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Abstract 

Type IIA brane configurations are used to construct N = 2 supersymmetric gauge 
theories in two dimensions. Using localization of chiral multiplets in ten-dimensional 
spacetime, supersymmetric non-linear sigma models with target space such as Cpn - 1 and 
the Grassmann manifolds are studied in detail. The quantum properties of these models 
are realized in M theory by taking the strong Type IIA coupling limit. The brane picture 
implies an equivalence between the parameter space of N = 2 supersymmetric theories in 
two dimensions and the moduli space of vacua of N = 2 supersymmetric gauge theories 
in four dimensions. Effects like level-rank duality are interpreted in the brane picture as 
continuation past infinite coupling. The BPS solitons of the cpn-l model are identified 
as topological excitations of a membrane and their masses are computed. This provides 
the brane realization of higher rank tensor representations of the flavor group. 



1 Introduction 

The realization of supersymmetric gauge theories using various branes in string theory, 

with the aid of some string theory dualities, enables us to make various predictions on the 

dynamical effects in the strong coupling regime, as was first exhibited in [1]. Phenomena in 

theories with eight supercharges were studied subsequently in [2, 3, 4, 5, 6, 7, 8]. Theories with 

four supercharges were constructed in [9] and studied further in [10, 11, 12, 13, 14, 15, 16, 17, 

4, 18, 19, 20, 21, 22, 23,24, 25]. Supersymmetric gauge theories can also be studied from string 

theory by realizing the gauge symmetry as a singular geometry of the string compactification 

[26]. This method has also been developed extensively in various directions. 1 

One important aspect of the discussion in theories with four supercharges is the realization 

of chiral symmetry and chiral gauge theory in terms of branes. A proposal of chiral symmetry 

realization was given in [15] in which it was also proposed how the different chiral multiplets arise 

from the brane construction. The proposal was examined in [4] by calculating superpotentials 

for various brane configurations, and there was an agreement with field theory expectation in 

all the cases. In [21] it was explained how chiral multiplets can be localized in ten-dimensional 

space-time, by making use of the fact that the theories in question actually live in five dimensions 

with one direction being in a finite interval. The chiral matter is localized on one boundary of 

the interval, injecting an anomaly which flows through the interval to be absorbed by the chiral 

matter of opposite chirality which is localized at the other boundary. The four dimensional 

theory is then anomaly free. However, this is not a chiral theory in the ordinary sense. For 

this, we need to realize chiral multiplet in a more general representation of the gauge group 

rather than just the (anti- )fundamental or the adjoint. 

One of the aims of this paper is to examine these ideas by studying N = 2 (i.e. (2,2)) 

supersymmetric theories in two dimensions that can be considered as the dimensional reduction 

of chiral theories in four dimensions. Chiral matter in four dimensions does not lead to gauge 

anomalies upon dimensional reduction to two dimensions and hence theories which would be 

anomalous in four dimensions are consistent theories in two dimensions. We construct such 

gauge theories using branes of the Type IIA superstring following the proposals of [15], and 

compare with what we know about these theories. We will find considerable agreement between 

1 In particular, in [27] it was noted that solutions of some N = 2 theories are realized as the configurations 
of Type IIA fivebranes in flat space-time. 
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them, providing further support for the proposal of chiral symmetry realization. 

There are many interesting features in N = 2 theories in two dimensions, and many exact 

results have been obtained. Moreover, some of these theories are even completely integrable. 

In section 2, the general background for N = 2 theories in two dimensions is summarized. One 

motivation of the study of such well-understood systems using branes is to translate interesting 

field theory phenomena to the language of branes. In such a way more phenomena can be 

captured using the branes in cases where the field theory tools are not as powerful as in two 

dimensions. In particular, we obtain a hint for realizing non-fundamental representation of the 

gauge group. 

However the interplay between gauge theories and branes goes both ways. Another aim of 

this paper is to use brane configurations to deepen the understanding of N = 2 supersymmetric 

theories in two dimensions. Using the brane construction we get new interpretation for phe­

nomena which are not clear from current methods in field theory. In some cases we obtain also 

some predictions, qualitative and quantitative, which were not known before. 

In section 3, we construct brane configurations in Type IIA string theory. We examine the 

space of vacuum configurations in this set-up, and compare with the space of classical vacua of 

the field theory. 

In section 4 we solve the. proposed models of section 3 by taking the strong Type IIA 

coupling, going over to M theory using the methods of [3]. We see that it correctly captures 

important quantum effects, such as running of the Fayet-Iliopoulos coupling and the anomaly of 

an R-symmetry group. We also show that it correctly reproduces the number of quantum vacua 

together with the discrete chiral symmetry breaking, in the cases corresponding to the cpn-l 

and Grassmannian sigma models. In particular, we show that the relation of the quantum 

cohomology ring of the cpn-l model is realized in the M theory picture. 

In section 5, we discuss continuation past infinite coupling which is realized by an interchange 

of two NS branes [1, 9] and interpret it as a transition between two gauge theories which leads 

to level rank duality [28, 29] of WZW models. Other brane motions lead to new transitions in 

two dimensions which are discussed in section 5.1. 

One more important viewpoint emerges from the brane construction. The brane pic­

ture demonstrates a relation between p-dimensional theories with 4 supercharges and p + 2-

dimensional theories with 8 supercharges (p ~ 4). The relation is that the parameter space of 
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the Jrdimensional theory is the moduli space of vacua of the p + 2-dimensional theory. This 

viewpoint was first introduced and emphasized in [4] for the p = 3 case; The Coulomb branch 

of the 5d theory is then the space of real masses of the 3d theory, while the Higgs branch of 

the 5d theory is the space of complex mass parameters for the 3d theory. In section 5.2, we 

will touch this correspondence for the p = 2 case. 

The simplest model in two dimensions with N = 2 s~persymmetry and with chiral matter 

is the cpn-l model. This model was studied intensively in the past mainly because of various 

features which serve as a toy model for QCD. This model is asymptotically free and has a 

theta angle with instantons. All these features were attractive for modeling similar phenomena 

in QCD. From the construction of the cpn-l model in terms of branes this is not surprising. 

Actually the brane construction provides an explanation of why the cpn-l model is a good toy 

model for QCD. One way of interpretation of the brane system is as a D2 brane propagation on 

the world volume of a configuration of branes which realizes some limit of N = 1 supersymmetric 

Yang-Mills theory with gauge group SU(n). The world volume theory which is realized on the 

finite D2 brane is the cpn-l model. Thus the D2 brane probes some of the features of N = 1 

supersymmetric Yang-Mills theory. 

In section 6 we discuss the realization of solitons in the cpn-l model as the topological 

excitations of a membrane in ~hich new boundary circles are created. Each boundary circle is 

interpreted as an open string end point which carries a quantum number of the fundamental 

representation of the flavor group SU(n). Note that a string has only two ends and thus 

can realize only up to second rank tensor representation, while a membrane can have many 

boundaries and so higher rank tensor representations can be realized. Indeed, it turns out 

that the fundamental solitons interpolating adjacent vacua have one boundary and are in the 

fundamental representation of the flavor group SU( n), but solitons interpolating f-separated 

vacua have f boundaries and are in the f-th anti-symmetric representation of SU(n). These 

properties in fact agrees with the field theory knowledge. For example, the fundamental solitons 

of the cpn-l model are known to be the elementary chiral multiplets in the fundamental of 

SU( n) which corresponds in the brane picture to the elementary ?pen Type IIA strings. The 

mass spectrum of cpn-l solitons is also computed and it also agrees with the field theory results. 

The analysis is generalized to the case with deformation by mass term and we determine the 

mass spectrum of the solitons, which could not be achieved by field theory argument. 
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2 N == 2 Theories in Two Dimensions 

In this section, we describe general properties of N = 2 supersymmetric field theories in 

two dimensions. We also describe a gauged linear sigma model realization of supersymmetric 

non-linear sigma models [30, 31, 32]. In particular, we discuss the soliton spectrum of the 

cpn-l model and its deformation by mass term. 

2.1 General Background on N = 2 SUSY Field Theories 

N = 2 supersymmetry in two dimensions can be obtained by dimensional reduction from 

N = 1 supersymmetry in four dimensions. 

N = 1 supersymmetry algebra in four dimensions contains four supercharges which trans­

form as Majorana spinors under d = 4 Lorentz group (one left handed and one right handed 

spinors which are conjugate to each other). The SUSY algebra contains one U(l) R-symmetry 

under which the left handed supercharges have charge -1 and the right handed ones have 

charge +1. 

By dimensional reduction to two dimensions (i.e. eliminating the dependence of fields on two 

coordinates X2,3), the four-dimensional Lorentz group is broken to the two-dimensional Lorentz 

group and an internal symmetry group associated with the rotations i!l the X
2

,3 directions 

which we call U(1)A. A left (right) handed spinorin four dim~nsions becomes one Dirac spinor 

in two dimensions -- one left and one right handed spinors with opposite U(l)A charge =r=1 

(±1). The four supercharges are thus two Dirac spinors QL,R and QL,R (L, R denotes the 

two-dimensional chirality and absence/presence of bar indicates the four-dimensional chirality) 

which carry U(l)A charge -1, +1 and +1, -1 respectively. These are related to each other 

under conjugation by (QL)t = QL and (QR)t = QR. They obey the commutation relation 

and 

{QL, QL} - 2(H + P), 

{QR, QR} 2(H - P), 

(2.1 ) 

(2.2) 

(2.3) 

where Hand P are Hamiltonian and momentum operators. In the absence of the central charge 

which we will describe shortly, the other commutators vanish. 

The U (1) R-symmetry in four-dimensions can reside in two dimensions as another internal 
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symmetry - which we call U(l)v - under which the supercharges QL,R and QL,R carry charge 

-1, -1 and +1, +1 respectively. Thus, there are two U(l) R-symmetry groups, U(1)v and 

U(l)A. The action on the supercharges is exhibited as 

(2.4) 

where the upper (lower) row is assigned a U(l)A charge +1 (-1) while the right (left) column 

is assigned a U(l)v charge +1 (-1). Of course these R-symmetries can be broken explicitly by 

a tree level superpotential or, in the quantum theory, by an anomaly. A basic example for such 

effects is provided at the end of this subsection. 

Representations 

The two basic representations of the N = 1 SUSY algebra in four-dimensions, (anti- )chiral 

and vector multiplets, go down to the corresponding representations of the two-dimensional 

N = 2 SUSY algebra. 

A chiral multiplet consists of one complex scalar field ¢> and a Dirac fermion 'ljJL,R. The 

action of the two R-symmetries is exhibited (together with its conjugate anti-chiral multiplet 

consisting of ¢>t, 'ljJ L,R) as 

(2.5) 

where the U(l)A charge of the scalar component is zero, while the U(l)v charge is not specified 

since it can be shifted by a constant. The chiral multiplet is represented in the N = 2 superspace 

as a chiral superfield <P obeying 2 

(2.6) 

which can be expanded as <P = <I> + V2()Ot'ljJOt + ()Ot()OtF where F is a complex auxiliary field. 

2 We follow the convention of [33, 32] in which 

where a = L, Rand fL = 1, fR = -1. Indices are lowered and raised by fcx/3 with fLR = 1 and its inverse fcx/3. 
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A vector multiplet consists of a vector field At', Dirac fermions >'L,R and XL,R which are 

conjugate to each other, and a complex scalar a which comes from the x 2,3 components of the 

four-dimensional vector field. These are all in the adjoint representation of the gauge group. 

The action of the two R-symmetry groups is given by 

(2.7) 

where the vector field At' is neutral under both. The vector multiplet is represented in the 

N = 2 superspace as a vector superfield V satisfying vt = V which can be expanded in the 

Wess-Zumino gauge as 

V = OL(jL(Ao + AI) + OR(jR(Ao - Ad - OR(jLa - OL(jRat 

-iOO:Oo:O{3X{3 + iOO:(jo:O{3 >'{3 - ~OO:Oo:(j{30{3D (2.8) 

where D is a real auxiliary field. The super field strength is defined by E = {VL' V R}/2 where 

1)0: = e-v Do:ev and Vo: = eV Do:e-v . This is a twisted chiral superfield: 

The lowest component of E is the complex scalar field a. 

D-term, F-term and twisted F-term 

There are three kinds of supersymmetric couplings. 

One is the D-term which can be expressed as 

(2.9) 

(2.10) 

where J d4 0 is the integration over all the Grassmannian coordinates OL, OR, (jL, (jR and K is 

some real combination of superfields. The D-term appears in the following as the gauge or 

matter kinetic term. This term is invariant under both U(l)v and U(l)A. 

Second one is the F-term 

(2.11) 
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plus its Hermitian conjugate. Here W is a holomorphic combination of chiral superfields and 

is called superpotential as usual. The F-term is always invariant under U(l)A, but is invariant 

under U(1)v only when it is possible to assign U(l)v charge to chiral superfields so that the 

superpotential carries charge 2. The latter condition is equivalent to saying that W is quasi­

homogeneous of degree 2 with respect to U(l)v. Note that even if W is not quasi-homogeneous, 

a discrete subgroup of U(l)v can be unbroken. 

Third one is the twisted F-term 

(2.12) 

plus its Hermitian conjugate. Here W is a holomorphic combination of twisted chiral superfields 

and is called twisted superpotential. This preserves U(l)v but breaks U(l)A unless W is quasi­

homogeneous of degree 2 with respect to U(1)A. In a gauge system, the Fayet-Iliopoulos D-term 

-r J d40TrV and the theta term iOTrFA /21i can be described by a single twisted F-term with 

- X7 
WFIB = - Tr~ , 4 (2.13) 

where 7 = ir + O/27i. Since (2.13) is homogeneous of degree 2, this does not break the R­

symmetry U(l)A' However, in a gauge system U(l)A is often broken by an axial anomaly as 

in non-linear sigma model based on non-Calabi-Yau manifolds. Again, even if U(l)A is broken 

by an anomaly, a discrete subgroup can remain unbroken. 

Central Extension and BPS Bound 

Consider a massive N = 2 SUSY field theory with a discrete set of vacua. If we put such a 

system on the flat Minkowski space RI,I, there can be solitonic states in which the boundary 

condition of fields at the left spatial infinity Xl = -00 (specified by one vacuum) is different 

from the one at the right infinity Xl = +00 (specified by another vacuum). As is well known 

[34], in such a theory the N = 2 SUSY algebra admits a central extension associated with the 

topological charge of the soliton sectors. Note that the central extension is impossible in a 

theory with unbroken U(l)v and U(l)A R-symmetry, since the central term should commute 

also with R-symmetry generators [35]. 

Let us consider a massive theory in which U(l)v is broken by a superpotential. For exam­

ple, N = 2 Landau-Ginzburg (LG) models with non quasi-homogeneous superpotentials. In 
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addition to (2.1), (2.2) and (2.3), the algebra reads as 

{QL, QR} = 2Z, 

{QL,QR} = 0, 

{QL' QR} = 2Z*, 

.{QL,QR} = 0, 

(2.14) 

(2.15) 

(2.16) 

where FA is the generator of U(l)A R-symmetry. One of the most important consequence of 

this algebra is that the mass of the particle in a sector with central charge Z is bounded from 

below by [34] 

M?:. IZI. (2.17) 

This follows from the positive semi-definite-ness of the anti-commutator of (H - P)QL - ZQR 

and its hermitian conjugate (H - P)QL - Z*QR. This bound is saturated for states on which 

the condition (H - P)QL = ZQR (called BPS condition) is satisfied. For energy-momentum 

eigenstates satisfying the BPS condition, QL and QL are proportional to QR and QR respec­

tively, and thus the SUSY multiplet consists of two states rather than four. This is called a 

BPS multiplet. 

