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Abstract 

Donor Spectroscopy at Large Hydrostatic Pressures and 

Transport Studies in Compound Semiconductors 

by 

Leonardo Hsu 

Doctor of Philosophy in Physics 

University of California, Berkeley 

Professor Eugene E. Haller, Co-Chair 

Professor Peter Y. Yu, Co-Chair 

In the fIrst part of this work, I describe studies of donors in AISb and in GaAs at. 

large hydrostatic pressures, two materials in which the conduction band minimum is not 

parabolic, but has a "camel's back shape." These donors were found to display only one 

or two absorption lines corresponding to ground to bound excited state transitions. This is 

in contrast with donors in parabolic-minimum semiconductors such as Si or Ge in which· 

many such transitions can be seen due to the infinite number of bound excited states. It is 

shown that due to the non-parabolic dispersion, camel's back donors may have as few as 

one bound excited state and that higher excited states are auto-ionized. Thus, it is possible 

that transitions to these other states may be lost in the continuum. 

In the second part, calculations of mobilities in GaN and other group ill-Nitride 

based structures were performed. GaN is interesting in that the carriers in nominally 

undoped material are thought to originate from a impurities which have an ionization energy 

level resonant with the conduction band, rather than located in the forbidden gap. These 

donors have a short range potential associated with them which can be effective in 

scattering electrons in certain situations. It was found that effects of these resonant donors 

can be seen only at high doping levels in ill-Nitride materials and in AlxGa1_xN alloys, 

where the defect level can be pushed into the forbidden gap. 
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Calculations were also perfonned to fmd intrinsic mobility limits in AlxGa1_xN/GaN 

modulation doped heterostructures. Theoretical predictions show that electron mobilities in 

these devices are capable of rivaling those found in the best AlxGal_~As/GaAs 

heterostructures structures today. However, the currently available nitride heterostructures, 

while displaying mobilities superior to those in bulk material, have sheet carner 

concentrations too large to display true two-dimensional electron gas behavior. 
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Donor Spectroscopy at Lar2e Hydrostatic Pressures 
in Compound Semiconductors 

1. Introduction 

Semiconductors are traditionally defmed as materials which have an energy gap 

between 0 and 3 eVe The basis of nearly all electronic devices, the usefulness of 

semiconductors stems from the fact that their resistivity can be made to vary from 10-4 

Ucmto more than 109 .clcm with the addition of small amounts of impurities. Today, the 

concentration and types of impurities present in these materials can be controlled very 

precisely, enabling the production of a wide variety of solid state devices. 

Certain impurities affect the electrical properties of semiconductors by introducing 

energy levels into the band gap. These electrically active impurities can be divided into two 

categories, donors and acceptors. Donors are impurities which, by virtue of the number of 

electrons in their valence shell, are able to give up, or donate, electrons to the conduction 

band of the semiconductor. In general, the energy levels of donors are found in the upper 

half of the band gap. Acceptors are impurities which are able to bind, or accept, 

conduction electrons from the semiconductor and their energy levels are usually found in 

the lower half of the band gap. Each of these two categories may be further subdivided 

into shallow and deep impurities. The energy levels introduced by shallow impurities are 

usually only a few tens of meV from the edges of the bandgap, whereas the energy levels 

of deep impurities are separated from the band edges by a significant fraction of the band 

gap. As a general rule, impurity atoms which are found one column to the left or right in 

the periodic table of the lattice atom they replace form shallow acceptors and donors, 

respectively. The focus of this work is the behavior of the energy levels of shallow donors 

and we will henceforth limit the discussion to this type of electrically active impurity. 
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1.1 Effective Mass Theory 

Effective mass theory is a simple, yet accurate way of calculating the electronic 

properties of shallow donors in semiconductors. In principle, such a calculation would 

require solving a SchrOdinger equation for roughly 1023 interacting particles, a problem 

which is clearly intractable even for today's fastest computers. However, due to the 

structural properties of semiconductors, a number of simplifying approximations can be 

made. These approximations and the model with which the electronic structure of shallow 

impurities in semiconductors is calculated make up effective mass theory. This fonnalism 

was created by Kittel and Mitchell (Kittel 1954) and developed by Kohn and Luttinger 

(Luttinger 1955) and Faulkner (Faulkner 1969) among others. A simple physical picture of 

the results is presented here. A detailed mathematical description of effective mass theory 

can be found in appendix A. 

A perfect semiconductor crystal at 0 K has a set of fully occupied valence bands and 

a set of completely unoccupied conduction bands .. If an additional electron is introduced, it 

will occupy the lowest minimum of the conduction band and have an energy of 

(1.1) 

relative to the top of the valence band where EG is the energy gap of the semiconductor, k is 

the wavevector of the electron, and m· is the effective mass of the electron in the crystal, 

which is proportional to the inverse of the band curvature. Comparing this expression with 

that for the kinetic energy of a free electron, we see that the only difference is the addition 

of the band gap energy EG and the use of the electron's crystal mass rather than its mass in 

free space. 

If a lattice atom is replaced with one which is found one column further to the right 

in the periodic table, a crystal with one extra positive charge at one of the lattice sites is 

produced. This positive charge generates a Coulomb potential which, at distances further 

2 



than a few lattice constants, is screened by the other ions of the lattice. This screened 

Coulomb potential can be written 

e 
V'(r)=-

er 
(1.2) 

where E is the static dielectric constant of the semiconductor. The extra valence electron of 

the donor atom is bound by this weakened Coulomb potential in the same manner that a 

electron is bound to a proton to produce a hydrogen atom, with bound state energies given 

by a SchrOdinger equation similar to that for a hydrogen atom 

(1.3) 

The conduction band states of the crystal are analogous to the continuum of energies 

available to the electron of an ionized hydrogen atom. Bound states of the electron are 

found in the gap at energies given by 

E-E em 1 
( 

Z • J 
- G - 2 It? eZ nZ n = 1,2, ... (1.4) 

where E=O at the top of the valence band. The ground state envelope wavefunction of the 

extra valence electron is a hydrogenic Is wavefunction scaled with an effective Bohr radius 

of 

• e liZ 
0 0 =-·-z 

me 
(1.5) 

In a typical semiconductor, values of the dielectric constant are on the order of 10, while 

effective masses are roughly one tenth the mass of a free electron. This combination of 

factors produces binding energies of about one one-thousandth of a free electron Rydberg, 
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or about 10 meV, with effective Bohr radii of about 50 A. With such a large Bohr radius, 

the wavefunctions of the bound electron states extend over tens of thousands of lattice 

points, giving a result which is self-consistent with the assumptions made in effective mass 

theory. 

In the case of semiconductors which have an anisotropic conduction band 

. minimum, such as Si or Ge, one can fmd the bound state energy spectrum simply by 

modifying (1.3) to take the anisotropic effective mass into account as follows: 

( 
-1'I,z ( a2 

(
2

) _h
2 a2 

) --. -a 2 +-a 2 +--. -a 2 + V(r) 1ft = E 1ft 
2 mJ. x Y 2 ~I Z 

(1.6) 

The results predicted by effective mass theory can be checked experimentally using 

techniques such as infrared absorption spectroscopy where one measures absorption peaks 

corresponding to the energies of allowed transitions between these hydro genic levels or 

photothermal ionization spectroscopy (PTIS), in which the same transitions are revealed as 

peaks in a photoconductivity spectrum. 

Comparing theory to experiment, one finds that while the energies of odd-parity 

bound excited states (those corresponding to the p or f states of a hydrogen atom) can be 

predicted quite well, the theoretical ground state energy of shallow donors is often very 

different from the experimentally measured value. The reason for this discrepancy can be 

found in the shape of the wavefunctions. The ground state wavefunction of a hydrogen 

atom is non-zero at the origin. In contrast, the p and f state wavefunctions have a 

vanishing probability density at their centers. Although the screened Coulomb potential 

which we have up to now employed is a good approximation at distances of several lattice 

constants from the impurity atom, it is not at all a good approximation very close to the 

impurity atom, where the potential varies very quickly and in a way which depends on the 

exact species of impurity atom. Thus, the p- and f-like bound state wavefunctions of 

shallow donors are largely unaffected by the local potential in the immediate vicinity of the 
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impurity and have energies which are well described by effective mass theory. On the 

other hand, the ground state of the donor electron, which interacts strongly with the 

"central-cell" potential of the impurity, has an energy which cannot be accurately calculated 

by simple effective mass theory, which does not take the chemical species of the impurity 

into account. This difference between the true binding energy and that obtained from 

effective mass theory is known as a chemical shift Experimentally, the effect of a chemical 

shift between two different impurities is seen as a constant shift in the energies of the 

transition lines. The spacings between the peaks, however, are unaffected. 

1.2 Background and Motivation 

The entirety of this work grew out of an attempt to understand the infrared 

absorption spectrum of the Si shallow donor in indirect-gap GaAs. At atmospheric 

pressure, GaAs is a direct gap semiconductor with a band gap of approximately 1.4 eV. 

The minimum energy point of the conduction band occurs at the r symmetry point and 

properties of shallow donors in this material are determined by the conduction band 

wavefunctions near that point These r-band donors have been thoroughly investigated by 

various characterization methods and their properties and behavior are by now understood 

quite well (Narita 1971, Bose 1987, Stillman 1994). When sufficient hydrostatic pressure 

is applied, however, GaAs can be transfonned into an indirect gap semiconductor (Yu 

1978, Wolford 1985). 

It has been known for some time that hydrostatic pressure can be used to modify 

the band structure of semiconductors (Armistead 1985). A general trend observed in all 

semiconductors is that as higher pressures are applied, the energy of the conduction band 

near the r and L symmetry points increases relative to the top of the valence band while the 

energy of the conduction band near the X symmetry point decreases (Lee 1985). Thus, if 
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the conduction band has its minimum energy near the r or L points at atmospheric 

pressure, it is possible to shift this minimum to the X point due to the opposite signs of the 

pressure coefficients. In GaAs, this transition from direct to indirect gap semiconductor 

occurs at approximately 40 kbar, as shown in figure 1-1. While in this indirect gap 

configuration, shallow donors in GaAs possess properties which are influenced by the 

conduction band wavefunctions near the X point of the Brillouin zone and we refer to these 

impurities as X-band donors. Although numerous studies of X-band donors in GaAs have 

been undertaken (Kobayashi 1983, Leroux 1986, Liu 1990, Dmochowski 1994, Leroux 

1995), all of them without exception were performed using photoluminescence rather than 

absorption spectroscopy and thus, no information about the excited states of the donors 

could be obtained. In contrast, by using broadband infrared absorption spectroscopy as we 

have, it is, in principle, possible to deduce the entire bound excited state spectrum of these 

donors. 

Initially, it was expected that the Si donor absorption spectrum in indirect GaAs 

would look similar to the absorption spectra of shallow hydrogenic donors in Si (Jagannath 

1981) (see figure 1-2), since Si also has its conduction band minimum near the X 

symmetry point. From the energies of the absorption lines, effective mass theory could be 

used to detennine the transverse and longitudinal effective masses associated with the X 

conduction band minimum in GaAs. However, unlike the spectra of donors in Si, only 

one transition line was observed for Si in indirect GaAs. To determine whether this lack of 

spectral features is characteristic of all shallow donors in indirect GaAs or peculiar to the Si 

shallow donor, the remaining elements which form shallow donors in GaAs were also 

investigated. Before discussing the results of those studies, however, I shall describe the 

experimental techniques used in this work. 
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band. 
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2. Experimental Techniques 

The principle characterization method used in this study was infrared absorption 

spectroscopy. The first section provides an introduction to Fourier transfonn infrared 

spectroscopy, describing the experimental apparatus and principle behind its workings. In 

the second section, details of the diamond anvil cell (DAC) used to apply large hydrostatic 

pressures to the samples along with some of the specialized methods used to perform 

infrared spectroscopy through the cell are presented. 

2.1 Fourier Transfonn Spectroscopy 

The instrument used to investigate X-band donors in ill-V semiconductors was a 

Digilab FfS-80E Fourier transfonn spectrometer. Like all Fourier' transform 

spectrometers, the core of this machine is a Michelson interferometer, which is shown in 

figure 2-1 and consists of a broad band light source, one fixed and one moving mirror, a 

beamsplitter; and a detector. Light from the source travels to the beamsplitter, where half 

of the beam is transmitted through to the moving mirror and half is reflected 900 towards 

the fixed mirror. The mirrors reflect the light back to the beamsplitter where the two beams 

combine and interfere and are directed towards the detector. As the moving mirror changes 

its position, the intensity ,of the light reaching the detector also changes and the detector 

response is recorded as a function of the position of the moving mirror to produce an 

interferogram. By performing a Fourier transformation, the interferogram is converted into 

a spectrum showing the detector response and indirectly, the intensity of the beam, as a 

function of the frequency of the light 

To see why this is the case, consider a situation in which the interferometer's light 

source is monochromatic with wavelength A.. If the optical path length from the 

beamsplitter to each of the two mirrors, moving and fixed (hereafter referred to as M and 

F), are equal, then the two beams which were in phase when split by the beamsplitter will 
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Figure 2-1. Schematic diagram of the essential pieces of a Michelson interferometer. 
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still be in phase when they recombine. The intensity of the light reaching the detector is 

then a maximum. This position is known as "zero path." As the moving mirror is 

translated, the two beams are no longer precisely in phase when they recombine and the 

resultant intensity reaching the detector is smaller. When mirror M has moved outwards by 

a distance ').J4, the optical path length of that arm of the interferometer will have increased 

by ').J2. In this case, the two beams will be exactly out of phase when they recombine and 

interfere destructively, producing a minimum in the intensity of the light reaching the 

detector. In general, this intensity can be expressed as 

I (8) = 10 cos2 8 (2.1) 

where 10 is the intensity incident on the detector at zero path and e is the phase angle 

between the recombining beams, which can also be written as e = 41Cll/'A. where A is the 

displacement of the moving mirror from the zero path position. If mirror M moves with a 

known velocity v, the phase angle can also be expressed as e = 41CVt/A.. 

Assuming that the detector response is proportional to the photon flux incident on 

the detector, the interferogram will be a periodic function with a frequency of 4vA as can 

be seen from (2.1). In the idealized case where the moving mirror has an infInite travel, 

. taking the Fourier transform of such an interferogram produces a delta function, a spectrum 

which is zero everywhere except for a single infInitely narrow peak located at a frequency 

of 4vA. However, since mirrors in real spectrometers can only move a fInite distance, the 

resultant peak is not an infInitely sharp delta function, but has some non-zero width 

corresponding to the uncertainty in the exact frequency of the cosine wave. An exact 

calculation (Bell 1972) shows that for the case of a monochromatic light source and an 

interferometer with a fInite maximum mirror displacement, the resulting peak has the form 
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of a sinc function. The width of the peak given by this function is the fundamental 

instrument-limited resolution and has a full width at half maximwn (FWHM) of O.61/L 

wavenumbers where L is the maximum mirror displacement in cm. In practice, one uses a 

mirror displacement which is large enough so that the instrumental resolution is finer than 

the linewidths of the peaks under study in order to fully resolve them. 

In the spectrometer used for our studies, the source is not monochromatic, but 

emits radiation over a broad range of frequencies. The intensity incident on the detector is 

not a simple squared cosine function but the sum of such cosine waves from many different 

frequencies. At zero path, all of the functions have their maximwn value due to 

constructive interference of all frequencies of the light and an absolute maximwn is 

produced in the interferogram. As the moving mirror is displaced from zero path, the 

intensities of the various frequency components of the beam are modulated at different 

rates, producing the complicated interferogram shown in figure 2-2. The corresponding 

spectrum after a Fourier transformation is a function which shows the relative amplitudes 

of the various frequency components of the interferogram and is shown in figure 2-3. Due 

to the electronic filters in the Digilab FfS-80E, the zero path of the interferogram is 

displayed as a negative-going peak instead of an absolute maximum. 

In absorption spectroscopy, one studies the absorptions of the impurities of interest 

which are present in a sample by placing the sample in front of the. detector. These 

absorptions are often narrow in frequency and appear as dips in the transformed spectrum, 

occurring when light of a certain frequency is absorbed by the impurities and never reaches 

the detector. However, as can be seen from figure 2-3, the detector response is usually a 

very complicated shape with features resulting from particulars of the source and the 

detector, as well as absorptions from the various filters, cryostat windows, and other 

optical components of the system in addition to those of the sample. In order to separate 

the absorptions of interest from the others, the usual procedure is to collect two spectra. 

The first is obtained with the sample of ~nterest. The second is a reference spectrum, taken 

12 
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using a piece of material which is identical to the sample of interest except that it does not 

contain any of the impurities under study. Making a direct comparison of the two spectra, 

one can see which absorptions are due to instrumental features, since these will appear in 

both, and which absorptions are due to the impurity centers of interest, as these will not be 

present in the reference spectrum. 

The unit used to quantify the absorption of light is the linear absorption coefficient 

a, which is the product of the defect concentration and the absorption cross section of the 

defect. If Io(v) is the intensity of light of a particular frequency reaching the detector 

through a sample which is free of a particular impurity, then I(v) = Io(v) e-a(V)x is the 

intensity of light reaching the detector after passing through a sample which does contain 

the impurity where x is the thickness of the sample. Taking the negative log of the ratio of 

intensities I and 10, one obtains 

(2.2) 

The frequency dependent quantity a(v)x is known as the absorbance. By perfonning this 

operation on the two spectra, an absorbance spectrum is formed in which .absorption 

characteristics of the impurities of interest are revealed as peaks and spectroscopic features 

due to particulars of the instrument are suppressed. 

The chamber of the spectrometer used here is evacuated during the measurements to 

eliminate infrared absorptions due to water vapor and other air molecules such as CO2• A 

SiC globar heated to 1200°C was used as a source of blackbody radiation. Three different 

detectors were employed: a Ge:Ga photoconductor sensitive to radiation between 90 cm-! 

and 1000 cm-I, a Ge:Be photoconductor with an effective operating range from 190 cm-! to 
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2000 cm"l, and a G~:Cu photoconductor which was most effective at detecting photons 

with energies between 350 cm"l and 3500 cm"!. 

These doped Ge detectors must be cooled to liquid helium temperatures (4.5 K to 

10 K) where the dopants are frozen out to function properly. Their spectral range is 

determined by the ionization energy of the impurity at low frequencies and by the 

decreasing photoionization cross section of the impurities at high frequencies. When a 

photon of sufficient energy is absorbed by one of the dopants, a free hole is created which 

drifts in the electric field created by the bias voltage across the detector and is captured by 

an ionized acceptor after a certain time. These carriers create a current in the external circuit 

which is converted into a voltage signal by a transimpedance amplifier and the time varying 

voltage signal is read as an interferogram by the spectrometer electronics. 

Two different beamsplitters were used: a mylar foil 3 Jl.I11 thick which was useful 

for frequencies between 0 and 1000 cm"! and a beamsplitter made of a thin layer of Ge 

between two wedged crystals of KBr which was useful for studying absorptions between 

450 cm"l and 3500 cm"l. Using different combinations of these optical,components, the 

entire energy range between 90 cm"! and 3500 cm"! could be investigated. 

2.2 The Diamond Anvil Cell 

2.2.1 Introduction 

The attainment of ever increasing pressures available for research has progressed in 

parallel with the development of harder high strength substances. In the early twentieth 

century, Percy Bridgman first used hardened steels and then sintered tungsten carbide to 

produce vessels that could generate up to 100 kbar of pressure (Bridgman 1952)" The 

highest pressures that could be obtained were limited by the compressive strength of the 

anvils. Although diamond, the hardest substance known, may seem a logical material with 

which to construct pressure anvils, it was not until 1950 that a brief attempt was made to 
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generate high pressures using diamond anvils (Lawson 1950). The use of diamond as an 

anvil material was then forgotten until 1959, when the fIrst diamond anvil cells (DAC) were 

introduced. 

The fIrst cells were of two types, developed independently. One was designed to 

be used in powder X-ray diffraction experiments at the University of Chicago (Jamieson 

1959). The second was developed at the National Bureau of Standards (NBS) for infrared 

transmission experiments (Weir 1959). Since that time, numerous other designs have 

appeared for various applications, some able to provide hydrostatic pressures of up to a 

few megabars. 

The basic operating principle of a diamond anvil cell (DAC) is very simple. As can 

be seen in fIgure 2-4, two diamonds with flat parallel faces (the anvils) are forced together 

to apply pressure on a sample. The diamonds themselves are cut in the same way as those 

for jewelry purposes except that the point normally opposite the table is ground and 

polished down to a flat surface known as the culet In a modem cell, the sample and a 

pressure transmitting medium (usually a fluid) are enclosed in a cylindrical space formed by 

a hole in a metal gasket with dimensions of up to several hundred microns in height and 

diameter. When the diamonds are pressed together, they apply pressure to the medium 

which is confmed by the gasket walls. The pressure on the fluid is transmitted to the 

sample hydrostatically. In the earliest cells, however, the sample was simply squeezed 

between the diamond faces, producing a uniaxial stress. The diamond anvil cell is 

particularly convenient for many experiments since the diamonds allow optical access to the 

sample over a wide range of photon energies. 

