segmentation. Weickert in [35, 36] presents a coherence enhancing flow based on a structure 
tensor idea. We adopt a similar approach in Section 4 and extend the texture enhancement 
flows to the multi-channel image case, e.g. color textures. 

An alternate way of analyzing textures is to represent a given image as a set of sub-band 
images using the 2D Gabor/Morlet-wavelet transform. Some nice mathematical properties 
and the relation of this transform to the physiological behavior were studied in [17, 27]. This 
model was later used for the segmentation, interpretation and analysis of texture [4, 18], and 
for texture-based browsing [21]. In Section 5, we use the Gabor/Morlet-wavelet transform 
to split a given image into a set of sub-band images. We then show that an enhancement 
procedure can be constructed based on a flow in the transfor~ed space, i.e. the transform 
coefficients are treated as higher dimensional manifolds. 

The remainder of this paper is organized as follows: Section 2 reviews the definition of 
arclength, the consideration of images as surfaces, and the minimization of Polyakov action .. 
that leads to a geometric flow that we named Beltrami flow. Next, in Section 3 we present 
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the metric and the resulting edge-enhancing flow for color images. In Section 4, together 
with some texture enhancement results, we describe an orientation diffusion procedure in 
color that is deduced from the Beltrami flow. In Section 5 we present an alternate way of 
texture analysis using 2D Gabor/Morlet-wavelet transform. Finally, the analysis of movies 
and volumetric medical images is presented in Section 6. 

2 Images as Embedded Maps that flow toward Har;.. 
monic Maps 

We consider images as surfaces in higher dimensional spaces [34], and construct enhancement 
procedures for color images as 2D surfaces in 5D (x, y, r, ]9, ]b) space. The idea of images as 
curved spaces is not limited to 2D surfaces; movies and volumetric,images can be considered 
as 3D hypersurfaces in 4D, e.g. (x, y, z, 1) space [15]. 

Our geometric framework finds a seamless link between the Ll (Rudin Osher Fatem{ 
[30] TV and its variants) and the L2 norms (used in Mumford-Shah [23] and its variants) 
based on the geometry of the image and its interpretation as a surfacel . The aspect ratio 
between the gray level and the xy plane, used as a parameter, enables us to switch between 
the two co~monly used norms. This observation made it possible to show that our multi­
channel (color) enhancement procedure may be considered as a generalization of the powerful 
TV scheme that is now commonly used in the high tech~ image processing industry. This 
procedure yields promising results for color image enhancement [34]. 

In this work, we also propose a flow in a rich feature space which is different from the 
image space. Other flows in similar feature spaces were recently proposed in [31, 29, 7, 33, 37]; 
see also [35, 36] for orientation preserving flows. All these approaches begin with a flat metric 
[10] that does not yield a meaningful minimization process when going to more than one 
channel2

. The main difference between these schemes and the one we propose is the geometric 
interpretation of the information as a manifold flOWing so as to Il}inimize its volume. Our 
geometric perspective of a color image as a surface embedded in a higher dimensional space 
enabled us to define a simple and natural coupling in the multi-channel color space. Other 
schemes have also considered image as a surface [2, 12, 38, 20], some even used the image 
information to build a Riemannian metric for segmentation [5]. However, these methods 
were not generalized to feature space or any co-dimension higher than one. We now describe 
the details of our framework. 

2.1 The Metric 

The basic concept of Riemannian differential geometry is distance. Let us start with the 
map X : ~ ~ m?, where ~ is a 2D manifold. We denote the local coordinates on the two 
dimensional manifold ~ by (0"1,0"2). The map X is explicitly given by 

(Xl (0"\ 0"2), X2( 0"\ 0"2), X 3
( 0"1,0"2)). 

lTV (Total Variation) schemes are based on minimizing the Ll norm, namely J 1\711, the L2 norm 
minimizes J 1\7112, while the area of the gray level image surface is given by J Jl + 1\7112. 

2This flat metric is called 'structure tensor' in [35, 36]. 



Since the local coordinates (ji are curvilinear, and not orthogonal in general, the distance 
square between two close points on E, p = (j1, (j2) and p + ( d(j1 , d(j2) is not ds2 = d(Ji + d(J~. 
In fact, the squared distance is given by a positive definite symmetric bilinear form called 
the metric, whose components we denote by gJ.LlJ (j1, (j2) 

(1) 

where we used Einstein summation convention in the second equality; identical indices that 
appear one up and one down are summed over. We will denote the inverse of the metric by 
gJ.LlJ, so that gJ.LlJ glJ'Y = b"J.L'Y' where bJ.L'Y is the Kronecker delta. 

