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1. Introduction 

For many problems of D-brane physics, it is useful to know the low energy action for 

D-branes in curved space. Given a solution of string theory, this is defined by world-sheet 

computation along the !.ines of [1,2]. Such actions could also be used to define Matrix 

theory in curved space, as discussed in [3]. 

For small curvatures 0/ R < < 1, a single D-brane in curved space is described by the 

supersymmetrized Nambu-Born-Infeld Lagrangian. At low energies, this reduces to two 

decoupled sectors, U(l) super Yang-Mills theory and a non-linear sigma modeL 

A crucial feature of the D-brane is enhanced gauge symmetry when several D-branes 

coincide, and thus an action describing more than one D-brane in curved space must 

include a U(N) super Yang-Mills theory as well as the non-linear sigma model, but now 

the two sectors are coupled. 

In [4], a minimal set of axioms was proposed, which should be satisfied both by weak 

coupling D-brane actions in spaces of small curvature, and by Matrix theory actions. We 

will review these below; they are rather uncontroversial statements, the most novel being 

the requirement that a string stretched between the D-branes should have mass exactly 

proportional to the distance between the branes. It was then shown that a d = 4, N = 1 

U(N) Lagrangian with one chiral superfield (parameterizing one curved complex dimension 

- in other words, describing a 3-brane in six dimensions) was determined (uniquely up to 

terms with more than two commutators) by these axioms. Dimensional reduction them 

produces actions for all p-branes with p < 3 in six dimensions. 

Here we study the analogous problem of a 3-brane in ten dimensions, with three curved 

complex dimensions. We will do a local analysis using normal coordinate expansions, and 

develop the analogous "D-normal coordinate expansion" to sixth order. We will show that 

the axioms cannot be satisfied unless the target space is Ricci-fiat, and give strong evidence 

that there exists a solution when it is Ricci-fiat. 

Since the string theory definition works only III this case, this result might seem 

natural and even predestined in the context of string theory. However, since we did not 

use string theory to derive the action, but rather a set of axioms which make perfect sense 

on a general curved manifold, the result seems somewhat surprising. We will discuss its 

interpretation, as well as the possibility that this is a consistency condition for Matrix 

theory compactifications, in the conclusions. 

In section 2, we review the axioms. In section 3, we re-express these axioms as 

conditions on the Kahler potential and the superpotentiaL In section 4, we show that 
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these conditions imply that the target space must be Ricci fiat, and that they uniquely 

determine the superpotential. We also find a compact expression for the conditions on the 

Kahler potential. In section 5, by studying the normal coordinate expansion to the sixth 

order, we demonstrate that there exists a Kahler potential satisfying these conditions. It 

is unique at the first non:.trivial (fourth) order, but at fifth order ambiguities begin to 

appear. Section 6 is devoted to discussion. 

2. Axioms 

Given a d-dimensional Kahler manifold M with Kahler potential K 1 , the problem will 

be to find ad = 4, N = 1 U(N) gauged non-linear sigma model satisfying the axioms below. 

The low energy action will be determined by a configuration space XN , a dN2-dimensional 

Kahler manifold with potential KN; an action of U(N) by holomorphic isometries (which 

determines an action of GL(N)); and a superpotential W. The axioms are then 

1. The classical moduli space, 

{XNIW' = O}/ /U(N), 

is the symmetric product MN / SN. 

2. The generic unbroken gauge symmetry is U(l)N, while if two branes coincide the 

unbroken symmetry is U(2) x U(1)N-2, and so on. 

3. Given two non-coincident branes at points Pi =I Pj, all states charged under U(l)i x 

U(l)j have mass mij = d(Pi,Pj), the distance along the shortest geodesic between the 

two points . 

. 4. The action is a single trace (in terms of matrix coordinates), 

S=Tr(···). (2.1) 

Some comments: 

(i) The axioms could have been stated in a coordinate-free way. Only axiom 4 used 

coordinates, and it could be replaced by something like 

4b. The action has no explicit N dependence, and its value (on field configurations 

with no explicit N dependence) is O(N). 