In a LG model with chiral superfields X = (Xl, ... ,Xd) and Lagrangian 

(2.18) 

with a non quasi-homogeneous superpotential W(X), the vacua are the critical points of the 

superpotential, oW = O. For a solitonic state in such a system, the LG field X(x l
) satisfies 

the boundary condition such that X(x l = -00) is one critical point, say a, and X(x l = +00) 

is another one, say b. Then, the central charge Zab in such a soli tonic sector is [34, 36] 

Zab = 2 (W(b) - W(a)) . . (2.19) 

Indeed we can see the BPS bound M ?:. 2IW(b) - W(a)1 from a classical argument [37]. Let 

giJ = oJ)] K be the Kahler metric. Then the energy of a static configuration is 

(2.20) 

2 

+ 2Re(a*(W(b) - W(a))) , (2.21 ) 

8 



for any phase a, lal = 1. The second term of the RHS is maximum if we choose a to be the 

phase of W(b) - W(a), and thus, we obtained the bound E ~ 2IW(b) - W(a)l. Note that this 

bound is independent of the Kahler metric. In LG theories, the Kahler potential gets quantum 

corrections, but the superpotential is not. Thus, this bound is exact quantum mechanically. It 

is important to note that for a BPS saturated configuration fAX i = agi.18;W, the trajectory 

along the spatial direction Xl of the superpotential W is a straight line 

W(b) - W(a) i~ -

OIW = IW(b) _ W(a)lgJOiW8;W, (2.22) 

connecting the two critical values W(a), W(b) [37l. 

For a theory in which U(I)A is broken (say, by an anomaly), the same thing can be said. 

In addition to (2.1)-(2.3), the N = 2 SUSY algebra reads 

{QL, QR} = 0, {QL' QR} = 0, 

{QL,QR} = 2Z, {QL,QR} = 2Z*, 

[Fv, QLl = -QL, [Fv, QRl = -QR' [Fv, QLl = QL' [Fv, QRl = QR 

where Fv is the generator of U(1)v. As in the previous case, there is a BPS bound 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

with the BPS condition being (H - P)QL = ZQR. In a LG model for twisted chiral LG 

fields with a non quasi-homogeneous twisted superpotential W, the central charge in a solitonic 

sector is again given by the difference of the critical values of 4W at the two spatial infinities. 

(The extra factor 2 is due to the convention.) In [38, 37], it has been argued that for any 

massive N = 2 theory, one can define some kind of superpotential ("holomorphic function" on 

the discrete set of vacua) such that the central charge in a solitonic sector is the difference of 

the values of the superpotential. As we will see however, in a theory with continuous Abelian 

symmetries in addition to the R-symmetry, there can be a contribution to the central charge 

from charges of such Abelian groups: 

Z = 2ilW + I:miSi or Z = 4ilW + I:miSi (2.27) 
, ~ 

where Si are the Abelian charges and mi or mi are parameters such that the Abelian symmetries 

are enhanced to some non-Abelian symmetry as mi -+ 0 or mi -+ 0 (typically mass parameters). 
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Note that the central charge in such a case is not determined just by the asymptotic condition 

at the spatial infinities. 

Mirror Symmetry. 

As noted in [39], there is an interesting automorphism of the N = 2 supersymmetry algebra 

given by 

(2.28) 

with other generators kept intact. 

Two N = 2 theories are said to be mirror to each other when there is an identification under 

which the N = 2 SUSY generators are mapped according to the above automorphism. Such 

mirror pairs were first found and used effectively in the study of N = 2 super conformal field 

theory associated with the sigma models with Calabi-Yau target space (see [40] and references 

therein). 3 

Although it has not extensively been noted in the past, a notion of mirror symmetry exists 

also for massive N = 2 theories. In such a case, the automorphism involves also the central 

elements. Look at the two types of massive theories considered right above, where one type 

has unbroken U(I)A and the other has unbroken U(I)v. Then, (2.28) together with 

Z f---+ Z (2.29) 

defines an isomorphism of the N = 2 algebras with central extension: (2.1)-(2.3), (2.14)-(2.16) 

is mapped to (2.1)-(2.3), (2.23)-(2.25). The basic example of mirror symmetry in massive 

theories is the pair of N = 2 Sine-Gordon theory and supersymmetric Cpl sigma model, or 

more generally, the pair of N = 2 A n - 1 affine Toda field theory and SUSY cpn-l sigma models. 

In the affine Toda field theory U(I)v is broken by superpotential to Z2n which is further broken 

spontaneously to Z2, while in the cpn-l model U(I)A is anomalously broken to Z2n which is 

again further broken spontaneously to Z2. Under the identification, the spontaneously broken 

discrete Zn symmetries are also mapped to each other. Equivalence of soliton spectrum and 

S-matrices were observed in [41] where we need to take a certain limit of the coupling in the 

affine Toda side. The mirror pair is recently generalized to pairs of other kind of target space 

3 In fact, the automorphism (2.28) extends to an automorphism of the infinite N = 2 superconformal algebra. 
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of positive first Chern class and affine Toda-type field theory in the study of twisted N = 2 

theories coupled to gravity [42] (see also [43]). 

2.2 Gauged Linear Sigma Models 

Let us consider N = 2 supersymmetric U(k) gauge theory in two dimensions with nl 

. chiral multiplets Qi in the fundamental representation k and n2 chiral multiplets Qj in the 

anti-fundamental representation Ie (i = 1, ... , nl; ] = 1, ... , n2)' 

The kinetic term of the Lagrangian of the theory is given by 

(2.30) 

where L: is the twisted chiral superfield representing the field strength of the U (k) vector 

superfield V and e is the gauge coupling constant which has dimension of mass. 

In addition, we consider the Fayet-Iliopoulos (FI) and the theta terms 

ZT f 2-LFIe = - d 0 TrL: + h.c. , 4 

where the FI parameter r and the theta parameter () are combined in the form 

T = ir + 0/27r. 

Also, we can consider the mass term 

Lmass = ~ f d2
() mY QjQ

i + h.c., 
i,i 

(2.31 ) 

(2.32) 

(2.33) 

where QjQ i is the natural gauge invariant combination. ml are complex parameters which we 

call the complex masses. Note that this term can be considered as coming from the mass term 

which already exists in four dimensions. 

Actually, there is another kind of mass term which cannot be considered as coming from 

any coupling in four-dimensional theories. This can be obtained by first gauging the flavor 

symmetry U(nl) x U(n2) and giving a background value to the scalar component of the vector 

superfield, and then setting the fields to be vanishing. This can be written as 

(2.34) 
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where Vi and V2 are given by 

R-L-Vi = () () m + h.c., (2.35) 

This preserves N = 2 su persymmetry if and only if m and mare (independently) diagonalizable: 

(2.36) 

We call these the twisted masses. This is the two-dimensional version of the "real mass term" 

which were considered in [10, 44, 45]. Note that the shift of m and m by matrices c1 n1 and 

c1 n2 proportional to identity matrices can be absorbed by a redefinition of the {j field, and thus 

is irrelevant. 

The Space of Classical Vacua 

After integrating out the auxiliary fields, the potential energy of this system is 

e
2 

( t -t - ) 2 1 t U = "2 Tr QQ - Q Q - r + 8e2 Tr [ 0-, {j ]2 

+ ~II o-Q - Qm r + ~II o-tQ - Qmt r + II Qm 112 

+ ~II Qo-- mQ 112 + ~II Qo-t _ mt Q.112 + II mQ 112. (2.37) 

We describe the space of classical vacua which is the space of zeros of U modulo gauge trans­

formations. First of all, for the second term to be vanishing 0- must be diagonalizable: 

(2.38) 

The structure of the whole space depends of the parameters r, m, iii and m. 

(i) When all these parameters are turned off, the space of classical vacua is a singular space 

in which there are roughly two branches: In one branch ("Coulomb branch"), 0- is a non­

zero diagonal matrix and Q = Q = 0, while in the other branch ("Higgs branch"), 0- = 0 

but Q and Q can take non-zero values obeying QQt = QtQ. Of course, there are "mixed 

branches" in which first I rows of Q and first I columns of Q are non-vanishing and only 

the last k -I of {ja's are non-vanishing. Note that when n2 = 0 (or nl = 0), the "Higgs 

branch" is trivial Q = 0 (Q = 0). 
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(ii) When r = 0 and a generic complex mass term is turned on, the space of classical vacua 

consists only of "Coulomb branch" in which Q = Q = 0 and 0" is an unconstrained 

diagonal matrix. Upon specialization to rank m < min{ nl, n2}, "Higgs branch" becomes 

possible. 

(iii) When r = 0 and a generic twisted mass is turned on, it is again only of "Coulomb branch", 

but when some of the twisted masses for Q and some for Q coincide, there emanate "Higgs 

branches" at which some of O"a's are tuned at the values of such twisted masses. 

(iv) When r > 0 and all other parameters are turned off, for the first term to be vanishing, 

Q is non-zero and actually must have rank k. This is possible only when nl 2: k. In this 

case, we must have 0" = 0 for the third term to be vanishing. Thus, the space consists 

only of "Higgs branch". Note that when n2 = 0, this space is compact, that is, there is 

no infinite "flat direction". 

(v) When r < 0 and all other parameters are turned off, Q must have rank k for the first 

term to be vanishing. This is possible only when n2 2: k. In this case, 0" = 0 for the sixth 

term to be vanishing. The space thus consists again only of "Higgs branch". The same 

remark as (iv) applies to the case nl = O. 

At the tree level, fluctuation around each vacuum consists' of massless and massive modes 

which are tangent and transverse to the space of classical vacua respectively. The mass of 

the transverse modes depends on the choice of vacuum and, in general, some massive modes 

become massless at some special points such as the intersection of "Higgs" and "Coulomb" 

branches. However, for the cases such as (iv) and (v), the mass2 of the transverse modes are 

bounded from below by a constant of order e2lrl. Thus, for this parameter region, if we take 

the limit e2 -+ 00 (or equivalently the long distance limit), the massive modes decouple and 

the system approaches to a supersymmetric non-linear sigma model whose target space is the 

corresponding space of classical vacua. Namely the space of solutions of 

(2.39) 

modulo U(k) gauge transformations. In what follows, we mainly study such non-linear sigma 

models realized by this gauged linear sigma models. 
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Global Symmetry 

The group of global symmetry of the system is at the tree level SU(nI) x SU(n2) x U(l)a x 

U(l)A x U(l)v, where U(l)A and U(l)v are the two R-symmetry groups and SU(nI) x SU(n2) 

is the semi-simple part of the flavor symmetry group U(n.) x U(n2) which acts on Q and Q as 

k x (n1, 1) and k x (1, n2)' The vector combination of the center of U(n.) x U(n2) is the same as 

the action of the center U (1) of the gauge group U (k) and is not considered as a global symmetry. 

The rest of the center is called U (l)a here. If we turn on mass terms, part of these symmetries 

are explicitly broken: A generic twisted mass preserves the U(l) symmetry groups but breaks 

SU(nd x SU(n2) to its maximal torus. A generic complex mass breaks SU(nI) x SU(n2) 

completely but preserves U(l)A and a combination of U(l)v and U(l)a' These are restored by 

transforming the mass parameters in a suitable way. A choice of classical vacuum in the "Higgs 

branch" spontaneously breaks (part of) the flavor group SU(nt) x SU(n2) X U(l)a' 

The above is a brief description of the symmetry of the classical system. In the quantum 

theory, however, there are two major corrections to what have been said. 

One is the anomaly of U(l)A. It acts oppositely on the left and right handed fermions in each 

representation of U(k) and hence is generically anomalous. Under the action of eio: E U(1)A, 

the fermion determinant in a fixed gauge field A changes by a phase shift 

(2.40) 

where FA is the curvature of A. This shows that the U(l)A R-symmetry is broken to its discrete 

subgroup consisting of 2n-l - 2n2 roots of unity: 

(2.41 ) 

In the case nl = n2, the whole U(l)A is unbroken. Note that in the general case U(l)A can be 

restored by making it act on the theta parameter by the shift 2(nl - n2)a which absorbs (2.40). 

In two-dimensional quantum field theory, a continuous symmetry cannot be spontaneously 

broken. Therefore, even in the case when some flavor symmetry appears to be spontaneously 

broken at the tree level, it must be restored in the full quantum theory unless it is broken by an 

anomaly. This is the second correction to the classical statement about the global symmetry. 
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Renormalization 

The theory is super-renormalizable with respect to the gauge coupling constant e, as its mass 

dimension shows. However, the FI parameter r is dimensionless and this must be renormalized 

due to a one loop ultra-violet divergence which is present in the case nl =1= n2. 

In order to see this, we look at the term in the Lagrangian which depends linearly on the 

auxiliary field D in the vector superfield: 

- Tr {D (QQt - Qt Q - r)} . (2.42) 

The effective Lagrangian contains a term of this kind in which QQt - QtQ is replaced by its 

expectation value. At the one loop level, the expectation value is given by 

(2.43) 

where + ... are terms depending on the complex/twisted masses and background value of (J. 

This integral is logarithmically divergent in the limit k -+ 00 which is regularized by introducing 

a UV cut off Auv. There is no higher loop divergence, and the effective Lagrangian can be 

made finite by renormalizing the bare FI parameter ro as 

_n1-n21 (AUV) 
ro - 27r og A (2.44) 

to cancell the divergence of (2.43) as Auv -+ 00. Note that we are forced to introduced a 

dimensionful constant A which is an analog of the dynamical scale of four-dimensional gauge 

theories. The effecti ve FI parameter at an energy scale J.l is then given by r(J.l) = n, ;7rn2 log (J.l / A). 

In other words, the theory for nl > n2 is asymptotically free with respect to the coupling 9 

given by'r = 1/92
, while for n2 > nl it is so with respect to 9 defined by r = -1/92

• 

This has an important implication. Consider a theory with nl > n2. It is always possible to 

find a scale J.l at which r(J.l) is positive: take J.l to be much larger than A. The space of zeroes 

of the renormalized potential U at that scale is of the type (iv) in the above discussion, and 

the theory is, in the limit e2 -+ 00, interpreted as the non-linear sigma model with the target 

space given by (2.39). The FI parameter r = r(J.l) is interpreted as the size of the target space, 

or equivalently its Kahler class. Indeed, the way r runs is exactly the same as the running of 

the Kahler class of the sigma model, since the one-loop beta function of the latter is given by 
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the first Chern class which, being equal to the anomaly of U(1)A, is proportional to nl - n2. 

Likewise, a theory with n2 > nl is always of the type (v) in which r < 0 and is interpreted in 

the limit e2 --+ 00 also as the non-linear sigma model with the target space given by (2.39). A 

theory with nl = n2 is quite different and has separate "phases" corresponding to r > 0 and 

r < O. (See [32] for discussion of this type of theories.) 

2.2.1 The cpn-l Model 

Here we consider the case k = 1, nl = n, n2 = 0 in some detail. We first consider the theory 

with m = 0 in which the global symmetry is SU(n) X Z2n X U(l)v. The space of solutions of 

the D-term equation (2.39) modulo U(1) gauge transformation is the space of vectors in c n 

of length2 = r modulo phase rotation, and hence is the same as n - 1 dimensional complex 

projective space cpn-l. Thus, the theory describes in the e2 --+ 00 limit the supersymmetric 

sigma model with target space cpn-l which has been studied extensively from various view 

points [30, 31, 46, 47, 48, 49, 41, 37, 50, 42]. 

Low Energy Effective Action 

We consider integrating out the chiral superfield Q and obtain the effective Lagrangian as a 

functional of the vector superfield. Due to the gauge invariance, the result should be expressed 

in terms of the twisted chiral superfield :E representing the field strength. The terms with at 

most two derivatives and not more than four fermions can be written as 

~J d4BK(:E,:Et)+ (J d2BWeD (:E) + h.c.). (2.45) 

One can exactly determine the effective superpotential WeD (:E) [46, 37]. It is given by 

WeD (:E) = ~ [ i T:E - 2::E ( log (:E / Jl) - 1 ) ] , (2.46) 

where T is the complex combination T = ir(Jl) + B /27r of the effective FI parameter at the scale 

Jl and the theta parameter. 