2.2 Induced Metric 

Let X : E --+ M be an embedding of (E,g) in (M, h), where E and M are Riemannian 
manifolds and 9 and h are their metrics respectively. We can use the knowledge of the 
metric on M and the map X to construct the metric on E. This procedure, which is 
denoted formally as (gJ.LlJ)r; = X*(hij)M, is called the pullback for obvious reasons and is 
given explicitly as follow: 

(2) 

where i,j = 1, ... , dimM are being summed over, and in short we have used f)J.LXi = 
f)X i (j1, (j2) / o(jJ.L. 

We will use the following simple and useful example that is often used in computer vision: 
Consider embedding of a surface described as a graph in IR?, 

X: (j1,(j2) --+ ((J\(j2,J(d\(j2)). 

Using Eq. (2) we get 

(
1 + 12 

(gJ.LlJ) = lxly x 

where we used the identification Xl = (j1 and X 2 _ (J2 in the map X. 

(3) 

(4) 

Actually we can understand this result in an intuitive way: Eq. (2) means that the 
distance measured on the surface by the local coordinates is equal to the distance measured 
in the embedding coordinates. Under the above identification, we can write 

ds2 dx2 + dy2 + dl2 

dx2 + dy2 + (Ix dx + lydy)2 
(1 + f;)dx2 + 21xl ydxdy + (1 + 1;)dy2. 

2.3 Polyakov Action 

Let us briefly review our framework for non-linear diffusion in computer vision. The equations 
are derived by a minimization problem from an action functional. The functional in question 
depends on both the image manifold and the embedding space. Denote by (E, g) the image 
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manifold and its metric and by (M, h) the space-feature manifold and its metric, then the 
map X : ~ -t M has the following weight 

(5) 

where m is the dimension of ~, 9 is the determinant of the image metric, (gJ.LV) is the inverse 
of the image metric, the range of indices is I-l, 11 = 1, ... , dim ~, and i, j = 1, ... , dim M, and 
(hij ) is the metric of the embedding space3 . This functional, for m = 2, was first proposed 
by Polyakov [26] in the context of high energy physics. .. 

Given the above functional, we have to choose the minimizat.ion. We may· choose for 
r 

example to minimize with respect to the embedding alone. In this case the metric (gJ.Ll/) 
is treated as a parameter and may be fixed by hand. Another choice is to vary only with 
respect to the feature coordinates of the embeddin'g space, or we may choose to vary the 
image metric as well: In [34] we show how different choices yield different flows. Some flows 
are recognized as existing methods, other choices are new and will be described below. 

Using standard methods in variational calculus (see [34]), the Euler-Lagrange equations 
with respect to the embedding are: 

__ I_hil 8S = _1 f) ( In J.LI/f) Xi). 
2v0 8Xl v0 J.L vgg 1/ 

(6) 

Our proposal is to view scale-space as the gradient descent: 

Xi _ f)X i _ Ihil 8S 
t = at - - 2v0 8Xi" (7) 

Notice that we used our freedom to multiply the Euler-Lagrange equations by a strictly 
positive function; since (gJ.Ll/) is positive definite, 9 = det(gJ.Ll/) > 0 for all (JJ.L. This factor is the 
simplest one that does not change the minimization solution while giving a reparametrization 
invariant expression. The operator that is acting on Xi is the natural generalization of the 
Laplacian from flat spaces to manifolds and is called the second order differential parameter 
of Beltrami [16], or for short Beltrami operator, and is denoted by I:1g • 

For a surface ~, embedded in 3 dimensional Euclidean space, we get a minimal surface 
as the solution to the minimization problem. In order to see that and to connect to the 
usual representation of the minimal surface equation, we notice that the solution of the 
minimization problem with respect to the metric is 

(8) 

On inspection, this equation is simply the induced metric on ~. For the case of a surface 
embedded in 1R? we calculated it explicitly in (see Eq. (4)). Plugging this induced metric in 
the first Euler-Lagrange, Eq. (6), we get the steepest decent flow 

(9) 

3E.g. g/1o V are the elements of the matrix (g/1o V
) = 9 21 

/ ( 11 

. 9 
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where H is the mean curvature, iV is the normal to the surface4 : 

H -

(10) 

and g = 1 + I; + I;. Note that this choice gives us the mean curvature flow which means 
that every point of the surface moves in the normal direction at a speed that is equal to 
the mean curvature. This should not be a surprise, since the action functional for the above 
choice of metric gJ1.V is 

which is the Euler functional that describes the area of the surface (also known in high 
energy physics as the N ambu action). 