We will give a coordinate-free statement of the problem elsewhere, but the point is 

that we conjecture that the axioms imply the following statement: 
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Given local coordinates zi on M, there exist local matrix coordinates Zi on XN (we 

define Zi = (Zi)t), such that the moduli space will be parameterized by diagonal 

matrices whose eigenvalues are coordinates on the individual copies of M, and such 

that the U(N) action is 

Zi -t Ut ZiU. (2.2) 

Note that in choosing the coordinates Zi, we must define the off-diagonal matrix 

elements as coordinates on XN , and (2.2) is one constraint on them. It does not 

completely specify them, however: we can still make holomorphic matrix changes of 

coordinate which are trivial on the moduli space: 

Zi ~ Wi = Zi + a}k[Zj, Zk] + b}kl[zj, Zk]Zl + .. . 
ZZ ~ Wz = Zz + a-}k[Zk, ZJ] + bhfZf[Zk, ZJ] + .. . 

(2.3) 

where ah = (a}k)*' etc. are arbitrary constants. 

Thus the problem will be to find all Lagrangians of the form 

L = J d40Tr KN(Z, Z) + .1 d20Tr W(Z) + c.c. (2.4) 

satisfying the axioms, where we consider two Lagrangians equivalent if they are related 

by a field redefinition (2.3). 

(ii) The potential will be the sum of that coming from the D and F-terms, and supersym­

metric vacua will satisfy the conditions 

0= 2:)Zi, 8 ~Z~N] 
i (2.5) 

0 = 8 Tr W N 

8Zi . 

We want the moduli space to be commuting matrices [Zi, zj] = 0, and in more than 

one dimension the D-fiatness condition alone does not suffice to do this. 

In fiat space the model has the N = 4, d = 4 Lagrangian, which in this notation has 

the superpotential Tr Zl [Z2, Z3]. More generally, we could take the form 

(2.6) 

which vanishes for any commuting matrices and thus has W' = 0 on this subspace. 

For a generic function of this form, other solutions would not be expected and thus 

we would have the moduli space MN IBN. 
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(iii) Clearly getting the right metric on moduli space will require us to take for KN(Z, Z) 

some version of K(z, z), with a definite ordering prescription. On the moduli space, 

the ordering prescription will translate into a specific dependence of the action for the 

off-diagonal elements on the point in rriod uli space. 

The axioms stated can only determine the action and its second derivatives on the 

moduli space, since they only refer to masses of stretched strings, not interactions 

between stretched strings. 

The second derivatives we will use are 

(2.7) 

and 

(2.8) 

(iv) We could have considered a more general gauge kinetic term, 

(2.9) 

Taking non-constant I(Z) would lead to a space-dependent gauge coupling, as would 

come from a non-constant dilaton background. The mass conditions in this case 

involve the dilaton as well as the metric (e.g. see [5]), and we will not consider this 

case here. Non-constant !ij(Z), as we will see below, turns out to be incompatible 

with the mass conditions. 

3. Mass conditions on Kahler potential and superpotential 

In this section, we summarize conditions on the Kahler potential anq. superpotential 

imposed by the axioms. In particular, we express the mass condition (the axiom 3) as 

conditions on g(Zl' Z2) and Dijk(zl, Z2) defined in (2.7) and (2.8). 

Our considerations will be in a neighborhood of a point p in the target space, and we 

will use coordinates Z in which this is at Z = o. 
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3.1. Normal coordinates and the squared distance 

On any Kahler manifold M, one can always find a holomorphic local coordinate system 

(normal coordinates) such that the metric has an expansion around z = 0 as 

(3.1) 

By using Kahler potential transformations Kl --t Kl +ReF(z), we can assume the Kahler 

potential on M has an expansion 

(3.2) 

More explicitly, 
.. 1 . ~ k -

K ( -) - t -t R _ - t -) -l + 
1 Z, Z - Z Z -"4 ijklZ z z z .... (3.3) 

where Ri]kl is the Riemann curvature at z = O. All symmetries of the Riemann tensor 

Ri3kl = RkJi"i and Ri3kl = Riik], are manifest in this expression. 

We also need an expression for the geodesic distance. Let d2 (x, z) be the squared 

geodesic distance from x to z. It obeys the differential equation 

i]( ) a d2
(x, z) a d2

(x, z) = d2 ( ) 
g x a' . x, z xt ax) (3.4) 

which follows from the Einstein relation 4gi]PiP] = m2
, the momentum Pi = maS(x, y)/axi 

and the fact that the point particle action is proportional to the geodesic distance, 

Sex, y) = md(x, y). 

