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abstract 

The Virasoro master equation describes a large set of conformal field theories known as the 
affine-Virasoro constructions, in the operator algebra (affine Lie algebra) of the WZW model, 
while the Einstein equations of the general non-linear sigma model describe another large set 
of conformal field theories. This talk summarizes recent work which unifies these two sets of 
conformal field theories, together with a presumable large class of new conformal field theories. 
The basic idea is to consider spin-two operators of the form Lij8xi8xj in the background of 
a general sigma model. The requirement that these operators satisfy the Virasoro algebra 
leads to a set of equations called the unified Einstein-Virasoro master equation, in which the 
spin-two spacetime field Lij couples to the usual spacetime fields of the sigma model. The 
one-loop form of this unified system is presented, and some of its algebraic and geometric 
properties are discussed. 

1. INTRODUCTION 

There have been two broadly successful approaches to the construction of confor­
mal field theories, 

• The general affine-Virasoro constructionl - 7 

• The general non-linear sigma models-13 (1) 

but, although both approaches have been formulated as Einstein-like systems12, 2, the 
relation between the two has remained unclear. 

This talk summarizes recent work14 which unifies these two approaches, following. 
the organization of Fig. 1. The figure shows the two developments (1) with the left 
column (the general affine-Virasoro construction) as a special case of the right column 
(the general non-linear sigma model). Our goal here is to explain the unification shown 
in the lower right of the figure. 

*Talk presented by MBH at the NATO Workshop 'New Developments in Quantum Field Theory', 
June 14-20, 1997, Zakopane, Poland. 

t e-mail address: deboer@theorm.lbl.gov 
te-mail address: halpern@theor3.lbl.gov 
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Figure 1. Conformal Field Theory 
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In the general affine-Virasoro construction, a large class of exact Virasoro operators1
, 3 

a, b = 1. .. dim(g) (2) 

are constructed as quadratic forms in the currents J of the general affine Lie algebra 15, 16. 

The coefficients Lab = Lba and Da are called the inverse inertia tensor and the im­
provement vector respectively. The general construction is summarized1

, 3 by the (im­
proved) Virasoro master equation (VME) for Land D, and this approach is the basis 
of irrational conformal field theory7 which includes the affine-SugawaraI6- 19 and coset 
constructionsl6 , 17, 20 as a small subspace. The construction (2) can also be considered 
as the general Virasoro construction in the operator algebra of the WZW model21 , 22, 

which is the field-theoretic realization of the affine algebras. See Ref. 7 for a more 
detailed history of affine Lie algebra and the affine-Virasoro constructions. 

For each non-linear sigma model, a Virasoro operator23 

i,j,a,b = 1, ... ,dim(M) 

(3a) 

(3b) 

is constructed in a semiclassical expansion on an arbitrary manifold M, where Gij 

is the metric on M and Gab is the inverse of the tangent space metric. This is the 
canonical or conventional stress tensor of the sigma model and this construction is 
summarized 12, 23 by the Einstein equations of the sigma model, which couple the metric 
G, the antisymmetric tensor field B and the dilaton <P. In what follows we refer to these 
equations as the conventional Einstein equations of the sigma model, to distinguish 
them from the generalized Einstein equations obtained below. 
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In this paper, we unify these two approaches, using the fact that the WZW action 
is a special case of the general sigma model. More precisely, we study the general 
Virasoro construction 

1 ., 0 1 b 0 
T = --L··8xz8xJ + 0(0/ ) = __ La IT ITb + O(a' ) a' ZJ a' a . 

(4a) 

i,j, a, b = 1, ... , dim(M) (4b) 

at one loop in the operator algebra of the general sigma model, where L is a symmetric 
second-rank spacetime tensor field, the inverse inertia tensor, which is to be determined. 
The unified construction is described by a system of equations which we call 

• the Einstein-Virasoro master equation 

of the general sigma model. This geometric system, which resides schematically in the 
lower right of Fig. 1, describes the covariant coupling of the spacetime fields L, G, B 
and <Pa, where the vector field <Pa generalizes the derivative \7 a<P of the dilaton <P. 

The unified system contains as special cases the two constructions in (1): For the 
particular solution 

Gab 
Lab = Lr;j = 2 + O(a'), (5) 

the general stress tensors (4) reduce to the conventional stress tensors (3) and the 
Einstein-Virasoro master equation reduces to the conventional Einstein equations of 
the sigma model. Moreover, the unified system reduces to the general affine-Virasoro 
construction and the VME when the sigma model is taken to be the WZW action. 
In this case we find that the contribution of <Pa to the unified system is precisely the 
known improvement term of the VME. 

More generally, the unified system describes a space of conformal field theories 
which is presumably much larger than the sum of the general affine-Virasoro construc­
tion and the sigma model with its canonical stress tensors. 

2. BACKGROUND 

To settle notation and fix concepts which will be important below, we begin with 
a brief review of the two known constructions in (1), which are the two columns of 
Fig. 1. 