The part of the effective Lagrangian (2.45) which depends on the auxiliary field D and the 

field strength FA = FOldxo 1\ dx1 is 
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1 (2 2) Oeff = -2 2 D + FOl - r eff D + -2 FOl 
eeff 7r 

where 1/ e;ff = 2Kqu , and r eff and 0 eff /27r are the imaginary and the real parts of 

. Oeff 
Z r eff + 27r 

._ _4i GWeff (0") 
GO" 

n = T - -2 . log (0" / f..l) . 
7rZ 

(2.47) 

(2.48) 

Integrating out the auxiliary field D, we get the energy density e;ffr;ff /2. Actually, there is a 

contribution of the gauge field FOl to the energy density. This follows from the fact [51] that 

the theta parameter Oeff creates a constant electric field proportional to the minimum absolute 

value IBeff 1/27r of 0 eff /27r + Z. The contribution is then e;ff (Beff /27r? /2. Thus, the potential 

energy of the effective theory is 

e;ff [r2 + (e eff ) 2] 
2 eff 27r (2.49) 

(2.50) 

A supersymmetric vacuum is the zero of this potential energy. There are n such zeros. One of 

them is given by 

(
27riT) '0/ . 0" = f..lexp ---;- = Ae~ n '. (2.51) 

and the others are obtained by the action of the discrete Z2n subgroup of U(l)A R-symmetry. 

Namely, this discrete chiral symmetry is spontaneously broken to Z2' 

Solitons in The cpn-l Model 

Since we have a discrete set of vacua, we expect that there exist solitons which interpolate 

different vacua at the two spatial infinities Xl -+ ±oo. If we only look at the effective Lagrangian 

(2.45), solitonic configurations are forbidden by the Gauss law which is given by the variation 

of (2.45) or equivalently (2.47) with respect to Ao: 

. (2.52) 

Recall from (2.48) that 

(J eff = 0 - n arg( 0") . (2.53) 
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Then, integrating (2.52) over the space coordinate Xl and using the fact that FOI = 0 for the 

vacua at the spatial infinities Xl -+ ±oo, we see that arg 0"( +00) - arg 0"( -00) = 0, which means 

that a configuration cannot interpolate different vacua. 

However, we can see that solitons do exist if we take into account the effect of the n massive 

chiral multiplets (Qi, 'lj;i) minimally coupled to the U(l) gauge field Atl as -DtlQtDtlQ + 
i;j;,tlDtl'lj; [30]. The Gauss law is then modified as 

a (1 ) a (OefJ) .0 
axl e;fJ FOI + axl 27l" + J = 0 , (2.54) 

where jO is the time component of the electric current jtl = iQt DtlQ - iDtlQtQ - ;j;,tl'lj; of the 

fields Qi, 'lj;i. Then, integrating over the spatial coordinate, we have 

arg 0"( +00) - arg 0"( -00) = 2: J dx l jO . (2.55) 

As a consequence of this identity, the fundamental solitons which interpolate the neighboring 

vacua 0"( -00) = Aei!: -+ 0"(+00) = Aei!:+2~i carry the electric charge = + 1. Indeed, these are 

the elementary fields Qi, 'lj;i which constitute BPS doublets in the fundamental representation of 

the flavor group SU( n) [30]. Likewise, solitons interpolating vacua by.e steps, 0"( -00) = Ae~ -+ 

0"( +00) = Ae~+2';,i( , carry electric charge.e. It is known that the corresponding solitons consist 

of BPS saturated bound states of.e elementary fields which transform as the .e-th anti-symmetric 

representation of SU(n) [47,48]. The mass of such solitons is.known to be [47,49,37,50] 

(2.56) 

This coincides with what we naively expect from the twisted superpotential (2.46): Indeed, in 

spite of the presence of the logarithm we can unambiguously determine the value of WefJ at the 
- 21ri(T+j) 

n vacua, by replacing T in (2.46) by T. The value of 4Weff at the j-th vacuum is (nj27l" )/Je n • 

Then, (2.56) is just the difference 41~WefJl of the values at j =.e and j = o. 

Inclusion of Twisted Mass 

Let us consider the theory with general twisted mass in which the flavor symmetry SU(n) 

is broken to U(I)n-l. Upon integrating out the chiral superfields Q, we obtain the effective 

Lagrangian (2.45) with the twisted superpotential 

(2.57) 
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Subsequent analysis is the same as in the case m = 0 and we have n vacua corresponding to 

the n roots of 
n II (0" - mi) = f.1n e27rit. (2.58) 

i=l 

The soliton spectrum is also similar. In the presence of a soliton with electric charge £, the phase 

Li=l arg(O" - mi) changes by 21ft As for the degeneracy, there would be no much difference 

from the case m = 0 at least for small m, and we expect (;) solitons to exist in the £-th sector. 

What are the masses of these solitons? The theory with twisted mass has not been studied 

in the past. A naive guess is the difference of the twisted superpotential (2.57). However, in 

a theory with non-coincident twisted mass, we cannot unambiguously determine the values of 

(2.57) at the vacua nor the difference of the values at two vacua, as we now see. Consider, for 

example, two nearby vacua as depicted in Figure 1. The difference of the values of 4Weff could 

• 

x 

x x 

• • 

Figure 1: The Two Paths 

be obtained by tracing the values of Weff along some path, say Po, connecting them. However, 

if we choose another path, say Pi, then the difference changes by 

(2.59) 

So, there is an ambiguity in defining the superpotential, and that is proportional to the twisted 

mass m and vanishes in the cpn-l model m = O. Actually, this ambiguity is related to the 

fact that there is a continuous Abelian symmetry U(l)n-l for generic values of m. 
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We will see in section 6 using branes, that the central charge is determined unambiguously 

as the linear combination (as (2.27)) of the difference of the superpotential values and the 

twisted masses times the U(1) charges. Indeed, the central charge is not determined just by the 

boundary condition at the two spatial infinities. The ambiguity of defining the superpotential 

cancels with the ambiguity of the choice of U(I) charges. This is reminiscent of the formula 

for the central charge in the N = 2 theories in four dimensions [52] in which the ambiguity is 

related to the SL(2,Z) duality of the low energy maxwell theory. The central charge formula 

is thus modified, in the presence of twisted mass terms by the amount 

(2.60) 

A similar phenomenon appears also with real central charges in N = 2 supersymmetry in three 

dimensions. See a discussion in [44]. 

Relation to the SU(n) N = 1 super YM Theory i'n Four Dimensions 

The supersymmetric cpn-l sigma-model in two dimensions has many properties in common 

with the N = 1 supersymmetric Yang-Mills theory in four dimensions with gauge group SU(n). 

Both have n vacua with IIl:ass gap and have discrete Z2n chiral symmetry which is broken 

spontaneously to Z2. The cpn-l model is asymptotically free with respect to 9 defined by 

r = 1/ g2 as the N = 1 Yang-Mills theory is with respect to the gauge coupling constant g4 

where the one-loop beta functions are both proportional to n. The twil?ted superpotential of 

the cpn-l model is holomorphic with respect to the complex combination 7 = ir + () /2rr, 

while the superpotential of the N = 1 Yang-Mills theory is so with respect to the combination 

74 = 4rri/ g~ + ()4/27r where ()4 is the theta parameter in four dimensions. Moreover, the effective 

twisted superpotential (2.46) is the same as the effective superpotential of the N = 1 super YM 

theory of [53] under the replacement .E -+ S = W;, 7 -+ 74 and f1. -+ f1.3. 

As a consequence, there is some close resemblance between the solitons in the cpn-l model 

and domain walls in the N = 1 YM theory. In particular, both are BPS saturated. Recently, 

there is some interest in the study of domain walls in the N = 1 YM theory [54, 55] and the 

exact tension has been computed. In particular, in [23] domain walls in super YM theory are 

studied in the brane framework and are claimed to be a D-brane for the QeD string. It would 
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be interesting to see the relation with the cpn-l solitons in the brane framework. The brane 

description of solitons in the cpn-l model is given in section 6. 

There is another similarity of the two systems. As noted in the previous subsection, the 

cpn-l model is dual under mirror symmetry to N = 2 supersymmetric affine A n - 1 Toda field 

theory. On the other hand, the N = 1 SU(n) super YM theory is, when formulated on R3 x SI, 

described by a theory with chiral superfields with the superpotential being the An - l affine Toda 

potential [56,57, 10, 44]. 

Relation of the two-dimensional systems to four-dimensional gauge theories will be further 

discussed in section 5 in terms of branes. 

2.2.2 Other k = 1 Theories 

Let us consider a U (1) gauge theory with general nl, n2. It is easy to obtain the effec­

tive twisted superpotential for generic values of 0': It is such that the effective FI and theta 

parameters are given by 

(2.61 ) 

If the twisted masses are generic, there are max{nl' n2} vacua corresponding to the zeroes of 

(2.61). Something special happens when some of mi and some of m:"" coincide. Consider, for 
J 

example, the case with ml = mI. Then, there is a cancellation oftwo terms in (2.61). However, 

this does not mean that the vacua are only the zeroes of (2.61) (as many as max{ nl -1, n2-1}), 

because the fields Ql and Ql are massless at 0' = ml and the above description purely in terms 

of 0' breaks down. These massless fields span a one dimensional non-compact complex manifold 

with a metric dzdz/..jr + Izl2 which is asymptotically C/Z2, where r is the reD at 0' = mI. 
Thus, the theory has max{ nl - 1, n2 - I} vacua and the vacua of the sigma model with such a 

target space. 

Further discussion using branes on this is given in section 5.1. 
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2.2.3 The Grassmannian Model 

Finally, we consider the case k ~ 2, nl = n, and n2 = 0 with vanishing twisted mass 

iii = o. The D-term equation (2.39) for Q = (Qai) can be considered as requiring the k vec!ors 

VI, ... ,Vk in en given by Va = (Qai)i=I, ... ,n to be orthogonal to each other and have length2 = r: 
V!Vb = rba,b. The U(k) gauge transformation can be considered as the unitary rotation of such 

orthogonal k-frames in en and does not change the k-plane in en which they span. Namely, the 

space of classical vacua is the space of k-planes in en, which is the complex Grassmann manifold 

G(k, n). Thus, the theory describes in the e2 -7 00 limit the supersymmetric non-linear sigma 

model with target space G(k, n). 

Low Energy Effective Action 

Like in the Abelian case, one can exactly perform the integration over the chiral superfield 

Q. Although a manifestly supersymmetric form of the effective Lagrangian with respect to the 

full field strength ~ is not known, it is easy to determine the effective twisted superpotential 

for the case in which ~ is diagonal, ~ = diag(~I' ... , ~k). It is given by 

. (2.62) 

If the diagonal entries are well-separated 10" a - O"b 1 ~ A, the off. diagonal components of ~ are 

heavy and it is appropriate to integrate them out as well. It does not give a contribution to 

WeD since the off-diagonal components are in. a complex and its conjugate representations of 

the diagonal U(l) gauge groups. Thus, we may take (2.62) as the effective superpotential in 

the region in which 0" a's are well-separated. 

Thus, a supersymmetric vacuum is at 0" = diag(O"l, ... , O"k) where each entry O"a is one of 

the n-roots of 

(2.63) 

Since the approximation is valid only when 0" a's are well-separated, distinct entries must be 

at distinct roots of (2.63). The number of vacua is thus the number of possible selections of 

k-elements among n-roots, namely, 

(2.64) 
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We have not considered the region in which some of the diagonal entries are near one 

another, but it seems likely from the following reasons that there is no supersymmetric vacuum 

in such a region. First, if the distinct entries of 0" were allowed to coincide, there would be 

supersymmetric vacua even in the case k > n where there is no supersymmetric vacuum at the 

tree level. Second, for the case k ::; n, the number (2.64) already agree with the Euler number 

of the Grassmannian G(k, n) which is the Witten index of the Grassmannian sigma model [58]. 

We will see in section 4 that this is consistent with the observation in [1] that s-configurations 

of the branes are not supersymmetric. 

Given that these are the only supersymmetric vacua, we see that the discrete chiral sym­

metry Z2n is spontaneously broken to some subgroups. A generic vacuum breaks it to Z2, but 

some special vacua keep larger subgroups unbroken. 

Relation to U(k)jU(k) Gauged WZW Models 

It was shown in [59] that the low energy limit, or the dynamics of vacuum, of the present 

model is described by the topological field theory realized as the U(k) Wess-Zumino-Witten 

(WZW) model with the whole adjoint U(k) group being gauged. The level of the WZW model 

is n - k for the SU(k) part and n for the U(l) part of the group U(k). By Abelianization of 

[60], this gauged WZW modei can be considered, when formulated on the flat space-time, as 

the theory of U(l)k sigma model (represented by k free bosons ¢a, ¢a = ¢a + 27T) coupled to 

U (l)k gauge fields Aa by 

n k J 2 L ¢adAa. 
7T a=l 

(2.65) 

The identification of the two systems is essentially based on the observation that this is the 

same under ¢a = arg(O"a) as the terms in J d20 WeD + c.c. depending on arg(O"a)'s. 

3 A Type IIA Configuration 

In this section, we construct brane configurations such that the world-volume dynamics at 

long distances describes N = 2 supersymmetric gauge theories in two dimensions. In particular, 

we propose configurations which lead to the N = 2 theories obtained by dimensional reduction 

of four-dimensional N = 1 chiral gauge theories, a typical example of which is the gauged linear 
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sigma model realizing the cpn-l or Grassmannian sigma models. In this and later sections, 

we provide evidence for the construction and study such a gauge theory using the branes. 

Following [1], the authors in [9] constructed a brane configuration in Type IIA string theory 

whose world-volume dynamics at long distances describes N = 1 supersymmetric QCD in 

four dimensions. The configuration is in a flat space-time with time coordinate XO and space 

coordinates Xl, ... , x9 and involves two NS 5-branes spanning world-volumes in the 012345 and 

012389 directions, k· parallel D4-branes stretched between them spanning world-volumes in the 

01236 directions, and n parallel D6 branes located between the two NS 5-branes and spanning 

world-volumes in the 0123789 directions. This yields N = 1 supersymmetric SU(k) QCD with 

n flavors in four dimensions. One of the important features of such a theory is the chiral flavor 

symmetry SU(n)L x SU(n)R. In a generic position of the D6 branes, we can only see the 

diagonal subgroup SU(n) in the brane configuration, because the configuration of D4 and D6 

branes is locally of theories with 8 supercharges. In such a configuration, strings ending on the 

D4 and D6 branes create the chiral multiplet Q in the representation (k, n, 1) and the chiral 

multiplet Q in the representation (k, 1, n) at the same point, and therefore it is also difficult to 

obtain chiral matter in such a configuration. 