This combined with the initial condition 

(3.5) 

determines the geodesic distance uniquely [6]. For example, its expansion to O(Z4) is 

(3.6) 

In section 6, the expansion to the sixth order is given. 
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According to axiom 4, the Kahler potential KN for the N D-brane is expressed as a 

trace of a power series in Z and 2. Again, by a holomorphic coordinate change Z -t f (Z), 

we can go to normal coordinates on the full configuration space XN, in which KN takes 

the form 
00 

- . - . '"' (p q) - -Tr KN(Z,Z) = Tr ztzt + ~ KN' Tr Z· ··Z···Z···Z· ... (3.7) 
p,q=2 

Here Z ... 2 ... Z ... 2 ... is some sequence of p Z's and q 2's. This eliminates the ambi­

guity expressed in equation (2.3). 

As discussed in [4], reproducing the metric for each of the N branes requires 

N 

Tr KN(Z, 2) I = L KI (za, za), 
ZEMN jSN a=I 

(3.8) 

where z~, .. . ,zkr are the eigenvalues of Zi. Thus K N must have the same expansion in 

powers of Z and 2 as K I , but the precise ordering remains to be fixed. 

A natural guess for the full Kahler form would be 

i -"l 1 i -""' k-[ = Tr Z Z - -R'""'kl- 8Tr Z ZJ Z Z + ... 4 ZJ 

(3.9) 

where 8Tr is the symmetrized trace: 8Tr AI· ··An = ~! Lo-ESN Tr Ao-(I) ···Ao-(n). How­

ever, there could be additional terms which vanish on the moduli space, and we will need 

to constrain them by using the mass condition (axiom 3). As it will turn out, (3.9) must 

be corrected (at sixth order!). 

3.2. The mass condition for gauge bosons 

The simplest thing to check is that the gauge boson masses are correctly reproduced, 

because these do not depend on the superpotential. This requires 

(3.10) 

where X = EI2 + E2I is a broken generator. More explicitly, 

(3.11) 
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3.3. Non-constant gauge kinetic term 

We now consider the case of non-constant fij(Z) in (2.9). This would modify the mass 

condition to 

(3.12) 

where f(z}, Z2) is holomorphic. 

Suppose f(Zl, Z2) rv 1 +zk is non-constant; then the left hand side will include a term 

O(zk+1Z) + c.c .. From (3.7), we see that in normal coordinates gil '" lSi] + O(zz), leading 

to the right hand side JzJ2 + O(z2 z2) which cannot include such a term. 

Thus the mass condition requires trivial gauge kinetic term, and we restrict attention 

to this case. 

, 

3.4. The mass condition for scalars 

The masses of the chiral superfields are determined by the kinetic term gil and the 

second derivatives of the potential, and thus their mass condition is 

. where lSi = 8/8ZI2 and 8] = a/az41' 

The D-term contribution is 

(3.13) 

(3.14) 

and its second derivative on the moduli space was given in [4], while the F-term contribu-

tion is 

v = ( a2 
K ) -1 an: 8~ . 

F . -j 8Z~-j 
aZ~b8Zba ab aZba 

(3.15) 

with second derivative on the moduli space 

(3.16) 

More explicitly, with the gauge boson mass (3.11), the mass condition (3.13) reads 

(3.17) 
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4. More on the mass conditions 

In this section, we study the mass conditions (3.11) and (3.17) found in the previous 

section. We show that these require that the target space to be Ricci-fiat and also determine 

the superpotential completely. 

4.1. Ricci flatness 

In this subsection, we will show that the mass condition (3.17) implies Ri] = o. 
Note that the off-diagonal metric 9 and diagonal metric 9 are related as 

which follows from (3.5) and (3.11). For later convenience, set 

T k · I· a
2 

f ( ) a mg ImZ1 ~Z2 a =a n 0 3.17, we get 
Zl Z2 

As was explained in the introduction, we assume a superpotential of the form 

( 4.1) 

(4.2) 

(4.3) 

where· .. stands for higher order terms with at least one commutator. Then, nijk(Z) can 

be expanded as 

( 4.4) 

Let us plug the expansions (3.1) and (4.4) into (4.2). On the right hand side, there is no 

purely holomorphic terms in the expansion. On the left hand side, however, such terms 

would appear with coefficients 8kl n~~~;ml ... m
p 

€]ln· This implies n~~~;ml . .. m
p 

= 0 for all 

p 2:: 1, i.e. nijk(Z) actually has no z dependence in our coordinate system; 

(4.5) 

Then, (4.2) reduces to 
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which is equivalent to det gmn(Z, z) = 1e1 2
. The normalization (3.1) fixes Icl = 1. Thus the 

final result is 

det gmn(z, z) = 1. (4.6) 

Ricci flatness of M is a corollary of this: 

(4.7) 

4.2. Superpotential WN(Z) 

In this subsection we will show that the mass condition (3.17) determines the super­

potential Tr WN(Z) to be 

(4.8) 

to all order in diagonal coordinates but up to the second order in commutators. 