The most important function of the DAC itself, besides that of applying force to the 

diamonds, is to keep the stresses on the diamonds as small and homogeneous as possible 

by keeping the diamond faces parallel as well as translation ally aligned. During an 

experiment, enormous forces act on· the diamonds and inhomogeneous stresses will be 

generated if they are not kept perfectly aligned, possibly causing catastrophic failure. 
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Figure 2-4. Magnified view of the essential parts of the diamond anvil cell. The diamonds 
are forced together, squeezing the gasket and pressure medium, which in turn applies 
hydrostatic pressure to the sample (Williams 1991). 
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The general philosophy of the method used to align the diamonds is shown in 

figure 2-5. In this cell, which was designed by Piennarini and Block (Piennarini 1975) at 

NBS, the top diamond is held by a translating diamond mount plate and the bottom one 

rests in a tilting diamond mount hemisphere. The translating diamond mount plate can be 

displaced laterally by means of three adjustment screws situated 1200 apart around the plate. 

The hemisphere of the bottom mount allows the culet of the bottom diamond to be tilted 

until it is parallel to the culet of the top diamond, again by means of three symmetrically 

placed adjustment screws. During the application of pressure, the extended piston which 

holds the lower diamond is forced into a close-fitting cylindrical cavity which is part of an 

assembly holding the upper diamond, ensuring that once the diamonds are aligned, they 

stay aligned. Pressures of up to 500 kbar have been obtained with this type of cell 

(Jayaraman 1983). 

The cell used in the work presented here and shown in figure 2-6 is a Merrill-Basset 

type cell designed by Sterer, Pasternak, and Taylor (Sterer 1990). Instead of forcing a 

piston into a close-fitting cylinder, two circular plates or platens which hold the backing 

plates on which the diamonds are mounted are held together by six screws spaced evenly 

about their rim. As in the NBS cell, one of the diamond backing plates (the lower one) can 

be translated laterally by means of three adjustment screws. To make and keep the culet 

faces parallel, the six screws around the rim are tightened in such a way as to eliminate the 

appearance of optical fringes between the diamond culets when they are placed together and 

the thickness of the cell is then measured at three points around the rim. During the 

application of pressure, the tightness of the screws is adjusted so as to keep the relative 

thicknesses around the rim constant. Three pins jutting from the bottom plate mate with 

three holes in the top plate to help maintain the alignment. Although it is more difficult to 

maintain alignment of the diamonds, the Merrill-Basset type cell has the advantage in that it 

can be made smaller than any of the other types of cells. Pressures of up to about 380 kbar 

have been reached using this type of cell (Sterer 1990). 
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Figure 2-5. Diamond anvil cell designed by Piennarini and Block at the National Bureau of 
Standards. The parts used in alignment of the diamonds are indicated (see text) (Piennarini 
1975). 
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Figure 2-6. Exploded view of the diamond anvil cell used in the work described here. The 
parts indicated are: (1) allen head screw used to hold the cell together and apply pressure, 
(2) platens, (3) upper backing plate (fixed), (4) gasket, (5) diamonds, (6) lower backing 
plate (adjustable), (7) posts to aid in alignment of platens and gasket, (8) lateral adjustment 
screws for the lower backing plate, and (9) cell holder used when tightening allen screws. 
(Sterer 1990) 
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2.2.2 Diamonds 

The diamonds used in a DAC range in size from 1/8 carat for the small Menill

Basset cells up to 1/3 carat in other cells. Culets are either octagonal or 16-sided in shape, 

and range in size from 0.2 to 0.8 mm in diameter. For experiments requiring very high 

pressures, it is advantageous to use larger diamonds along with small, 16-sided culets. In 

addition, the culet edges, which are the most susceptible to failure, may be beveled in order 

to relieve the stresses in that area (Jayaraman 1986). 

There are two main shapes, or cuts, of diamond used in high pressure work. Both 

are shown in figure 2-7. The first is the modified brilliant design, which is formed simply 

by taking a diamond which has already been cut in the shape commonly found in diamond 

jewelry, and grinding off the tip to produce the culet. This was the first design used for 

diamond anvils due to its great availability. The second shape is known as the standard 

design, and is shaped in such a way as to place more of the diamond's volume in the 

critical area below the culet (Seal 1987). This strengthens the anvil for use in very high 

pressure experiments. 

Diamonds can also be classified by the types of impurities present in them and 

depending on the experiment to be performed, different types of diamonds may be better 

suited for certain purposes. All diamonds can be divided into two categories, type I and 

type II. Type I diamonds are characterized by the presence of nitrogen impurities and are 

also known as "yellow" diamonds due to therr slight yellowish coloration. The nitrogen is 

present in several forms, including single interstitial atoms, pairs, and larger aggregates 

(Davies 1977). These defects produce strong absorption bands in the 1100 cm,l to 1400 

cm,l range, causing the diamonds to be opaque to those frequencies of light. Type II 

diamonds contain virtually no nitrogen and are transparent in that range. Type II's can be 

further classified into type IIa diamonds, which contain very few of any impurities and type 

lIb diamonds, which are synthetic, doped with boron, and very expensive. Both stypes of 

diamonds have strong absorptions in the region from 1900 to 2300 cm,l due to two-
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(a) 

(b) 

Figure 2-7. Side and top view of diamond anvils. (A) shows the modified brilliant cut and 
(B) shows the standard cut. (Seal 1987) 
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phonon excitations. Since type I diamonds are much more common and less expensive 

than the others, they are used in all situations except those in which one requires optical 

access in the 1100 to 1400 cm,l region. Diamonds of both types were used in the present 

work, though the vast majority were of type I. 

2,2.3 Gaskets 

As mentioned previously, in the first diamond anvil cells, the samples were simply 

squeezed between the bare diamond faces, generating more of a uniaxial stress rather than a 

hydrostatic pressure. In 1965, however, Van Valkenburg (Van Valkenburg 1965) 

introduced the use of gaskets .. The gasket itself is a piece of metal roughly 0.2 to 0.25 mm 

thick and can be made of ineonel, spring steel, stainless steel, BeCu, or some other 

reasonably hard material. In the loading process, the gasket is pre-indented between the 

diamonds to a thickness from 0.1 to 0.15 mm and a hole of a few hundred microns 

diameter is drilled through the material in the center of the depression. This hole serves as 

the sample space, inside which the sample and pressure medium are seated. Since the 

sample is completely surrounded by a fluid, the pressure on the sample is hydrostatic. In 

addition, the gasket acts as a support ring for the culet edges where it has extruded out from 

between the anvils, helping to prevent diamond failure due to the stresses concentrated 

there. 

2.2.4 Pressure Media 

Throughout the almost 40 year history of the DAC, many different pressure 

transmitting media have been used in diamond anvil cells, The purpose of these fluids is to 

transfonn the uniaxial force of the diamonds into a hydrostatic pressure on the sample. A 

listing of a few of them and the maximum value at which the pressure they transmit remains 

reasonably hydrostatic is given in table 2-1. The methanol-ethanol mixtures are the easiest 

to use, since the cell can be loaded at room temperature with no special apparatus. 
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Medium Maximum useful pressure (kbar) 

Methanol:Ethanol (4:1) -200 

N2 -130 

H2 >600 

He >600 

Ne 160 

Ar 90 

Xe 300 

Table 2-1. Some pressure media and their useful pressure ranges (Jayaraman 1983). 
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However, this mixture has many absorptions in the infrared and is thus inconvenient for 

infrared spectroscopy. For the studies described here, N2 was used as the pressure 

medium. Although the loading must be performed cryogenically, the procedure itself is not 

very difficult and is described later. In addition, the use of nitrogen allows one to use the 

stretch mode of the N2 and of the CO2 dissolved in the nitrogen as an in situ pressure 

calibration in some cases. For maximum hydrostaticity at the highest pressures, either He 

or H2 must be used, but loading a DAC with either of these fluids requires sophisticated 

apparatus (Mao 1979, Jayaraman 1986). 

2.2.5 Sample Preparation 

Although diamond anvil cells are capable of generating tremendous pressures, the 

size of the sample' which can be studied is very limited. The samples used in this work 

were cut in the shape of small disks, approximately 300 Jlm in diameter and 50 Jlm in 

thickness. The reason for this shape is that in order to obtain the largest possible 

absorption peaks in infrared spectroscopy, one must minimize the amount of light which 

does not travel through the sample. Any modulated light which does not pass through the 

sample cannot be absorbed by impurities and increases the background photon flux incident 

on the detector. If the background is too large, any change in the photon flux due to 

. absorption by impurities may be lost in the noise. In addition, the sample space drilled into 

the gasket is round and samples which touch two opposing sides of this space will most 

likely be subject to some non-uniform stress by the gasket. The shape that best satisfies 

these two conditions is a circle. 

The first step in preparing the samples is to cut or cleave a small piece of material 

with enough surface area to produce several of the small disks. Using wax, this piece is 

mounted on a glass slide for ease of handling. If the exposed side of the sample is not 

already smooth enough for infrared transmission experiments, it is polished using 0.3 Jlm 
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~03 grit on a felt polishing pad. After polishing, an ultrasonic grinder is used to cut the 

disks from the materiaL The grinder works by touching the tip of a shaped cutting tool to 

the sample surface and, by vibrating the tip up and down rapidly; crushing an outline of the 

tip into the sample. During the cutting process, a slurry of 3 J.lm aluminum oxide grit and 

water is splashed on the sample to aid in the cutting process. The tip used to make DAC 

samples was made from two hollow cylinders, placed side-by-side. These cylindrical 

shells were cut from the middle of a No. 23 hypodermic needle. When the grinder was 

finished, two donut shaped depressions about 120. J.lm deep were into of the sample 

surface. The columns left standing in the middle of the rings are 300 J.lm in diameter and 

polished on top. 

After as many columns as possible are cut into the surface of the material, it is 

turned over and remounted onto the glass slide. Before turning the piece over however, it 

is important to ensure that the doughnut shaped depressions in the surface are filled with 

wax. The samples must now be lapped to the correct thickness. The piece of material, 

attached to·the glass slide is lapped by hand using a 3 J.lm A~03 slurry. This process 

removes the material on which the columns were rooted and leaves free-standing disks of 

material, surrounded by wax. When these disks have been made thin enough, they are 

given a [mal polishing by 0.3 J.lm grit on a felt polishing pad. The glass slide is placed in 

acetone to dissolve the wax away and the freed samples are collected with a fine paint 

brush. 

In principle, one could also lap the initial piece of material to the desired thickness 

before cutting them out with the ultrasonic grinder. However, due to the violent action of 

the grinder, it was found that many of the samples became demounted from the glass slide 

and were lost by this method .. 
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2.2.6 Loading the Diamond Anvil Cell 

The first step in loading a diamond anvil cell is to center the diamonds over the hole 

in the middle of the backing plates and to glue them there. For the low temperature 

experiments perfonned, it was found that Miller-Stephenson 907 or Stycast 2850 are both 

suitable epoxies, remaining intact throughout many thennal cyclings of the DAC between 

liquid helium and room temperatures. As little epoxy as necessary is used for best results. 

The top backing plate is pressed into the top half of the cell and the bottom backing plate 

can be roughly centered in the bottom platen using the three set screws. It is important to 

make sure that the backing plate cavities are clean and free from debris and that the backing 

plates themselves are completely pushed into their respective halves of the cell. If not, they 

could shift under the high pressures present during an experiment, changing the relative 

alignment of the diamond culets. The top and bottom halves of the cell are now brought 

together gently, so as not to damage the diamonds by' hitting them together and three of the 

six main screws are put in and just barely tightened. 

The diamonds must now be aligned, both translationally and tilt-wise. To 

accomplish the fonner, the three set screws in the bottom half of the DAC can be 

manipulated until the two octagonal culets of the diamonds coincide, as seen through a low 

power microscope. In most cases, the bottom diamond will also have to be rotated to bring 

the sides of the two culets into coincidence. 

At this point, it is very likely that colored interference fringes will be observed 

between the two diamond faces, an example of Newton's rings. Through a combination of 

tightening and loosening the three main screws, the fringes can be made to broaden and 

disappear, indicating that the two faces are now mutually parallel. However, in the 

process, the lateral alignment will probably be lost. The procedure for the translational 

alignment is then repeated, checking the parallelism of the culets afterwards and fIxing it if 

necessary. By iterating these two procedures, the culets can be aligned completely. The 
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thicknesses of the cell at three positions around the rim are now measured and recorded and 

all three should agree to within 50 J,lm. If they do not, it is probable that some dirt which 

should be removed is underneath one of the backing plates. 

The next step is to make the gasket for the cell. A triangular piece of metal is cut 

out which is large enough to slip over the three alignment posts of the cell and three holes 

are drilled into its corners, corresponding to the positions of the three posts. To pre-indent 

the gasket, it is slipped over the posts onto the lower diamond and the upper half of the cell 

is placed on top of it. All six screws are now put into the cell and slowly tightened while 

maintaining the relative thicknesses around the cell as measured in the previous step. It is 

critically important to turn each screw through a very small angle each time so as to 

minimize the amount by which the culets are put out of alignment. These six screws are 

size 4-48, so a twist of 300 corresponds to compressing one side of the cell by 44 J.1m. The 

relative thicknesses of each of the three measured points are checked often to insure that the 

culet faces remain parallel during the pre-indentation procedure. The purpose of pre

indenting the gasket is two-fold: fIrst, pre-indenting the gasket provides a target for drilling 

the hole for the sample space hole and second, the gasket becomes work -hardened, 

enabling it to withstand higher pressures before failing. 

After pre-indenting the gasket to the desired thickness (about twice the thickness of 

the sample), the screws are slowly released, again while maintaining the parallelness of the 

culets. A hole is drilled in the center of the indentation using a #78 tungsten carbide drill 

bit. This provides a space which is 400 J.1m in diameter to contain the 300 J.1m diameter 

sample. The hole must initially be larger than the sample as it will decrease in size during 

the loading process. After deburring the hole using a steel needle, the thickness of the 

gasket can be ascertained and, if not yet thin enough, further pre-indentation can be 
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perfonned and the hole re-drilled When pre-indentation is completed, the alignment of the 

diamonds is rechecked, as some slippage may have occurred. 

To load the sample into the cell, the gasket is put onto the bottom half of the cell. 

The sample, along with a few chips of ruby several microns in diameter, is placed inside 

the hole in the gasket and the top half of the cell is placed on top of the gasket. The six 

allen head screws are put into their places and screwed down until just before any force is 

required to turn them further. These screws are then adjusted so that the relative thickness 

measurements around the cell indicate that the culets are once again aligned The cell is 

placed on its tightening stage, which is an aluminum plate with three posts enabling the 

screws to be tightened without rotating the entire cell, and the entire apparatus is immersed 

into a liquid nitrogen bath. After the nitrogen has ceased to boil rapidly, helium gas is 

bubbled into the liquid. This has the effect of virtually eliminating the boiling of the 

nitrogen, ensuring that no nitrogen gas will be trapped inside the sample space when the . 

cell is tightened. If nitrogen bubbles were to become trapped within the sample space, the 

gasket hole will simply collapse inwards and crush the sample due to the much greater 

compressibility of a gas. Once the nitrogen is calm, the six screws can be tightened slowly 

as for the pre-indentation process an allen head screwdriver. A sudden increase in the force 

required to turn the screws will be experienced when the gasket seals. After giving all of 

the screws a few more turns to ensure that the sample space is truly sealed, the cell is 

removed from the liquid nitrogen. When it has returned to room temperature, the alignment 

of the cell is again checked and corrected if necessary. 

2.2.7 Measurin~ the Pressure 

In order for a diamond anvil cell to be truly useful, one must be able to measure the 

pressure inside the cell. The ruby fluorescence method for determining this pressure was 

developed by Fonnan (Fonnan 1972) and its invention at that time removed the greatest 

obstacle against the widespread use of these cells in high pressure research. In this 
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method, the shift of the R fluorescence lines of the Cr+ ion in ruby is measured to 

detennine the pressure. The lines obselVed are due to electronic transitions and may be 

excited by any light which is more energetic than the transition itself, such as the green light 

from an Ar ion laser or by a reasonably intense broadband source, such as a mercury arc 

lamp. At room temperature, two lines, RI and R2, can be observed, arising from 

transitions from the 2E to the 4A2 crystal field split states. In principle, only one 

fluorescence line should be observed. However, since the Cr+ ion replaces an AI atom in 

the lattice and is too big to sit substitutionally on the AI site, it occupies an interstitial spot 

of lower symmetry. This splits the 2E state into an E and a 2 A state giving rise to the 

observed doublet (Ferraro 1984). The lower energy RI line is thermally activated and is 

not seen at low temperatures. The energy of these ruby fluorescence lines is temperature 

dependent so when exciting the ruby with a laser, one must take care to heat the ruby as 

little as possible. 

The pressure dependence of the ruby lines has been measured for pressures of up to 

1 Mbar and was calibrated by comparing the shift of the ruby line to the change in lattice 

parameter and the equations of state for Cu, Mo, Ag, andPd (Mao 1978). Based on a fit to 

the experimental data, the proposed calibration curve is: 

P (Mbar) = 3.808 (( aA + 1)5 -1) 
. . 6942 

(2.3) 

where I!J.... is the shift of the ruby line in A from its value at ·atmospheric pressure. The ruby 

calibration curve obtained by Mao along with a linear extrapolation are plotted in figure 2-8. 

The curve is essentially linear for pressures below 200 kbar. 

A block diagram of the pressure measuremenf system used in this work is shown in 

figure 2-9. The beam from a 25 mW argon ion laser is used to excite the ruby 

fluorescence. The laser is reflected through the microscope onto the DAC located on the 
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Figure 2-8. The ruby calibration curve of Mao (Mao 1978). 
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sample stage by means of a 45° dichroic mirror. The ruby fluorescence is collected by the 

objective lens and travels back up the microscope where it is directed by a prism into a 

computer controlled monochromator. A photomultiplier tube at the exit slit of the 

monochromator detects any light reflected by the diffraction grating and sends a signal 

through a pre-amplifier to an AID board inside the computer. Under computer control, the 

monochromator can scan through a range of wavelengths to produce a spectrum of the ruby 

lines as shown in figure 2-10. By measuring the shift of the lines from those at room 

temperature, the pressure inside the cell can be determined. Various fllters in the 

microscope prevent any reflected laser light from entering the monochromator, where it 

could potentially destroy the photomultiplier tube. 

One drawback of this system is that although it is able to measure the pressure in 

the cell at room temperature, this measurement cannot be performed while the cell is in the 

cryostat at liquid heliwn temperature, when the pressure is potentially quite different from 

its room temperature value. However, using the infrared active vibrational modes of the N2 

pressure mediwn and of the CO2 dissolved in the N2, one is able to measure the in situ 

pressure in certain cases (McCluskey 1996). Although the vibrational mode of N 2 is not 

normally infrared active, a coupling between this mode and lower frequency phonons in 

solid nitrogen enables it to be observed in this case. The presence of CO2 dissolved in the 

N2 pressure medium is due to the cell being .oaded in the open atmosphere. 

Two different methods were used to determine the pressure dependence of the CO2 

and N2 modes. The frrst involved comparison of the two with the shift of the CSb local 

vibrational mode (L VM) in AISb, which was asswned to be linear in pressure, as is the 

case for the Siu, LVM in GaAs (Wolk 1991). In the second method, the cell was cooled to 

liquid heliwn temperatures and the frequencies of the N2 and CO2 vibrational modes were 

measured. The cell was then warmed back to room temperature and cooled again in a 

different cryostat in which photoluminescence was performed to determine the low 

temperature pressure using the ruby fluorescence calibration. This method involved the 
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Figure 2-10. Sample ruby fluorescence spectrum at atmospheric pressure and room 
temperature. At higher pressures, the peaks shift towards longer wavelengths. 
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assumption that the cell would reach the same low temperature pressure on two successive 

temperature cyclings, an assumption which was later shown to be accurate by simply using 

the same measurement technique twice in a row. 

The obsetved pressure dependence of the CO2 and N2 lines is plotted in figure 2-

11. Good experimental agreement is found between the open symbols, which are derived 

from the first method of calibration and the filled symbols, which come from the second 

method. Over the pressure ranges measured, the pressure dependence of the vibrational 

modes is linear and can be fit to the following equations: 

2349.3 cm-1 + 12.3 P, 0::;; P ::;;0.45 GPa 

v (C02 ) = 
2347.6 cm-1 + 8.4 P, 0.45::;; P ::;; 1.3 GPa 

2349.5 cm-1 + 6.9 P, 1.3::;;P::;;1.9 GPa 
(2.4) 

2345.1 cm-1 + 6.6 P, 1.9 ::;; P ::;; 7.0 GPa 

v (N2 ) = 2326.5 em-I + 2.7 P, 1.9::;; P ::;; 7.0 GPa (2.5) 

Since nitrogen was used as the pressure medium for all of the work described here, 

this in situ pressure calibration could in principle be used all the time. However, 

oftentimes, the spectral region containing these lines was not accessible due to beamsplitter 

limitations. As a partial solution, many· spectra were taken in which both the low 

temperature and room temperature pressures were measured, so that a calibration of the low 

temperature pressure based on the room temperature pressure could be made. This data is 

shown in figure 2-12. A linear fit to the data points yields 

P{LT) = -11.08+1.06P{RT) kbar (2.6) 

where P(RT) is the room temperature pressure and P(LT) is the low temperature pressure 

in kbar. This calibration was used to estimate the low temperature pressure for all data in 

which the in situ calibration was not available. 
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2.2.8 Optical spectrosco~y throu~h a Diamond Anvil Cell 

The spectroscopy of impurities through a diamond anvil cell presents certain 

challenges due to the small thickness of the sample. While it is common to perfonn studies 

of the intrinsic properties of materials in a DAC, where the number of atoms contributing to 

the effect is on the order of 1022 cm-3
, spectroscopy of impurities, where concentrations 

may be as low as 1015 cm-3 requires much greater sensitivity. The root of the problem is 

getting a large enough photon flux through the sample hole in order to reliably measure the 

absorption coefficient For this reason, the vast majority of previous impurity studies 

using high pressure have been perfonned using the photoluminescence techinique or an 

infrared laser as the light source for absorption measurements. However, neither of these 

two methods is suitable for studying the excited state spectrum of impurities. 