In general, for any manifold :E and M, the map X : :E -+ M that minimizes the action S 
with respect to the embedding is called a harmonic map. The harmonic map is the natural 
generalization of the geodesic curve and the minimal surface to higher dimensional manifolds 
and for different embedding spaces. 

The generalization to any manifold embedded with arbitrary co-dimension is given by 
using Eq. 6 for all the embedding coordinates and the induced metric Eq. 8; see [34] for 
more details. 

2.4 The Beltrami Flow 

We now present a new and natural flow for images as surfaces. First let us consider the 
case in which the gray level image is regarded as an embedding map X : :E -+ IR3

, where 
:E is a two dimensional manifold, and the flow that we derive is natural in the sense that it 
minimizes the action functional with respect to I and (gJ1.V) , while being reparametrization 
invariant. The coordinates Xl and X 2 are parameters from this view point and are identified 
as above with (/1 and (/2 respectively. The result of the minimization is the Beltrami operator 
acting on I: 

(11) 

where the metric is the induced one given in Eq. 4, i is the unit vector in the I direction, 
and (iV, i) is the i component of the image surface normal iV (i.e. projection of iV onto i). 
See [39], for a recent related effort. 

The geometrical meaning of this flow is the following: Each point on the image surface 
moves with a velocity that depends on the mean curvature vector H iV projected to the i 
direction at that point. Since along the edges the normal to the surface lie almost entirely 
in the x-y plane, I hardly changes along the edges, while the flow drives other regions of the 

4Some definitions of the mean curvature include a factor of 2 that we omit here. 
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image towards a minimal surface at a more rapid rate. In other words, this flow preserves 
edges. As an example, Fig. 1 shows the result of the Beltrami flow applied to a computed 
tomography (CT) image of the abdominal section. It demonstrates the edge preserving 
property of the Beltrami flow. 

Figure 1: Left: Original medical image. Right: Result of the Beltrami flow. 

In what follows we apply this operator to construct an orientation-preserving flow on 
texture images. But first let us look at the color image case more closely. 

3 Color 

We generalize the Beltrami flow to the 5 dimensional space-feature needed in color images. 
The embedding space-feature space is taken to be Euclidean with Cartesian coordinate sys­
tem. The image, thus, is the map J : L:; -1- lR,5 where L:; is a two dimensional manifold. 
Explicitly the map is 

J = (X1( 0"1, 0"2), X2( 0"1, 0"2), F( 0"1, 0"2),19( 0"\ 0"2),,Ib( 0"1, 0"2)) . 

Note that there are obvious better selections to color space definition rather than the RGB 
flat space. 

We minimize our action (5) with respect to the metric and with respect to (r,19 ,1b). 
For convenience we denote below (r,9,b) by (1,2,3), or in general notation i. Minimizing 
the metric gives , as usual, the induced metric which is given in this case as follows: 

911 
912 
922 

9 

1 + (1;)2 + (1;)2 + (1;)2, 
1;1~ + 1;1~ + 1;1;, 
1 + (1~)2 + (1~)2 + (1;)2, 

det(9J.L!J) = 911922 - 9i2· (12) 

Note that this metric differs from the Di Zenzo matrix [10J that was proposed for the multi­
channel case (which is not a metric) by the addition of identity matrix (adding 1 to 911 and 
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g22). The source of the difference is the map used to describe the image. Di Zenzo used 
X : IR? -t IR3 while we use X : E -t IR5. 

The action functional under this choice of the metric is the Euler functional S = f d2 (J.)9. 
It is simply the area of the image surface. Minimization with respect to I i gives the Beltrami 
flow 

which is a flow towards a minimal surface that preserves edges. 
For simple implementation of the Beltrami flow , we first compute the matrices: I~, I~, 

and 6 other matrices , namely 

p' 
q' 

g22I~ - g12I~, 
-g12I~ + gl1I~. 