In the presence of the NS 5-brane spanning world-volume in the 012389 directions - which 

we call the NSf 5-brane - the configuration is locally of theories with 4 supercharges. (In the 

absence of this brane the number of supercharges is 8.) In particular, if the D6-branes and the 

NSf 5-brane have the same x6 value, the D6-branes break into two pieces at the intersection with 

the NSf 5-brane [15]. The pieces in x7 > x7 (NS'5) will be called upper-half D6-branes, while 

the other pieces will be called lower-half D6-branes. In [15], it is proposed that the strings 

ending on the D4 and the upper-half D6-branes create the fundamental chiral multiplets Q 

and the strings ending on the D4 and the lower-half D6-branes create the anti-fundamental 

chiral multiplets Q. Taking this for granted, if we could take away the lower-half D6-branes 

from the configuration, we would expect only the fundamental chiral multiplet Q, leading to a 

chiral gauge theory. However, in the absence of any other branes, such a configuration breaks 

the charge conservation relation, and cannot be a stable one, reflecting the gauge anomaly 

of the corresponding four-dimensional theory with only left-handed fermions in a complex 

representation of the gauge group. Indeed in [21] it was argued how, in the presence of D8 

branes, a semi-infinite D6 brane can end on a NS fivebrane. This configuration leads to a 

24 



localization of a four dimensional chiral matter in ten dimensional space time. The presence of 

the chiral matter still induces an anomaly in the four dimensional theory. However, the theory 

being really five dimensional on an interval, gives rise to a flow of the anomalous current along 

the five dimensional interval. This current is absorbed by a chiral matter with an opposite 

chirality which is localized at the other end of the interval. 

Upon application of T-duality on the 23 directions, we obtain a configuration of NS and 

NSf 5-branes, k D2-branes with world-volume in the 016 directions, and n D4-branes with 

world-volume in the 01789 directions. In this situation, when the D4-branes have the same x 6 

value as the NSf 5-brane and breaks at the NSf into upper-half x7 > x7(NSf) and lower-half 

x7 < x7(NSf) pieces, we can take away the lower-half pieces because D4-branes can end on a 

NS 5-brane. This situation is different from the T-dual D6 - NS configuration since now the 

D4 brane can move along the NSf brane in the 23 coordinates while the D6 brane can not move 

in any directions, its boundary being the whole NSf brane. Moreover, two dimensional chiral 

multiplets do not give rise to anomalies as their four dimensional analogs do. In this case the 

presence of aT-dual to D8 brane, as in [21] - a D6 brane, is not necessary for localizing the 

chiral matter in ten dimensional space time. This is reflected by the fact that a D4 brane can 

end on a NS brane without having a D6 brane in the background. In this paper, we will study 

such a configuration. Namely, 'the configuration involves 

- A NS 5-brane with world-volume 012345 located at a point in the 6789 directions, 

- A NSf 5-brane with world-volume 012389 located at a point in the 4567 directions, 

- k D2-branes with world-volumes 016 stretched between the NS and NSf 5-branes, 

- nl upper-half D4-branes with world-volumes 01789 ending on the NSf 5-brane from above 

in the x 7 direction, and 

- n2 lower-half D4-branes with world-volumes 01789 ending on the NSf 5-brane from below in 

the x 7 direction. 

The configuration preserves 4 supercharges among the 32 of Type IIA string theory. This can 

be seen from direct calculation of the broken supersymmetries. Another way to see this is to 

note that this configuration is obtained from the configuration of [9] by T-duality (and removing 

a part of the branes). 

We note that this configuration is invariant under the rotations in the 01, 23, 45 and 89 
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planes. These will be inherited as the Lorentz invariance and as global symmetries U(1h,3, 

U(lks and U(1)8,9 in the field theory on the D2-brane world-volume which is now explained. 

3.1 Field Theory on the D2-brane World-volume 

First note that the D2-branes are finite in the x 6 direction, and any of the other branes 

has more than one (semi-)infinite directions in addition to the 01. Thus, as in [1], we study the 

dynamics of the D2-branes and consider the positions of the other branes to be fixed parame­

ters. Since the brane configuration is invariant under 4 supercharges - two left and two right 

- the world-volume dynamics at long distances describes an N = (2,2) (or simply N = 2) su­

persymmetric field theory in two dimensions. By the rotational invariance of the configuration, 

at least classically, the theory possesses the Lorentz invariance and global symmetry groups 

U(1h,3, U(1)4,s and U(1)8,9. 

Light fields on the D2-brane world-volumes are given as follows. 

An open string ending on the D2-branes creates N = 8 U(k) vector multiplet, but 6 out of 

8 scalars are killed by the boundary condition at the NS and NS' ends, and only an N = 2 U(k) 

vector multiplet, or equivalently a U(k) twisted chiral multiplet E remains. The value x 2 + ix3 

of the D2-branes correspond to the eigenvalues of the scalar component 0" of the twisted chiral 

multiplet. On dimensional grounds, these must be related by ;t2 + ix3 = .e;tO", where .est is the 

string length. These scalar components transform in the vector representation (i.e. charge 2) 

under U (1 h,3. 
As in [15], we propose that strings ending on the D2-branes and the upper-half D4-branes 

create fundamental chiral multiplets Qi=1, ... ,n1 , while strings ending on the D2-branes and the 

lower-half D4-branes create anti-fundamental chiral multiplets Qj=l, ... ,nz. In addition to the 

arguments given in [21], we will collect more evidence for this proposal in the following sections 

by observing that it has the right consequences expected from the field theory analysis. The 

scalar components of these chiral mtiltiplets are singlets under U(lks but transform in the 

spinor representation (i.e. charge 1) under U(l )s,9. 

The positions of the NS and NS' and D4-branes give parameters of the theory. Note that 

the position of the NS brane is spe~ified by its x6,7,8,9_value, but we may put these to be zero 
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x6,i,8,9(NS) = 0 by a choice of the center of the coordinate. Also, the position of the NS' brane 

is specified by its x4,5,6,i_value but we may put x4,5(NS') = 0 by a choice of the origin of the 45 

plane because the NS brane has world-volume in these directions. The remaining parameters 

are 

• The x6-value of the NS' brane determines the bare gauge coupling constant of the U(k) 

gauge theory 

x
6
(NS')'€st = 1/ e2 , 

gst 
where gst is the Type IIA string coupling constant. 

(3.1) 

• The xi-value of the NS' brane is the Fayet-Iliopoulos parameter of the U(1) factor of the 

U(k) gauge group 
xi(NS') 
-"'------'- - - r 

gst'€st - . 
(3.2) 

• The x2 + ix3 value of the upper-half or lower-half D4-branes are the twisted masses for 

the chiral multiplets Qi or Q~: 
J 

.€-2( 2 . 3) I -st X + zx = mi, 
D4i 

.€-2 (2 . 3) I -st X + zx = m~. 
D4- J 

(3.3) 
J 

• In the original configuration, all the D4 branes end on the NS' brane. Thus, their X4 + iX5 

value should be zero. H0wever, if one of the upper-half D4 branes and one of the lower­

half branes rejoin, they can be separated from the NS' branes and thus, in particular can 

have a non-zero X4 + ix5 value. If i-th upper and j-th lower D4-branes rejoin, the X4 + iX5 

value corresponds to the complex mass m; which enters into the tree level superpotential 

as 

(3.4) 

Note, however, that we cannot have the general superpotential L·~m1Q~Qi in this brane 
t,J J 

set-up. This is because the brane configuration chooses some diagonal embedding of 

the matrix m;. The most general mass matrix is given by the Higgs branch of a four 

dimensional theory as explained below. 

In this set-up, it is easy to identify the chiral flavor symmetry U(nd x U(n2).4 The nl upper­

half D4-branes are responsible for the U(nd factor and the n2 lower-halves are responsible for 

4Note that the axial and the vector U(l) subgroups of this are the same as the axial part of the group 
U(1)4,5 x U(1)s,9 and the U(l) subgroup of U(k) gauge group respectively. 
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D4 

Figure 2: The IIA configuration for general twisted mass 

the U(n2) factor. These are broken if the D4-branes are separated in the 23 directions, that is, 

if the twisted masses mi or mj are turned on. In fact, the twisted masses can be interpreted 

as the scalar component of the N = 2 d = 4 U(nd x U(n2) vector multiplet of a gauge system 

associated with the system of these D4 branes and the NSf 5-brane where, the branes being 

semi-infinite in the x 7 direction, the gauge dynamics is frozen. 

Let us examine the situation from the point of view of a four dimensional observer which 

lives in the common directions, 0189, of the D4 and NSf branes. From the point of view of 

such an observer, the theory in question is a weakly coupled SU(nd x SU(n2) gauge theory 

with N = 2 supersymmetry in four dimensions. In addition there are hypermultiplets which 

transform in the bi-fundamental representation. This consists of two chiral multiplets in the 

(nl' ii2) and (iiI, n2) representations. Such a theory is known to have a moduli space of vacua 

which contains two branches. The Coulomb branch of this theory is nl + n2 - 2 complex 

dimensional while in the Higgs branch, we can turn on a matrix of rank which is at most 
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min{ nI, n2}. We want to identify the moduli of this theory with the parameters of the two 

dimensional theory. This identification is possible due to the hierarchy in scales that exists in 

the problem since the moduli of the four dimensional theory are associated with motion of the 

heavy branes which are slowly varying compared to the D2 branes. 

The Coulomb branch of the four dimensional theory is identified with the motion of the 

D4 branes along the 23 directions and thus gives the twisted mass parameters mi and mj. 
The transition from the Coulomb branch to the Higgs branch of the four dimensional theory is 

done by reconnecting D4 branes from both sides of the NS' brane and moving them in the 456 

directions. Thus the Higgs branch of the four dimensional theory parametrizes the complex 

mass parameters, mi, of the two dimensional theory. Note that since the Higgs branch contains 

four real scalars for ~ hypermultiplet and the complex mass parameters are only two real, there 

are two additional parameters in the four dimensional theory, per one hypermultiplet. These 

parameters correspond to the X6 position of the D4 branes and to the reduction of the D4 gauge 

field in the Xi direction, A7 . There are some examples in which these parameters affect the 

low energy dynamics of the two dimensional theory. See [4] for examples of such effects, the 

discussion there being on a three dimensional analog of the system discussed here. It would be 

interesting to study further such effects. 

In summary, we list the fields and parameters of the theory, together with the transfor­

mation properties under the gauge group U(k) and the global symmetry groups. Note that 

the symmetries U(1h,3, U(1)4,5, and U(l)s,g. can be considered as U(l)A, U(l)v, and another 

U(l)v R-symmetry groups respectively. The charges in the Jist denote the charges of the scalar 

components of the superfields: 

U(k) SU(nd SU(n2) U(1h,3 U(lh5 U(1)s,g 
~ adj 1 1 2 0 0 
Qi k nl 1 0 0 1 
Qj k 1 n2 0 0 1 

(3.5) 
r 1 1 1 0 0 0 

mi 1 adj E81 1 2 0 0 
m· L 1 1 adj E8 1 2 0 0 
m~ 

t 1 nl n2 0 2 0 
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3.2 Classical Spa"ce of Vacua 

In this subsection we describe the brane realization of the classical space of vacua as 

described in section 2.2. There are five cases discussed in that section depending on the values 

of the parameters T, m, m and m. In terms of branes these are the positions in 7, 45 and 23, 

repectively, of the various branes other than D2. In the following, we analyze the vacuum 

configuration of the D2-branes under various positions of other branes. The numbering here is 

correlated with the one in section 2.2. 

1. When all parameters are turned off - all the heavy branes are at the origin of the ten di­

mensional space (the NS' brane is at the origin of 45 and 7 and the semi-infinite D4 branes 

are at the origin of 23), there are two branches. The Coulomb branch is parametrized 

by the 23 positions of the D2 branes between the two NS branes. The Higgs branch is 

parameterized by the positions of segments of D2 branes which break along the D4 branes 

and move in the 789 directions. The two branches meet at the origin of moduli space. 

There are mixed branches in which l D2 branes break with positions in 789 (Higgs) and 

k -l D2 branes do not break and have arbitrary positions in 23 (Coulomb). When there 

are no lower (upper) D4 branes the D2 branes can not break and there is no Higgs branch. 

2. When the NS' is at x 7 = 0 and pairs of lower and upper D4 branes form into infinite 

D4 branes and move away in the 45 directions there is a Coulomb branch where the D2 

branes are free to move in between the two NS branes. If only m < min{ nl, n2} infinite 

branes leave the 45 origin a Higgs branch is possible. 

There is a different branch which is not visible in the field theory. This is the motion of 

the infinite D4 branes in the x6 direction. Let Zi denote the x6 positions of the infinite D4 

branes and t 1 (t 2 ) denote the x 6 position of the NS (NS') brane. When Zi < t2 for some 

i, the analysis is the same and the parameter Zi is irrelevant. When Zi < tl there is a 

D2 brane created between the D4 and the NS brane [1] which still makes the Zi position 

irrelevant. When Zi > t2 there is a phase transition and the states corning from the D4 

brane decouple from the system. The number of massless multiplets is changed. 

3. When the NS' is at x 7 = 0 and the semi-infinite branes have arbitrary 23 positions there 

is again a Coulomb branch given by arbitrary positions of D2 branes in the 23 directions. 
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However when the 23 positions of a lower and an upper D4 branes coincide they can 

combine and form an infinite D4. Then, a Higgs branch can emanate from that point by 

breaking the D4 branes and moving them along the 789 directions. The 23 values of the 

D4 branes must therefore coincide with the 23 values of the D4 branes for such a breaking 

to happen. 

4. When the x 7 position of the NS' brane is negative (which corresponds to r positive due 

to the minus sign in (3.2)), the D2 branes are stretched between the NS brane and the 

upper-half D4-branes. To avoid s-configurations [1] the right ends of distinct D2 branes 

are in distinct upper D4-branes. For this we need nl 2: k. The D2 branes are fixed to 

the origin of 23 and hence there is only a Higgs branch. When n2 oF 0 the D2-branes can 

break at the infinite D4-branes and the resulting segment can move in the 789 directions, 

while when n2 = 0 there is no direction of the D2-brane motion. 

5. For negative position of the NS' brane the analysis is the same by exchanging the lower 

and upper D4 branes. 

It is evident that the space of classical field theory vacua almost agrees with the space of 

vacuum configurations of the D2-branes in this Type IIA set-up. A non-compact fiat direction 

corresponds to a direction of the D2-brane motion, while a compact direction corresponds to 

the absence of such direction. 

4 Quantum Properties Via M Theory 

The description in the previous section of Type IIA brane configurations is missing basic 

properties of the quantum theory - running of the FI parameter r, the anomaly of the U(1)A 

R-symmetry, and the spontaneous breaking of its non-anomalous discrete subgroup, which are 

present for theories with nl oF n2. For instance, the Type IIA configuration is invariant under 

U(1h.3 which is identified with U(1)A and no sign of anomaly was observed. 

In this section, we see that these properties are correctly reproduced by considering the 

corresponding configuration in M theory where membranes and fivebranes are involved. We 

will also see that the number of vacua agrees with the one known in field theory for the case 

n2 = 0 (cpn-l or Grassmannian model). 

31 



4.1 M Theory Description of the Configuration 

A system of branes ending on other branes cannot be described by any conformal field 

theory of weakly coupled superstrings. In [3] it was shown that the system of D4-branes ending 

on NS 5-branes with two transverse directions can be described as a smooth configuration of 

a single fivebrane in M theory on RIO x 51 in the eleven-dimensional supergravity limit, and 

that, for some purposes, it gives us nice or even exact results of the gauge theory on the brane 

in the long distance limit. A D4-brane is a fivebrane wrapped on the 51 and NS 5-brane is 

a fivebrane at a point in the 51. The configuration of a D4-brane ending on a NS 5-brane is 

interpreted as a wrapped fivebrane merging smoothly with an unwrapped fivebrane. In the 

brane configuration given in the previous section, the NS brane is described as a fiat fivebrane 

in M theory, but the system of upper- and lower-half D4-branes ending on the NSf brane 

is described by a curved fivebrane. The D2-branes are described as membranes stretched 

between the two fivebranes. The dynamics of such open membranes ending on fivebranes 

has not been fully understood. However, as we will see in the next subsection, there are 

features of quantum theory that can be captured correctly without the detailed knowledge of 

the membrane dynamics, e.g., renormalization of the FI parameter i and anomalous breaking of 

an R-symmetry. In some cases, the description by M theory determines the vacuum structure 

of the theory and, moreover,· enables us to obtain some exact information, such as soliton 

spectrum and masses. Conversely, it would be interesting to investigate the dynamics of open 

membranes by making use of knowledge of two-dimensional quantum field theory. 