The basic strategy is quite similar to that used in the previous subsection. Here, 

instead of taking the limit Zl -t Z2, we will expand various quantities as a power series in 

Zl - Z2 and Zl - Z2: 

00 

A( - - ) L A(.p,q). _. -. (~ ZI +Z2 ) 
~,~,n,n = 2 ' 2 . ~l'''~pj)l''')q 

p,q=O (4.9) 

The second derivative of the superpotential is expanded as 

00 ( 4.10) 

L: A(p) '(z . ..LZ-) ( )kl ( )k = H· '. ~ Zl - Z2 . .. Zl - Z2 p l),k1 ... k p 2 
p=l 

From the superpotential (4.3), we have 

A(l) (~) - CE" + 0 (ZI+Z2) 
Hijjk 2 - ~)k 2' 

We saw in the previous subsection that lei = 1 and by choice of coordinates we can take 

C = 1. Then, (4.5) implies 
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00 

ni °k(Zl - Z2)k =€i ok + ~ n~~: (Z! +Z2) (Zl - Z2)k1 ... (Zl - Z2)kp . 
) J ~ t),kloookp 2 (4.11) 

p=2 

On the other hand, the D-Kahler potential (3.7) gives the following expansion of 9 

(4.12) 

Let us consider a similar expansion of the mass degeneracy condition (3.17). On the 

right hand side, there is no terms with bi-degree (p = 1, q ~ 2). On the left hand side, 

however, such terms would appear with coefficients ok[€][nni~?mlo.omp Thus, n(p) must 

vanish for all p ~ 2. This implies 

( 4.13) 

to all orders in Zl and Z2, and the stated result. 

4.3. Condition on det 9 

Given the F term contribution (4.13), we can reduce the mass condition (3.17) to a 

much simpler form: 

( 4.14) 

which can be rewritten as 

( 4.15) 

This holds if and only if 

(4.16) 

The condition (4.16) bears a striking similarity to the previous result det g(z, z) - 1. This 

is consistent since 9 and 9 are related via (4.1). 
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5. Explicit form of D-Kahler potential 

We have seen that the axioms of D-geometry and especially the mass condition (3.17) 

puts stringent constraints on our problem. In normal coordinates, the superpotential 

WN(Z) is uniquely fixed as (4.8) and the nontrivial information of D-geometry is encoded 

in the Kahler potential KN(Z, Z). 

Let us summarize the properties KN(Z, Z) should have: 

1. It must reproduce the Ricci fiat metric for each of the N branes. 

Tr KN(Z,Z)I = f,K1(Za,Za), 
ZeMN /SN a=l 

(5.1) 

where zf, ... ,zkr are the eigenvalues of Zi. 

2. The gauge boson mass condition: Its second derivative must reproduce the geometric 

distance. 

(5.2) 

3. In normal coordinates, the general mass condition becomes 

(5.3) 

5.1. K N to the fourth order 

We now show that, at the first non-trivial order (fourth order) in the normal coordinate 

expansion, there exists a unique KN satisfying these conditions: 

(5.4) 

The most general form of K N to fourth order reads 

Tr KN(Z, Z) = Tr ZZ - ~Ri]klSTr ZiZk Z] Zf 

1 i . -Tc -f + 4A(ij)[kf]Tr {Z ,ZJ}[Z ,Z] 

1 * i j -Tc -f + 4A[ij](kf)Tr [Z ,Z HZ ,Z} 

1 i . -Tc -f + 4B[ij][kl]Tr [Z ,ZJ][Z ,Z] 

(5.5) 

1 i -~ k-f + "2C(ik)(]f) Tr [Z ,ZJ][Z ,Z] 
. -~ k-f + D[ik][]l]Tr ZZ ZJ Z Z 
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In general, the terms Band C together are redundant, by using the Jacobi identity. 

For example, Tr [x, x][y, y] - Tr [x, y][y, x] = Tr [x, y][x, y]. So, we require that C be 

symmetric under such interchanges. Similarly, the symmetry condition on D makes it 

independent of C and R. 

To check that this includes all fourth order terms, we count d4 terms Tr Zi zj Zk Zl 
and d2 (d2 + 1) /2 of the form Tr Zi Z] Zk Z[, while the expansion above has (d( d + 1) /2)2 + 
2(d(d - 1)/2)2 + 2(d(d - 1)/2)(d(d + 1)/2) + (d(d + 1)/2? terms, which agrees. 