Then the evolution is given by 

. 1 ( 0 0) 1 (0 0) 1; = - p~ + q~ - -2 2 9xP' + gyq' , 
9 9 

where gx = 8x g (gy = 8yg). 

(14) 

(15) 

A detailed justification for the color norm is given in [14J. Intuitively, for most color 
image formation models , the gradient directions of the different channels should align. The 
Beltrami flow un-twists the undesired torsion between the channels while smoothing them 
and preserving the edges. It is thus considered as a proper candidate for color processing. 

3.1 Color Enhancement Results 

We now present some results of denoising color images using our model. Spatial derivatives 
are approximated using central differences and an explicit Euler step is employed to reach 
the solution. We represent the image in the RGB space; however , other representations and 
different numerical schemes (as in [6]) are possible. 

The results are presented in Fig. 2 as follows: The first shows denoising of a color image 
corrupted with Gaussian noise; left image is the noisy one and the reconstruction result 
by applying Beltrami flow is shown on the right. Iteration has been manually stopped to 
produce the result. Constraints similar to [30 , 3J can be added; see [34J for details. The left 
image on the second row shows a noisy woman 's profile. No artificial noise has been added 
in t his case. The enhanced image is shown on the right . 

Finally, the third row of the figure presents the result of applying the Beltrami flow 
to reconstruct a color image with noise artifacts introduced by JPEG lossy compression 
algorithm. Again , the left image depicts the corrupted one and the right image is the 
reconstructed one using Beltrami flow. 

8 



Figure 2: Color results. 
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4 The Metric as a Structure Tensor 

In [13, 19], Gabor considered an image enhancement procedure based on a single small time 
step along a directional flow. It is based on the anisotropic flow via the inverse second di­
rectional derivative in the 'edge' direction (V'I direction) and the geometric heat equation 
(second derivative in the direction parallel to the edge). The same idea of steering the dif-

. fusion direction motivated many recent works5
. Cottet and Germain [8] used a smoothed 

version of the image to direct the diffusion, while Weickert [35, 36] smoothed also the struc­
ture tensor V' IV' IT and then manipulated its eigenvalues to steer the smoothing direction. 
Eliminating one eigenvalue from a structure tensor proposed in [10] (without smoothing its 
coefficients) was extended to color space in [33, 32], in which the tensors are not necessarily 
positive definite. See also [7] , where the diffusion is in the direction perpendicular to the 
maximal gradient of the three channels (this direction is different than that of [33]). 

Motivated by all of these results we now present a multi channel extension to Weickert 
[35] gray level anisotropic orientation diffusion. We show that the diffusion directions can 
be deduced from the smoothed metric coefficients gJ-L1/ and may thus be included within the 
Beltrami framework under the right choice of directional diffusion coefficients. Based on this 
observation we now extend the scheme to color and texture. 

The induced metric (gJ-Ll/) is a symmetric uniformly positive definite matrix that captures 
the geometry of the image surface. Let Al and A2 be the largest and the smallest eigenvalues of 
(gJ-LI/), respectively. Since (gJ-Ll/) is a symmetric positive matrix its corresponding eigenvectors 

Ul and U2 can be chosen orthonormal. Let U - (ullu2), and A = (~1 12), then we 

readily have the equality 

(16) 

Note also that 

(gJ-Ll/) (gJ-LI/) -l = UA- 1UT = U ( 1/0Al (17) 

and that 

(18) 

We will use the image metric in its natural geometric interpretation, i.e. as a structure 
tensor. The coherence enhancement Beltrami flow I t = 6.,gI for color-texture images is then 
given as follows: 

1. Compute the metric coefficients gJ-Ll/. For the N channel case (for color N = 3) we have 
(see Eq. (12)) 

N 

gJ-L1/ = DJ-LI/ + :L 1=1:. (19) 
k=1 

5This definition of anisotropic flow differs from the Perona-Malik [25] framework, that is locally isotropic. 
See [28] for many interesting extensions and applications of the locally isotropic flow. 
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2. Diffuse the 91-'1/ coefficients by convolving with a Gaussian of variance p, thereby 

(20) 

3. Change the eigenvalues, ).1, ).2, ).1 > ).2 , of (91-'1/ ) so that ).1 = 0-1 and ).2 = a, for 
some given positive scalar a ~ 1. This yields a new metric 91-'1/ that is given by: 

(21) 

4. Evolve the k-th channel via Beltrami flow , that by the selection 9 == det(91-'1/) = ).1).2 = 
0-1 0 = 1 now reads 

(22) 