A solution to this problem was found by leffWolk (Wolk 1991), a former graduate 

student in this group. The assembly shown in figure 2-13 was designed for the purpose of 

transmitting as much light as possible through the diamond anvil cell. The assembly 

consists of 5 pieces and is hung vertically inside of a cryostat, enabling it to be cooled to 

liquid helium temperatures. Modulated light from the spectrometer enters horizontally at 

the bottom, where it is reflected upwards by the 450 mirror (5). The cone (4) serves to 

concentrate the light and direct it through the diamond anvil cell (3), which has its own 

small light concentrating cones built into the backing plates. Finally, the detector (1), of a 

type which was described in section 2.1, is mounted inside an integrating optical cavity and 

is located directly behind the cell, as close to the diamond as possible. All surfaces on 

which light might be incident were gold plated to increase their reflectivity and the amount 

of light being directed through the DAC. 

This assembly perfonns several functions. First, by locating the detector directly 

behind the cell, as much of the light coming through the cell as possible is collected. 

Second, by restricting the path through which light can enter the cell and reach the detector, 

virtually all stray radiation, i.e., light which is not being modulated by the interferometer, is 
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Figure 2-13. Schematic diagram of the assembly used to perfonn impurity absorption 
spectroscopy in a diamond anvil cell. The parts are: (1) doped Ge photoconductor, (2) 
photoconductor housing, (3) diamond anvil cell, (4) light concentrating cone, and (5) 450 

mirror (Wolk 1992b). 
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eliminated. The latter effect is very important, as extra non-modulated photons contribute 

only to the detector noise and could overwhelm the small number of modulated photons 

reaching the cell. Finally, in order to maximize the amount of spectrometer light entering 

the cell, it is only necessary to align the entrance to the mirror assembly, which is 12.7 nun 

in diameter, with the spectrometer beam, which is 10 nun in diameter, a relatively simple 

task. Without such a cone, one would have to align the 0.4 nun hole through the DAC 

with the center of the 10 nun spectrometer beam in order to maximize the signal, a difficult 

task indeed. 

A further difficulty with performing far infrared impurity absorption spectroscopy 

through a diamond anvil cell is the problem of obtaining a good reference sample. Ideally, 

a reference sample should be identical to the sample containing the impurities of interest in 

all respects except for the presence of the impurities. Unfortunately, with diamond anvil 

cells, obtaining a reference spectrum is not as easy as loading two cells, one containing a 

reference and one containing the sample. Due to variations in the point at which the gasket 

actually seals during the loading, no two loads are ever identical. The size of the gasket 

hole will vary from loading to loading. The distance between the diamonds and perhaps 

the diamonds themselves will be slightly different The sample and reference may be of 

slightly different dimensions due to the violent sample preparation method (ultrasonic 

cutting). The amount of light leakage around the sample may be different. Each effect is in 

itself very small, but since the signals that we are interested in are also very small, it is easy 

for them to become lost among the unwanted features. Fortunately, due to the existence of 

a deep impurity state known as a DX center in many llI-V semiconductors, we are able to 

use the same piece of material as both reference and sample. 

The DX center is an alternate configuration which shallow extrinsic impurities can 

assume in many ill-V semiconductors under certain conditions (Lang 1977, Wolk 1992, 

Hubik 1993, Becla 1995). For example, upon the application of hydrostatic pressure in 

excess of 20 kbar, some species of shallow donors in GaAs are known to transform into 
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OX centers, which are deep states within the band gap at these pressures. In the case of 

group IV impurities such. as Si, this transfonnation involves the breaking of a bond from 

the impurity atom to a neighboring atom and a lattice relaxation of the impurity atom into 

the plane of the remaining three neighboring atoms (Chadi 1991). For OX centers 

involving group VI impurities such as S, it is one of the host lattice atoms which moves. 

One of the most striking characteristics of OX centers, and the property which was 

exploited, is the persistent photoionization they show at low temperatures (Lang 1977). If 

the OX centers in a crystal are exposed to photons of sufficient energy, they can be 

transfonned back into the nonna! shallow donor configuration. At low temperatures « 

100 K), an energy barrier prevents their return to the OX state. A configuration coordinate 

diagram of this process can be seen in figure 2-14. 

Since OX centers are deep states which are spectroscopically inactive in the energy 

range with which we are concerned (except possibly for their local vibrational mode, the 

position of which is well known (Wolk 1991», each sample could be used as its own 

reference. To obtain an absorption spectrum, a sample was cooled in the dark at pressures 

greater than 20 kbar, allowing the impurities to assume their OX configuration, and a 

reference spectrum was taken. The light incident on the sample during this measurement 

did not possess enough energy to perturb the OX centers. Light of much higher energy 

(about 1 e V) was then shined on the sample using either an AIGaAs diode, an incandescent 

light bulb, or a quartz-halogen bulb, converting the OX centers back into the nonna! 

shallow donor configuration, and a second spectrum was taken. Taking a ratio of the post

and pre-illumination spectra produced the absorbance spectra shown in the next sections. 

In order to improve the quality of the resulting spectra, the source of high energy 

light could be left on during the collection of the second spectrum. Since each of the three 

light sources was capable of generating light of energy greater than the GaAs band gap, this 

light could, in addition to ionizing the OX centers, also create electrons and holes within the 

sample which are captured by ionized donors and acceptors. The impurities then become 
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neutral, reducing the random electric fields present in the material which contribute to the 

broadening of the spectrallioes through the Stark effect (Annistead 1984). This high 

energy light was prevented from reaching the detector by a piece of black polypropylene 

placed between the sample and the detector. 
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3. Camel's Back Donors in ill-V Semiconductors 

3.1 X-band donors in GaAs 

As stated in the fIrst section, the main motivation for this work was to discover the 

reason behind the lack of absorption peaks in the Si donor spectrum observed in indirect 

gap GaAs. To determine whether this behavior is peculiar to Si or characteristic of X-band 

donors in GaAs in general, the fIrst step was to measure the absorption spectra of other 

impurities known to form shallow donors in this material. GaAs samples doped with Sn, 

Ge, S, Se, and Te were obtained and absorption spectroscopy, as discussed in the previous 

section, was performed. The samples are described below, followed by a brief review of 

the results obtained for each donor and then. fInally a discussion of the results. 

3.1.1 Samples 

The optimum range of the impurity concentration in samples for infrared absorption 

spectroscopy is limited by two factors. On one hand, the concentration cannot be too high, 

or else donor wavefunction overlap will broaden the peaks into indistinguishability (Larsen 

1976). On the other hand, the concentration cannot be too low or else the absorption signal 

may be too weak to detect. Unfortunately, the vast majority of GaAs grown today is either 

very highly doped for use in the manufacture of electronic devices, or very pure for use in 

x-ray detectors (Sumner 1994). Neither of these is suitable for our experiments and the 

relative scarcity of appropriate samples was the biggest limiting factor in our studies of 

GaAs. 

Two types of samples were used in this investigation. The fIrst was bulk GaAs, 

grown either by the Bridgman .or the liquid encapsulated Czochralski technique. The net 

doping concentration of these samples ranged from 4 x 1015 cm-3 to 2.2 x 1018 cm-3
• Hall 

effect measurements on the more resistive samples showed a high degree of compensation 

(as high as 0.8 or 0.9, as is usual for resistive bulk GaAs). However, as noted in the 
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previous section, band edge light could be used to reduce the Stark broadening of 

absorption lines due to the compensating charged impurities. 

The second type of samples used were epitaxial layers grown by the liquid phase 

epitaxy (LPE) method. Most of these layers were grown in Elizabeth Bauser's group at the 

Max-Planck-Institute in Stuttgart and had net carrier concentrations between 1015 cm,3 and 

3 x 1016 cm,3 with very low compensation ratios. Other epitaxial layers were grown by 

Dawnelle Wynne at the Lawrence Berkeley National Laboratory and had carrier 

concentrations around 1016 cm,3 and compensation ratios of about 0.4, 

Overall, it was possible to obtain samples doped with six different dopants, Si, Sn, 

Ge, S, Se, and Te, though some could only be obtained with one doping concentration. 

3,1.2 Group N dopants; Si. Sn. Ge 

Attempts to obtain absorption spectra were the most successful with impurities from 

group IV of the periodic table and the most extensively studied dopant was Si (Hsu 1997 a). 

In figure 3-1, absorbance spectra from three different Si samples with different doping 

concentrations are shown. Spectrum (a) was taken using a bulk-grown sample with 1017 

cm,3 impurities, spectrum (b) from a bulk-grown sample doped to 1016 cm,3, and (c) from 

an LPE sample doped with 3.5 x 1015 cm,3 impurities. The spectra are not shown to scale, 

Because of light leakage around the sample in the diamond anvil cell, it is impossible to 

make an accurate determination of the absorption coefficient a of these lines. However, it 

appears to be roughly equal to that of shallow donors in other materials (-1 cm,l /l015 cm,3 

impurities) (Jagannath 1981, Scott 1976). The absorbance spectrum of the most lightly 

doped sample shows a single peak with a full width at half maximum (FWHM) of 8 cm-I , 

This same peak can also be seen in the spectra of the more heavily doped samples, though 

broadened due to the higher donor concentrations. In spectra (a) and (b), the absorbance is 

greater on the high energy side of the peak, possibly indicative of a continuum absorption. 
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Figure 3-1. Absorption spectra of GaAs:Si for three different doping concentrations: (a) 
[n] = 1017 cm-3 at 51 kbar, (b) [n] = 1016 cm-3 at 50 kbar, (c) [n] = 3.5 x 1015 cm-3 at 75 
kbar. 
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As the pressure was increased, the energy of this single absorption line shifted 

downwards, indicating that the energy difference between the donor ground state and that 

of the corresponding bound excited state was decreasing. This is opposite to the behavior 

of the nonnal r-band donors in GaAs, whose transition lines shift to higher energy as a 

function of pressure (Wasilewski 1986). A plot of the peak position as a function of 

pressure is shown in figures 3-2a and 3-2b. In figure 3-2a, data obtained from the more 

lightly doped samples is shown while peak positions of the more heavily doped samples 

are plotted in 3-2h. There is a fair amount of scatter in the data, much of which arises from 

the difficulty in determining the peak positions of the very broad peaks observed with the 

most highly doped samples. In addition, the pressures at which the data points shown as 

open symbols were taken were estimated from equation (2.6) and are thus uncertain to 

roughly ±3 kbar. In contrast, the frequency of the CO2 vibrational mode was used to 

determine the exact pressures at which the data points shown as closed symbols were taken 

and the uncertainty in pressure for those is smaller than the symbols. 

The fit in figure 3-2a was determined from the filled symbols which are the most 

reliable, as they were measured using the highest quality sample. The pressure coefficient 

of this transition line was determined to be -0.40 cm-I/kbar. As can be seen from figure 3-

2b, the absorption peak occurs at slightly lower energies in the more heavily doped samples 

(1016 to 1017 cm"3), but the pressure dependence of the peak is essentially the same to 

within the experimental uncertainty. This effect has also been seen in the r-band donors at 

atmospheric pressure (Lee 1988). 

The second dopant to be studied was Sn. Figure 3-3 shows spectra from two Sn 

doped samples, one with an impurity concentration of 1.2 x lOIS cm"3 and one doped to 2.3 

x 1016 cm"3. Both samples in this case were LPE grown. The absorption coefficient of 

these peaks was about the same in magnitude as that for Si and the peak from the more 

lightly doped sample has a FWHM of 4.7 cm"l. Figure 3-4 shows the pressure 
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Figure 3-2a. Pressure dependence of the Si peak. Low temperature pressures for the open 
diamond data points were estimated using eq. (2.6) while pressures for fIlled symbols were 
detennined by the in situ method. Diamonds represent bulk samfles with [nT = 4 x 1015 

cm-3
• Filled squares are LPE grown layers with [n] = 3.5 x 101 cm-3

• Error bars show 
pressure and frequency uncertainties in the measurement. Pressure uncertainties of the 
filled symbols are smaller than the symbols. The line is a fit to the solid points. 
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dependence of the Sn absorption line. Due to the energy range in which this peak is found, 

the low temperature pressures at which these spectra were taken could not be measured 

directly and had to be estimated using equation (2.6), again resulting in pressure 

uncertainites of roughly ±3 kbar. The pressure dependence of this line is estimated to be 

+0.1 cm-1/kbar. It is not altogether surprising that the pressure coefficients of Si and Sn 

have opposite signs as the binding energies of the normal r-band donors in GaAs have 

been found to have different derivatives with respect to magnetic field and pressure. These 

differences have been attributed to the central cell potentials of the various impurity species 

(Wasilewski 1986). 

Ge, the final group N donor studied, is amphoteric and crystals doped with Ge 

during growth are usually highly self-compensated. This indicates that the Ga 

substitutional sites and the As substitutional sites have approximately the same affinity for 

Ge impurities. As large compensation ratios are detrimental to obtaining unbroadened 

donor absorption spectra, the Ge-doped samples used in this study were doped by neutron 

transmutation doping (NTD) (Alexiev 1993). A more detailed discussion of this technique 

can be found in Appendix B. An Ultra-pure GaAs epitaxial layer (n - 1012 cm-3
) was 

exposed to a thennal neutron flux at the research reactor at the University of Missouri. The 

neutron dose was calculated to produce a GeGa concentration of roughly 4 x 1014 cm-3
• 

This figure was chosen for two reasons: first; such an impurity concentration should be 

easily detectable by our system (based on the strength of the Si and Sn absorptions for an 

impurity concentration of 1015 cm-3
) and second, this concentration should result in 

relatively sharp absorption lines, as most broadening mechanisms are absent at low donor 

concentrations. However, no Ge donor transition lines were ever observed in the entire 

spectral region which could be studied from pressures of 40 kbar to 70 kbar. Due to the 

technique used to introduce the Ge impurities, a slightly larger number of Se impurities 
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were produced as well. However, their presence should not have affected or obscured the 

Ge absorptions. The implications of this null result are discussed later. 

3.1.3 Group VI dOPants; S. Se. Ie 

The S doped GaAs samples which were investigated were LPE layers grown at 

LBNL by Dawnelle Wynne. These layers had carrier concentrations in the low 1016 cm-3 

and compensation ratios of about 0.4. A few LPE layers were also grown by Elizabeth 

Bauser's group with doping concentrations from 1014 cm-3 to lOIS cm-3
• A bulk sample 

with a doping concentration of 2.2 x 1018 cm-3 was also studied 

In contrast to the results obtained for Si and Sn, no sharp transition lines for S 

could be found. Instead, only a broad continuum response was seen (Hsu 1997b). Some 

representative spectra at different pressures are shown in figure 3-5. Furthermore, the 

pressure dependence ofthe S donor absorption differs considerably from that of Si and Sn. 

In the Si and Sn doped samples, the energy of the infrared absorption lines varied little with 

pressure, changing at the rate of less than one wavenumber per kbar. The S absorption, 

however, shows a much greater sensitivity to pressure, as can be seen in figure 3-6. Here, 

the frequency at which the absorption reaches one half of its maximum value is plotted as a 

function of the applied pressure, showing a pressure derivative of -5.2 cm-I/kbar. Also 

shown in this figure are data points taken from the very heavily doped (> 1018 cm-3
) sample, 

which show a similar pressure derivative_ 

Se doped GaAs samples were obtained in two ways. One GaAs LPE layer was 

grown at the MPI in Stuttgart by Bauser with a doping concentration of 23 x 1016 cm-3
• A 

second layer was obtained through N1D (Alexiev 1993). During the neutron transmutation 

doping of GaAs, both Ge and Se donors are created. Therefore, the sample previously 

described, besides being doped with Ge, also contained roughly 7 x 1014 cm-3 Se 

impurities. However, no Se related absorptions were ever detected in either sample. 
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Lastly, a single piece of bulk grown GaAs:Te was obtained. The net doping 

concentration of this sample was quite high at 1.2 x 1017 cm-3
• However, as with the Se 

doped GaAs, no reproducible donor related absorptions could be detected in these samples. 

,3_1.4 Discussion 

As can be seen, a variety of different types of spectra were obtained, for X-band 

donors in GaAs. Besides the fact that Si and Sn have similar spectra and Ge, Se, and Te 

showed neither sharp nor continuum absorptions, there seems to be little commonality 

among the behaviors of the six shallow donors. Furthermore, only the spectra of Si and 

Sn bear any resemblance to that of a normal shallow donor such as is found in Si or Ge. 

With regard to the lack of response in the latter three however, it should be noted that due 

to the experimental technique used, two conditions must be met in order for a donor related 

absorption to be observed: (1) the impurity must initially be in the deep DX configuration 

and (2) one must be able to convert these DX centers into the shallow donor state by optical 

excitation. In principle, if condition (1) were not fulfIlled, one should still be able to see 

any sharp donpr absorptions as dips in the detector response spectrum. However, due to 

the extremely small thickness of the samples, no such features that could be positively 

identified were found. 
, 

While the vast quantity of literature regarding DX centers may seem to suggest that 

all donors in GaAs undergo the shallow-deep transformation above a certain pressure, a 

careful search of the literature reveals that this is not the case, particularly for Ge, Se and 

Te. 

For example, although it is well established that Te forms a DX center in 

AIGaAs:Te for an AI fraction greater than 25% (Shan 1989), electrical experiments on 

GaAs:Te at low pressures (up to 20 kbar) show that the Te DXstate lies well above the 

conduction band (Sallese 1990, Suski 1991) and its pressure coefficient is such that it is 

probable that the DX center will never be the most stable form of this impurity in GaAs at 
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any pressure. If this is the case, then condition (1) above is not satisfied and it is not 

possible to measure the donor spectrum of Te by the technique used. The non-observance 

of any donor related absorptions in the spectra, whether sharp or continuum-like, over a 

range of pressures from 40 to 70 kbar may thus be interpreted as confmnation that Te does 

not form OX centers at these higher pressures. 

The Se OX center in pure GaAs under hydrostatic pressure has not been well 

studied and like Te, there is no indication that it is or is not the most stable form of the 

impurity at high pressure. Again, the lack of any observed absorption for this donor using 
I 

this experimental procedure indicates that probably it is not. It has been determined 

through photoluminescence measurements that the Se donor in indirect gap GaAs has a 

binding energy of 115 meV (Kobayashi 1983), and so any donor related absorptions 

should be well within our detection range. Given the doping concentration of the samples 

which were studied, any absorptions which did exist would surely have been seen if Se 

does form a OX center. 

Also, Ge has been found to be an unusual donor in the sense that both the DX 

center and the non-photoionizable deep Al configuration play important roles in its behavior . 

under hydrostatic pressure (van der WeI 1993). There is no data in the literature to indicate 

whether or not the DX state is the most stable at high pressures, but once again, the non

observation of Ge donor spectra implies that it is not. 

Concerning the donors which did show some photoabsorption, although the 

absorption spectrum of S does not display any ground to bound excited state transitions, 

the shape of the absorption is characteristic of transitions from a bound state to a continuum 

of states such as the conduction band. The fact that the absorption occurs at much lower 

energy for the more highly doped sample supports this interpretation since at higher 

impurity concentrations, electron-electron interaction can be expected to push the energy of 

the bound state higher, closer to the conduction band (pearson 1949). The reason for the 

complete absence of any sharp transitions is still unknown. However, it is very unlikely 
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that Stark broadening is responsible for the absence of any sharp absorptions, as even the 

Si doped samples with net carrier concentrations near 1017 cm-3 displayed a recognizable 

"peak_" The energy at which this absorption occurs is in rough agreement with 

photoluminescence experiments which indicate that the binding energy of S is 

approximately 109 meV near the crossover pressure of the X and r regions of the 

conduction band (Leymarie 1990)_ 

Finally, regarding the spectra of the Si and Sn donors, one's fIrst impulse may be 

to dismiss the lack of additional transition peaks as due to the relatively impure nature of the 

material ([n] > lOiS cm-3
). However, in GaP, a semiconductor with a band structure very 

similar to that of GaAs under pressure, impurity spectra typically consist of at least two or 

three clearly visible transition lines, even at doping concentrations up to 1017 cm-3 

(Kopylov 1977). Furthermore, the transition lines of donors in GaP are of similar width 

and are found in a similar spectral range as those of donors in indirect GaAs, indicating that 

the binding energies and Bohr radii for both should be similar. Thus, the suggestion that 

Stark broadening has caused the disappearance of all other transition lines is untenable. 