To check the conditions at fourth order we use (3.6) for d2 , and compute (2.7) using 

(5.5) to find 

1 -
gi](Zl, Zl, Z2, Z2) = 8i] - "4 RGk[(Zl + Z2)k(Zl + Z2)1 

1 -
- 12 Ri]kf(Zl - Z2)k(Zl - Z2)1 

+ (AikJl + DikJl)(Zl + Z2)k(Zl - Z2)[ 

+ (A:k][ + Dik][)(Zl - Z2)k(Zl + z2l 

+ Bik][(Zl - Z2)k(Zl - z2l 

- Cikl](Zl - Z2)k(Zl - Z2)[' 

(5.6) 

We find that, taking into account the symmetries of the tensors, we need A = C = D = 0 

but B is undetermined. 

Now let us use condition 3. Using our computation (5.6) of g, we have (to second 

order) 

where Rkf = 8G RGkf is the Ricci tensor at Z = 0 and B k[ = 8i ] B ikJl. We see that in this 

coordinate system the only solutions have R k[ = BM = O. The latter implies B[ik]Ul) = 0 

in d:::; 3. 

5.2. Higher orders 

The appearance of Ricci flatness in the computation was somewhat unexpected, and 

to get more insight (and be sure that there are no further consistency conditions) we push 

. the computation to the next non-trivial case, which is sixth order. In addition, we would 

like to know whether the uniqueness we found at fourth order persists at higher orders. 
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5.3. Normal coordinate expansions to sixth order 

To this order, the expansion of the Kahler potential in normal coordinates is 

p,q=2 

.. 1 . ., k l 
=zzzz--R''''kl-zzzJZ Z 4 ZJ 

S - - i -} k -l m + + ijklmZ Z Z Z Z c.c. 

+ T - - i -} k -l m p + ijklmpZ Z Z Z Z Z c.c. 

+ U . .., - - zi z} zk l zm Zii zJklmn 

+ ... 

where the coefficients S, T and U are given by 

This can be checked by using the expression 

o4K _ o3K o3K 

RiJkl(Z) = - oziozjozkozl + gmn oziozkozn ozmozjozl. 

(5.8) 

(5.9) 

(5.10) 

The terms Sand T correspond to purely holomorphic derivatives of the curvature 

and as such do not lead to essentially new features. However, the mixed derivatives U z3 z3 

might. 

Again by using (3.5) and (3.4), we find the expansion of the squared geodesic distance 
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d2 (x, z) to O(z, Z)6: 

d2 (x, z) =Ix - zl2 
1 - -

- "4 RiJkl(X - z)i(X - z)i (x + z)k(x + z)l 

1 - -
- 12 RGkl(x - z)i(x - z)i(x - z)k(x.- z)l 

3 - -+ "4SiJklm(X - Z)i(X - z)i(x + z)k(x + z)l(x + z)m 

1 - -
+ "4SiJklm(X - z)i(x - z)i(x - z)k(x + z)l(X - z)m 

1 - -+ "2SiJklm(X - z)i(x - z)i(x - z)k(x - z)l(x + z)m 

+ c.c. 

1 --+ 10TiJklmp(x - z)i(x - z)i(x - z)k(x - z)l(x - z)m(x - z)P 

1 - -
+ "2TGklmp(X- z)i(x - z)i (x + z)k(x - z)l(x + z)m(x - z)P 

1 - -
+ "2TiJklmp(X - z)i(x - z)i (x + z)k(x + z)l(x - z)m(x - z)P 

1 - -
+ 2TGklmp(X - z)i(x - z)i (x + z)k(x + z)l(x + z)m(x + zy 

+ c.c. 

9 --
+ SoUGklmn(X - z)i(X - z)i(x - z)k(x - z)l(x - z)m(x - z)n 

+ 136UiJklmn(X - z)i(x - z)J(x + z)k(x - z)l(x + z)m(x - z)n 

+ ~UGklmn(X - z)i(x - z)J(x + z)k(x + z)l(x - z)m(x - z)n 

3 --+ 16 UGklmn(X - z)i(X - z)i (x - z)k(x + z)l(x - z)m(x + z)n 

9 --
+ 16 UiJklmn(X - z)i(x - z)i (x + z)k(x + z)l(x + z)m(x + z)n 

- 7~ORiiiknOPiiRpJml(X - z)i(x - z)J(x - z)k(x - z)l(x - z)m(x - z)n 

- 41SRiiiknOPiiRpJml(X - z)i(x - z)J(x - z)k(x - z)l(x + z)m(x + z)n 

+ ... 