Note again that for gray level images the above flow is similar to Weickert coherence­
enhancing anisotropic diffusion [35, 36] with the important property of a uniformly posi­
tive definite diffusion tensor. For gray level images, (91-'1/) = I + \71\7 IT, where I is the 
identity matrix. In this case all that is done is the identity added to Weickert 's structure 
tensor \71\7 IT. This addition does not change the eigenvectors and thus the proposed flow 
is equivalent to Weickert scheme. A minor difference is the fact that we propose different 
manipulation of the eigenvalues. Next we present results of this flow as a filter for orientation 
enhancing in color images. 

4.1 Color Orientation-Enhancing Results 

For completeness of the exposition we first repeat the gray level case as in [35,36] and present 
an example of a fingerprint enhancement in gray level in Fig. 3. 

Next , Fig. 4 presents three cases of color and texture. In the first example we enhance 
the orientation texture while smoothing the image and reducing the noise. In the next two 
examples we again adopt Weickert [35] gray level examples and apply the flow , now for more 
iterations, to two color paintings by van Gogh. 

4.2 Beyond a Metric: Reaction in the Edge Direction 

Let us take one step further , and exit our 'metric ' framework by defining (91-'1/) to be a non­
singular symmetric matrix with one positive and one negative eigenvalues. That is , instead 
of a small diffusion we introduce a controlled reaction in the edge direction. Here we extend 
Gabor 's idea [13, 19] of inverting the diffusion along the gradient direction. 
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Figure 3: Left: Original fingerprint image 128 x 128. Right: Result of Beltrami flow with 
smoothed metric (p = 6) and steered eigenvalues (a = 10-5

), after 4 numerical iterations. 

Inverting the heat equation is an inherently unstable process. However, if we keep smooth­
ing the metric coefficients, and apply the evolution in the perpendicular direction we get a 
coherence-enhancing flow with sharper edges that is stable for a short duration of time. 

The idea is simply to change the sign of one of the modified eigenvalues in the algorithm 
described in the previous subsection. We change steps 3 and 4 of the previous scheme that 
now reads: 

1. Compute the metric coefficients g)1.1J = b)1.1J + 'Lt'=l I:I~. 

2. Diffuse the g)1.1J coefficients by convolving with a Gaussian of variance p. 

3. Change the eigenvalues of (9)1.1J) such that the largest eigenvalue )'1 is now Al = _ a-1 

and A2 = a, for some given positive scalar a < 1. This yields a new matrix §)1.1J that is 
given by: 

h - -a - T - - T 

( 

-1 0) 
(g)1.lJ) = U 0 a U = U Acr.U . (23) 

4. Evolve the k-th channel via the flow , that by the selection I§I = 1 det(§)1.IJ)1 = IA1A21 = 
1 - a- 1al = 1, reads 

(24) 

For the gray level case with p = 0 it simplifies to highly unstable inverse heat equation. 
However , as p increases the smoothing along the edges becomes fundamental and the scheme 
is similar in its spirit to that of [13]. Gabor 's [13] comment on the reaction operation in the 
gradient direction is that (It is very similar to the operation which the human eye carrzes 
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Figure 4: Color and texture: Beltrami flow with smoothed metric and steered eigenvalues 
(0: = 10-5 ); Top Row: Original 'Shells ' image 242 x 184 (left), and the result of the flow 
(p = 2) for 2 (middle) and 16 (right) numerical iterations. Middle Row: Original image of 
van Gogh "Lane under Cypresses below the Starry Sky" 392 x 512 (left), and the result of 
the flow (p = 4) for 16 (middle) and 128 (right) iterations. Bottom Row: Original image of 
van Gogh "Starry Night" 290 x 241 (left) , and the result of the flow (p = 4) for 16 (middle) 
and 256 (right) iterations. 
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out automatically! and it is not surprising that even the first steps in imitating the human 
eye by mechanical means lead to rather complicated operations!. It is important to note 
that the idea of stabilizing the inverse heat equation is extensively used in image processing. 
Exploring this area is beyond the scope of this paper. However, we like to refer the reader 
to the 'shock filters' introduced by Osher and Rudin in [24J for gray level images, and the 
extension of Alvarez and Mazora [1 J who apply a reaction in the gradient direction combined 
with a directional smoothing in the orthogonal direction for gray level images. 