It is also impossible that the non-observation of a second line in both donors is due 

to the energy of that line lying within the reststrahl band. The reststrahl band in GaAs is 

less than 25 cm- I wide whereas the chemical shift between Si and Sn is almost 100 cm- I
. 

Even if a second line of one of the donors is hidden by the reststrahl reflection, the second 

line of the other donor should be clearly visible. In the framework of effective mass 

theory, this leaves only the possibility that the intensity of a second absorption line must be 

much smaller than that of the observed transition line. In oider to carry out a more focused 

search for a small peak, the theoretical energy spectrum for donors in GaAs was calculated_ 

However, in the process, an interesting possibility concerning the conduction band 

minimum of GaAs near the X-point was discovered. Instead of the normal parabolic band , 

minimum present in Si, Ge, and at the r point in GaAs, it has been argued that this band 
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minimum, which is found along the !1 symmetry line, is in fact strongly non-parabolic with 

what is known as a "camel's back" shape (Liwaetz 1975). Furthennore, it has been 

suggested that this non-parabolicity may be universal to this particular conduction band 

minimum in all compound semiconductors due to the lack of inversion symmetry in the 

zincblende lattice (Kopylov 1985). 

3.1.5 Influence of the Camel's Back 

In elemental semiconductors such as Si, the two lowest conduction bands are 

degenerate at the X symmetry· point due to the inversion symmetry of the diamond lattice. . 

At the local minimum, which occurs some distance from the X point along the !1 symmetry 

axis, the lowest band is parabolic to very good approximation as· confmned by the success 

of effective mass theory in predicting the energy spectrum of donors in Si. The dispersion 

relation of the two lowest conduction bands in Si can thus be written as 

n = 1,2 (3.1) 

where D and A are constants near the conduction band minimum and k, which is 0 at the X 

symmetry point, is the reciprocal space distance in the <100> direction. The conduction 

bands of Si are illustrated in figure 3-7. 

However, as was pointed out by Lawaetz, llI-V semiconductors such as GaP have 

no inversion symmetry and the degeneracy at the X point is lifted. In order to calculate the 

shape of the conduction band in this case, degenerate perturbation theory is applied to the 

band structure of Si. Introducing a repulsive interaction between the two bands, the total 

Hamiltonian for the system becomes non-diagonal and can be written as 

59 



E 

, GaP , , , , , , , , , , , , , , , , \ , , 
\ \ , , 
\ \ , 

I 
\ \ I I 
\ \ I I 
\ Si \ I I 
\ \ I I 
\ \ I I 
\ \ I I , , I I , , I I , , I I , , I I k , I 

" ,<II' 

.. r r • 

X 

Figure 3-7. Schematic diagram showing conduction bands of Si (dashed line) and GaP 
(solid line) near the X symmetry point. The center of the graph is the boundary of the 
Brillouin zone and the horizontal axis is the [100] direction. It has been suggested that all 
ill-V compound semiconductors have conduction bands similar to that of GaP at this 
symmetry point. 
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H= (3.2) 

where the parameter a is equal to the energy difference between the two bands at the X 

symmetry point. Diagonalizing this matrix for the new energies, we obtain 

E±(k) = ~ (E1(k) + E2(k) ± ~(El(k)- E2(k)? +02 
) 

= At' - D' k' +(~J 
(3.3) 

As can be seen from (3.3), the band minimum is no longer a simple parabola in the <100> 

direction. The amount of non-parabolicity is determined by the magnitude of D. Since 

only the band curvature in the <100> direction is affected in this simple model, the 

transverse effective masses are unperturbed, while the longitudinal mass, which is 

inversely proportional to the band curvature in the <100> direction, can no longer be 

considered a constant, even at relatively short distances from the band minimum (Lawaetz 

1975). The band structure of a compound semiconductor such as GaP near the X point is 

shown superimposed on that of Si in figure 3-7. 

Experimental evidence for this so-called "camel's back" structure (so called because 

the slope of the conduction band at the X point is zero and the effective mass there is 

negative) has been observed in the donor ionization spectra of GaP (Kopylov 1977) and 

AlSb (Ahlburn 1968), where it is impossible to fit the observed line spacings to the 

theoretical spacings calculated by Faulkner (Faulkner 1969) for donors. In addition, what 

estimates there are of the longitudinal effective mass from donor ionization spectra (Onton 

1969, Scott·1976) are completely different from those obtained from cyclotron resonance 

experiments (Suziki 1976, Miura 1983). 
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Because of this non-parabolicity, simple effective mass theory as embodied by 

equations (1.3) and (1.6) are no longer applicable to this problem. The SchrOdinger 

equation for shallow donors in this case is (Kopylov 1977) 

(3.4) 

where ~ is in the <100> direction and the energy axis is such that the lower of the two 

energy bands passes through E=O at the X symmetry point. Although this equation cannot 

be solved analytically, one can use simple variational theory to determine upper bounds for 

the energies of the excited states of shallow donors (Kopylov 1977). Much more 

sophisticated methods have been employed.by other authors (Chang 1980), however, they 

do not yield significantly better results. 

where 

and 

To simplify the calculations, the Hamiltonian in (3.4) was divided into two parts 

i;.2 k2 . i;.2 k2 2 

H = HO + HI = -"-' + -"-' -!.-
2m, 2m, er 

h2 e h2 e 8 + __ , ---' +--
2mo 2m, 2 
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(3.5) 

(3.6) 

(3.7) 



The first part, If, is the usual effective mass theory Hamiltonian for a parabolic conduction 

band miitimum, the solutions of which are well known. What remains then, is to find the 

expectation values of the non-quadratic part (3.7). 

The trial wavefunctions used in this calculation are 

(3.8) 

which are simply hydro genic wavefunctions scaled to take into account the anisotropic 

effective mass. In order to avoid excessively tedious calculations, the weak dependence of 

the 3po wavefunction on x and y was ignored (Kopylov 1977). The C's are normalizing 

constants while (X and ~ are the variational parameters. The energies of the lowest four 

states as. computed by simple variational theory are 

E = EO + IEI~I (~ _ 1) + 8 _ 
IS Is 3 2 . mo 

(3.9) 
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where 

(3.10) 

The eo's are the energies of the various states as calculated by the ordinary effective mass 

theory and ml is inversely proportional to the curvature of the conduction band at the band 

minimum near the X-point. Although no experiments have yet been performed to 

detennine the parameters. D, a, and ml , some theoretical estimates have been made for the 

values at atmospheric pressure (Kopylov 1985). Using those estimates, numerical values 

of the energies are 

ECB = - 9.44 meV 

E1& = - 49.6 meV 

E2Po = - 26.5 meV 

E2P± = - 9.34 meV 

E
3Po 

= -9.30 meV 

(3.11) 

As noted previously, all energies are computed with respect to the energy of the 

lowest conduction band at the X symmetry point. Comparing the binding energies of the 

excited states with those of a normal hydrogenic donor, one sees that the order is the same, 
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where the states with larger principal quantum numbers are less tightly bound. 

Furthermore, the 2po level is deeper than the 2p± level. A simple reason for this fact is that 

the binding energy of the 2p± state is dependent on the curvature of the conduction band 

perpendicular to the <100> direction while the binding energy of the 2po state is related to 

the curvature in the <100> direction. Since the transverse curvatures are larger than the 

longitudinal curvature, the transverse effective masses are smaller than the longitudinal 

effective mass, resulting in a smaller binding energy. In addition, the non-parabolicity of 

the longitudinal curvature causes the energy of the 2po level to be lowered even further. 

Comparing the energies for the 2p± and 3po levels with that of the true conduction 

band minimum along the A axis, one sees that the energies of these two excited states are 

higher. This indicates that these are not bound states, but autoionized states within the 

conduction band. In this situation, no discrete transitions from the ground state to these 

states are possible and only the absorption corresponding to excitations from the Is to 2po 

state would be observed as a sharp transition line. This is in agreement with the 

experimental observations for Si and Sn. 

Using these results, the energy level diagrams for Si and Sn donors associated with 

the camel's minimum in GaAs are drawn schematically in figure 3-8 along with the level 

diagram of a theoretical donor. Since the conduction band parameters at high pressure are 

not known, the atmospheri~ pressure values have been used. The energy spacing between 

the ground state and the 2po state is based on the experimental observations while the 

energies of the remaining levels are based on the theory. Comparing the estimated ground 

state energies of Si and Sn with the calculated ground state energy, it is obvious that the 

chemical shifts are large. This is also the case in GaP, where the theoretical ground state 

energy is 62 meV but the binding energies of the shallow donors are closer to 100 meV 

(Kopylov 1977). 
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Figure 3-8. Schematic diagram of the ground and bound excited states of Si and Sn donors 
in indirect gap GaAs. The theoretically calculated levels are also shown. All energies are 
shown for an applied pressure of 40 kbar. 
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One effect which has been neglected here is valley-orbit splitting. Unlike direct gap 

GaAs in which there is only one conduction band minimum in the Brillouin zone, indirect 

gap GaAs has six equivalent minima located in the <100> directions. Valley-orbit 

interaction in this case leads to a splitting of the six-fold degenerate ground state into a 

triply, doubly, and a singly degenerate ground state. For donors in Si, this effect has been 

shown to lower the ground state energies by a significant fraction of the binding energy 

calculated by a simple one-band effective mass theory (Aggarwal 1964). In the total 

absence of information regarding this energy splitting in GaAs however, this effect has not 

been included in figure 3-8. 

It should be noted that since the values obtained through equations (3.9) above are 

the results of a variational calculation, they are only upper bounds for the true values and 

without additional knowledge of the actual wavefunctions, it is impossible to estimate the 

error in the calculation. It is therefore possible that the 2p± and 3po excited states ate in fact 

bound states and not resonant states. The GaAs parameters used in the calculation of the 

donor spectrum are theoretical extrapolations from GaP at a pressure of 1 bar and are 

almost certainly somewhat different from the true values at 40 kbar. However, based on 

the signal to noise ratio of the best speCtra taken, the peak heights of any additional 

transitions must be at least a factor of 50 smaller than the height of the observed peak. 

Such an imbalance would be extremely unusual and has never been observed in any donor 

for the electronic transitions which are in question here. Although we cannot say with 

absolute certainty that the model that is presented here is the true reason for the absence of 

other lines, it is certainly a plausible one. 

To further investigate the effects of the camel's back structure on the energy 

spectrum of donors, it was decided to study the pressure dependence of donors -in other 

indirect ill-V semiconductOrs which should also have a camel's back structure at the 

conduction band minimum near the X symmetry point. Of the many possibilities, 

however, only InP, GaP, and AISb can be grown pl,lfe enough to study the donor spectrum 
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and of these three, only AISb is suitable for our purposes. InP~ although similar in many 

respects to GaAs, does not become an indirect gap semiconductor until pressures greater 

than 90 kbar are applied and due to the small size of the diamond anvil cells used in this 

work, pressures greater than 80 kbar could not be obtained without running a great risk of 

destroying the diamonds. Although GaP can be grown with doping concentrations 

appropriate for study by absorption spectroscopy, no evidence of OX center formation by 

donors in this material has yet been found. Without the ability to obtain such near perfect 

references as in the Case of GaAs, there is little hope of seeing GaP donor spectra by the 

technique employed here. AISb, on the other hand, is an indirect gap material with its 

conduction band minimum near the X point. Furthermore, it is known that donors in this 

material form OX centers (Hecla 1995). Although infrared absorption spectra were 

investigated in n-type AISb at atmospheric pressure as early as 1960 (Ahlborn 1968), 

higher pressures have never been studied. 
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3.2 X-band· donors in AlSb 

AlSb is an indirect gap ill-V semiconductor with a conduction band minimum 

located close to the X symmetry point and a bandgap of. 1.6 e V. AISb has been 

investigated as a possible material for infrared detectors (Brar 1994) and optical 

holographic memories (McKenna 1996) and is used in combination with InAs to make 

Heterostructure Field Effect Transistors (HFETs) and High Electron Mobility Transistors 

(HEMTs) (Bolognesi 1996). However, despite these applications, relatively few efforts 

have been made to investigate the basic properties of AISb, principa!ly because of its 

hygroscopicity. Samples of AlSb left exposed to the atmosphere will disintegrate into 

powder in just a few weeks, making special precautions necessary for handling and 

storage. 

Because the pressure coefficients of the various conduction band minima, . the 

camel's back minimum near the X-point remains the lowest point for all pressures. 

Unfortunately, only Se and Te are known to fonn shallow donors in AISb. The group N 

impurities all preferentially occupy the Sb sublaitice to fonn acceptors and S has not been 

observed to form donors in this material. Thus, it was impossible to compare the behavior 

of group N and group VI donors in this material and to compare them with donors in 

GaAs. 

3.2.1 Samples 

A piece of AlSb doped with Se was obtained from Prof. Anant Ramdas at Purdue 

University. This piece was cut from a wafer which had been grown by Bell and Howell 

Research Laboratories in the 1960's using the Bridgman technique. The net-impurity 

concentrations was 1016 cm-3
• The compensation ratio of this sample appeared to be quite 

low, as the application of band-edge light made no discernible difference in the donor 
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spectra. In contrast, the absorption peak in some of the bulk grown Si doped GaAs 

samples was all but invisible without band edge light, due to severe Stark broadening. 

Since AlSb degrades quickly in the presence of water, the final polishing steps in 

the creation of the samples were performed in methanol. 

3.2.2 Selenium 

Figure 3-9 shows the donor spectrum of Se in AISb, taken at atmospheric pressure. 

Of all the samples surveyed so far, AISb:Se produces a spectrum which is the most similar 

to that of the normal hydro genic donors in Si and Ge. In this spectrum, there are two sharp 

lines, one of which lies on the shoulder of a very large continuum absorption. Both lines 

have also been observed in bulk samples and have been identified as caused by the Se 

donor (Ahlburn 1968). Calculating the energy spectrum for donors in AlSb using eqs. 

(3.9), we obtain 

ECB = -7.45 meV 

Els = - 55.9 meV 

E2 = -29.7 meV 
Po 

E2P± = -10.7 meV 

E
3Po 

= -10.7 meV 

(3.12) 

for the binding energies of the first few states. As in the case for GaAs, none of the band 

parameters of the X conduction band minimum in AlSb have been determined 

experimentally, so theoretical values extrapolated from GaP have been used. In principal, 

band parameters can be calculated from the energy spacing of the absorption lines, 

however, in the present model, there are too many unknown parameters to be able 

determine from the existing experimental data. Based on the calculated estimates of the 

excited state energies, two of the observed lines can be assigned to transitions from the 
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Figure 3-9. Absorption spectrum of AISb:Se at 1 bar. Two electronic transition peaks can 
be seen clearly, corresponding to transitions from the ground state to the 2po and 2p± bound 
excited atates. 
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ground state to the 2po and 2p± bound excited states. The splitting of these lines under 

uniaxial stress also confmns this assignment (Ahlburn 1968). 

When subjected to hydrostatic pressure, the Se donor spectrum changes in a 

number of unusual ways (Hsu 1996). The one which is perhaps the most relevant for our 

purposes is shown by the sequence of spectra in figure 3-10. At very low pressures, the 

separation of the 1 s to 2p± peak: from the continuum becomes smaller and smaller as the 

pressure is increased until at approximately 7 kbar, the absorption peak has become 

virtually indistinguishable. As the pressure continues to increase, the transition peak: 

separates from the continuum and is again clearly visible by 13 kbar. This phenomenon 

was found to be reproducible over a number of different sample loadings and it is very 

unlikely that this disappearance is due to uniaxial stress on the sample as the 1 s to 2po 

transition remains relatively sharp. In addition, the applied pressures are quite low and 

from visual observation, it did not appear as if the diamonds on gasket were pressing on 

the sample directly. This unusual behavior is attributed to the ability of the camel's back 

structure to cause some excited states which are normally bound to become resonant states. 

As the pressure is increased, the curvature of the conduction band undoubtedly changes. It 

is possible that in AISb, it changes in such a way as to force the 2p± excited state first out 

of, then back into, the forbidden gap. 

A second way in which the Se donor is unusual is found by plotting the energies of 

the electronic transitions as a function of pressure.· As shown in figure 3-11, the 

frequencies of these two transition lines decrease quadratically, rather than linearly. 

Because of the relative deepness of the Se donor, the vibrational mode of the CO2 dissolved 

in the pressure medium could be and was used to determine the low temperature pressures 

at which the measurements were made, resulting in very little scatter of the data. In 

addition to the surprising quadratic shift, a third peak: appears at roughly 30 kbar. Though 

its position is pressure independent at first, it eventually begins to decrease in energy with 

applied pressure at higher values. 
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Figure 3-10. AlSb:Se donor spectra taken at low pressure. The second electronic 
transition peak disappears into the continuum upon increasing the pressure, then reappears 
as the pressure is increased further. 
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Figure 3-11. Pressure dependence of the electronic transition peaks in AISb:Se. Also 
plotted is a third peak (labeled ?) which fIrst appears at 30 kbar, then increases in intensity 
as the pressure increases. 
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Coinciding with the appearance of this third peak, the absorption peak 

corresponding to the Is to 2p± transition begins to broaden until it is all but impossible to 

track. During this process, the new absorption line grows in intensity until it resembles the 

original electronic transition peak. The progression of these two events is tracked in figure 

3-12. 

A possible explanation for these observations can be found by considering the 

energies of the two-phonon modes in AlSb. Although no measurements of the pressure 

dependence of the two-phonon modes in AlSb have been performed, Yes and co-workers 

(Ves 1985) have measured the pressure dependence of the one-phonon LO and TO modes 

at the zone center. By forming various additive combinations of these frequencies, the 

pressure dependences of the two optical phonon modes may be estimated. The energies are 

plotted in figure 3-13 along with the experimentally observed energies of the Is to 2p± 

transition and the mysterious third peak. 

If we assume a weak repulsive interaction between the Is to 2p± transition and one 

of these multi-phonon modes, we can create a simple two-level model to explain the 

observations. The total Hamiltonian of this system is given by 

(3.13) 

where H e1ec and Hpho are the Hamiltonians for the electronic transition and the multiple 

phonons respectively and Hint describes the interaction between these two systems. If Hint 

can be treated as a weak perturbation, then the Hamiltonian matrix can be written as 

A 
H= (3.14) 

A (J) phon 

where 

(3.15) 
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Figure 3-12. Sequence of AlSb:Se absorption spectra showing emergence and growth of 
the third peak as the pressure is increased. 
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Figure 3-13. Energies of the 1 s to 2p± electronic transition peak and the third peak plotted 
as a function of pressure. Also plotted are the theoretically extrapolated frequencies of the 
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Using simple degenerate perturbation theory to diagonalize this Hamiltonian, we obtain 

(3.16) 

for the new eigenenergies of this system. This is exactly the same type of calculation 

which was perfonned to obtain the camel's back structure of the conduction band in the 

previous section. The wavefunctions corresponding to eigenstates of this Hamiltonian are 

no longer pure electronic transitions or pure phonon excitations, but a mixture of the two 

given by 

(3.17) 

where the square modulus of the coefficient a is 

(3.18) 

Experimentally, this quantity is the normalized peak area of the lower energy peak. 

The pressure dependence of the electronic transition was estimated to be 

(3.19) 

by performing a quadratic fit to the energies of the peaks which appeared to correspond to 

the 1 s to 2p± electronic transition. The interacting phonon was assumed to be the LO+ TO 

mode, with a pressure dependence of 

(3.20) 

There is no special reason for choosing this particular combination except that of the three 

possible zone center two-phonon combinations shown in figure 3-13, it produces the best 
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fit In fact, due to anhannonic tenns, eq. (3.20) likely overestimates the frequency of the 

LO+ TO mode and is perhaps closer to the true frequency of the 2 LO mode. Although it is 

more likely that the observed absorption is due to zone edge rather than zone center two

phonon modes due to the greater density of states at the zone edge, the dispersion curves of 

optical phonons in AlSb are quite flat Thus, little error is introduced by using the known 

zone center frequencies. 

The new eigenenergies obtained through (3.16), (3.19) and (3.20) are plotted in 

Figure 3-14 along with the experimentally observed energies. The interaction parameter A 

was chosen to produce the best fit between theory and experiment, good agreement being 

obtained for a value of A = 25 cm·!. The situation shown here is a classic example of an 

anti-crossing of two weakly interacting levels. As the pressure is increased; the lower 

branch, which is initially "phonon-like," acquires more of the characteristics of an 

electronic transition, becoming "electronic-transition like." Similarly, the upper branch 

which is initially "electronic-transition-like," becomes more and more "phonon-like" at high 

pressures, the area of its peak decreasing to reflect this change. 

The experimentally observed nonnalized area of the lower peak is plotted along 

with the theoretical prediction of the simple two-level model (eq. 3-18) in figure 3-15. 