14 
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5.4· D-Kiihler potential to fifth order 

We now consider the possible fifth order terms in the D-Kahler potential, and their 

contributions to fii). 

The natural guess for the fifth order term is 

(5) - i - ~ k - l Tn K (Z, Z) = ... + Si]klTnSTr Z ZJ Z Z Z + C.c. + .... (5.12) 

This leads to the variation 

g3)(x, z) =~Si]klTn(X + z)k(x + zl(x + z)Tn 

1 -
+ 4Si]kfTn(X - z)k(x + z)I(X - z)Tn (5.13) 

1 -
+ "2 SijkfTn (x - z)k(x - z)I(X + z)Tn + C.c. 

which indeed reproduces the corresponding terms of (5.11) in (5.2). 

However, it is not the unique Kahler potential which does so. In fact, there are two 

commutator terms one can add which modify fiij, but which preserve both (5.2) and (5.3) 

at this order. An explicit example is 

(5) - i j k - l - m * -"l -] -leI Tn K (Z, Z) = E[ij]klm Tr [Z ,Z ]{[Z ,Z], Z }+E[U]leITn Tr [Z ,Z ]{[Z ,Z], Z }. (5.14) 

This leads to the variation 

The symmetry of E guarantees that this will reproduce (5.2), while at this order, the 

condition det 9 = 1 reduces to Tr g(5) = 0, which also has solutions, e.g. Eijklm = cij t5kfCm. 

This means that the axioms as stated do not have a unique solution. To clarify the 

degree of non-uniqueness, let us check the Riemann curvature on the moduli space. One 

can show that the mixed components are given by 

(5.16) 

The ambiguities discussed above manifest themselves at O(ZI - Z2)' In terms of the ge­

ometry of the configuration space XN, the curvature on the bundle of off-diagonal modes 

is fixed on the diagonal Zi = Zj, but is not completely fixed off the diagonal. 
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5.5. D-Kiihler potential to sixth order 

We give an explicit solution of the conditions to this order, without studying the 

question of uniqueness. 

The gauge boson mass condition (3.11) can be reproduced by the Kahler potential 

K(Z, Z) =Tr ZZ 

1 i-""' k-f - -Ro""'kl- 8Tr Z ZJ Z Z 4 lJ 

_ _ i -] k -f m + Sijklm8Tr Z Z Z Z Z + c.c. 
_ _ i-] k-f m p + Tijklmp8Tr Z Z Z Z Z Z + c.c. 

+ 0.""' - - 8Tr Zi z] Zk Zf zm zn zJklmn 

+ Riqmnt5qp Rpfk] 

x ( - 9
1
6 Tr {zk, [Zi, zf]}{zn, [zm, Z]J} 

+ 14~O Tr [Zk, [Zi, Zf]] [zn, [zm, Z]]]) 

_ k i -f m -n -q + Fkilm[nq] Tr {Z ,[Z ,Z ]}{Z ,[Z ,Z J} + c.c. 
_ k i -f m -n -ij + Gkilm[nq] Tr [Z ,[Z ,Z]][Z ,[Z ,Z ]] + c.c. 

= ~ K~P,q) 0"", ""' 8Tr Zi1 ... Zip Z]1 ... Z]q 
L Z1 , ... ,tpiJ1 ,ooo,Jq p,q 

p+q$6 

+ Riqmnt5ijp Rp[k] 

X (- 9
1
6 Tr {zk, [Zi, zfJ}{zn, [zm, Z]J} 

+ 14~O Tr [Zk, [Zi, Zf]] [zn, [zm, Z]]]) 

_ _ k i -f m -] -n + Fkilm(jn] Tr {Z ,[Z ) Z J}{Z ,[Z, Z J} + c.c. 
_ _ k i -[ m -] -n + Gki1m(jn] Tr [Z ,[Z ,Z ]][Z ,[Z, Z ]] + C.c. 

(5.17) 

Note that it is not a symmetric trace. The extra O(R2) terms are required to satisfy 

(5.2), while the terms F and G will be required to satisfy (5.3). 
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This K (Z, Z) gives 9 as 

9i](X,Z):= .8
2 

_j KI 
8Zb8Z21 ZEMN ISN 

= t5i] 

1 . -
- 4 Ri]kl(X + z)k(x + z)l 

1 -
- 12 Ri]kl(X - z)k(x - z)l 

1 -
+ 4Si]klm(X - z)k(x + z)l(x - z)m 

1 -+ 2Silklm(x - z)k(x - z)l(x + z)m 

3 -
+ 4Si]klm(X + z)k(x + z)l(x + z)m 

+ c.c. 