We introduce the coordinate x lO of the circle 51 in the eleventh direction where x lO is 

identified with x lO + 27r. The fiat eleven-dimensional space-time RIO X 51 is given by the metric 

9 

ds2 = -(dxO)2 + :L(dXIl)2 + R2(dx lo? (4.1) 
/L=1 

where R is the radius of the circle 51. Recall that the string length lst and the eleven-
1 

dimensional Planck length £11 are related by £11 = g!t£st where the string coupling constant gst 

is given by g;{3 = Rj lll. 

Below, we give an M theory description of the Type IIA configuration in section 3 in some 

detail. 
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The D4-Branes Ending on the NSf Brane 

In M theory, the system of upper and lower D4-branes ending on the NS' brane can 

be described as a single fivebrane of the form R4 x C where R4 spans the coordinate XO,1,8,9 

and C is a real two-dimensional surface embedded in the four-dimensional space spanning the 

coordinates X 2,3,7,lO which is at a fixed position in the X 4,5,6 directions. Since it preserves eight 

supercharges, it must be holomorphically embedded with respect to some complex structure. 

By introducing the complex coordinates 5 

1J-2( 2 . 3) 
0" = {. st X + ZX , ( 4.2) 

the X 2,3,7,lO part of the space-time can be considered as a hyper-Kahler surface with a fiat Kahler 

metric 

(4.3) 

and a holomorphic two-form 

( 4.4) 

The curve C corresponding to a straight NS' brane is at a point III the s-cylinder and is 

coordinatized by 0", while the curve for a straight D4-brane is at a point in the O"-plane and is 

coordinatized by s modulo a shift by 27ri. When an upper-half D4-brane ends on an NS' brane 

at a point 0" = m, then, the D'4-brane bends the NS' brane in such a way that s-value of the 

NS' brane varies as a function of 0" as if the D4-brane plays the -role of a source of the Laplace 

equation for s = s(O"): GqGuS = -5(0" - m). Since the fivebrane becomes a D4-brane extending 

to X7 = +00 as we approach 0" = m, the real part of s(O") must diverge at 0" = m but it should 

not diverge nowhere else because there is no other D4-branes. Also, the imaginary part of s( 0") 

admits a 27r shift as we go around 0" = m, but no other kind of multi-valued-ness is allowed. A 

unique holomorphic function satisfying these properties is 

s = - loge 0" - m) + constant. (4.5) 

Likewise, if we consider nl upper-half D4-branes at 0" = ml,"" mn1 and n2 lower-half D4-

branes at 0" = Tnl, ... , Tnn2 , the curve C is described by 
nl n2 

S = - I: log(O" - mi) + I: log(O" - mj) + constant. ( 4.6) 
i=l j=l 

5We use for the complex combination of x 2,3 the same symbol (J' as the scalar component of the twisted chiral 
superfield, as these are identified in section 3.1. The factor t;/ is the tension of the fundamental string. 
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We recall that we have chosen the coordinates so that the D4 and NSf branes are at X4 = x 5 = O. 

Let L be the x6-value of them. Then, by introducing a single valued coordinate of the s-cylinder 

as t = exp( s), the fivebrane is described by 

nl n2 

t II (~ - mi) = q II (7 - Tn:;) , (4.7) 
i=l ]=1 

(4.8) 

where q is a non-zero constant. 

The NS Brane 

The NS brane is described in M theory as just the flat fivebrane spanning the coordinates 

XO,1,2,3,4,5 which is located at a point in the remaining directions. In section 3, we have chosen 

the origin of the coordinates so that it is located at X 6,7,8,9 = O. Likewise, we can also choose 

the origin SQ that the NS brane is at x10 = O. Namely, the NS brane is the fivebrane at s = 0, 

or equivalently, 

t = 1 and (4.9) 

(4.10) 

The D2 Branes 

The D2 branes are described as membranes stretched between the two fivebranes. For a 

fixed time xO, it is basically an infinite strip where the two boundaries are at the two fivebranes, 

namely, one is constrained by (4.9)-(4.10) and the other by (4.7)-(4.8). There can be a "toper 

logical excitation" in which the membrane is not just a strip but can have additional boundaries 

or genus. In such a case, we require any boundary to be in one of the two fivebranes. Indeed, 

in section 6 we will see such excitations as soli tonic states of some models. 

34 



4.2 Quantum Properties of the Theory 

The Fayet-Iliopoulos and Theta Parameters 

We recall that in the Type IIA description the difference ~X7 = x7(NS') - x7(NS) of the 

x7-values of the NS and NS' branes is interpreted as the FI parameter r of the U(I) part of the 

gauge group. More precisely, 
~X7 

r=--. (4.11) 
9stRst 

However, in the present situation, the NS' brane does not have a definite x 7 value and varies 

as a function of 0'. Correspondingly, r varies as a function of 0' and we interpret this as the 

effective FI coupling at the mass scale 10'1. Since 9stRst = R, it is given by 

~X7 
r(O') - -If" = -Re(s) (4.12) 

nl n2 

= I: log 10' - mil- L log 10' - mjl-Iog Iql· ( 4.13) 
i=1 .j=1 

Indeed, at large 10'1 it behaves as r '" (nl - n2) log 10'1, and this agrees with what we expect 

from the renormalization (2.44) of the FI parameter, up to a factor of 271" for which we have 

not been careful. Moreover, for a suitable choice of log q this is exactly the same (modulo the 

271" factor) as the effective FI coupling r efJ as a function of the .scalar component of the twisted 

chiral superfield ~ (see (2.48) and (2.61)). 

In addition to this, we also interpret the separation of NS and NS' branes in the x lO direction 

as the theta parameter of the U(I) part of the gauge group. This can be understood in 

the following way. Consider a (generically non-supersymmetric) c<?nfiguration of a membrane 

stretched between the fivebranes where the boundary on the right has a fixed x lO value as well 

as the one on the left does. Since the gauge field on the D2-brane is dual to the scalar field 

representing the position of the membrane in the eleventh direction, we have FOl = 9stf-;/86x10. 

6 Namely, 
A 10 

1J_ 1 o.X 2 10 
FOI '" 9stt. st ~X6 '" e ~x . ( 4.14) 

On the other hand, we know from field theory [51] that the theta parameter () creates a constant 

electric field FOl '" e2
(). Thus, we can identify the separation ~XlO as the theta parameter. 

6 Actually, it is FOI - BOI = gstR.;/a6x IO [61]. In this situation, however, BOI = 0 as the directions 01 being 
parallel to the fivebranes. 
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Altogether, the complex combination ~s = ~X7 / R + i~XlO as a function of a is interpreted 

as the effective coupling constant 27riTejJ = -27rrejJ + i()ejJ. By (4.7) and (4.9), it is given by 

nl n2 

~s = - L log(a - mi) + L log(a - mj) + logq. ( 4.15) 
i=l j=l 

This agrees with the field theory knowledge (2.48),(2.61) if we identify the constant q as 

( 4.16) 

The Axial Anomaly 

The Type IIA configuration has an invariance under the rotations in the 23 plane. Indeed, 

if we set all the twisted mass to be zero, the configuration is invariant under the action of 

eio E U(1h,3' a -+ ae2io
, up to the positions of the D2-branes which depends on the choice of 

vacua. In the M theory configuration, however, the symmetry is reduced due to the modification 

of the fivebrane on the right. If we set mi = mi = 0, the fivebrane on the right is described 

by the equation tanl = qan2 , and this is invariant under eio E U (1 h,3 only if e2i(n l -n2 )0 = l. 

Namely, U(1h,3 invariance is broken to its discrete subgroup Z2(nl-n2). This corresponds to the 

anomalous breaking of the U(r)A R-symmetry (2.41). This dis.crete symmetry might be further 

broken by the configuration of membranes, which corresponds to the spontaneous breaking by 

a choice of vacuum. 

Validity of the Approximation 

The theory on the branes is in general different from the conventional quantum field 

theory because the former interacts with gravity and string excitations in the bulk and involves 

the modes associated with Kaluza-Klein reduction on the interval. If we are to draw some 

information on the two-dimensional field theory from branes, we must at least be able to find 

a limit in which all these extra modes decouple from the system. 

In the present context, there are essentially three parameters that characterize the brane 

configurations (for this part of the section, we turn off the mass parameters): the separation 

.6.x6
( = L) of the two fivebranes in the x6 direction, their separation ~x 7 in the x 7 direction or 
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the parameter q that characterize the fivebrane on the right, and the radius R of the circle in 

the eleventh direction. On the other hand, there are only two parameters that characterize the 

field theory: the bare gauge coupling constant e2 and the FI parameter r or the scale parameter 

A that organizes the running of r. They are related by 7 

r = ( 4.17) 

Since the theory is asymptotically free with respect to the coupling constants e and l/r, if l/r is 

very small at the scales of gravity, string and Kaluza:"Klein excitations, and e is small compared 

to these scales, we can neglect the effects of these extra modes at enough lower energies. This 

condition is satisfied if the radius R is much smaller than ill and the other parameters I~X61, 

I~X71· 

Note that this is the weak coupling Type IIA limit of the M theory and is not a parameter 

region in which the low energy supergravity approximation of M theory is valid. However, 

as far as the qualitative features as well as quantities that depends only on the combinations 

(4.17) are concerned, it seems that we can make some prediction and perform a computation 

by going to a region in which R is large where we can use the eleven-dimensional supergravity 

approximation. 

There is, however, one thing which one must be careful. The condition that l/r is very small 

at the Planck scale t:;}, the string scale t;/ = Rl/2i~13/2 and the scale 1/I.6.x6
1 of Kaluza-Klein 

modes is equivalent with the condition that A is much smaller than these energy scales. The 

identification (4.16) yields A = Iql/(n1-n2 ) I and this is proportional to the characteristic length 

l.6.x2,31 = i;tlql/(n1-n2 ) I of the fivebrane on the right. In short, 

( 4.18) 

Thus, if we are to increase the radius R beyond ill and keep A to be small compared to the scales 

t:;} and Rl/2i~13/2, then, the length I~X2,31 becomes very small (compared to ill)' Since this 

length is the distance of the different branches of the part of the fivebrane on the right described 

by u n1
-

n2 t = q, if it is small, we are probing the system of parallel and nearly coincident 

fivebranes. Namely, the (2,0) superconformal field theory in six dimensions of [62, 63]. Use of 

supergravity approximation is therefore valid only if we increase A. However, if the result of 

7We thank correspondence with Andreas Karch on related issues. 
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some computation in this approximation depends only on A (and other quantities that appears 

in the field theory) and is totally independent of f 11, we can still expect the result to be a good 

prediction. One such example in the past is the BPS mass formula in the N = 2 theories in 

four-dimensions [3] in which the distance of the fivebranes corresponding to the D4-branes is 

of order A and must be small in the field theory limit, but should be large for the supergravity 

approximation to be valid. In the present paper, we compute the mass of the BPS states of the 

cpn-l model and its deformation (see section 6). 

4.3 The Structure of Vacua 

A supersymmetric vacuum of the two-dimensional field theory is realized as a configuration 

of membranes which preserves four of the supercharges of M theory. The condition of four 

unbroken supercharges is simply that each of the k membranes are located at a point in the 

directions transverse to 016. Namely, the worldvolume of each membrane is a straight strip 

R2 x I, where R2 is the 01 part of the space-time and I is a segment in 0 :S x 6 :S L located 

at a definite position in the 2345789 and 10 directions. Since it is stretched between the two 

fivebranes, the two ends of I must satisfy the conditions (4.9)-(4.10) and (4.7)-(4.8). 

Below, we determine the vacua of the cpn-l and Grassmannian models in this M the­

ory frame work. These cases can be treated without detailed knowledge of the dynamics of 

membranes, except that we need in the Grassmannian case to make use of'the rule [1] that 

s-configurations are not supersymmetric. We discuss other cases in the next section. 

The cpn-l Model 

We first consider configurations corresponding to the cpn-l model in which k = 1, nl = n, 

n2 = 0 and all the twisted masses are turned off. In this case, the fivebrane on the right is 

described by (4.8) and ant = q. Therefore, a configuration corresponding to a supersymmetric 

vacuum is R2 x I where I is a segment in 0 S x 6 :S L at X4 = x 5 = x8 = x 9 = 0, t = 1 and at 

one of the roots of 

( 4.19) 

Since (4.19) has n roots, there are n configurations preserving four supersymmetries, in agree­

ment with the field theory result. Also, it is evident that each choice breaks the discrete 
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subgroup Z2n of U(1h,3 to Z2, which corresponds to the spontaneous breaking of the discrete 

R-symmetry group Z2n C U(l)A. 

It is interesting to note that the relation (4.19) is nothing but the quantum cohomology 

relation of the cpn-l model [64], which represents the instanton correction to the chiral ring. 

It is easy to extend this result to the case where the twisted masses are turned on. In this 

case, the equation (4.19) is modified as 

n 

II ((T - mi) = q. ( 4.20) 
i=l 

The number of vacua is still n since the number of roots is, in agreement with· the field theory 

result. It would be interesting to determine the chiral ring of the model with twisted mass in 

the field theory frame work. A natural guess is that it is described by (4.20). 

The Grassmannian Model 

The Grassmannian sigma model with target space G(k, n) is described by k membranes 

stretched between the fivebranes in which nl = n, n2 = 0, and all mi = o. A configuration 

preserving four supersymmetries is a set of k membranes R2 X I(a), a = 1, ... , k, where each 

I(a) is a segment in 0 ~ x6 ~ L at X4 = x 5 = x8 = x 9 = 0, t = 1 and at one of the n roots of 

( 4.19). 

The structure of vacua depends on whether two or more membranes can be on top of each 

other. To answer this from first principles, we need a detailed knowledge of the dynamics of 

open membranes stretched between the fivebranes, which we do not have presently. However, 

the configuration of coincident membranes in this set-up is locally the same as the (T-dual of) 

s-configuration of [1]. 8 Indeed, since the fivebrane on the right is obtained from the D4-branes 

ending on NSf brane, we may view a point on it as a point of one of the D4-branes. Then, 

the configuration of coincident membranes can be viewed as a configuration of two (or more) 

D2-branes stretched between a single NS 5-brane and a single D4-brane, a T-dual of the s­

configuration of [1]. Then, provided the rule that s-configurations are not supersymmetric is 

correct, a configuration of two or more membranes on top of each other is not supersymmetric. 

8To remind the reader, s-configurations are configurations in which k D3 branes are stretched between a NS 
fivebrane and a D5 brane in type lIB. The statement is that for k > 1 the configuration breaks supersymmetry 
even though apparently it need not. 
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It is plausible to admit this since the rule has passed through various different checks [1, 11,22]. 

It would be interesting to prove it directly from the study of membrane dynamics. We leave it 

as an open problem. 

Thus, a configuration corresponding to a supersymmetric vacuum is given by a choice of k 

distinct roots among the n roots of (4.19). Thus, the total number of such configuration is (~), 

in agreement with the field theory result. A choice of such configuration breaks the discrete 

symmetry group Z2n. The pattern of breaking Z2n also agrees with what we expect from the 

field theory. 

It is interesting here also to note that the quantum cohomology ring of the Grassmannian 

G(k, n) is the ring of symmetric polynomials of all ... , ak with each ai obeying the constraint 

(4.19) (see [65, 37, 59]). 

We will discuss more about the Grassmannian model in the next section. 

5 Continuation Past Infinite Coupling 

Let us now turn to study non-trivial dynamics of the two dimensional theories at hand by 

moving branes in space-time. There is a very simple trick which can be applied to any brane 

configuration. We can reorder"positions of branes in the x6 direction. Let us review first what 

are the consequences of this operation in various dimensions and supersymmetries. 