Since the original 1 s to 2p± electronic transition peak becomes too difficult to trace at the 

higher pressures, the area of this lower branch peak was nonnalized to that of the 1 s to 2po 

transition. Thus, it is implicitly assumed that the areas of the two electronic transition 

peaks are equal and remain so even as the pressure is increased. At high pressures, the 

presence of Fabry-Perot fringes in the spectrum and the closeness of this peak to the 

continuum absorption made the determination of precise peak areas difficult, hence the 

greater scatter in the data. Naturally the same value of 25 cm·! was used for A in the 

calculation of the theoretical curve. 

It should be noted that only a single free parameter (A) was used in this model. The 

pressure dependence of the 1 s to 2p± electronic transition was determined by fitting to 

79 



1100 

.-. 1000 ~ 

I 

E 
0 ----'-
Q) 900 
.0 

ET-like E 
::::s 
c: 
Q) 800 >. 
~ 

~ 

700 phonon-like ----

---

600~~~~~~~~~~~~~~ 

a 10 20 30 40 50 60 

Pressure (kbar) 

Figure 3-14. Pressure dependence of the frequencies of the upper and lower branches as 
calculated from the simple two level model. The curves calculated from (3.16) are 

. superimposed on the experimentally observed peak positions. The value of the interaction 
parameter A is 25 cm·l

, 

80 



.::t:. 
as. 
Q) 
a. 
~ 

Q) 

~ 
0 

'+-
0 
as 
Q) 
~ 

as 
-0 
Q) 
N .--as 
E 
~ 

0 
Z 

0.8 

0.6 

0.4 

0.2 

O~~~~~~~~~~~~~W 

o 10 20 30 40 50 

Pressure (kbar)· 

60 

Figure 3-15. Pressure dependence of the area of the third peak divided by the area of the 
Is to 2po electronic transition peak. The curve is calculated from (3.18) assuming that the 
oscillator strengths of both electronic transitions are equal at all pressures. 

81 



experimental data while the energy of the multi-phonon mode was obtained by adding the 

frequencies of the zone center LO and TO phonon modes as determined by (Ves 1986). 

Although the interaction of the phonons with the 1s to 2p± transition is quite 

spectacular, it is not known why no interaction of these phonons with the 1s to 2po 

transition is observed. The magnitude of the effect is ultimately determined by the 

interaction parameter A in (3.15) which depends on the initial and final states of the 

particular electronic transition involved and perhaps by some coincidence, the value 

corresponding to the interaction between the 1s to 2po transition with the multi-phonon 

mode is very small. Alternatively, it is possible that the interaction between the two modes 

may be zero due to incompatible symmetries. 
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4. Conclusion 

From what was to be a routine measurement of the GaAs:Si X-band donor 

spectrum, we have discovered the behavior of impurities associated with a camel's back 

conduction band minimum to be both diverse and puzzling.· In GaAs at hydrostatic 

pressures above 40 kbar, two different donor spectra have been identified: one. in which 

the absorption spectrum consists of a single ~sition peak, as is the case for Si and Sn, 

and one in which the spectrum shows only a broad continuum absorption, as is the case for 

S. Unfortunately, due to the difficulty of performing infrared absorption spectroscopy 

through a diamond anvil cell, none of the other shallow donors (Ge, Se, Te) could be 

studied. We were therefore unable to detennine whether these two behaviors were 

characteristic of group IV and group VI impurities. 

A variational calculation of the energy spectrum of a camel's back donor in GaAs 

provided a possible explanation for the behaviors observed for Si and Sn, namely that the 

non-parabolicity of the band minimum caused some of the normally bound excited states of 

the donor to become unbound, having energies within the conduction band continuum. 

Our study of the pressure dependence of the Se donor spectrum in AISb appears to support 

this model, showing that for certain pressures, a peak corresponding to a ground to bound 

excited state transition can be made to disappear into the continuum absorption. Although 

this model does not explain the total lack of sharp transitions for the S camel's back donor 

in GaAs, a number of authors (Morgan 1968, Kumagai 1984, Piotrkowski 1990) have 

suggested that due to the different local environments, that the pressure dependencies and 

properties of deep levels in compound semiconductors can be expected to depend on the 

sublattice which the impurity atom occupies. Even though the impurities studied here are 

nominally "shallow" donors, the relatively large binding energies of 80 meV or greater 

indicate that the electronic Bohr radii of these centers are small compared to those of the 

83 



nonnal donors in Si, Ge, and direct gap GaAs and thus that the central cell potential can be 

expected to exert a greater influence on the donor properties. 

Another interesting phenomenon discovered during the investigation of donors in 

AlSb was an anti-crossing of an electronic transition with a two-phonon mode. Although 

phonons are known to interact in this manner with free electron excitations (such as 

cyclotron resonance excitations under a varying magnetic field, also known as the 

magnetopolaron effect), we believe that this is the fIrst observation of a phonon interacting 

with a impurity bound electron. 

Very recently, an effort was made to study the infrared absorption spectrum of the 

Te donor in AISb. From the results for AISb:Se, one might expect to observe two 

electronic transitions of approximately equal intensity and for the energies of these 

transitions to shift quadratically as a function of pressure. However, this was not the case. 

Although two electronic transitions were indeed observed and identifIed, the peak 

corresponding to the Is to 2po transition was much smaller than the Is to 2p± peak, which 

was also much greater in intensity than the continuum absorption. Furthennore, the energy 

of this Is to 2p± peak shifts to lower energies linearly with pressure while the Is to 2po 

peak broadens in such a way as to make a detennination of its pressure dependence 

impossible. It does not appear likely that this broadening is due to uniaxial stress as the 

width of the 1s to 2p± transition remained roughly constant. The study of the AlSb:Te 

system is still in its preliminary stages however, and it is too early to make more than these 

qualitative observations. 

Due the lack of consistent and comprehensive data, no conclusive picture of the 

effect of the camel's back can yet be drawn. The following are some suggestions for 

further studies and work regarding this problem. 

First, a study of X-band donors in InP could be made. As mentioned previously, 

InP does not become an indirect gap semiconductor until pressures greater than 90 kbar are 

applied. With a different cell design, such as a piston-cylinder type, such pressures could 
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easily be obtained. In addition, it has been established that at least one donor (S) in InP, 

preferentially occupies the DX state at pressures greater than 82 kbar (Wolk 1992b). This 

will enable measurements to be made using our technique. 

Second, a different technique altogether, photothennal ionization spectroscopy 

(PTIS), could be used to investigate the energy spectrum of these donors. In this 

technique, contacts are made to the sample and the sample itself is used as the detector. 

Relative to all optical characterization methods, PTIS has by far the greatest sensitivity. 

One possible problem with this technique however, is the fact that in order to introduce 

wires into the diamond cell, none of the traditional pressure media listed in Table 2-1 can be 

used, since the act of sealing the gasket would also cut the wires leading to the sample. 

Instead, a solid pressure medium such as CaS04 powder must be used. Unfortunately, the 

pressures generated by such a material are usually quite inhomogeneous (variations of ± 4 

kbar are not unknown). However, if the pressure dependence of the transition lines is not 

too large, then the increased sensitivity gained through this technique may still be an 

advantage. 

Although, the behavior of shallow donors in semiconductors is regarded as one of 

the better understood aspects of these materials, our studies of the camel's back donors 

shows that there is yet much work to be done. 
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Transport Studies in Group III-Nitride 
Semiconductors 

1. Introduction 

From a technological standpoint, one of the most important parameters of a 

semiconductor is its mobility. Defmed as the proportionality constant between the 

magnitude of an electric field applied to the semiconductor and the resulting average drift 

velocity of the carriers, the mobility also describes how quickly the charge carriers in a 

semiconductor can respond to external fields. In today's semiconductor industry, where 

devices are made for a variety of high speed applications, a knowledge of the mobilities of 

carriers in various materials, the factors affecting the mobilities, and the intrinsic mobillity 

limits for each material is important. In this section, I describe calculations which were 

performed to investigate the factors limiting the mobilities in n-type llI-V nitrides. 

In the most general case, to calculate the mobility in a particular material, one must 

set up the Boltzmann equation for the velocity distribution function I of the electrons and 

then calculate its rate of change [cVldt]COIL due to collisions of the electrons with other 

particles and quasi-particles in the lattice (Howarth 1953). In principle, this is done by 

solving the Boltzmann equation, which can be a difficult mathematical task. In the case 

where electrons undergo only elastic collisions, however, it is possible to express 

[cWdt]COIL in the form: 

[
al] = -(/-10) 
at COIL 't' 

(1.1) 

where 10 is the equilibrium velocity distribution of the electrons and 't is a quantity known 

as the relaxation or scattering time which does not depend on the velocity distribution. To 

find the mobility in this situation, one can imagine the following picture: In a 
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semiconductor without any external applied fields, the carriers move around randomly, 

with zero average velocity, and with a mean time between collisions of't. If an elecnic 

field is now applied, the free electrons will develop an acceleration anti-parallel to the field 

and the magnitude of the acceleration can be calculated from Newton's second law 

F=m*a=eE (1.2) 

Since the carriers, on. average, are accelerated for a time 't before undergoing a collision 

(which is assumed to bring their velocities back to the equilibrium distribution 10 with zero 

average velocity), the average velocity they attain before a collision is 

e'r 
v AVG = a'r = -. E = J.lE 

m 
(1.3) 

giving us the mobility in terms of the charge, effective mass, and mean time between 

collisions of the carriers. 

This simplistic expression belies the fact that 't is, in general, dependent on many 

different factors, making it quite complicated to calculate. In most cases, it is on the order 

of picoseconds. 

In addition, one must be extremely careful when referring to 't as a "mean time 

between collisions." In transport calculations such as these, the actual parameter of interest 

is the time constant for the decay of an electron current. Thus, 't involved in the 

calculations is more precisely the "mean time between collisions which cause an electron to 

cease its contribution to the current." Since all of the scattering mechanisms described 

below are capable of scattering an electron into any angle and all but one are elastic, the 't 
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referring to the mean time between collisions and the 'Cc referring to time constant for the 

decay of the current are related by 

't'c = 't' < l-'cos 8). (1.4) 

With the additional factor of l-cos 9, small angle scattering events (in which the net 

electron current changes by only a little) receive much less weight than near-perfect 

backscatters (in which the electron now contributes a current opposite to the original 

direction). Hereafter, all 'C'S will represent the time constant (or relaxation time) for decay 

of the current. 

Another important caveat is that all calculations in this work were performed in the 

low field regime. Here, the change of the velocity distribution function of the electrons 

from the equilibrium distribution is small and the deviations can be taken as linear. Also, 

the average gain in velocity of the electrons in-between collisions is small compared to their 

thermal velocity. On the other hand, most semiconducting devices contain space-charge 

regions where the electric fields may be on the order of 10 kV/cm. In this, the high-field 

regime, the velocity distribution of the carriers is skewed towards higher velocities and the 

deviation from the equilibrium distribution is considerable. Furthermore, intervalley 

scattering, in which more than one conduction band minimum is involved in determining 

the transport properties, becomes an important consideration--sometimes leading to a 

saturation or even a decrease in the electron drift velocity with increasing field. 

Nevertheless, an understanding of the low field mobility in semiconductors is an essential 

part of an investigation of their basic properties. 

1.1 Scattering Mechanisms 
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In the real world, many factors prevent an electron from being accelerated forever 

by an electric field. In this section, I discuss the various mechanisms which were 

considered in this work for calculating the electron mobility. These are scattering by 

acoustic and optical phonons, charged impurities, the localized potentials of resonant 

defects, and alloy disorder. 

In polar semiconductors, the three most important phonon scattering mechanisms 

for electrons have been shown to be scattering from polar optical phonons, scattering from 

acoustic phonons via the deformation potential, and piezoelectric mode scattering by 

acoustic phonons (Ehrenreich 1960). In principle, deformation potential scattering due to 

optical phonons is also possible, but this has been shown to vanish for materials whose . 

conduction band minima have r6 symmetry (Harrison 1956), a class which encompasses 

all zincblende direct gap m-V compound semiconductors. Phonons cause the lattice atoms 

to move from their equilibrium positions, leading to two effects. The first is the creation of 

electric dipoles. The interaction of the conduction electrons with these dipoles is the basis 

for scattering from polar optical phonons and from acoustic phonons via piezoelectric-mode 

scattering. The second effect of disrupting the periodicity of the lattice is that the Bloch 

wavefunctions of the electrons are no longer momentum eigenstates of the Schrodinger 

equation for the crystal. As a result, a Bloch electron with a certain momentum can make a 

transition to a Bloch state with a different momentum in effect, being scattered. A more 

physical analogy is that of many balls (the electrons) all rolling in one direction across a 

level parking lot. If an earthquake suddenly strikes, causing the surface of the parking lot 

to ripple, the gravitational potential energy of the balls can suddenly be altered, producing a 

change in their kinetic energy and causing them to move in many different directions. In 

the same way, phonons alter the local band structure of a crystal, causing changes in the 

carriers' potential energy. As the temperature increases, the phonon population also 

increases, leading to an increase in the scattering rate. In all but the most highly doped 
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crystals, phonon scattering is the dominant mechanism limiting the electron mobility at 

temperatures greater than roughly 100 K. 

Charged impurities are another important scattering mechanism. When an electron 

is released in a semiconductor, either from an impurity level or from the valence band, it 

leaves behind a positvely charged center. The Coulomb fields of these positive centers are 

distributed randomly throughout the crystal, creating random electric fields which can 

interact with the conduction electrons and scatter them elastically. Although these fields are 

screened to some extent by the conduction electrons, they still play an important role in 

limiting the mobility at low temperatures, where phonon scattering becomes less effective. 

A third factor which limits the electron mobilities in the ill-nitride semiconductors is 

interaction of the electrons with the short range potentials of defects in these materials. 

There is an increasing body of evidence that the large electron concentrations typically 

found in ill-nitride samples originate from a native defect or chemical impurity which has 

its first ionization level resonant with the conduction band (Maruska 1969, Pankove 1990). 

Experiments have shown that upon the application of hydrostatic pressure, which causes 

the conduction band of GaN to move upwards with respect to the valence band, this donor 

level can be pushed into the forbidden gap, as evidenced by a reduction in the number of 

free carriers (Perlin 1995, Wetzel 1996). Unlike the hydrogenic donors such as Si in GaAs 

or P in Si, whose electronic wavefunctions extend over many thousands of lattice points, 

the resonant donors in GaN are expected to have wavefunctions which are localized about 

the donor center. The potentials associated with these donors are not simple screened 

Coulomb potentials, but the superposition of a Coulomb potential with another potential 

which is only a few angstroms in extent. The effects of this type of scattering have been 

calculated previously in narrow gap semiconductors (Litwin-Staszewska 1971). 

The effects of alloy disorder have also been taken into consideration when 

calculating mobilities in alloys of the ill-nitride semiconductors. In elemental and binary 

semiconductors, the electrons see a more or less perfectly periodic potential and the 
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wavefunctions are Bloch waves. These solutions are eigenstates of the crystal momentum. 

However, alloys such as AlxGa1_xN have AI and Ga atoms arranged randomly on the Ga 

sublattice and the potential experienced by conduction electron is far from periodic. As 

GaN and AlN have different band gaps, the band gap of an AIGaN alloy varies on a 

microscopic scale and this variation can cause scattering of conduction electrons in much 

the same way as acoustic phonons through the deformation potential. 

Finally, although the GaN grown today is known to contain high densities of 

extended structural defects such as stacking faults and dislocations, no effort is made here 

to calculate their effect on the electron mobility. There are two reasons for this. The first is 

that since the size and exact type of such defects can vary over a wide range, it is extremely 

difficult to estimate the scattering times associated with· such structures without having to 
, . 

resort to the introduction of unknown parameters which could be adjusted to fit anything. 

Second and more important, it has been found that such defects are not the primary reasons 

for the low electron mobilities generally found in GaN (Hwang 1997). Thus, our results 

which neglect their contribution should still be reasonably accurate. 

1.2 Calculating the Mobility 

In this section, the actual expressions used for the relaxation times due to the 

various scattering mechanisms are given, as well as a brief description of the method used 

in calculating the mobility. 

For acoustic phonon scattering through the deformation potential, the relaxation 

time has been calculated by Shockley (1950) to be 

(1.5) 
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where El is the defonnation potential, T the temperature, <1 the longitudinal elastic constant, 

mef! the electron effective mass in units of the free electron mass, and x is the energy in 

units of kbT. 

The acoustic mode piezoelectric scattering time for zincblende semiconductors has 

been calculated by Zook (1964) as 

1 (3 4X T)1/2 -=1.052xl07 X~4 -+- m~ff-
~~ G ~ x 

(1.6) 

where h14 is the only non-zero element of the piezoelectric tensor and <1 and ct are 

longitudinal and transverse elastic constants. 

For screened ionized impurities, the characteristic scattering time is (Dingle 1955) 

_1_=2.415 ~ 2(ln(I+~)- ~ .r:)(xTf3/2 
~Coul m~1f £ 1 + '=' 

(1.7) 

where 

(1.8) 

In these expressions, N j is the concentration of ionized impurities, E is the dielectric 

constant, and R is a screening length which is· given by 

(1.9) 

where F_l12 is the standard Fermi integral. 
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When incorporating the effect of short range potentials into the scattering 

calculations, two new tenns are introduced. The reason for this is that the total potential of 

an ionized and localized defect can be separated into two parts, 

(1.10) 

where V Cool is the long range screened Coulomb potential and V SR is the short range 

potential. Both potentials are localized on the same center. The electron scattering rate is 

proportional to the square of the matrix element of the potential (1. 10) and so consists of 

three tenns; the standard Coulomb tenn proportional to the square of the matrix element < S 

IV Coull S >, a short range tenn proportional to < S I VSR IS >2, and an interference tenn 

proportional to < S I V Cool IS> <S I VSR IS>, where IS > is the conduction band Bloch 

amplitude. The inverse relaxation time of the short range tenn is (Litwin-Staszewska 1971) 

(1.11) 

and that for the interference tenn is 

(1.12) 

Here, A is the matrix element of the short range potential <S I V SR IS>, N is the 

concentration of resonant defects and k is the electron wavevector. 

The screening factor in the interference tenn is 

(1.13) 
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where 11 = (2kR)2 and the screening length R is the same as the one introduced for 

Coulomb scattering. 

We can now compare the effectiveness of Coulomb scattering with scattering by 

short range potentials. Noting the dependencies of the scattering rates on electron energy, 

one sees that for a highly degenerate electron gas with concentration n, k cc: n 1/3 , R oc n-

1/6 and to a good approximation, Fint = 4. Assuming that in unintentionally doped samples 

the electron concentration is proportional to the defect concentration, one finds from Eq s. 

(1.10) and (1.11), that l/tSR oc: n4/3 and l/tint cc: n2/3. It can also be shown for scattering 

by ordinary coulomb centers that l/tcoul oc: n 1/3 . Hence, short range scattering can be 

expected to be more effective than Coulomb scattering in samples with a high free carrier 

concentration. 

Alloy disorder is a well established scattering mechanism with an inverse relaxation 

time of (Makowski 1973) 

(1.14) 

where Nsitcs is the number of primitive cells per volume, V is the conduction band offset 

between the two corresponding binary compounds (AIN and GaN for AlyGa1_yN), and y is 

the alloy fraction. 

Incorporating the effets of optical phonons poses a special problem. If it were 

possible to calculate individual energy dependent scattering times due to each of the above 

mechanisms, a net scattering time could be calculated through Mathiessen' s rule (Boer 

1990) 

11111111 
-=-+-+--+-+-+-+
'! tot '! de[ '! pie '! Coul '! all 'r SR '! in! '! op 
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and the mobility could be calculated by integrating the relaxation times over all electron 

energies. However, due to the nature of scattering by polar optical phonons, this 

procedure is invalid for our purposes. We recall that eq. (1.1) was based on the 

assumption that the collisions were elastic, or very nearly so. For Coulomb scattering and 

scattering by acoustic phonons, this is always the case except at exceptionally low 

temperatures since the energies of acoustic phonons are negligible compared to typical 

electron energies and scattering by central potentials is elastic. Optical phonons, however, 

have energies which are of the same order of magnitude as those of typical conduction 

electrons, making scattering highly inelastic. In this case [cWdt]COll for any particular 

energy will depend on the properties of electrons with very different energies and equation 

(1) will not be correct. Thus, for optical phonons, no simple relaxation time 't can be 

defmed. Instead, the Boltzmann equation must be solved directly to find the mobility. The 

calculations involved in this task are straightforward, but rather tedious and can be found in 

(Howarth 1953), the net result being that the mobility can be expressed as 

" = 308.6 [(..!.. _ J..) m 3/2 rl/2 ( Eop ) F. (~)]-I (D3/2.3/2). 
,.. E E eff k T 1/2 k T D 

.. 0 B B 

(1.16) 

where Eo. is the high frequency dielectric constant, Ep is the Fenni energy and Eop is the 

optical phonon energy. The D's in this equation are the detenninants 

o 
/3~3/2) 

D /31
(3/2) 

3/2.3/2 = 

99 

(1.17) 



and 

(1.18) 

where 

{3(3J2) = 100 

E3/2 ~ ifo dE 
r 0 r iJE (1.19) 

(1.20) 

In order to incorporate all of the scattering mechanisms described so far, including 

optical phonons, the operator L is taken to be 

~s (1 1 1 1 1 1 ) L(~s)=Lop(~s)+- --+-+-+-+-+-
A 'f till 'f pie 'f CouJ 'f SR 'f int 'fall 

(1.21) 

where 

A = 4.768 X 1028 Eop (me/f )1/2(2. _~) X-3/2 

kBT T E_ Eo 
(1.22) 

and Lop is a 'complicated expression that can be found in Howarth (1953). 