Let us apply the above reaction-diffusion algorithm to color images with p = 2. Figure 
5 presents two examples of the flow with a reaction in the edge direction. For comparison 
to the previous orientation smoothing algorithm, the third row presents two steps along the 
color orientation diffusion flow. 

5 2D Gabor /Morlet-Wavelets as a Space for Texture 
Images 

At the risk of introducing additional computational burden, in this section, we introduce an 
alternate way of dealing with texture images. In [17J Lee argues that the 2D Gabor /Morlet 
wavelet transform with specific coefficients is an appropriate mathematical description for 
images. He motivated his model by recent neurophysiological evidence based on experiments 
on the visual cortex of mammalian brains. These experiments indicate that a good model 
for the filter response of simple cells are self-similar 2D Gabor /Morlet wavelets . We refer 
the interested reader to [22J for implementation considerations, and to the rich literature on 
wavelet theory, e.g. [9J. Here, we will comment on the basic concepts that are relevant to 
our discussion. 

Following Lee [17J, we briefly describe the 2D Gabor/Morlet wavelets that model the 
simple cells while satisfying Daubechies' wavelet theory [9J. The 2D wavelet transform on 
an image I ( x, y), is defined as 

(25) 

where a is a dilation parameter, Xo and Yo are the spatial translations, and e is the wavelet 
orientation parameter. 

-1 X - Xo Y - yo 
1/J(x,y,xo,YO,e,a) = Iiall 1/Je( , ), 

a a 
(26) 

is the 2D elementary wavelet function rotated bye. Based on neurophysiological experiments, 
a specific Gabor elementary function is used as the mother wavelet to generate the 2D 
Gabor /Morlet wavelet family by convolving the image with 

1 1 ( 2 2) Ok k
2 

1/J(x, y) = yl2;e-s 4x +Y (e t x - e-T ), (27) 

and 1/Je(x,y) = 1/J(x,y) is defined by rotation of (x,y) via 

{
XX cos e + y sin e 
fj = -x sin e + y cos e. (28) 
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Figure 5: Color and texture reaction diffusion;Top Row: Original 'Shells' image 242 X 184 (left), 
and the result of the flow for 4 (middle) and 8 (right) numerical iterations, a = 0.55. Second 
Row: Original 'mandrill' image 512 X 512 (left), and the result of orientation-preserving flow and 
negative eigenvalue (reaction) in gradient direction, a = 0.39. Third Row: Two steps along an 
orientation-preserving diffusion flow. 
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The discretization of Eq. (25) is given by 

Wp,q,l,m = (T;:;,l,mI) = a-m J J dxdyI(x,Y)'l/JIb.B(a-m(x - p!:::::.x),a-m(y - q!:::::.x)), (29) 

where !:::::.X is the basic sampling interval , and the angles are given by !:::::.B = 27r1/ L, I = 
0, ... , L - 1, L being the total number of orientations; p, q and m are integers determining 
the position and scaling. Note that as m increases the sample intervals get larger forming a 
pyramidal structure. Eq. 29 can be interpreted as a projection onto a discrete set of basis 
functions, namely 

Wp,q,l,m = (I, 'l/Jp,q,l,m) . (30) 

The real number k determines the frequency bandwidth of the filters in octaves via the 
approximation 

a4> + 1 
k = 4> V2ln 2, 

a -1 
(31 ) 

where <p is the bandwidth in octaves, e.g. for a = 2 and <p = 1.5 we get k ~ 2.5. In the 
above approximation the DC normalization term e-k2

/
2 that is required to make a wavelet 

basis out of the Gabor basis is ignored and we consider a = k/wo. So the peaks of the scaled 
mother wavelets in the frequency domain are (approximately) at the locations a-mwo. 

For our application we have chosen L = 16 (16 orientations), a = 2, !:::::.X = 1, k = 2.5, and 
5 scales, i.e. m E {O, .. , 4}. This selection results in a ' tight frame' [11] that allows simple 
summation reconstruction. 

5.1 Beltrami Flow for Texture Enhancement 

We denote the 2D Gabor/Morlet-wavelet transform as W(x, y, B, CJ), where for the discrete 
case CJ = am and B = l!:::::.B. Let R = Real(W) and J = Imag(W) be its real and imaginary 
part. The response of a simple cell is then modeled by the projection of the image onto a 
specific Gabor /Morlet wavelet. 