1 -
+ 10 Ti]klmp (x - z)k(x - z)l(x - z)m(x - z)P 

1 -
+ 2Ti]klmp(X + z)k(x + z)l(x - z)m(x - z)P (5.18) 

1 -
+ 2Ti]kfmp(X - Z)k(X - Z)l(X + z)m(x + z)p 

1 -+ 27i]kfmp(X + z)k(x + z)l(x + z)m(x + z)P 

+c.c. 

( 
9 1 - ) + 80 Ui]kfmn - 720 Riiiknt5PQ Rp]ml + 2Gki1m]n + c.c. 

(x - z)k(x - zl(x ~ z)m(x - z)n 

+ (~Ui]klmn - 418Riiiknt5PiiRp]ml) (x - z)k(x - z)l(x + z)m(x + z)n 

+ (1
3
6 Ui]kfmn + 2 Fki1m]n ) (x -z)k(x + zl(x - z)m(x + z)n + c.c. 

9 -
+ 16 Ui]klmn(X + z)k(x + z)l(x + z)m(x + z)n 

+ ... 

5.6. Ricci flatness 

We are now in a position to check the consistency condition (5.3) at higher order. 

On the one hand, we list the constraints on the coefficients STU following from Ricci 
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flatness: given that 

o = gij (Z)RiJkl(Z) 

we have 

for rtk, Z, m, ii, p. 

= {8iJ + 8iq 8Jp Rpiikrzk l + ... } x 

{RiJkf - 12(Si]klmZm + C.C.) - 24(TiJkfmpZmZp + C.C.) 

- 36UiJklmnZmZn + 8pQRiiiknRpJmrzmzn + ... }, 

~ijs - - - 0 .u ijklm - , 

~ijT- - - 0 
U ijklmp - , 

. .., 1 . ., -
nJ U - - - - nJ ~pq (R· k R - - + R -R - ) 
U ijklmn - 36 U U ~ii n pjml iqkl pjmn , 

(5.19) 

(5.20) 

In order to compute det 9 to O(z, z)4, let us put gil = 8i] + hiJ' and use the following 

formula' 
det 9 = det (1 + h) 

= exp Tr log(l + h) (5.21) 
~ 1 ~ 2 

= exp (Tr h - 2" Tr h + ... ) 

(Note that h is O(Zl zl), we can safely neglect higher powers of h.) Thus, we need to check 

Tr h - ~Tr h2 = O(z, z)5. (5.22) 

Plugging h from (5.18) into (5.22), we immediately get 

O(Z2Z1) =} 8ijSiJklm = 0, (5.23) 

O(z3z-1) ->... djT- - - 0 
---r U .ijklmp - . 

from lower order terms as a necessary condition for det 9 = 1. Clearly, these follow from 

Ricci flatness (5.20) .. 

This is not the case for O(z2 z2) terms. More precisely, the coefficients of the following 

terms cancel using the last equation of (5.20): 

(x + z)k(x + zl(x + z)m(x + z)n, 

(x - z)k(x - z)l(x + z)m(x + z)n. 
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Those associated with 

(x - Z)k(X - zl(x - Z)m(X - Z),\ 

(x - Z)k(X + zl(x - Z)m(X + Zy1-, 

(x + Z)k(X - Z)l(X + Z)m(X - Z)n 

(5.25) 

do not automatically cancel, but can be made to cancel by appropriate choice of the terms 

F and G: 
1 (- -) Fkilm[Jn] = + 192 Riqmn8Qp R plkj - Riqmj8Qp Rplkn , 

1 (- -) Gkifm[Jn] = - 2880 Riqmn8Qp R plkj -:- Riqm]8Qp R plkn . 

(5.26) 

In conclusion, one can find a sixth order K(Z, Z) such that both the gauge boson 

mass condition and det 9 = 1 are satisfied. 

6. Conclusions 

In this work we found actions for N Dp-branes sitting at points in a three complex 

dimensional Kahler manifold, satisfying natural conditions from D-brane physics, notably 

the enhancement of gauge symmetry when the D-branes coincide, and the proportionality 

of the mass of a string stretched between two D-branes to the shortest geodesic distance 

between them. 