Using this formalism, mobilities in a many ill-V semiconductors have been 

calculated with good agreement with experimental results (Ehrenreich 1960, Lehochky 

1974, Walukiewicz 1979). We now apply these results to calculating mobilities in lli

nitride materials. 
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2. Mobilities in the Bulk ill-Nitrides 

2.1 GaN 

Much research is currently focused on the growth of high quality epitaxial films 

of GaN. Because of its wide direct bandgap, tunable between 1.9 e V and 6.2 e V by 

alloying with In or AI, GaN is considered a prime candidate for the manufacture of 

visible to ultraviolet optoelectronic devices (Strite 1992) and 111-V compatible dielectrics 

(Li 1986). In recent years there have been several reports on calculations of electron 

mobilities in ID-V nitrides (Molnar 1993, Chin 1994, Rode 1973). Those calculations 

were aimed at an assessment of the relative contributions of the standard scattering 

mechanisms and the establishment of the phonon mobility limits in these materials. 

Comparison of the calculations with experimental results was rather difficult as undoped 

GaN and InN typically exhibit large electron concentrations and mobilities are not 

phonon limited. 

Using the method outlined in the previous section to calculate electron moblilities, 

experimental data obtained for GaN layers which were intentionally doped with either Si 

or Ge are examined first. Since the short range potential scattering is associated only 

with localized defects, one does not expect it to play an important role in these materials. 

In figure 2-1 the concentration dependent mobility calculated for GaN doped with 

hydrogenic ,donors is plotted for a few different values of the compensation ratio. The 

materials parameters used in the calculations are listed in Table 2-1. It is seen that in 

GaN intentionally doped with either Si or Ge the electron mobility shows a very weak 

dependence on electron concentration even in the high concentration region (Nakamura 

1992, Wickenden 1993, Gaskill 1995, Rowland 1995). As has been discussed above, 

such a dependence is consistent with scattering by Coulomb potentials only. The 

experimental data in figure 2-1 can be satisfactorily explained-assuming the presence of 

compensating acceptors with a compensation ratio of roughly NA/Nn := 0.4. Similar 
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Figure 2-1. Plot of the best mobilities obtained for GaN intentionally doped with Si or Ge. 
The curves are calculated mobilities for various compensation ratios. 
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Parameter GaN InN 

Density (gIcm3) 6.1 6.81 

£0 9.5 15.3 

£... 5.35 8.4 

LO phonon energy (me V) 90.5 76 

m*/mo (at band minimum) 0.21 0.11 

Lattice parameter ao (A) 4.52 4.98 

Acoustic phonon vel. (cm/s) 6.6 x 105 5.07 x 105 

Piezoelectric constant (V2/dyn) 13384 13384 

Deformation potential (e V) 8.5 2.5 

Elastic constants: ~ (dyn/cm2) 2.66 x 1012 1.75 X 1012 

Cor (dyn/cm2) 6.2 x 1011 2.2 X 1011 

Matrix element of short 

range potential A (erg cm3) 3.7xlO-34 2.5xl0-34 

Table 2-1. GaN and InN parameters used in the calculations presented here. 

103 



values of the compensation ratio are frequently encountered in other intentionally doped 

ill-V semiconductors (Walukiewicz 1979). 

In figure 2-2, calculated mobilities are plotted along with the best mobility data 

found in the literature for layers which were grown without any intentional doping 

(Sasaki 1987, Nakamura 1991, Sun 1993, Gaskill 1995). Here the conduction electrons 

are assumed to originate from resonant defects rather than hydrogeniC donors. The total 

mobilities are plotted as a function of concentration at room temperature along with the 

component mobilities due to the most important individual scattering mechanisms. As 

can be seen, the electron mobilities of unintentionally doped GaN layers is lower than 

those of layers which were intentionally doped for carrier concentrations in excess of 

1019 cm-3• Although it is possible that these layers have a much greater compensation 

ratio than the ones which were intentionally doped, another possible explanation lies in 

scattering by the short range potentials associated with the highly localized native 

defects. At defect concentrations greater than a few times 1019 cm·3
, scattering from short 

range potentials due to interference and short range scattering becomes the dominant 

m~hanism in limiting the mobility. The component mobilities in fig. 2-2 for short range 

and interference scattering were calculated assuming a value of A = 3.7x10-34 erg cm3 for 

the short range potential as found in eq. (1.11). 

So far, no clear case can be made for the responsibility of either compensation or 

short range scattering effects for the very low mobilities in GaN at high doping 

concentration. Experiments have been perfonned showing that n-type GaN is rather 

heavily compensated [Yi 1996], even at high electron densities, with theoretical 

calculations indicating that a triply charged Ga vacancy, whose fonnation energy is quite 

low in highly n-type material, may be the responsible for the compensation [Neugebauer 

1996]. On the other hand, a large number of experiments also indicate the presence of a 

resonant donor in unintentionally doped n-type GaN [Perlin 1995, Wetzel 1996]. On the 

application of hydrostatic pressure which causes the conduction band edge of GaN to 
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Figure 2-2. Plot of the best mobilities obtained for nominally undoped GaN. The CUIVes 
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increase in energy with respect to the valence band, the electron concentration has been 

observed to decrease dramatically, indicating that the resonant donor level has been 

pushed into the forbidden gap. Of course, due to the poor structural quality of many GaN 

fllms, arising from lattice mismatch with the substrates, structural defects may also play 

an important role in the low mobilities which have been measured. Both the quality and 

consistency of GaN growth results must be improved before a definite conclusion can be 

made. 

2.2 InN 

Another III-Nitride semiconductor that exhibits large concentrations of free 

electrons is InN. In typical as-grown, unintentionally doped InN, electron concentrations 

are close to 1021 cm-3 and there is a very limited amount of experimental data for 

samples with lower electron concentrations. It is quite likely that in this case, the 

electrons also originate from highly localized donor defects which have an energy level 

located well above the conduction band edge. One can therefore expect that scattering by 

short range potentials should playa significant role in this material. 

Calculated room temperature electron mobilities in unintentionally doped InN are 

shown in figure 2-3 along with the best available experimental data (Hovel 1972, Tansley 

1984, Wisk 1993, Yamamoto 1994, Abernathy 1995). Because of the relatively small 

energy gap of EG =1.9 eV, at large carrier concentrations (> 1019 cm-3) the Fermi energy 

becomes comparable to the energy gap. In such cases it is necessary to incorporate the 

effects of nonparabolicity on the density of states effective mass. In a simple 

approximation, the energy dependent effective mass is given by, 

..... ( E ) m =mo 1+2-
Egap 

(2.1) 
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where I1lo • is the conduction band edge effective mass and E is the electron energy. 

The results in figure 2-3 show that, as in GaN, optical phonon scattering limits the 

total mobility in InN exhibiting low carrier concentrations at room temperature. With 

increasing electron and thus defect concentration, the scattering by Coulomb potentials 

becomes the dominant mechanism for limiting the mobility. Finally, at very high defect 

concentrations the mobility is entirely determined by short range and interference 

scattering. Although the amount of experimental data on electron mobilities in InN is 

small, it is quite clear that the strong concentration dependence observed at very high 

electron densities cannot be explained by simple Coulomb scattering. The rapid decrease 

of the mobility for n larger than 1020 cm-3 can easily be explained, however, by scattering 

by native defects with a short range parameter A = 2.5x 10-34 erg cm3
• 

Unfortunately, there is no data available on intentionally doped InN. From the 

theoretical curves shown in figure 2-3, one finds that at high electron concentrations the 

mobility in InN doped with hydrogenic donors should be at least one order of magnitude 

higher than in the unintentionally doped material. Therefore it is expected that doping 

with shallow hydrogenic donors should greatly improve the electrical characteristics of 

InN. 

2.3 A~Ga~N alloys 

Due to their importance in the production of GaN-based devices, such as high 

electron mobility transistors (HEMTs), the alloys of the III-nitrides, especially AIGaN, 

have also been the focus of much recent research. With a few simple modifications, it is 

easy to extend our mobility calculations to model AIGaN alloys as well. Experiments 

have shown that the electron mobilities in AIGaN alloys remain relatively constant upon 

varying of the alloy concentration (Yoshida 1982, Koide 1986). In a few of the data sets, 
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a temporary decrease in the mobility is also observed for a certain range of Al fraction. 

We would like to be able to explain this trend qualitatively. 

In addition, AIGaN is a particularly interesting alloy as it also affords us the 

chance to study the effects of the resonant donor on the mobility and free carrier 

concentrations as a function of AI content Since the bandgap of AIN is greater than that 

of GaN, the conduction band energy increases with respect to the valence band as the 

alloying concentration increases. In contrast,· since the resonant defect is highly localized 

and does not interact much with the crystal, its energy level remains relatively constant. 

This situation is illustrated schematically in figure 2-4. As the energy of the conduction 

band approaches that of the defect level, it becomes energetically less favorable for 

defects to be ionized and a "freeze out" of carriers originating from these defects is 

observed (Yoshida 1982, Khan 1983, Koide 1986, Zhang 1995). This is the same 

reduction in carrier concentration observed in GaN under large hydrostatic pressures 

(Perlin 1995, Wetzel 1996). In addition, as the defect level falls below the Fermi level 

due to the aforementioned carrier "freeze out," resonant scattering becomes a possibility. 

The origin of this mechanism is the scattering of electrons from conduction band states to 

bound states of the defect and vice versa. Experimentally, this is observed as a decrease 

in the mobility in those samples in which the Fermi and defect levels are close in energy. 

Resonant scattering is important only when the defect and Fermi levels are approximately 

equal in energy since in that situation, the maximum number of conduction electrons are 

available to be scattered elastically into bound states of the defect and there are many 

empty conduction band states available for the reverse process, resulting in a decrease of 

the electron mobility (Raikh 1986). When the energy of the defect level is far above or 

far below the Fermi level, there are either too few electrons with sufficient energy to be 

affected by this scattering mode or too few empty conduction band states for defect 

bound electrons to scatter into and resonant scattering ceases to affect the electron 

mobility appreciably (see figure 2-5). 
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Figure 2-4. Schematic diagram of movement of the conduction band. Fenni energy, and 
resonant defect level in GaN as a function of alloying with AI. 
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Figure 2-5b. When the defect and 
Fenni energies coincide, electrons 
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of defect states. 

Figure 2-5c. At this point, there 
are no longer any empty defect . 
states for conduction electrons 
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which defect bound electrons 
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In order to include effects of the resonant donor in the mobility calculations, 

Fermi's golden rule can be used to calculate the relaxation time for the elastic scattering 

of an electron from a free (conduction band) state to a bound state of the resonant donor. 

Also taken into account the energy broadening of the resonant level due to the finite 

lifetime of the electron in the bound state. Since the effect of this scattering mechanism 

is to completely remove one electron's contribution to the current, the 't calculated by 

Fermi's golden rule in this case is equivalent to the 't representing the decay of electron 

current and thus no factor of l-cos 9 is required. 

Assuming that the defect density of states has a Lorentzian shape, we can write 

the characteristic relaxation time for this process can be written as (Wilamowski 1990) 

(2.2) 

where E is the electron energy, m* is the effective mass, and kdef is the wavevector of an 

electron which has a kinetic energy equal to the energy of the defect relative to the 

conducton band. Edef and ndef are the defect energy and concentration, respectively. The 

characteristic broadening of the donor level r is given by 

• m k 2 r = ~ef V (CBIHldef) 
1C Ii k=kdof 

(2.3) 

In principle, the matrix element involving the conduction band and donor state 

electron wavefunctions and interaction Hamiltonian can be obtained through a first 

principles calculation. However, to get a general idea of the magnitude of r, this quantity 

was used as a fitting parameter in the plots that follow. 
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In attempting to fit theoretical curves for the "freeze out" of the carriers to 

experimentally measured points from four different groups, the energy of the defect level 

above the conduction band was estimated to be 475 meV. These fits are shown in figures 

2-6a through 2-6d. The defect concentration was assumed to be constant for all samples 

grown by each group and the defect energy and broadening were estimated by fitting the 

theoretical curves to the experimental points. Since each data point represents an 

independent sample, there is no a priori reason to believe that the total defect 

concentration for each group's data was necessarily constant as assumed. However, since 

each set of samples were grown under similar conditions, we feel that our assumption 

was justified as a starting point. As can be seen, the fits are not perfect and the agreement 

with experiment varies. 

In calculating the "freeze out" curves shown, two additional effects other than the 

variation of the conduction band energy with alloying content were considered. The first 

was the effect of electron-electron interaction (Walukiewicz 1990). Since free electrons 

have the ability to arrange themselves in ways to minimize their repulsive energy while 

electrons bound to defect centers do not, this has the effect of loweri~g the energy of the 

conduction band by (Berggren 1981) 

-2.88 e2 n1/3 

AEcB = 1/3 
1C e 

(2.4) 

where £ is the static dielectric constant and n is the number of free carriers, so that the 

actual energy of the defect level relative to the conduction band is somewhat larger than 

475 meV depending on the free carrier concentration. The behavior of the conduction 

band, Fermi level, and defect level calculated for each case is plotted in figures 2-7 a 

through 2-7d. Experimentally, estimates of the defect energy level range from 400 meV 

(Wetzel 1996) to 800 meV (Perlin 1995) above the GaN conduction band edge as 
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Figure 2-6. Plots of carrier concentration vs. Al fraction in AlxGa1.xN for four sets of data. 
Curves are theoretical fits assuming a constant defect concentration and a defect level 475 
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(Koide 1986), C (Khan 1983), and D (Zhang 1995). 
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obtained through measurements which used hydrostatic pressure to vary the GaN energy 

gap. It is clear that more work needs to be done before a reliable determination can be 

made. 

Finally, in figures 2-8a through 2-8d, the calculated mobilities are plotted together 

with experimentally obtained data points (Yoshida 1982, Khan 1983, Koide 1986, Zhang 

1995). In two out of the four sets of data (Yoshida 1982, Koide 1986)~ the mobility can 

be seen to remain roughly constant except for a slight drop near Al alloying fractions of 

0.2. C;omparing this data with theory, it can be seen that were it not for resonant 

scattering, the mobilities would remain very nearly constant across the entire measured 

range of alloying concentrations. Resonant scattering, however, causes a drop in the 

mobility at the point where the Fermi level and defect level cross. Due to the almost 

order of magnitude difference in defect concentrations between these two sets of data, the 

crossing takes place at slightly different alloying concentration. As mentioned above, the 

defect broadening parameter r was estimated from the width of the dip in mobility. The 

best agreement with experimental data was obtained for a r of 25 me V. 

The remaining two sets of data (Khan 1986, Zhang 1995) show only a steady 

decrease in the mobility as the Al fraction is increased. This behavior can be 

qualitatively explained by adjusting the number of compensating acceptors. As the free 

carrier concentration decreases due to "freeze out" of the resonant defects, the ability of 

the remaining conduction electrons to screen the random Coulomb fields of the impurities 

decreases, resulting in a drop in the mobility. 

Based on such limited data, it would be premature to make any solid conclusions 

regarding the resonant donor in GaN. Our model is certainly plausible and is able to 

explain the qualitative trends observed. However, since the effect of alloying with Al on 

the incorporation of defects, whether extrinsic or intrinsic is unknown, it is possible that 

the AIGaN alloys simply contain fewer impurity atoms than the unalloyed GaN samples. 
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a function of AI content. Dashed lines show component mobilities corresponding to 
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scattering. 
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One may argue that this is actually the cause of the apparent "freeze out" and that the 

drop in mobility is merely a variation in the quality of the samples. Because of this 

potential variation in defect concentration between samples when Al fraction is the 

experimental parameter which is varied, further experiments to study the effects of the 

resonant donor using hydrostatic pressure should be performed. 

If the observed reduction in electron mobility is in fact caused by the crossing of 

the resonant defect and Fermi levels, one might also expect to see evidence of resonant 

scattering upon the application of hydrostatic pressure to GaN, InN, or their alloys, since 

the effect of hydrostatic pressure is to increase the energy of the conduction band 

minimum relative to the valence band (perlin 1992). In contrast with alloying, however, 

the defect density in the sample will be a known and constant quantity for all pressures, 

leading to results which can be interpreted in a much less ambiguous fashion. No such 

experiments to measure elecron mobility as a function of hydrostatic pressure have yet 

been performed, but some predictions regarding the result can be made using this model. 

In figure 2-9, calculated results are shown for the electron mobility in GaN under 

hydrostatic pressures in the range of 0 to 200 kbar for a defect concentration of 1019 cm-3
• 

As expected, a sudden decrease in the electron mobility occurs near 100 kbar, where the 

defect and Fermi levels have approximately the same energy. This effect could be tested 

experimentally by Hall effect measurements performed on a sample under hydrostatic 

pressure inside of a diamond anvil cell (Sakai 1982, Chen 1991). Although electrical 

measurements at such high pressures are difficult, a sample with a suitable Al content 

could be used to show the resonant effect at lower pressures. 

118 



1000 ,....-----r-----y------r-----, 

.c 
o 
~ 

100 

a 50 100 150 200 

Pressure (kbar) 

Figure 2-9. Plot of the calculated electron mobility as a function of hydrostatic pressure for 
GaN doped with 1019 cm-3 resonant donors. 
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3. Mobilities in A~Gal.:3.N/GaN Modulation Doped Heterostructures 

3.1 Introduction 

As mentioned previously, GaN and other nitride baSed semiconductors are 

considered prime candidates for optoelectronic devices due to their wide bandgap. 

However, due to the large concentrations of charged scattering centers found even in 

unintentionally doped GaN, electron mobilities are generally quite poor. Since the 

response time of electronic devices depends heavily on the carrier mobility, this is a 

significant disadvantage for GaN as a material for making high speed semiconductor 

devices. As opposed to scattering from optical phonons at high temperatures, however, 

Coulomb scattering need not be considered an insurmountable limit on the low temperature 

mobility. As this type of scattering arises from electric fields which diminish as r -2 with 

distance, it was proposed by Esaki and Tsu in 1969 (Esaki 1969) that in order to reduce the 

interaction between carrier electrons and these fields and increase the mobility, modulation 

doped heterostructures (MDBs) could be grown in which the electrons were spatially 

separated from their parent donors. 

The simplest modulation doped heterostructure consists of a doped epitaxial layer of 

one semiconductor grown on top of a different semiconductor, hence the name 

heterostructure. By choosing the two semiconductors appropriately, the conduction band 

of the doped layer can be made higher in energy than the conduction band of the undoped 

layer. When this occurs, it becomes energetically favorable for a certain amount of the 

conduction electrons in the doped layer to be transferred over to the undoped layer and 

occupy the conduction band there. This transfer of charge results in a bending of the 

conduction bands, as seen in figure 3-1, which prevents more charge from being 

transferred. Charge conduction perpendicular to the plane of the figure now occurs in the 

potential well formed by the band bending (Walukiewicz 1992). The most important 

difference between such a structure and an ordinary bulk semiconductor is that the 
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Figure 3-1. Schematic diagram of the energy subbands in a single-quantum-well 
modulation-doped heterostructure, showing the lowest two energy bands, Fenni energy, 
and both neutral (closed circles) and ionized (open circles) impurities in the AlOaN layer. 
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conduction electrons are now spatially separated from the donors from which they 

originated. The Coulomb fields felt by the conduction electrons are much weaker in this 

case than in the bulk case, where electrons and their ionized donors occupy the same 

volume. Thus, scattering of the electrons by the electrostatic interaction is much less 

effective in a MDH than in bulk semiconductors, resulting in higher mobilities, especially at 

low temperatures, where optical phonon scattering ceases to be effective. 

Naturally, the creation of such a structure requires extremely precise control over 

the growth of the semiconductor, especially at the heterojunction. Any deviations from an 

atomically sharp interface will cause fluctuations of the conduction band energy in the 

undoped material near the interface, leading to scattering of the electrons. It was not until 

the late seventies that the molecular beam epitaxy (MBE) technique was sufficiently 

developed to grow such structures (Dingle 1978). Subsequent studies involving the 

AlGaAs/GaAs system showed that low temperature electron mobilities could be increased 

up to three orders of magnitude in MDHs as compared to bulk GaAs (Tsui 1981, Stonner 

1981, Hiyamizu 1983). This discovery was the foundation for the creation and 

development of high speed GaAs semiconductor devices. Concurrent with the 

experimental development of these AlGaAs/GaAs heterostructures, there was a burst of 

theoretical work aimed at modeling the electron mobilities in these structures (Ando 1982a, 

Price 1982, Walukiewicz 1984, Hirakawa 1986). By now, the electron transport behavior 

in these materials is well understood. 