In [1] a configuration of Nc threebranes stretched between two NS fivebranes together with 

N j D fivebranes was used to construct N= 4 supersymmetric U(Nc) gauge theory with Nf 

flavors in three dimensions. It was shown there that when the two NS fivebranes exchange their 

position the theory changes its matter content. There is a phase tra~sition to a U(Nf - Nc) 

gauge theory with N f flavors. The gauge coupling of a given theory is proportional to the inverse 

distance between the two NS branes. Thus, the transition goes through infinite coupling for 

both gauge theories. In this sense we call one theory continuation past infinite coupling of the 

other. The transition is performed in the Higgs branch of both theories and thus allows us to 

study the equivalence between the Higgs branches of the two theories. 

The authors in [9] applied the same trick as in [1] to study the dynamics of N = 1 su­

persymmetric gauge theories in four dimensions. For this case the exchange of the two NS 

branes leads to Seiberg Duality [66]. The two gauge theories which are involved are similar to 
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the theories in the three dimensional analog and are SU(Nc) with NJ flavors while the dual is 

SU(NJ - Nc) with NJ flavors and some mesons with a superpotential. See a detailed discussion 

in [17]. Other applications of this effect can be found in [13, 15, 16, 18, 25]. 

Let us try to apply the trick of [1] to the system at hand. In this case the number of matter 

fields is roughly half the number of fields that we have in the two previous examples, however 

since the technique is the same, we will get qualitatively equivalent results for this theory as 

well. There are two ways to look at the problem. We have the type IIA picture which describes 

the semiclassical limit of the theory and the M theory picture which describes the quantum 

behavior of the system. We will first describe the exchange of the NS branes in the type IIA 

picture. Then we will describe the same transition in the M theory setup and see that the two 

pictures are really different. This serves as a good example for the quantum correction of the 

transition and shows that it is a truly quantum effect. 

Type IIA Description of the Transition 

Consider the system of branes as in section 3 with nl = n, n2 = 0 and k < n. We sketch 

this configuration in figure 3. This configuration of branes describes U(k) gauge theory with n 

D4 

D2 

NS NS' 

Figure 3: U(k) gauge theory coupled to n chiral multiplets. There are k D2 branes stretched 
between NS and NSf fivebranes. n semi-infinite (upper) D4 branes end on the NSf fivebrane. 

chiral multiplets in the fundamental representation. As reviewed in section 2.2.3, in the infrared 
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this theory was shown to describe a sigma model on the space of Grassmannians G(k, n). 9 

D4 

NS 

Figure 4: Turning on a FI term when the D2 branes are in between the two NS branes. The 
D2 branes must end on the NS branes to avoid charge violation. As a result their orientation 
in space-time is changed and thus supersymmetry is broken. 

We want to exchange the x6 position of the NS fivebrane and the NS' fivebrane. We need to 

avoid possible charge flow between the two fivebranes when they pass. Therefore we want the 

fivebranes to avoid each other in space time. For this we need to change the relative distance in 

the x 7 direction. This corresponds to turning on a FI parameter for the U(l) part in the U(k) 

gauge group. However in a generic situation this has the effect of breaking supersymmetry. 

Such a breaking is visible in thebrane construction by changing the orientation of the D2 

branes in space. Indeed if we move the NS fivebrane in the x 7 direction, when some D2 branes 

are stretched in between the two fivebranes, the orientation of the D2 branes in space gets some 

angle in the 67 plane and thus breaks supersymmetry. This is sketched in figure 4. We can 

avoid such a breaking by letting the D2 branes end on other branes. The simplest way to do 

it is to introduce D4 branes on which the D2 branes can end. The only D4 branes present are 

the semi infinite branes which end on the NS' brane. As such they can not move independently 

in the x 6 direction because the NS' brane is point like in this direction. An attempt to move 

the D4 branes away from the NS' brane will result in RR charge violation. However we can 

9See, for example, [65, 59] and references therein. 
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use lower semi-infinite branes which come from infinity in the 23 directions and reconnect with 

the upper D4 branes to form infinite D4 branes. Once they are infinite they can leave the NS' 

brane as there is no charge violation in this case. So we move m lower D4 branes from infinity 

to reconnect with m upper D4 branes to form m infinite D4 branes. This can be done only if 

n 2: m. Such a process corresponds to turning on m chiral multiplets in the anti fundamental 

representation. The 23 position of the lower D4 branes being the twisted mass mj. When the 

lower and upper branes reconnect and the resulting infinite D4 brane moves in the x 6 direction, 

The chiral symmetry SU(n) x SU(m) is broken explicitly. 

D4 

L, D4 

D2 D2 

NS NS' 

Figure 5: A Type IIA description of the exchange of two NS branes. This is a classical transition 
which is corrected quantum mechanically. In the figure there are D2 branes stretched between 
infinite D4 branes and a NS brane. The D2 branes are created when the D4 and the NS branes 
pass each other in the x 6 direction. 

Next the D4 branes should cross the NS brane in the x 6 direction. They share only one 

transverse direction and therefore can not avoid each other in space. When they cross a D2 

brane is created [1] which is stretched in between them. If m D4 branes cross the NS brane 

there are m D2 branes which are stretched in between the NS brane and each of the D4 branes. 

These D2 branes are not free to move. They are stuck on one side to the NS brane and on 

the other side to the D4 branes. We can still reconnect such branes with the k D2 branes that 

are stretched between the two NS branes. This is done by moving the latter branes to touch 

the former branes which are stack. Such a process corresponds to changing the expectation 

values of the adjoint matrix (7 in such a way that we go to a point where the quark fields 
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become massless. Such a process ~an not be possibly correct quantum mechanically because in 

two dimensions there is no moduli space of vacua, at most a discrete set of vacua are allowed. 

Nevertheless let us proceed with the semiclassical description. In such a way we reduce the 

number of branes attached to the NS brane. If we do this for all k D2 branes between the two 

NS branes there are no branes attached to the NS brane left. At this stage we can move the 

NS brane in the x 7 direction without breaking supersymmetry. Note that the number of D4 

branes, m, must be greater or equal to k for supersymmetry not to be broken. From the above 

considerations we see that the minimal number of lower branes needed for these processes to 

preserve supersymmetry is m = k ::; n. So we choose this value and proceed. The resulting 

configuration is sketched in figure 5. 

At this point we can move the NS brane past the NSf brane by first moving in the x 7 

direction and then in the x 6 direction. We encounter an apparent puzzle. There are two ways 

to turn on the FI parameter, r. One is to turn r > 0 and the other is to turn r < o. In the first 

case the NS brane will meet the upper D4 branes and when crossing will create a D2 for each 

D4 brane. In contrast, in the second case, the NS brane will not meet any D4 branes and thus 

there will be no creation of D2 branes at all. This is in contradiction with the expectation that 

the transition will be independent of the path chosen! 

We clearly see that the type IIA picture has some ambiguity. We will see how this is cured 

in the M theory description of this transition. For now let us recall, as reviewed in section 2.2, 

that the FI parameter gets renormalized in the quantum theory (which is equivalent to going 

to M theory limit). Indeed the r > 0 region which seems to be special at the classical theory 

is smoothed and can be continued to all values of r. In terms of branes what happens is that 

the D4 branes bend the five brane in such a way that the r > 0 region is extended. So let us 

assume that the region of r > 0 is valid for every value of r. 

With this assumption, when the NS brane crosses the n - k D4 branes there are n - k 

D2 branes created. The NS brane can then go back to the origin of the x 7 direction and now 

the resulting theory is U(n - k) with n fundamental fields. Classically there seems to be some 

additional matter and couplings however the picture modifies in the quantum theory. This 

completes the description of this transition in the type IIA picture which clearly has many 

loopholes and some apparent inconsistencies. 
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M Theory Description of the Transition 

Actually the description of this transition in the M theory picture is much simpler and 

avoids all the problems mentioned. The M theory picture gives us one straight fivebrane at 

t = 1 spanning worldvolume in the 012345 directions and another fivebrane with world volume 

R4 x L; where R4 is the world volume spanned by 0189 and L; is a degenerate Riemann surface 

in the 237 and 10 directions which is described by the equation ant = q. The two fivebranes 

are connected by k membranes. In a vacuum configuration, the membranes are located at the 

roots of a n = q. Recall that k of the n roots are occupied by the membranes and the remaining 

n - k roots are not, since one root cannot be occupied by two or more membranes because 

s-configurations are not supersymmetric [1]. 

D4 

n 

D2 

NS' n-k NS 

Figure 6: Continuation past infinite Coupling for the Grassmannian Model. There are n upper 
D4 branes which end on NSf brane and n - k D2 branes stretched between the NS and NSf 
branes. This is the type IIA description of the transition which is done in the M theory limit. 

In contrast to the situation in the type IIA picture, the two fivebranes cannot avoid each 

other in space. Thus the process of getting lower D4 branes becomes unnecessary. Instead the 

two fivebrane cross each other transversely in the space perpendicular to the 01 directions. In 

particular, they intersect at the n roots of an = q at t = 1, X 4,5,8,9 = O. Now the use of the 

transition of [1] implies 10 that, whenever there was a membrane stretched before the transition, 

there will be no membrane after that, and vice-versa. That is, after the exchange in the x6 

lOSee also a discussion in [67, 68]. 
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direction we are left with n - k occupied positions of membranes and k positions which are not 

occupied by membranes. The resulting configuration is sketched in figure 6 and the theory at 

hand thus describes U(n - k) gauge theory with n fundamental chiral multiplets. 

The transition we have found implies that there are two microscopically inequivalent theories 

which are equivalent in the IR. This is, in some sense, "Seiberg's duality in two dimensions." 

What the brane picture demonstrates is how the transition past infinite coupling implies this 

equivalence. 

Brane Proof of Level-Rank Duality 

Let us recall that the number of vacua for the U(k) theory with n fundamental fields is 

given by the Witten index which is nothing but the Euler characteristic of the Grassmannian 

G(k, n). It is given by (~). What we have just found is that the number of vacua is consistent 

with the transitions as the formula is invariant under the exchange k f-t n - k. This is what is 

expected since the Grassmannian G( n - k, n) is "dual" to G( k, n) and these are essentially the 

same. 

There is one interesting point of view. The transition we have found is nothing but the 

level-rank duality of the WZW_model, as described in [28] (see also [29] and references therein). 

Recall that the dynamics of vacua of the Grassmannian sigma model with target space G(k, n) 

is described by the U(k)jU(k) gauged WZW model with the level of U(k) rv SU(k) x U(l) being 

(n-k, n). The level-rankduality says that the space of conformal blocks of SU(k) WZW model 

with level n-'k is dual to the one of SU(n-k) WZW model with level k. The U(k)jU(k) gauged 

WZW model, being a topological field theory, has as its correlation functions the dimension of 

the space of conformal blocks. If we use this, we see that our system is equivalent with the 

U(n - k)jU(n - k) gauged WZW model with the level of U(n - k) I"V SU(n - k) x U(l) being 

(k, n), which describes the sigma model with target space G(n - k, n) which in turn is given by 

the U(n - k) gauge theory with n fu~damental chiral multiplets. This is exactly what we have 

seen in the above discussion of brane motions. In other words, we have shown the level-rank 

duality in the brane framework. 

It would be interesting to study the interplay between this transition and the methods used 

in the literature to study this duality. The brane picture demonstrates that Seiberg Duality 
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in four dimensions and level rank duality in two dimensions follow from the same qualitative 

level. 

5.1 More Brane Motion 

We have performed all possible motions of branes in space for the G(k, n) models. We can 

now study transitions in other models by moving the branes around. Let us add more branes 

into the picture. Suppose that a lower D4 brane comes from infinity in 23 to the origin. We 

get a massless anti-fundamental field of U(k). As in the last subsection, the lower D4 brane 

can join an upper D4 brane and move away from the NSf brane in the 456 directions. Let us 

assume that the motion is only in the x 6 direction. As discussed in section 3.2, if the position 

of the D4 brane is to the right of the NSf brane, the corresponding matter field decouples from 

the low energy theory. So we will discuss the case where the D4 brane is to the left of the NSf 

brane. Then, there seems to be a flat direction for which a D2 brane can break and move in 

between the infinite D4 brane and the NSf - upper D4 branes system. This is in contradiction 

with Coleman's theorem which states that there are no flat directions in two dimensions, as 

mentioned in the last section. To understand how this is possible let us look at the M theory 

solution for this problem. 

The equation which describes the addition of the lower D4 brane in type IIA is -

(5.1) 

This demonstrates that indeed an infinite D4 brane in type IIA can decouple. In the M theory 

picture two fivebranes are formed. One at 0' = 0 and the other at 

(5.2) 

Next we want to break a membrane which will be stretched in between the two fivebranes. 

However we encounter a problem since the two equations have no common solution in the 23 

direction. That is unless q is equal to zero which is infinitely far away. Such absence of solution 

may lead us to conclude that the supersymmetric vacuum is broken in contrast to the naive 

expectation that there is a space of flat directions. 

To understand better let us turn on twisted masses iii and m for the two fields Q and Q, 
involved. Then, the equation describing the fivebrane on the right is 

O'n-l (0' - iii)t = q( 0' - m). (5.3) 
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First, consider the case with m = m. This gives a position m to the infinite D4 brane which in 

the M theory picture has the equation (J - m = o. Together with equation (5.2) we see that the 

x 7 position of the membrane is determined to be given by the equation t = ~. Thus, for a 

given m, the x 7 and x lO positions are fixed. We also see that when the twisted mass is zero, the 

membrane is running away to infinity in this direction. There is still an option to turn on some 

arbitrary values in the 89 directions which will have the interpretation of expectation value for 

meson fields. This new flat direction corresponds to the sigma model based on a complex one 

dimensional non-compact space which is discussed in section 2.2.2. The mechanism for freezing 

motion in this direction is not clear. We will assume that this motion is frozen. The total set 

of vacua is thus n - 1 massive vacua corresponding to the solution of (5.2) and the vacua of 

this non-compact sigma model. 

Second, we consider the generic values of m and m. As the equation (5.3) shows, the 

number of vacua is n. Recall that a supersymmetric vacuum here is interpreted as a stable 

brane configuration which is in accord with the supersymmetry. This condition is indeed 

satisfied. For this case the Witten index, Tr( -1 V, does not depend on the value of the twisted 

mass parameter. 

There are two generalizations to the models considered so far. One type of generalization is 

to replace the degenerate Riemann surface of the NSf brane and D4-branes system by a general 

Riemann surface. The theory then will be of a D2 brane propagating between a NS brane 

and the Riemann surface. One possible system is to take a Riemann surface which describes 

a particular four dimensional theory like those studied in [3]. An example is discussed in the 

next section. 

Another generalization is to replace also the NS brane with an arbitrary Riemann surface. 

In some sense the NS brane is a very degenerate Riemann surface. Then our aim would be to 

study the dynamics of the D2 brane when it propagates between two Riemann surfaces. More 

generally, we can take a series of Riemann surfaces localized at points in x 6 . There can be 

arbitrary numbers of D2 branes propagating between each two adjacent Riemann surfaces. 

5.2 D2 brane Propagation on N = 2 Supersymmetric QeD. 

We have studied in detail the propagation of a D2 brane on a four dimensional theory 

which is somewhat degenerate. As a four dimensional theory it is weakly coupled and frozen, 
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in the brane language. The closest realistic theory that the cpn-l model captures in this 

brane realization is N = 1 supersymmetric QeD. The genus zero curve which describes the 

chiral ring of the cpn-l model coincides with part of the genus zero curve which describes 

N = 1 supersymmetric QeD. The correspondence between the cpn-l model and this theory 

was known for a long time. This is reviewed in section 2.2.1. The cpn-l was used as a two 

dimensional toy model for studying confinement and other four dimensional phenomena. Both 

models share domain walls (solitons in the two dimensional theory). From the brane point of 

view this is not a surprise. The brane picture really provides a string theory explanation for this 

correspondence. It tells us that studying the two dimensional model, probes some qualitative 

features of the four dimensional theory. At some cases, as for the ratios between domain wall 

tensions versus soliton mass ratios, the correspondence is even quantitative! This may be just 

the beginning of an intersting interplay. 