These actions would be expected to arise as the low energy limit of D-brane actions 

derived from string theory for manifolds with weak curvature. They are also natural start­

ing points for the definition of Matrix theory [7,8] on target space 1R5
-

p x TP x M, where 

M is topologically trivial but curved, or a subregion of a larger compact manifold. The 

condition on the string masses guarantees that the one-loop quantum effective action will 

contain a term v4 jd7- p , the leading short distance behavior of the supergravity interac­

tion in this case [9]. Now this is not to say that the action as we have computed it so 

far is a complete and consistent definition of Matrix theory in this background - it seems 

likely that additional terms higher order in commutators as well as in derivatives would 

be required to get the physics right - but rather that the consistency conditions which we 

can check at this order can be satisfied and with a pleasing degree of uniqueness. 

We found that the mass condition cannot be satisfied unless the manifold is Ricci fiat, 

or (combining with the Kahler condition) a Calabi-Yau manifold. Now at first this might 

not seem surprising - certainly we need to start with a consistent closed string theory 
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background to define sensible open string actions. However, the approach taken here only 

used rather general consistency conditions, and no details of string theory. The standard 

string theory argument, world-sheet conformal invariance expressed as the RG fixed point 

condition on the world-sheet sigma model, does not have any obvious connection with the 

starting point or the analysis. 

Furthermore, the claim that these actions are appropriate starting points for Matrix 

theory certainly suggests that we should look for an argument independent of string theory. 

What we are saying in this context is that two a priori independent consistency conditions 

on the physics - that the background satisfy the equations of motion, and that the one-loop 

quantum corrections reproduce supergravity interactions - are in fact related. 

Another known argument for Ricci flatness of target spaces for brane theories which 

may have a closer relation to the present story is the requirement for kappa symmetry of 

the covariant supermembrane action that the background satisfy the supergravity equation 

of motion [10,11]. Now according to the rules of Matrix theory, we can find membrane 

solutions of the action, leading to a possible relation; on the other hand we are necessarily 

working in light-cone gauge, where kappa symmetry has already been fixed. 

A related argument which could work after gauge fixing is due to Aharony, Kachru and 

Silverstein (unpublished). String theory or M theory compactified on a Calabi-Yau target 

will have N = 2, d = 4 (or the equivalent N = 1, d = 5) supersymmetry, and the branes 

will break half of this. On the other hand, if the space is not Ricci flat, one would argue 

that since there is no covariantly constant spinor, there is no unbroken supersymmetry, 

and the D-brane theory cannot be supersymmetric. Thus, given that we assumed that the 

D-brane theory is supersymmetr~c, we should find that the target space has a covariantly 

constant spinor and is thus Calabi-Yau. 

Although this is an attractive argument, the problem with it (recognized by AKS as 

well) is that the true condition for supersymmetry in string theory is that the target space 

have zero integrated Ricci curvature (zero first Chern class). We expect a' corrections to 

the target space metric, and these can be compatible with supersymmetry, if we also have 

a' corrections to the supersymmetry transformation laws, which modify the condition for 

an unbroken supersymmetry away from Ricci flatness. 

Our result adds to this the statement that the exact proportionality of the masses of 

stretched strings to the geodesic distance must also gain a' corrections in this case; we 

know no argument for or against this in general. For example, the (;3 If orbifold models 

in [12], which generically describe D-brane propagation on non-Ricci flat metrics, will not 
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satisfy the isotropic mass condition in these cases. On the other hand, if one can tune 

the "seed" metric in that construction to produce a Ricci flat physical metric, it will be 

interesting to go on and implement the mass condition. 

It will be interesting to recast our discussion in more geometrical language, and find 

axioms which further constrain the action and determine the higher commutator terms. 

The way in which the Ricci-flatness condition arose in our considerations, through the 

equation (5.3), suggests that the full configuration space XN must be Calabi-Yau. 

A very interesting question is whether the mass condition is stable under quantum 

corrections. Since these are non-renormalizable sigma models, the question seems best 

defined for p :::; 1. For p = 1, it would appear to be true at one loop, if the full configuration 

space is indeed Calabi-Yau. On the other hand, one might worry that the known four-loop 

beta function would violate it. Perhaps the coupling to the gauge fields changes this? 

For p = 0, we do not have renormalization in the conventional sense, but it seems quite 

possible that some problems involving large N numbers of D-branes can be treat~d by a 

large N renormalization group. Some comments on this are made in [3]; for both types of 

renormalization, it will be very interesting to look at quantum corrections in these models. 
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