Based on the experience with GaAs, it was natural to also grow AlGaN/GaN 

MDHs to try to maximize the electron mobilities in GaN to optimize the operating 

characteristics of GaN-based devices as well. Several attempts have been made with a fair 

degree of success (Khan 1993, Khan 1994, Redwing 1996). Some estimates of theoretical 

mobility limits in these structures have been made using a three dimensional approximation 

(Shur 1996) which, although accurate at· room temperature, are not suitable for low 

temperatures and cannot properly describe the scattering from remote impurities, which is 
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the most important characteristic of modulation doped structures. One difference between 

the AlGaAs/GaAs MDHs and the AIGaN/GaN MDHs in existence today is the growth 

method used. AlGaAs/GaAs MDHs are typically grown using molecular beam epitaxy 

(MBE). However, due to the still poorly understood nature of GaN growth, MBE GaN is 

of much worse quality than that grown by vapor phase epitaxy (VPE). For this reason, 

VPE has been used to create all AlGaN/GaN MDHs so far, with surprisingly good results. 

In this chapter, we extend the results of previous chapters to calculate mobilities in 

these structures. Again, we take all major scattering mechanisms, including acoustic and 

optical phonons, ionized impurities, and alloy disorder, into account. 

3.2 Electronic Structure of the 2 DEG 

The conduction band structure of a AIGaN/GaN heterostructure near the interface is 

shown in figure 3-1. In the ideal case, the GaN (at z ~ 0) is undoped while the AIGaN (z 

~ 0) is selectively doped, consisting of an undoped region (0 ~ z ~ -d) known as the 

"spacer" and a doped region (z ~ -d). As GaN has a greater affinity for electrons than 

AIGaN, electrons from the donors in the AlGaN are transferred to the GaN, causing the 

conduction band to bend as shown. The positively charged donors in the AIGaN produce 

an electric field which creates a potential well in the GaN, confining the electrons to a 

narrow sheet at the interface and leading to a quantization of the energy band structure into 

subbands. At equilibrium, the transfer of electrons from the AlGaN to the GaN is 

determined by the equation: 

v. - 41re
2

(N +N )d- 41re
2 

(Ns +NdeP1 )2 -E =E 
o e s depl 2e N b F 

S S I 

(3.1) 

where Yo, Ep, J;, and the spacer width d are as shown in figure 3-1. Ns is the areal (two

dimensional) electron concentration in the GaN, N depl is the areal concentration of residual 

charged impurities in the GaN, and NI is the bulk concentration of so-called "remote" 
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donors in the AIGaN. 1;, is the donor binding energy in the AIGaN and £s is the static 

dielectric constant of GaN. Assuming that only one subband is occupied, the Fenni energy 

I;, is given by 

(3.2) 

where 1t1i2/m* is the two dimensional density of states in GaN and Eo is the energy of the 

lowest subband.· In most realistic cases, Ndep1 is at least two· orders of magnitude smaller 

than Ns and thus can be neglected in this equation. In figure 3-2, the two-dimensional 

electron gas density is shown as a function of the AIGaN doping level for a 

Alo.lsG80.8sN/GaN structure with a variety of spacer widths. 

In order to detennine the GaN conduction band structure and quantized energy 

levels of the 2 DEG, Poisson's equation 

(3.3) 

and SchrOdinger's equation with GaN effective mass m* 

(3.4) 

must be solved self-consistently for the electronic wavefunction (Ando 1982b). In the 

calculations performed for this work, the potential energy term consisted of the electrostatic 

potential energy as well as the exchange-correlation energy of the electrons. The form of 

the exchange correlation energy was taken from a paper by Hautmann and Sander 

(Hautman 1982), who used an expression derived by Gunnarsson and Lundqvist 

(Gunnarsson 1976). 
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In order to solve the two coupled equations, a trial wavefunction with one free 

parameter was .devised and, using Poisson's equation, an expression for the potential 

energy of the electrons was calculated. A simple variational calculation to minimize· the 

total energy of the electrons was then perfonned to detennine the best value for the 

parameter. Using this value, the resulting expression for the potential energy was inserted 

into the Schrodinger equation (3.4) to detennine the electronic energy levels and a new 

wavefunction. This wavefunction could then be compared to the original one, which was 

then modified as necessary. Naturally, an exact solution to both equations can only be 

found numerically but our intention was to fmd the cloSest possible analytic approximation 

to the true answer. 

Previous calculations of a 2 DEG in Si and in the AlGaAs/GaAs system have 

shown that 

(iT 
11'0 = q,x,J X (z) = q,x,J VT z exp( -bz /2) (3.5) 

where <Px,y is a two dimensional plane-wave wavefunction.and b is a variational parameter, 

is a good approximation to the electronic wavefunction of the lowest subband. Using this 

as a starting ground state electron wavefunction, a number of different analytic fonns were 

tried. Of these, 

b2 

X (z)= ..J6 z3/2 exp(-bz/2) (3.6) 

minimized the energy of the electrons. The parameter b, of course, depends on the electron 

gas density and is a measure of the width of the 2 DEG. As a function of the electron 

density, b varies roughly as NsO.
31S

• 

In figure 3-3, the energy levels of the lowest three subbandsare shown as a 

function of the electron gas density. As can be seen, only the lowest subband is occupied 
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Figure 3-3. The lowest three energy subbands in the quantum well plotted as a function of 
GaN electron gas density. The heavy dotted line shows the position of the Fermi energy. 
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for electron concentrations below 4.5 x 1012 cm-2
• At greater concentrations, the higher 

subbands become occupied and their actual energies will deviate from those shown, which 

were calculated assuming that only the lowest subband is occupied. The energy separation 

between all subbands except for the first and second is very small so that once the electron 

gas concentration exceeds about 5 x 1012 cm-2
, many subbands become occupied very 

quickly, resulting in a loss of true two-dimensional behavior of the gas and.a lowering of 

the mobility due to intersubband scattering. For this reason, in the mobility calculations 

which follow, only the case in which the lowest subband is the sole occupied level is 

treated. 

3.3 Scattering Mechanisms 

As in our study of mobilities in bulk ill-Nitride compunds, all of the standard 

scattering mechanisms have been incorporated into the calculations of the 2D mobilities of 

these electrons. For typical GaN based MDHs grown today, electron concentrations 

exceed 1012 cm-2 which, for well widths of a few tens of A, results in equivalent bulk 

electron concentrations of roughly 1019 cm-3
, a regime in which degenerate statistics can be 

used and the Fermi energy does not vary appreciably with temperature below lOOK. At 

these low temperatures, scattering by optical phonons is insignificant so the total relaxation 

time can be approximated as a sum of the relaxation times due to each scattering process by 

Matthiessen's rule: 

_1=I,~ 
'r,OI I 'rj 

(3.7) 

Since a!l of the mechanisms which are important at low temperatures are elastic and have 

well defined relaxation times, the complex variational method employed previously for bulk 

semiconductors is not necessary. The relaxation times for these scattering processes are 
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calculated in much the same way as for the three-dimensional c~es. Here, the results are 

simply stated along with references. 

At temperatures above 110 K, the validity of (3.7) becomes questionable due to the 

relaxation-time approximation made for inelastic optical phonon scattering (Walukiewicz 

1984) and because of the limited applicability of degenerate statistics. However, at these 

higher temperatures, the mobility in these heterostructures is dominated by scattering from 

polar optical phonons. Because optical phonons in GaN have such a large energy (90.5 

meV) compared to the energy separation between subbands, one must take a large number 

of subbands into account when calculating their effects and in so doing, the problem 

changes from a two-dimensional to a three dimensional one. This reflects the fact that 

electrons which absorb an optical phonon gain so much energy that they may be scattered 

completely out of the confIning potential and into the bulk. Thus, in calculating the optical 

phonon component of the mobility, the previous variational principle method (Howarth 

1953) and general Fermi-Dirac statistics are used in a three-dimensional approximation. 

The GaN material parameters which were used in these calculations are the same as those 

used in the previous section and can be found in Table 2-1. 

Phonon scatterin~ 

Phonon scattering plays an important role in limiting the electron mobility in ill-V 

semiconductors at temperatures above 100 K. As is the case for bulk material, the three 

most important phonon scattering processes are deformation potential acoustic, 

piezoelectric acoustic, and polar optical. 

In MDHs, although the movement of the electrons is confmed to a thin layer of 

perhaps 100 A near the interface, it is usually assumed that acoustic phonons can propagate 

freely in all three dimensions. The relaxation time for the interaction of confIned electrons 

with three dimensional acoustic phonons due to screened deformation potential scattering is 

given by (Walukiewicz 1992): 
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• 2 
_1_ = 3 m Qc ~ kB T 1: S(q)2(1- cos8 )d8 
'fDP 161r 1z cL 

(3.8) 

where 3c is the defonnation potential, b is the variational parameter in (3.6), ~ is the elastic 

constant and S(q), the screening factor, is 

S(q) - q 
- q+qsH(q) 

(3.9) 

with 

00 00 

H(q) = JdzJdz' X (Z)2X (z')2exp(-qlz-z'l) (3.10) 
o 0 

and CIs = 2m·e2/Es1i? The change in electron momentum q during a scattering process is 

related to the scattering angle 9 between k and k + q by q = 2 kF sin 9/2. For a degenerate 

electron gas, k = kF• 

For the zincblende structure, the relaxation time for screened piezoelectric mode 

scattering is calculated by (Walukiewicz 1992) 

where 

with 

1 1 2 -=-+
'fPE 'fL 'fT 

_1_ = kB TaL,T J S( )2 + ()d8 i:.k2 q q JL,T q 
'fL,T 1r" 
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(3.13) 

and 

t; ( ) = 13 +78(q/b)+72(q/b)2 +82(q/b)3 + 36(q/bt +6(q/bt 
L q. 13(I+(qlb)t 

(3.14) 

t;( )_1+6(q/b)+12(q/b)2+ 2(qlb)3 
T q - (1 + (q/b)t 

The combination· of these two scattering processes (defonnation potential and piezoelectric) 

gives the contribution to the relaxation time from acoustic phonons. As can be seen from 

(3.8) and (3.12), the acoustic phonon scattering rates are linear functions of temperature. 

This approximation is true at temperatures at which the thennal energy is greater than the 

acoustic phonon energy. At very low temperatures, in the Bloch-Griineisen regime, only 

phonons with small wavevectors participate in scattering and the relaxation times increase 

superlinearly with temperature. The above expressions then over-estimate the acoustic 

phonon contributions to the total scattering rate (Stonner 1990). However, since 

temperature independent processes, such as Coulombic scattering tend to dominate the low 

temperature mobility, the deviations of the acoustic phonon scattering. rate from linearity 

will have little effect on the total mobility. 

As stated before, because the optical phonon energy is large (90.5 me V) compared 

to the energy separation of the subbands, the highly inelastic nature of polar optical 

scattering makes the total scattering rate the sum of many intersubband and intrasubband 

scattering processes. This results in a smearing out of the characteristic features of a 2 

DEG, the most important one being the density of electrons within the potential well. For 
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this reason, the relaxation time for scattering of electrons in this 2 DEG by optical phonons 

is approximated by that calculated for the bulk (three dimensional) semiconductor case 

using the variational method (Howarth 1953). 

Coulomb Scatterin~ 

The greatly enhanced low temperature mobilities found in modulation doped 

heterostructures over bulk semiconductors are due to the difference in the scattering of 

electrons from ionized impurities. In bulk semiconductors, the ionized impurities occupy 

the same region of space as the conduction electrons, making Coulomb scattering a very 

efficient process. Of course, the electrostatic interaction between an ionized donor and a 

conduction electron is somewhat screened by other conduction electrons. However, in 

order to achieve the high electron concentrations needed for efficient screening, the crystal 

must itself be highly doped, leading to higher concentrations of ionized impurity centers 

and effectively negating any beneficial screening effects. 

In a AlGaN/GaN MDH, there are two different types of ionized impurity scattering. 

The first type is scatte$g by residual ionized impurities in the GaN, which works as 

described above. The second type is scattering by the ionized donors in the AIGaN barrier 

left behind by the conduction electrons. Since the electric field of the ionized centers drops 

off as the distance squared, this type of scattering is much less effective in limiting the 

electron mobility. A further type of Coulombic scattering which is not considered is 

scattering by charges at the heterojunction interface. 

The standard method for calculating the relaxation times corresponding to the two 

types of Coulomb scattering employ the following expression (Hirakawa and Sakaki 1986) 

1 If 

-= Jv (8 )d8 
't'couJ 0 

(3.15) 
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where 

(3.16) 

Here, N(z) is the distributi~n of Coulombic scattering centers, S(q) is given in (3.9), and 

F(q,z) = J dz'·!x(z't exp(-qlz - tl). (3.17) 

The integral in (3.16) over z can be divided into three integrals, corresponding to scattering 

from remote ionized impurities in the doped AIGaN (-L S; z S; -d) and in the AlGaN spacer 

(-d S; z S; 0) and scattering from residual impurities in the GaN (z > 0). The contribution 

due to ionized impurities in the spacer layer can be neglected for concentrations up to 1015 

cm-3 for spacers ofless than a few hundred angstroms. 

The calculation' for the Coulombic scattering rates was performed in a temperature 

independent approximation, assuming that all scattering events involve electrons at the 

Fermi level. At temperatures above 100 K, when the Fermi energy starts to shift upwards, 

the approximation is no longer valid and overestimates the Coulombic scattering rate. 

However, at such temperatures, the mobility is dominated by phonons, so the effect of this 

error on the total mobility is negligible. 

Alloy Disorder 

Although the wavefunction that is used for the 2 DEO disappears at the interface, 

some electron density will inevitably penetrate into the AlOaN layer due to the fInite nature 

of the potential barrier. Thus, scattering of the electrons due to alloy disorder must be 

considered. Following the procedure outlined in (Ando 1982a), the relaxation time for 

alloy disorder scattering is 
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(3.18) 

where <V> is the conduction band offset between AlN and GaN, n is the volume of a unit 

cell, x is the Al fraction in the AlGaN and X'(z) is the the part of the wavefunction which 

describes the penetration of the electron gas into the alloy 

4 2( ) (~) 2 1Ce 1 8m Vo x' (z) = -- - N s + N depl exp 2 z 
Esl'o 2 Ii 

(3.19) 

Alloy disorder scattering rates are quite sensitive to the electron gas density, varying as the 

square of N s. This dependence corresponds to the degree to which the electronic 

wavefunction penetrates the barrier into the AIGaN. As alloy disorder is a short range 

interaction, the screening of this potential has been neglected. All alloy disorder scattering 

times and contributions to the mobility are calculated assuming an Al fraction of 15% in the 

AlGaN layer. 

Other scatterin~ mechanisms 

Some effects which have not been considered are interface roughness scattering, 

scattering due to interface charges, and the effect of the lattice mismatch between AIGaN 

and GaN (Ando 1982a). These scattering processes could in principle be incorporated into 

the calculations. However, as the aim is to determine inherent mobility limits in these 

heterostructures, they have been ignored. The incorporation of these effects requires 

knowledge of certain parameters such as the interface roughness, charge density, and 

polarization. Since these quantities are difficult to estimate and are in any case adjustable, 

inclusion of these mechanisms is largely pointless. 
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3.4 Electron Mobilities in AIGaN/GaN MDHs 

In order to see the relative importance of the various scattering mechanisms 

described above in determining the total mobility, we fIrst examine the temperature 

dependence of the 2 OEO mobility. In figure 3-4, the total mobility as well as the 

component mobilities of the electrons in a Alo.ls0ao.8sN/OaN structure are shown as a 

function of temperature in the range from 1 to 300 K for a fairly "typical" heterostructure 

with a 200 A spacer. As mentioned before, all Coulomb-type contributions were calculated 

in a temperature independent approximation, so the contribution to the mobility from all 

types of ionic impurities appear as straight lines. Since the relaxation time for Coulombic 

scattering processes is inversely proportional to the impurity concentration, it is easy to 

recalculate this graph for different impurity concentrations. 

At very low temperatures, the electron mobility is dominated mainly by alloy 

disorder scattering and interactions with the Coulomb field of the remote donors. Starting 

at about 5 K, acoustic phonon scattering becomes the main mechanism limiting the mobility 

through both deformation potential and piezoelectric scattering. The strengths of both types 

are roughly equal. Of course, the exact temperature at which acoustic phonon scattering 

becomes dominant will depend on the remote donor concentration as well as the spacer 

width and alloy ~omposition of the AlOaN layer. As one would expect, at temperatures 

above 170 K, the mobility is limited by polar optical phonon scattering. 

As can be seen from figure 3-4, the inherent mobility limit in this particular MOH, 

which saturates at roughly 8 x lOS cm2N s is set by a combination of alloy disorder, remote 

ionized-impurities and, to a lesser extent, phonon scattering. There are several ways one 

could increase this inherent limit Using wider spacers, the remote donor contribution can 

be made negligible even for concentrations up to 1020 cm-3
• Alloy disorder can be made 

less severe either by decreasing the Al fraction of the AlOaN or by reducing the penetrating 

electron density which can be accomplished by growing wider spacers or reducing the 
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remote doping concentration. By optimizing these parameters, the inherent mobility of a 

AlGaN/GaN MDH can theoretically be increased to almost 6 x 106 cm2N s, as will be 

seen. It should be noted however, that obtaining such mobilities puts very stringent 

requirements on the purity of the GaN layer. The residual charged impurity concentration 

must be less than 1013 cm-3
• 

Figure 3-5 shows the calculated temperature dependence of the mobility for a MDH 

structure which better approximates what can be grown today. As one can see, mobilities 

well in excess of 104 cm2Ns are expected. However, a search of the literature shows that 

the highest published mobilities for such a structure are still only about 7500 cm2Ns with 

accompanying electron gas densities of 6 x 1012 cm-2 or greater (Redwing 1996). 

Comparing these densities with the results of the calculation in section IT.3.2, it is obvious 

that at such high concentrations, a great number of subbands must be occupied because of 

the extremely close spacing of the higher lying levels. Although the electrons are still 

confined to a channel of only about 100 A wide, true two dimensional behavior will not be 

observed in these structures due to a virtual continuum of bands being occupied, 

completely smearing out the effects of the subband quantization. The single period 

Shubnikov de Haas oscillations observed with these structures is due to the spherical Fermi 

surface formed by the three dimensional electron gas, the 1/H frequency of the oscillations 

corresponding to the area of the cross section of the Fermi sphere. It is possible to model 

these experimental mobilities using the three dimensional framework which was described 

in section 11.2.1 and the results are shown in figure 3-6. Good agreement with 

experimental data can be obtained using an ionized impurity concentration of 1.2 x 1017 cm-

3. Of course at such high electron concentrations, alloy disorder scattering should also be 

taken into account In order to observe true two dimensional behavior, the doping level of 

the AIGaN barrier must be reduced so that electron gas concentrations less than 4 x 1012 

cm-2 are achieved. 
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Another parameter which affects the mobility and may easily be varied is the 

electron gas density. There are several reasons for the dependence of the electron mobility 

on the density. First, as the electron density increases, the Fenni energy increases, as does 

the magnitude of the Fenni k vector. Since most of the scattering processes considered 

here are elastic, the vast majority of scattering events occur at the Fermi energy where there 

are an abundant number of occupied states to scatter and unoccupied states to scatter into 

and the processes themselves are dependent on the Fermi k vector. Second, as the electron 

density increases, the distribution of the electrons in the well changes, becoming more 

confined. This appears as an increase in the parameter bin (3.6). As can be seen from 

(3.8), acoustic defonnation-potential scattering is directly dependent on b and increases as 

Ns increases. Increased Ns also results in better screening of Coulomb potentials and leads 

to less efficient scattering by ionized impurities. Finally, as mentioned previously, 

penetration of the wavefunction into the alloy layer increases with the electron density 

affecting the scattering rate due to alloy disorder. 

The electron gas density in a MDH can be varied by several methods, such as 

changing the gate voltage of a HEMT device or by changing the remote doping 

concentration. Since the electron gas density saturates quickly for MDHs with wide 

spacers, we plot the results of our calculations as a function of remote doping 

concentration, which is related to the 2 DEG concentration as shown in figure 3-2. Figure 

3-7 shows the remote doping dependence of the mobility at 4 K for two MDHs--one with a 

200 A spacer and one without a spacer. 

For the MDH with no spacer (figure 3-7a), the dominant process limiting the 

mobility is Coulomb scatteri:ng by remote impurities. At higher doping concentrations, 

alloy disorder also begins to playa significant role in reducing the mobility. In figure 3-7b, 

mobilities in a MDH with a 200 A spacer are shown. As expected, Coulomb scattering 

from remote donors is now much less important at low doping concentrations--residual 

ionized impurities in the GaN now account for the bulk of the scattering. If this 
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background ionized impurity concentration can be reduced further, one may reach a point 

where piezoelectric mode scattering by acoustic phonons is the dominant effect. As the 

remote doping concentration (and thus the electron gas density) is increased, the Coulomb 

fields of the residual impurites are effectively screened, causing that component of the 

mobility to increase. Although the remote donors are more effectively screened as well, the 

increase in their number leads to an overall lowering of that contribution to the mobility. 