The Gabor/Morlet-wavelet transform of an image in our framework is a mapping W : 
(x, y, B, CJ) --t (x, y, B, CJ , R, J), i.e. a 4D manifold embedded in 6D. The Beltrami operator 
is not limited to act on gray level images (2D surfaces in 3D) as we have shown in Section 3 
for color. First, the metric gp.v is "pulled back" from the relevant arclength definition in the 
spatial-orientation complex space, namely 

For practical implementation we consider each scale as a separate space. This is in 
contrast to writing the arclength for the full transform. Therefore, the arclength for a given 
scale CJ is ds2 = dx 2 + dy2 + dB2 + dJ2 + dR2, and the induced metric for each scale is given 
by 

RxRy + JxJy RxRe + JxJe ) 
1 + R; + J; RyRe + JyJe . 
RyRe + JyJe 1 + R~ + ft 

(32) 
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As we have seen before, the above result can be understood from the arclength definition 
and applying the chain rule dR = Rxdx + Rydy + Rede, and similarly for dJ to obtain the 
desired bilinear structure. 

Finally, the area-minimizing and feature-preserving Beltrami flow that operates on the 
Gabor/ Morlet-wavelet transform of a texture image can be compactly written as 

(33) 

5.2 Experimental Results 

As a by product of the wavelet decomposition, at each scale (J" we now have the complex 
function Wo-(x , y, e) = Ro-(X , y, e) + iJo-(x , y, e). It defines a 3D manifold in the 5D space 
(x , y, e, Ro- , Jo-). The extra coordinate e that describes the behavior of the image along a 
specific direction enables us to smooth the image while keeping the meaningful orientation 
structure of the texture. Moreover, we have the freedom to apply different filters to the 
different scales. This enables us to preserve the nature of texture images by processing them 
only at significant scales. In other words , we can sharpen a specific scale without effecting 
the rest of the sub-band images. The "scale" at which we choose to apply the filter is similar 
to the role of the parameter p, the variance of the Gaussian used to smooth the metric gil-v 
in Section 4. The first row is Fig. 6 presents the original image and the result of applying 
the Beltrami flow in the decomposition space to filter out non-oriented structures in a gray 
level image. More examples are shown in the second and third rows of Fig. 6. 

6 Movies and Volumetric Medical Images 

Traditionally, MRI volumetric data is referred to as 3D medical image. Following our frame­
work, a more appropriate definition is of a 3D surface in 4D (x, y, z, 1). In a very similar 
manner we will consider gray level movies as a 3D surfaces in 4D, where all we need to 
do is the mental exercise of replacing z of the volumetric medical images by the sequence 
(time) axis. In Fig. 7, the first row shows images at different z locations and the second 
row shows the corresponding denoised images. This is a relatively simple case, since now we 
have co-dimension equal to one. 

The induced metric in this case is given by 

(34) 

and the Beltrami flow is: 

(35) 
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Figure 6: Top Row: Original image 128 x 128 is on the left , Result of Beltrami flow for 70 
numerical iterations of each sub-scale in the decomposition space is on the right . Second 
and Third Rows: Two steps along the evolution for two different texture images, Left is the 
original image 64 x 64. 
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Figure 7: Movie or volumetric data; see text. 
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7 Concluding Remarks 

We introduced a geometric framework and used it to design novel procedures for coherence 
enhancement of color and gray level images. These procedures are based on the interpretation 
of the image as a surface and a heat flow with respect to a given metric (Beltrami operator) 
as a filter. 

We dealt with image enhancement and reconstruction of color and orientation based tex­
ture. These two different spaces were linked by a geometrical measure. The proposed filters 
align the color channels without un-coupling disturbances while enhancing the orientation 
based texture features and/or preserving the edges. In one of the examples Weickert [35] 
texture enhancement algorithm was extended to texture-color and was linked it to the geo­
metric framework. In another example Lee's [17] decomposition space was used for texture 
processing, again , via the geometric framework. 

A direct application of the proposed method is to enhance, selectively smooth, or sharpen 
color-texture and volumetric images. It can also be used to reduce the image entropy prior to 
compression and enhance its coherence in the reconstruction process (e.g. restoring images 
and denoising lossy compression effects) . It was shown by several examples , that the geo­
metrical framework can be applied to color, texture, multi channel data, movies , volumetric 
medical data, as well as non-trivial decomposition spaces. 
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