The aim of this section is to continue this approach and study the propagation of the D2 

brane on N = 2 supersymmetric QeD in four dimensions.- This theory is described by some 

D4 branes stretched between two NS branes. We will choose, as in the previous models, a NS 

brane at one end of the D2 brane and in the other end we will take the 4d theory in question. 

So let us start with a single D2 brane stretched between a NS brane to the left and 2 NSf 

branes to the right. According to a conjecture by [9], this configuration describes a U(l) theory 

with adjoint field x subject to a superpotential W = x3 . The"x field is associated with the 45 

position of the D2 brane. This superpotential can be perturbed by moving the NSf branes in 

the 45 directions resulting in a superpotential which satisfies 

oW 
ax = (x - a)(x - b). (5.4) 

a and b are now the positions of the two NSf branes in the 45 directions. 

Let us assume that this description is correct and add more branes to the picture. We put n 

D4 branes in the interval between the three NS branes (the two NSf branes are on the same x 6 

position). This process can be thought of as putting the branes at far infinity in 45 directions 

and then slowly moving them to the origin of 45. The resulting theory describes a U(l) theory 

coupled to n chiral fields of charge + 1 and their complex conjugates, with the adjoint field 

subject to the superpotential as above. 

Next, let us move the NSf branes far apart in the x 7 direction. Such a process does not change 
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the superpotential. The x 7 distance, being a real parameter, can not enter the superpotential 

if we assume, by supersymmetry, holomorphic dependence. We can now move the D4 branes 

in the x 6 direction to touch the two NSf branes. Once they touch, they can break and form a 

system of n finite D4 branes between two NSf branes together with n semi-infinite lower (upper) 

D4 branes. To a four dimensional observer, living in the 0189 coordinates, this configuration is 

nothing but finite N = 2 supersymmetric QCD with gauge group SU(n) coupled to 2n flavors 

represented by the semi-infinite branes! 

What is the two dimensional theory? We can repeat our analysis from the previous models 

and find that there are n Ql and Ql fields coming from localization near the first NSf brane 

and n Q2 and Q2 fields coming from localization near the second NSf brane. The adjoint field 

is still there subject to the superpotential. 

Going back to the four dimensional theory, varying the positions in the 456 directions is 

now interpreted as the Higgs branch of this theory. In addition, once the D4 branes break, 

each part can move independently and we can get all the models which are derived from the 

finite theory by turning on expectation values or mass terms. In particular pure N = 2 SU(n) 

YM, and other models. The Coulomb branch of this theory is identified with the motion of the 

finite D4 branes along the NSf branes in the 23 directions and is described by the genus n - 1 

Riemann surface 

(5.5) 

where R, P and Q are polynomials of order n in (7. For the two dimensional theory the 4d 

Higgs branch is the space of complex mass parameters together with x 6 and A7 motions. The 4d 

Coulomb branch is the space of twisted mass parameters for the 2d theory. We can continue with 

the identification further. There is a complex modulus for the Riemann surface which describes 

the coupling constant and theta angle of the four dimensional theory. This is identified with the 

FI coupling and theta angle of the two dimensional theory. This identification requires some 

explanation which will be given below. However it is sufficient to see that the FI coupling of the 

two dimensional theory receives non-perturbative corrections which come from contribution of 

2d instantons which are stretched between the two NSf branes. This is the first model in which 

such an effect happens for a two dimensional FI parameter! We find that two dimensional FI 

parameters behave just like four dimensional gauge couplings. 
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Let us go back to describe more about the FI parameter. Consider a D2 brane which 

propagates between the Riemann surface of the 4d theory and the NS brane. Let us assume 

that we have m finite D4 branes and nl(n2) upper (lower) D4 branes. This describes SU(m) 

gauge theory with nl +n2 flavors. Near the first NSf brane we have a U(1) theory coupled to m 

charge + 1 fields Q and nl charge -1 fields Q. There is a FI term given by the distance between 

the NSf and the NS in the x 7 direction. Near the second NSf brane we have a similar theory but 

it is a different U(1) coupled to n2 charge +1 fields Q and m charge -1 fields Q. The FI term 

is given by the x 7 distance between the second NSf brane and the NS brane. We see that there 

are two U(1) theories with two FI couplings. In the intermediate region between the two NSf 

branes both U(l) theories are broken and moving along the four branes is a transition between 

the two U(l) theories. 

There are two combinations for the FI couplings - a sum and a difference - for which only 

the difference is relevant for the physical system. It is this quantity which is identified with the 

T parameter of the Riemann surface for the 4d theory. 

This situation is generalized easily to k D2 branes and also for including more than two NSf 

branes. It would be interesting to study this system and the 2d - 4d correspondence in more 

detail. 

One more important point. is in order. At some special points in the Coulomb branch of 

the four dimensional theory there are additional massless multiplets - monopoles or dyons. If 

there are more than one such additional massless multiplets then there can be Higgs branches 

which emanate from this singularity in the Coulomb branch. Such branches are not visible 

from a semi-classical point of view since the singularities appear at strong coupling. In terms 

of branes what happens is that a Riemann surface becomes degenerate at the singularity points 

and leads to disconnected Riemann surfaces. This is interpreted as two fivebranes which locally 

come together and form a massless hypermultiplet. When the two branes move in a different 

direction away from the singularity, if this is possible, then a Higgs branch emanates from the 

singular point. 

The correspondence between the moduli space of vacua of the four dimensional theory and 

the space of parameters of the two dimensional theory now has a new prediction. Since the new 

Higgs branch which emanates is interpreted as complex mass parameters for the two dimen­

sional theory, there are new couplings which are not visible from the semi-classical Lagrangian 
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description. Clearly the new couplings are visible from the brane point of view as the new 

direction for which the two fivebranes can move. 

6 Solitons Via M Theory 

In this section, we give a description of the BPS saturated solitons in N = 2 field theory in 

two dimensions, which were discussed in section 2, in terms of branes in M theory. 

We recall from section 2.2 that the fundamental BPS soliton in the cpn-l model is the 

elementary field Q in the fundamental representation of the flavor group SU(n) [30]. The 

corresponding statement in the Type IIA description would be that the fundamental soliton is 

the Type IIA string stretched between the D2 brane and the D4 branes on the right. In ~he M 

theory description the string and the D2 brane become a single membrane which winds around 

the eleventh dimension in the region near the fivebrane on the right, and is stretched between 

the two fivebranes. We will show that this must be the case on topological grounds. Recall 

also that the .e-th soliton of the cpn-l model (which interpolates the two vacua separated by 

.e-steps) is in the .e-th anti-symmetric representation of SU(n) (£-th exterior product of the 

fundamental). In the Type IIA description, this would be a bound state of C elementary strings· 

stretched between the D2-brane and the D4 branes. We will also see this in M theory including 

the fact that they form the C-th anti-symmetric representation of SU(n), as a consequence of a 

constraint on the topology of the membrane which preserves two of the four supersymm·etries. 

In addition, we compute the BPS mass by defining the superpotential. These results are 

generalized to the case with twisted masses in which the soliton mass has not been computed 

from field theory due to an ambiguity in defining the values of the twisted superpotential. We 

will see that the soliton masses can be determined unambiguously in the brane framework. 

Solitons in the supersymmetric cpn-l model in two dimensions are closely related to the 

domain walls in the N = 1 SU(n) super Yang-Mills theory in four-dimensions, as noted in 

section 2.2. Recently, the domain wall separating the adjacent vacua of super Yang-Mills 

theory was studied in [23] in the M theory framework and claimed to be the D-branes for QCD 

strings. It would be interesting to see the implication of the present general description of the 

cpn-l solitons to the study of the domain walls. 
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6.1 The cpn-l Solitons 

Brane Description of BPS Solitons 

As explained in section 2, a soliton in two dimensional field theory is a configuration of 

fields which are at one vacuum in one spatial infinity Xl -t -00 and are at another vacuum 

in the other spatial infinity Xl -t +00. Likewise, the soliton is described in M theory as a 

configuration of a membrane that depends on the spatial coordinate xl so that it interpolates 

two different vacua in this direction. 

We first describe the solitons in the cpn-l model. Thus, we consider the configuration of 

section 4 with k = 1, nl = nand n2 = 0, where there are two fivebranes and one membrane 

stretched between them. The two fivebranes are a fiat fivebrane at XS = x 9 = x 6 = 0, t = 1 and 

a curved fivebrane defined by (Ynt = q which is at X4 = X5 = x6 - L = o. For fixed t and q there 

are n solutions for (Y which implies that there are n different vacua. A vacuum configuration is 

given by a membrane, with the time direction being omitted, with world-volume a strip R x I j 

stretched between the two fivebranes (j = 0,1, ... , n-1), where R is the one-dimensional space 

with coordinate Xl and I j is a segment 0 ::; x 6 ::; L which is located at X4 = x 5 = x 8 = x 9 = 0, 

t = 1 and (Y = e 2:;j ql/n. Therefore, a solitonic configuration will be given by a membrane 

over a real two-dimensional surface L: in the ten-dimensional space R9 x Sl which is stretched 

between the fivebranes and interpolates two different segments, say 10 and Ie, in the Xl direction. 

Namely, L: is a surface with boundaries and two ends which are constrained by the following: 

All the boundaries are in the two fivebranes, and at one end Xl -t -00, L: looks like R x la, 

while at the other end Xl -t +00, it looks like R x Ie. 

Note here that what was the string and D2 branes in the Type IIA limit combine into a 

single membrane which can only have boundaries on the fivebranes. A string and a D2 brane 

become a single membrane on a Riemann surface just like D4 branes and NS fivebranes become 

a single fivebrane in M theory. This is indeed a supersymmetric configuration which breaks 

locally one quarter of the supersymmetry charges. Such a solitonic configuration is a BPS state 

when L: is a supersymmetric cycle in the sense that it preserves two of the four supersymmetries. 

Here, we don't specify the precise condition for a cycle to be supersymmetric in this situation, 

although it should follow from an argument as in [69]. It seems plausible, however, to require 

that a supersymmetric cycle is a minimal surface. Also, there must be two fermionic zero modes 
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coming from the 2 = 4 - ~ broken supersymmetry. Since some of the boundaries must be at 

X4 = X5 = 0 and others at X8 = x9 = 0, and since there is no other .condition involving X 4,5,8,9, 

the minimal surface condition implies that ~ is totally at X4 = X5 = X8 = X9 = O. Thus, we 

can consider ~ to be a surface in the four-manifold with coordinates t and (J". 

In this paper, we do not touch the issue of existence and uniqueness of the supersymmetric 

cycle. Rather, we assume that there exists a unique BPS configuration for each topological 

type, unless there is an obstruction from fermionic zero modes. The verification for this is an 

interesting open problem. 

In what follows, we find a restriction on the topology of such a cycle coming from the 

boundary conditions. It turns out that this restriction is very strong and has a surprising 

consequence. In particular, ~ cannot be just a strip but has a topology of a disc with holes, 

where each hole is in the fivebrane on the right and winds once around the eleventh dimension. 

This means that the configuration represents a bound state of Type IIA strings each of which 

carries a quantum number of the fundamental representation of SU(n). 

Fundamental Soliton = Type IIA String 

We first consider a solitonic configuration interpolating adjacent vacua, i.e., (J" = 1, t = 1 

and (J" = e 2~;, t = 1 (for this and the next part of the section, we put q = 1 for simplicity). 

Since ~ is stretched between the two fivebrane, one boundary J1 of ~ is restricted to be in the 

fivebrane on the left, i.e., at t = 1 but (J" is free, while another boundary Jr is restricted to 

be in the fivebrane on the right, i.e., in the surface (J"n = rl. Due the condition at the two 

ends, the boundary JI is a line in the (J"-plane at t = 1 which connects the two points (J" = 1 

and (J" = e 2~; , while the boundary Jr is a line in the surface (J"n = t- l which connects the two 

points (J" = 1, t = 1 and (J" = e 2~; , t = 1. If we consider the projection to the rl-plane, we 

see that J1 is mapped to one point rl = 1, but Jr is mapped to a circle starting and ending 

at the same point which winds at least once around rl = O. Here we choose a shortest path 

connecting (J" = 1 and (J" = e 2:; so that the image of Jr in the rl-plane winds exactly once 

counter-clockwise around t- l = o.u Thus, the surface has a circle boundary (of infinite length) 

consisting of Jz, Jr and two segments 10 and II at Xl = =fOO, which is mapped to a circle in 

11 There are choices such that it winds 1 ± n, 1 ± 2n, ... times, but we will see shortly that these cases are 
actually equivalent to the case with winding number one. 
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the t-I-plane that winds once around rI = O. Since rI = 0 nor t = 0 are not points in the 

space-time, :E cannot be just a strip with disc topology because, if it were a disc, some point 

of:E would be mapped either to t- I = 0 or to t = o. 
To avoid the points rI = 0 and t = 0, :E must have another circle boundary C that IS 

mapped to a circle in the rI-plane which winds once clockwise around rI = o. The minimal 

choice of such a surface is an annulus. By the condition that all the boundaries of :E be in one 

of the two fivebranes, the boundary C, not being at t = 1, must be in the fivebrane on the 

right. In particular, C winds once around rl = 0 in the t-I-plane while satisfying the equation 

O'n = t-I. Then, the image of C cannot be a circle which is totally away from rI = 0 since 

such a "circle" is mapped in the O'-plane to a line starting and ending at two distinct points 

related by the e 2;i rotation, which is not a circle. This means that C must start and end at 

0' = rl = o. Thus, the image of the surface :E in the 0' and rl planes look like the one depicted 

in Figure 7. 

~ 
• 

, 
J[ , 

, 
I , 

\ 

" .. ----

• • 

Figure 7: The Image of :E in the 0'- and the rI-Plane 

In the above description, however, it is not easy to classify the topology of circles starting 

and ending at 0' = rI = 0 since 0' = 0 is a degenerate zero. In order to "regularize" this, we 

consider turning on small distinct twisted masses for the fields Qi. For convenience, we choose 
_ _ 2"i _ 4"i 2,,(n-lji 

the masses to be m, men, men, ... , me n , so that the fivebrane on the right is described 

by 

(6.1) 

In this situation, the circle C can wind around rI = 0 without approaching t- I = 0, SInce 

the image in the O'-plane can wind once around one of the roots of O'n - mn = 0 because any 
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root is a simple zero of this equation. One such configuration looks like the one depicted in 

Figure 8. Since there are n roots of an = mn, there are n-kinds of topological types of such 

configurations. 

• 

• 

, 
I 

\ 
\ 

X x .... ' .. ' "-' 

• 

Figure 8: One of the n Possible Configurations 

This can be interpreted as follows. Recall that the roots me¥- (j = 0, 1, ... ,n - 1) at 

x6 = L are interpreted as the asymptotic position in a of the n upper-half D4-branes which are 

the parts of fivebrane wrapped once around the circle 51 in the eleventh dimension. Recall also 

th(~.t the membrane wrapped once around the eleventh dimension is interpreted as the Type 

IIA string. Thus, the membrane configuration in which the cir.cle C winds around the j-th root 

can be considered in the Type IIA string theory as a configuration in which an open string is 

stretched between the D2-brane and j-th upper-half D4-brane. As explained in section 3, such 

an open string generates the chiral multiplet Qj. In total, Qj, j = 0, ... , n - 1 constitute the 

fundamental represe~tation of 5U(n). 