Scattering by alloy disorder also becomes important at high electron densities. Another 

feature of the results shown in figure 3-7b is that above remote doping concentrations of 3 

x 1018 cm·3
, the mobility levels off. The reason is that for heterostructures with a 200 A 

spaCer, the 20 electron density saturates at this doping concentration due to the potential 

drop across the spacer and thus there is no further change in the number of remote ionized 

donors or of the penetration of the electron wavefunction into the alloy for high remote 

doping concentrations. 

Finally, we examine the dependence of the mobility on the spacer width. In figure 

3-8a, the total 4 K mobility is plotted as a function of remote doping concentration for a 

variety of spacer widths, assuming a residual impurity concentration of 1013 cm-3
• It 

should be kept in mind that for different spacer widths, the same remote donor 

concentration results in very different electron concentrations. For the smaller spacer 

widths, the mobility decreases as the remote doping concentration is increased due to 

Coulombic scattering from the remote donors as shown in figure 3-7. For larger spacer 

widths, the electron mobility is governed almost exclusively by piezoelectric mode acoustic 

phonon scattering and Coulombic scattering from residual charged impurities in the GaN. 

The remote donors are too far away to be effective and the electron gas density is too low 

for alloy disorder scattering to play any significant role. However, due to the large spacer 

width, the electron density is low enough so that the residual charged impurities are not 

well screened. If the residual ionized impurity concentration is higher, such as 1015 cm-3
, it 

is no longer advantageous to have such a large spacer. In that case, as can be seen from 
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figure 3-8b, the highest mobilites are actually attained by growing only a 200 A spacer with 

. a remote doping concentration of 1017 cm-3
, which from figure 3-2 corresponds to Ns = 4 X 

1011 cm-2
, as compared to the other spacer widths for which we have made calculations. 

For larger spacers, the electron density is simply not large enough to effectively screen any 

residual charged impurities in the OaN. 

Another situation in which a larger Ns is desirable is in device applications, in 

which it is often the conductivity, (the product of the electron charge, the mobility, and Ns) 

which is the critical parameter which must be maximized Figure 3-9a shows the. 

conductivity plotted for a number of different spacer widths at 4 K. In each case, the 

conductivity has been maximized with respect to the remote doping concentration, for 

concentrations in the range between 1015 and 1020 cm-3
• In figure 3-9b, the doping 

concentration at which the maximum conductivity is achieved is plotted for the same spacer 

widths. Again, as with the mobility, the combination of parameters which produces the 

highest conductivity depends on the residual charged impurity concentration in the OaN 

layer. If it can be made very small (say, 1013 cm-3
), then to maximize the conductivity, a 

500 A spacer layer should be grown and the remote doping concentration should be 1.5 x 

1017 cm-3
• On the other hand, if growing pure OaN is a problem and residual impurities 

cannot be reduced below 1015 em-3
, then the spacer should only be made about 200 A thick 

and the AlOaN layer should be much more heavily doped (about 5 x 1018 cm-3
) in order to 

maximize the conductivity. 
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spacer, leading to large electron densities, gives the highest mobilities. 
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4. Conclusion 

Some aspects of the electron mobility have been studied in GaN and other group 

ill-Nitride based structures. There is increasing evidence that 0 may be the dominant 

donor in nominally undoped GaN and that it is a resonant donor, with its fIrst ionization 

level within the conduction band. Due to the nature of this donor and its localized potential, 

the electron mobilities in GaN material which contains large concentrations of this impurity 

may suffer. In order to achieve the highest possible mobilities, hydrogenic donors should 

be used as dopants. In addition, the presence of resonant defects can cause the mobilities 

in AlGaN alloys with a certain Al percentage to become lowered due to resonant scattering. 

Although no conclusive signs of this effect have yet been seen experimentally, Hall effect 

measurements on samples under large hydrostatic pressure may reveal it 

The studies of mobilities in AIGaN/GaN MOHs have shown that so far, the purity 

of the AIGaN layers that can be grown today does not yet permit formation of a true two

dimensional gas at the AIGaN/GaN interface. With just a bit more improvement, low 

temperature electron mobilities in these structures can be expected to jump from currently 

observed values of almost 8000 cm2N s to several tens of thousands. Furthermore, if 

impurity concentrations in AIGaN can be reduced to lOIS cm-3
, enabling effective spacers to . 

be grown, low temperature mobilities of nearly 106 cm2N s should be able to be obtained. 

Although current technology is still some distance from achieving high quality nitride fIlms, 

these calculations clearly demonstrate that much higher mobilities are possible, providing 

some incentive for the development of improved growth techniques. 
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Appendix A, Effective Mass Theory 

Effective Mass Theory (EMT) is a fonnalism for calculating the electronic structure 

properties of impurities in semiconducting crystals. First developed by Kittel and Mitchell 

(Kittel 1954), the numerical results that can be obtained from EMT are surprisingly accurate 

given its simplicity. The basic mathematical manipulations of this fonnalism are outlined in 

this section. 

Electrons in Perfect Ctystals 

Before attempting to describe the electronic states of impurities in crystals, one must 

first be able to describe the electronic states of .a perfect crystal. These states can in 

principle be calculated from a many-body Hamiltonian which takes into account all of the 

interactions between all of the particles in a crystal. As the nwnber of interacting bodies is 

on the order of 1022 cm-3 however, the exact problem is quite insoluble. In order to make 

the problem more tractable, certain approximations can be made to simplify its analysis. 

One simplification is known as the Born-Oppenheimer approximation. There are 

two types of particles in a semiconductor crystal, lattice ions and electrons. Since the 

former are so much more massive than the latter and move much more slowly, the lattice 

and electronic degrees of freedom can be treated separately in this problem. In effect, the 

electronic problem is solved assuming that the lattice ions are frozen in a particular position. 

If desired, the ionic problem can be solved separately and added to the electronic 

Hamiltonian as a perturbation. 

Unfortunately, the nwnber of electrons in a typical crystal is still on the order of 

Avogadro's number. To simplify the mathematical problem of dealing with so many 

particles, the many-electron Hamiltonian is replaced by a one-electron Hamiltonian, in 

which the interactions of one electron with all the other electrons and lattice ions are treated 
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in an averaged manner. Depending on the level of sophistication, this one-electron 

Hamiltonian may also take into consideration exchange and correlation effects· of the 

electron gas. 

In a perfect crystal, the one-electron ScllrOdinger equation is 

( T + VO) V'~ = E~ V'~ (A.1) 

where T is the usual kinetic energy tenn and yo is the potential felt by an electron in a 

perfect crystal. The parameter n is a band index and k is the wavevector of the electron. 

Plotting the energies as a function of k for each n produces the familiar semiconductor 

energy band structure. If the bands are far enough apart energetically so that any 

interaction between their states can be ignored, then the energies near a band minimum or 

maximum occurring at k. can be found by expanding E~ in a Taylor series about ko 

(A.2) 

where M·I is the inverse of the effective mass tensor 

(A.3) 

As can be seen from (A.2), the maxima and minima are parabolic as a function of the 

wavevector. 

A common choice for the electronic wavefunctions V'~k is the set of Bloch functions 

(A A) 

where u~ is a function which has the same translational symmetry as the lattice and thus 

also as YO. These functions form a complete orthonormal set in the sense that 

155 



(A.5) 

The Bloch functions 'are extended in real space and have the same amplitude 1'I'~l in each 

unit cell of the crystal, as can be seen from the translational symmetry of u~. 

These functions are by no means the only choice of basis, however. The Wannier 

functions, which are linear combinations of Bloch functions and localized in real space are 

another common choice of basis. 

Electrons in Imperfect Ctystals 

If impurities are now introduced into the perfect crystal, the one-electron 

Hamiltonian can be modified as follows 

H = T + V = T + VO + U (A. 6) 

where V is the new one-electron potential written' as the sum of the old potential of the 

perfect crystal and U, the impurity potential. Using this Hamiltonian to construct a new 

SchrOdinger equation, two types of solutions can be found: those with an energy which is 

within the allowed bands of the perfect crystal and those with an energy within the band 

gap. The states with energies within the original bands are free electron solutions (if the 

energy is above the gap) or solutions corresponding to electrons involved in the lattice 

bonds (if the energy is below the gap). The states with energies within the band gap are 

those of electrons bound to the impurity atoms. 

One can verify that these impurity bound states are spatially localized by recalling 

that any eigenfunction of this Hamiltonian must be expressible as a linear combination of 

the Bloch functions of the perfect crystal. Since only Bloch functions with an imaginary 

wavevector k can have energies within the band gap, those Bloch solutions either decay or 
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grow exponentially (eq. A.4). As the latter are impennissible on physical grounds, the true 

solutions must decay exponentially and are thus localized. 

For impurity potentials with a fInite spatial range such as so-called "deep centers," 

the impurity levels may ·or may not exist within the energy gap, depending on the details of 

the potential. For an infInite-range potential, such as the Coulomb potential however, it has 

been proven (Mott 1940) than an infinite number of impurity bound states exist in the gap 

either just above the lower band edge or just below the upper band, depending on the sign 

of the potential. These states are hydrogen-like and as such can be assigned a quantum 

number n. For the impurity potential of a donor, as n approaches infinity, the localized 

wavefunctions merge smoothly into the propagating solutions of the conduction band. 

General Results for Impurity States 

To solve for the impurity states, the impurity state wavefunctions are fIrst expanded 

in terms of the Bloch functions as follows 

(A.7) 

where the sum is over all bands n and all k points. The problem now becomes one of 

determining the coefficients F,.. Combining this wavefunction with the Hamiltonian from 

(A.6), the resulting SchrOdinger equation is 

(T + VO +u) LFnkV'~k(r) = ELF,. V'~(r) (A.8) 
nk nk 

This equation can be further manipulated by multiplying both sides by V'~'k' and integrating 

over all space, using the orthonormality of the Bloch functions to simplify the result. 

Exchanging the primed and unprimed variables, we obtain 
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E~ F"", + L (V'~ I U 1V'~'k' )F,.'k' = E F"", (A.9) 
n't' 

This is a set of coupled equations for the coefficients F"",. To develop these equations 

further, the explicit fonn of the Bloch functions from (A.4) is substituted in for the V'~'k"S 

and the product of the u~'s is expanded in tenns of plane waves as follows 

u~·(r)u!:t(r) = L C;'(G) iGor (A.I0) 
G 

Since the function u~ has the periodicity of the lattice, the only vectors G which contribute 

to the sum are those which are reciprocal lattice vectors. Performing this substitution 

produces 

E!:tFnk + LLC;'(G)U(k-k'-G)Fn'ko =EF"", (A. 11) 
n'k' G 

where U(q) is defined to be the Fourier transfonn of U(r) 

(A. 12) 

Up to this point, no approximations have been made aside from the initial use of the 

one-electron Hamiltonian. In order to proceed further, however, some assumptions about 

the specific fonn of the impurity potential must be made. For reasons discussed in section 

1, the impurity potential will be assumed to be a simple screened Coulomb potential 

_e2 

U(r)=-
£r 

(A. 13) 

We now examine two cases in which EMf is applied to donors: one in which there is an 

isotropic conduction band minimum at k=O, and one in which there are several equivalent 

but non-isotropic band minima away from the Brillouin zone center. 
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Results for a Sin&le Minimum 

By far the simpler of the two is the case of a single isotropic conduction band 

minimum at the center of the Brillouin zone. This is the situation in GaAs at atmospheric 

pressure, where in addition, the second lowest conduction band is far enough separated 

from the lowest band that its effects may be neglected. Thus, we do not consider the 

effects of other bands and the index n may be dropped from (A.ll). The equation now 

becomes 

E~~ + LL Ckk,(G) U(k-k'-G)~, = EFk (A. 14) 
k' G 

Anticipating that the only coefficients with k near 0 (the band minimum) will 

contribute significantly to the solution, we make the assumption that 

Ik-k'I«G (A15) 

As a consequence, all terms in the summation in (A.14) for which G~ may be dropped 

since 

IU(k - k' -G)I« IU(k - k')1 (AI6) 

which follows from 

2 4 2 
U(q) = Jd3r _-e_ iq·r = _-_1C-:-e_ 

er eq2 
(AI7) 

In addition, Ckk,(O) can be now approximated by 

(AI8) 
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which follows indirectly from (A. 10) and the orthononnality of the Bloch functions. 

Next, the sum over k' is converted to an integral. This does not introduce any 

appreciable error since for macroscopic samples, the k points in the Brillouin zone are so 

closely spaced as to be essentially continuous. 

Finally, we expand E2 about k=O to order k2 as in equation (A.2). For a crystal 

with cubic symmetry, this yields 

Eo _ EO h?k2 

It - ° + 2m· (A. 19) 

where m* is the effective mass. Applying approximations (A. 15) through (A.19), equation 

(A. 14) becomes 

1i2k~ F(k) + J d3k U(k -k') F(k') = EB F(k) 
2m 

(A.20) 

where ~ is the binding energy of the impurity state given by E - Eg and F k has been re-

written as F(k). This equation is isomorphic to the momentum-space SchrOdinger equation 

for a particle of mass m* in a potential U. By defining 

(A.2l) 

equation (A.20) can be transfonned into the real-space equation 

- • +U(r) F(r)=EBF(r) [ 
1i2V2 ] 
2m . 

(A.22) 

Since the potential (A.13) which we use is that of a hydrogen atom in a continuous 

dielectric medium, (A.22) is analogous to the Schrodinger equation for a hydrogen atom, 

the solutions of which are well known. The only differences are that the electron mass is 
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now m* and e2 must be replaced everywhere by e2/E in order to take the dielectric response 

of the material into account The bound state energies of the impurity are 

(A.23) 

and the ground state coefficient F Ilk is given by 

1 -..!:. 
F(r)=~e o· 

.3 
na 

(A.24) 

where a* is an effective Bohr radius 

• fle m 
a - -a ~ 0 --2-. - oc;.-.· 

em m 
(A.25) 

The complete ground state wavefunction can thus be approximated to fIrst order as 

",(r) = F(r) ug(r) = F(r) ",g(r) (A.26) 

as F is negligibly small for k;t(). 

At this point, we can now go back and test the validity of the approximation made 

in (A. 15). The Fourier transform of (A.24) is 

8nl/2 

F(k) = -.-51-2 (~k-2 -_ -1_~) 
a + .2 . a 

(A.27) 

which is appreciable out to approximately Ikl = 1/a·. Condition (A.15) then becomes 

1 IGI»-. 
a 

(A.28) 
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Since reciprocal lattice vectors are on the order of 21t/a and typical lattice constants are 

roughly 10 30, this condition may also be expressed as 

2n m· 1 
-»--
10 mo £ 

or £m~ »3.18 
m 

(A.29) 

In a typical semiconductor, the dielectric constant is about 10 and effective masses are 

approximately one tenth of the free electron mass, so in general, this condition is satisfied 

quite well. 

Sin~le Band with Several EQuivalent Minima 

Although the case with a single conduction band minimum is the easiest to 

calculate, many common semiconductors have several equivalent minima at or near the L or 

x synunetry points of the Brillouin zone. For example, the conduction band of Ge has 

four equivalent minima located at the Brillouin Zone boundary in the <111> directions and 

Si has six equivalent minima in the <100> directions. While equation (A.14) is still valid, 

it can no longer be assumed that F(k) is localized around anyone of these minima. 

Instead, it must be written as a linear combination of coefficients 

(A.30) 

where N is the number of band extrema and each F,,(i) is localized about the ith minimum. 

Substituting this expression into (A.14) produces 

E~LaiF,,(i) + LI C"",(G) U(k -k'-G)Iai~(i) = EIai~(i) (A.31) 
k' G 

This equation is clearly much more complicated to solve than that for the single extremum 

case because there are now two types of coupling terms--the intravalley terms which 
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describe the interaction between states of the same minimum (valley) and the intervalley 

tenns which couple states from different minima. The simplest way to deal with this 

complication is to neglect the intervalley tenns, hoping that the F#:(j) at different extrema do 

not overlap appreciably. Under this approximation, (A.31) becomes'a set of independent 

hydrogenic equations similar to (A.20) or (A.22) except that the kinetic energy is now 

anisotropic. Defining the z-axis to be along the direction from the band minimum to the 

center of the Brillouin zone, the energy tenn can be expressed as 

(A.32) 

There are now two effective masses. The longitudinal mass is inversely proportional to the 

curvature of the band parallel to the z-axis and the transverse mass corresponds to the 
'\ 

curvature perpendicular to the z-axis at the band minimum. The analog of (A.22) in this 

case is then 

(A.33) 

where, as usual 

(A.34) 

The complete wavefunctions are linear combinations of the solutions to the effective-mass 

SchrOdinger equation at each band minimum and to fIrst order in k, they are 

(A.35) 
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All valleys must be included in the wavefunctions due to symmetry considerations, even 

though they have been assumed not to interact 

Solutions to this anisotropic effective mass equation can only be obtained by a 

variational calculation. Even so, Faulkner (Faulkner 1969) was able to obtain results 

which agreed quite closely with experimental observations by using linear combinations of 

anisotropic hydro genic wavefunctions as the trial solutions. 

/ 
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Appendix D, Neutron Transmutation Dopin2 of GaAs 

Neutron transmutation doping (NTD), or the doping of semiconductor materials 

through irradiation by neutrons, is the best technique available for producing crystals with 

extremely uniform doping profIles. NTD makes use of the fact that certain stable atomic 

isotopes can transmute into a different element entirely after absorbing a neutron and 

decaying via various mechanisms such as beta decay. Since these stable isotopes are 

distributed uniformly throughout the material, the doping atoms which are the product of 

the transmutation are also uniformly distributed. Irradiation is achieved by placing the 

crystal to be doped near the core of a nuclear reactor. Although NTD is most commonly 

used to dope silicon, this process was used in this work to introduce Ge and Se dopants 

into GaAs. 

Naturally occurring GaAs consists of two isotopes of Ga r9Ga and 7lGa) and a 

single isotope of As ('5 As). The capture cross sections of these elements for thermal 

neutrons (neutrons with kinetic energies of roughly tens of meV) are 1.68 barns, 4.86 

barns, and 4.30 barns, respectively. Upon absorbing a neutron, each of these three 

elements transmutes as follows: 

69Ga (n, r) 70Ga 2' min ) 70Ge + /3-
7lGa (n, r) 72Ga ---..;;'_4 h""----7) 72Ge + /3-
75 As (n, r) 76As 26 h ) 76Se + /3-

(B.l) 

All three of the newly formed isotopes transform into new elements by 13 decay. If the 

resultant Ge atoms are found on Ga sites and the Se atoms on As sites, then all of these end 

products will act as donors. It is in principle possible for the Ge atoms to be found on the 

As sublattice as well and to act as compensating acceptors. However, previous 

experiments have shown that a large majority of the Ge atoms produced through NTD 
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remain on Ga sites (Vesagbi 1982). Following irradiation, the crystals must be stored in a 

secure environment until the radioactivity decreases to a safe level. 

Based on the capture cross sections of the three isotopes listed above, the 

concentration of donors resulting from NTD can be expressed as 

n COGe) = 0.023 tP t 

n(72Ge) = 0.042 tP t 

nC6Se) = 0.107 tP t 

where tP is the neutron flux and t the time of exposure to that flux. 

(A.2) 

Up to now, only the effect of thermal neutrons has been considered. In a typical 

reactor, neutrons with energies ranging from tens of meV up to the MeV regime are 

present. However, by moderating the neutron flux, the ratio of thermal to fast neutrons can 

be made as great as a few thousand. For doping by NTD, thermal neutrons are preferable 

to fast neutrons for two reasons. First, the capture cross section of these elements for 

neutrons varies inversely with the neutron velocity and so slow neutrons are more efficient 

at doping than fast neutrons. Second, fast neutrons damage the crystal by the creation of 

Frenkel pairs. Since the energy to displace a lattice atom is only on the order of a few tens 

of electron volts, energetic neutrons with hundreds of ke V can displace many hundreds of 

lattice atoms through collisions with their nuclei. These displaced atoms can generate many 

deep levels within the band gap. In addition, the gamma rays emitted by atoms which have 

captured a thermal neutron cause the irradiated atom to recoil with a kinetic energy on the 

order of hundreds of eV and thus these atoms also become displaced from their 

substitutional position. For this reason, neutron irradiated crystals are found to have very 

high resistivities and low carrier concentrations. 

In order to repair the lattice damage, the NID crystals are annealed. Studies have 

shown that the annealing of irradiated epitaxial layers of GaAs at 600°C for 5 minutes is 
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sufficient to remove all structural defects detectable by Deep Level Transient Spectroscopy 

(DLTS) (Alexiev 1993). Of course, care must be taken to insure that rapidly diffusing 

contaminants such as Cu are not introduced into the crystal during the anneal. 

In the NID doping of epitaxial layers such as was performed. here, one must also 

concern oneself with the possible products present in the substrate, as it is much less pure 

than the layer and unexpected products may be formed through irradiation. For diamond 

anvil cell work, however, the substrates were always removed before spectroscopy was 

performed. 
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