In this way we have seen in M theory description that the solitons interpolating adjacent 

vacua are interpreted as the elementary Type IIA strings which in turn give rise to the elemen­

tary chiral multiplet Q in the fundamental representation of the flavor group 5U(n), in accord 

with the field theory knowledge [30] (see section 2.2). 

The Exclusion Principle of Type IIA Strings 

Let us next consider more general solitons, interpolating 10 and If. for £ = 2,3, ... n - 1, 

where we work in the "regularized" configuration (6.1) in which 10 is at a = (1 + mn)l/n, t = 1 
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while Ie is at u = (1 + mn)1/ne
2
';.il. In this case, the boundary J[ at the fivebrane on the left 

is a line in the u-plane at t = 1 connecting 10 and Ie while the boundary Jr at the fivebrane 

on the right is a line in the surface un - mn = rl connecting 10 and Ie. In particular, the 

image of J[ in the r1-plane is at a point t- 1 = 1 while the image of Jr starts and ends at 

that point winding i-times around t-1 = O. Thus, the surface L: has a large boundary circle 

(which is actually of infinite length) consisting of J[, J r and the two ends, which winds i-times 

counter-clockwise around 0 in the t-l-plane. 

To avoid the points rl = 0,00 which are not in the space-time, L: must have some other 

boundary circles. Since the large boundary winds i-times around 0 in the t-I-plane, there 

must be other i boundary circles C1, ... , Ce (which can be connected and rejoined), each of 

which winds once clockwise around 0 in the t-I-plane. Since these boundaries must be in the 

fivebranes and since these are not identically at rl = 1, they all must be in the fivebrane on 

the right, namely, at x6 = L, un - mn = rl. The fact that Ci are circles means that each of 

them winds once around one of the n roots of un - mn = 0 in the u-plane. 

How these boundary circles Ci choose the roots? We show that two or more distinct circles 

cannot choose one common root. In other words, one boundary cannot wind twice or more 

times around one root. We show this in the case i = 2 which captures the essence. 

, , 
~ , , , 

• 

possible 

• 

, , 
'[ , X , 

• 

... , ... , "--
• 

impossible 

, , , , 

Figure 9: Possible and Impossible Configurations with i = 2 

Suppose that the two circles C1 and C2 winds a common root, say u = m, as in the RHS of 

Figure 9. We first compactify the surface L: by capping the three boundary circles by three discs. 

The three boundaries are C}, C2 and the large boundary circle (of infinite length) consisting of 
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J[ and Jr joined by 10 and Ie. We denote the compactified surface by ~. In the case where C1 

and C2 are rejoined, we consider the corresponding discs to be rejoined as well. The projection 

of ~ to the O"-plane can be considered as a complex valued function. Then, one can deform it 

so that it defines a meromorphic function of the compact Riemann surface ~ with respect to 

a suitably chosen complex structure. By the boundary condition, u - m is a function which 

has one simple pole and two simple zeros (or one double zero). The Riemann-Roch theorem 

implies that there is no Riemann surface having a meromorphic function with this property. 

This completes the proof that the RHS of Figure 9 is impossible. Note that the LHS is possible 

because it implies that 0" - m has one simple zero and one simple pole, which is possible for 

~ = Cpl. 

If the boundary on the left, Jl, winds once around 0" = m as in Figure 10, two distinct small 

boundaries can wind around 0" = m on topological grounds. However, this configuration has 

" 
" 

" I .. , I .. '" " .... _ ....... " ----_ .... 
• • 

Figure 10: Possible but Non-BPS Configuration 

twice as many fermionic zero modes as the one in Figure 8 or in the LHS of Figure 9. Since 

the latter, being a BPS configuration, preserves half of the four supersymmetries, it carries two 

fermionic zero modes. Therefore, the configuration in Figure 10 has four zero modes and it is 

likely that these can be interpreted as the Goldstino associated with the breaking of all of the 

supersymmetry. Namely, we claim that it is not a BPS configuration. 

Let us consider the case £ = n, where the large boundary winds rl = 0 n-times. By the 

"exclusion principle" of the boundaries which we have just proved, there are n-circle boundaries 

C1, ... , Cn where each Cj winds once around each me¥ of the roots of un = mn. This 

configuration is actually unstable as it can be shrunk to a point, as the Figure 11 shows. As 
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• 

/'J • 

Figure 11: The Process of Shrinking in the Case £ = n (The O"-Planes) 

a consequence of this, we see that the soli tonic configuration interpolating 10 and I Hn in the 

counter-clockwise direction in the O"-plane is equivalent to a configuration interpolating 10 and 

If. in the same direction, where m is any positive integer. 

By a similar reasoning, one can show that the soli tonic configuration interpolating 10 and 

I n - 1 in the counter-clockwise direction is equivalent to the solitonic configuration interpolating 

10 and L1 in the clockwise direction. (See Figure 12) Note that the orientation of the small 

boundary circle on the RHS of the figure is inverse to the one we have been considering . 

• 
x .. -- ... 

" 
... , ... 

I , 
\ 

/'J \ 
\ 

Figure 12: £ = n - 1 is equivalent to '- = -1 

All these have quite natural interpretations. First of all, a configuration of membrane with 

several small boundaries which are attached to the fivebrane on the right and wind once around 

the circle 51 in the eleventh direction is interpreted in Type IIA string theory as some bound 

state of elementary open strings and a D2-brane, where the string end points carry quantum 

numbers of 5U( n) fundamental representation. For a solitonic configuration interpolating 10 

and If., there are '- such small boundaries, meaning that there are'- string end points, and thus, 

the corresponding state is in some '--fold tensor product of the fundamental representation of 
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SU(n). The "exclusion principle" of the small boundaries of a BPS configuration implies that 

this tensor product representation for the BPS states is actually the anti-symmetric tensor 

representation, i.e., .€-th exterior power 

(6.2) 

of the fundamental representation en. This representation has dimension 

(6.3) 

which coincides with the number of possible topological types. The fact that configuration 

interpolating 10 and I n - 1 is equivalent with the one interpolating 10 and L 1 , with the orientation 

of the small boundary circles being flipped, corresponds to the equivalence 

n-1 
1\ en ~ en (6.4) 

as a representation of SU(n). That there is no stable configuration interpolating 10 and In 

means that there are no BPS states in such a sector. 

These reproduce what we know from field theory argument [30, 47, 48, 49] as essential 

properties of the cpn-1 solitons in a very interesting way. 

6.2 The Twisted Superpotential and The BPS Mass 

Finally, we compute the mass of these solitons. As explained in section 2.2, the mass 

of a BPS state is given by the difference of the values of superpotential at the two spatial 

infinities. Thus, we start by defining superpotential in the M theory framework, by essentially 

following the path made in [23]. Note that what we call "superpotential" here is actually 

twisted superpotential since we are considering a theory in which U(l)v is unbroken. 

Configuration of a membrane at a fixed two-dimensional space-time point is a segment 

I in the nine-dimensional space with coordinates x 2
, ••• , x 10 which is stretched between the 

two fivebranes. A superpotential is a function of the space of such configurations I satisfying 

the two basic properties: It is a holomorphic function, and its critical points are vacuum 

configurations in which the supersymmetry is totally unbroken. As we have seen in section 4, a 

vacuum configuration is a straight segment in the x6 direction, namely, one of the n segments 
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10, II, ... ,In - 1 parametrized by 0 :S x6 :S L. In order for the "holomorphic function" to make 

sense, we need to introduce the complex structure of the space of configurations. Since we are 

interested in the configurations which are totally at X4 = x5 = x8 = x9 = 0 and in 0 :S x6 :S L, 

we may consider a configuration I as given by a pair of functions 0"(x6
), t(x6

) of the segment 

o :S x 6 :S L which are constrained by the condition t(O) = 1 and O"(L)n - mn = t(L)-l. for 

ending on the fivebranes. 12 Then, the superpotential must be a holomorphic functional on the 

space of such pair of functions. 

As in [23], at least locally the superpotential can be defined in the following way up to 

additive constant. Let n be the holomorphic two form 

dt n = dO" 1\-. 
t 

(6.5) 

Given two configurations, say I and 1', the difference of the values of superpotential is defined 

by 

W(I) - W(I') = h n (6.6) 

where I; is a one-parameter family of configurations interpolating I and 1'. Then, it is easy to 

see that this satisfies the basic requirements. Consider a variation of a configuration I -+ 1+01. 

Then, 

- 1 ( dt Jt ) oW = 00"- - -dO" . 
Itt . 

(6.7) 

The fact that this is independent on o(f and oI means that W indeed depends holomorphically 

on I. Also, a critical configuration is given by the one satisfying dt = dO" = 0, i.e., a straight 

segment in which t(x6
) and 0"(x6 ) are constant functions. 

One may wonder how to fix the normalization of the superpotential. Note that the holomor­

phic two form n is related to the one n given in (4.4) associated with the eleven-dimensional 

space-time metric (4.1) by n = .et1 n where .ell is the eleven-dimensional Planck length. Later 

we will see that the above normalization of W is correct up to a numerical factor. 

Now we need to check that a superpotential is actually defined globally by (6.6) up to 

additive constant. First of all, as we have observed in the above discussion, two configurations 

cannot always be interpolated by a one parameter family of segments. Thus, we must relax 

the condition on I; by allowing it to have some boundary circles which are in the fivebranes. 

l20f course, the restriction to x4 = x 5 = x 8 = x 9 = 0, 0 :S x 6 :S L is not essential and we could develop the 
following argument for general configuration, but it makes no difference in the final result. 
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Namely, :E is a real two-dimensional surface in the four-manifold with complex coordinate t 

and ~ which has boundaries like 

(6.8) 

where JL,R are lines in the left and right fivebranes connecting the end points of I and 1', and 

C l , ... ,Cs are circles in the fivebrane on the right. What we must show is that the difference 

W(I) - W(I') given by (6.6) is independent on the choice of such a surface:E. Let us take 

another surface :E' with the boundary 

(6.9) 

Then, the difference of the superpotential changes by 

(6.10) 

(6.11) 

where we have used n = d(~dt/t). Note first that the integration of ~dt/t over JL - Ji 
vanishes, since t is constant t = 1 along JL and Ji which are in the fivebrane on the left. Other 

boundaries are all closed circles in the fivebrane on the right in which 

(6.12) 

Thus, the difference W(I) - W(I') changes by the sum of residues of the differential of the 

second term on the right hand side, which are proportional to m. This vanishes in the limit 

m ~ o. Therefore, in this m = 0 case, the superpotential is indeed globally defined by (6.6) 

up to additive constant. 

The actual computation of the superpotential is straightforward. Since we are interested 

in the mass of the BPS solitons, we compute the difference of the values at the vacuum con­

figurations 10 and If.. Then, we can take as :E the solitonic membrane configuration which we 

discussed in the previous part of this section. Since n = d(~dt/t), we have 

W(Ie) - W(Io) = r ~ dt 
Ja'E t 

(i, -1, + t, -t, + t fa,) q ~t . 
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Since fe, fo, JI are at t = 1, the corresponding integrals vanish. Also, the integration over the 

small boundaries Cj in the fivebrane on the right vanish in the limit m -t 0 as we have seen 

using (6.12). Thus, the only non-vanishing term is the integration over the path Jr in the 

fivebrane on the right in which 
dt 

0"- = -ndO" 
t 

in the case m = 0 by (6.12). Since Jr is a path connecting 0" = ql/n and 0" = ql/ne 2';,il, the 

difference of'the superpotential values is 

- r n dO" 
JJr 

l/n ( £!ill ) - nq 1 - en. (6.15) 

The mass of the BPS soliton is basically the absolute value of this difference (6.15). Here we 

comment on the reason for this, which shows also that the normalization of the definition of W 

is correct up to a numerical factor (i.e. a factor which is independent of the parameters of the 

system). The membrane action contains the volume of its worldvolume, and hence, the energy 

is the area of its spatial part. Even though the area is generally infinite, we may regularize 

it by considering a difference of the area of an exited configuration and the one of the gound 

configuration. It is a natural guess, although we do not presently have a proof of it, that such 

an area is bounded from below by the absolute value of the integration of the holomorphic two 

form n of the x2,3,7,10 part of the space-time (4.4), and that the BPS configuration with two 

unbroken supersymmetry saturates this. For a finite time interval Llxo, the action is given by 

(6.16) 

This is the reason why the absolute value of (6.15) is the mass of the BPS soliton (up to a 

numerical factor which we have not been careful enough to fix). In view of the identification of 

the parameters (4.16), the mass of the soliton is given by 

Me = nA 11 - e27rie/n I ' (6.17) 

which coincides with what we know from field theory (2.56) [47,48, 49, 37], up to a numerical 

factor. 
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General Twisted Mass 

It is easy to extend the above analysis to the case where general twisted' masses mi.. are 

turned on. The one form <7dt/t is expressed in the fivebrane on the right as 

(6.18) 

Thus, there is an ambiguity in defining the superpotential due to the residue of this form, as we 

have seen right above in a special case. Namely, the ambiguity is proportional to 27iimi. This 

is exactly the ambiguity we have observed in section 2.2 in the field theory discussion (up to 

the usual factor of 27i). However, we can nevertheless define unambiguously the central charge, 

or the masses of the BPS solitons. For a BPS configuration given by a surface ~, the central 

charge is simply defined as the integration of n over ~: 

(6.19) 

Consider, for example, a configuration interpolating neighboring vacua with a single small 

boundary circle C which winds around <7 = mi, as depicted in Figure 13. Then, the integration 

• 

\ 

x 

• 

-m· 
l 

... , 
......... _--' 
x 

• 

Figure 13: The Contours 

(6.19) is reduced to the contour integration of the one form (6.18) along the solid lines C and 

Jr. This is actually the same as the integration over the path Pi considered in section 2.2, 

Figure 1, since Jr + C - Pi is a boundary of a surface on which the one form (6.18) has no 
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residue. Namely, the same central charge can be expressed in two ways 

Z- l dt l dt .-= (j- = (j- + 27rZmi , 
Pi t Po t 

(6.20) 

where Po is the notation for Jr used in section 2.2 (compare Figure 13 and Figure 1). This 

corresponds to the equation (2.59). The first expression is interpreted as the difference of 

the values of the superpotential associated with a choice of the path (Pi) and the second is 

interpreted as the sum of the one associated with another choice (Po) and the twisted mass 

times the U (1) charge carried by the soliton. In general, the central charge is expressed as 

n 

Z = .6. W + 27ri L mi Si , (6.21 ) 
i=l 

where Si is the charge of the i-th U(l) of the group U(l)n, the subgroup of the flavor group 

U(n) (modulo the gauge group U(l)) which remains unbroken by the twisted masses. Note 

that a change of the path defining the superpotential changes the U (1) charges Si by an amount 

related to the topological charge. 

Finally, let us see what happens if we send one of the mass, say mn , to infinity. If we do 

this by keeping fixed AL and e iB 
L defined by 

(6.22) 

then, one of the n roots of I1i=l ((j - md = q = A ne iB is of order mn and goes to infinity, 

while the rest becomes the n - 1 roots of I1i:;}((j - mi) = AL-1ei(h and are finite. Namely, 

one of the n vacua runs away to infinity and only n - 1 of them remain. The mass of the 

BPS soliton interpolating two vacua will stay finite if the small boundary circles do not wind 

around (j = mn and the boundary Jr stays finite. However even a BPS soliton may disappear 

by acquiring an infinite mass, if the boundary circle winds around (j = mn or the boundary Jr 

is infinitely elongated. If we consider the process 

m = ° ----1- m = diag(O, 0, ... ,0, mn = 00), 

then, the soliton spectrum changes as 

e e 
1\ en ----1- 1\ e n

-
1 

, f=1, ... ,n-2 
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