2.1. The General Affine-Virasoro Construction 

The improved VME 

The general affine-Virasoro construction, which is the left column of Figure 1, 
begins with the currents of a general affine Lie algebra15, 16 

() () 
Gab ifabcJc(W) 

Ja Z Jb W = ( )2 + + reg. z-w z-w 
(6) 
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where a, b = 1 ... dimg and fab c are the structure constants of g. For simple g, the 
central term in (6) has the form Gab = k'T/ab where TJab is the Killing metric of 9 and k 
is the level of the affine algebra. Then the general affine-Virasoro construction is1 

T = Lab * J.1 * + iDa8J * a b * a (7) 

where the coefficients Lab = Lba and Da are the inverse inertia tensor and the improve­
ment vector respectively. The stress tensor T is a Virasoro operator 

c/2 2T(w) 8wT(w) 
T(z)T(w) = ( )4 + ( )2 + + reg. z-w z-w z-w 

iff the improved Virasoro master equation1 

Lab - 2LacG Ldb _ LcdLef f a f b _ Lcd f f f (aLb)e _ f (aLb)cDd - cd Jce Jdf Jce Jdf Jcd 

Da(2GabLbe + fab d Lbc fc/) = De 

C = 2Gab (Lab + 6Da Db) 

(8) 

(9a) 

(9b) 

(9c) 

is satisfied§ by Land D, and the central charge of the construction is given in (9c). 
The unimproved VME1, 3 is obtained by setting the improvement vector D to zero. 

K -conjugation covariance 

A central property of the VME at zero improvement is K -conjugation covariance16, 17, 20, 1 

which says that all solutions come in K-conjugate pairs Land L, 

T+T = Tg, 

T(z)T(w) = reg. 

c+ C = cg (lOa) 

(lOb) 

whose K -conjugate stress tensors T, T commute and add to the affine-Sugawara con­
struction [15-18] on 9 

Tg = L~b :JaJb :. (11) 

For simple g, the inverse inertia tensor of the affine-Sugawara construction is 

'/lab '/lab Gab 
Lab = '/ = -'/ + O(k-2 ) = - + O(k-2 ) (12) 

9 2k + Qg 2k 2 

where TJab is the inverse Killing metric of 9 and Qg is the quadratic Casimir of the 
adjoint. K-conjugation covariance can be used to generate new solutions L = Lg - L 
from old solutions L and the simplest application of the covariance generates the coset 
constructions16 , 17,20 as L = Lg - Lh = Lg/h. 

Semiclassical expansion 

At zero improvement, the high-level or semiclassical expansion24, 7 of the VME has 
been studied in some detail. On simple g, the leading term in the expansion has the 
form 

pab 
Lab = _ + O(k-2 ) 

2k ' 
C = rank(P) + O(k-1

) 
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(13b) 

where P is the high-level projector of the L theory. These are the solutions of the 
classical limit of the VME, 

(14) 

but a semiclassical quantization condition24 provides a restriction on the allowed pro­
jectors. In the partial classification of the space of solutions by graph theory5, 25, 7, the 
projectors P are closely related to the adjacency matrices of the graphs. 

Irrational conformal field theory 

Given also a set of antiholomorphic currents la, a = 1 ... dim(g), there is a corre­
sponding antiholomorphic Virasoro construction 

T = Lab * J J * + iDaaJ * a b * a (15) 

with c = c. Each pair of stress tensors T and T then defines a conformal field theory 
(eFT) labelled by Land D. Starting from the modules of affine 9 x g, the Hilbert 
space of a particular eFT is obtained26, 27, 7 by modding out by the local symmetry of 
the Hamiltonian. 

It is known that the eFTs of the master equation have generically irrational central 
charge, even when attention is restricted to the space of unitary theories, and the study 
of all the eFTs of the master equation is called irrational conformal field theory (I eFT), 
which contains the affine-Sugawara and coset constructions as a small subspace. 

In leFT at zero improvement, world-sheet actions are known for the follow­
ing cases: the affine-Sugawara constructions (WZW models21 , 22), the coset construc­
tions (spin-one gauged WZW models28 ) and the generic leFT (spin-two gauged WZW 
models26 , 29, 30). The spin-two gauge symmetry of the generic leFT is a consequence 
of K -conjugation covariance. 

See Ref. 7 for a comprehensive review of leFT, and Ref. 31 for a recent construction 
of a set of semiclassical blocks and correlators in leFT. 

In this talk, we restrict ourselves to holomorphic stress tensors, and the reader is 
referred to Ref. 14 for the antiholomorphic version. 

WZW model 

The left column of Fig. 1 can be considered as the set of constructions in the 
operator algebra of the WZW model, which is affine Lie algebra. 

The WZW action is a special case of the general nonlinear sigma model, where the 
target space is a group manifold G and 9 is the algebra of G. 

2.2. The General Non-Linear Sigma Model 

The general non-linear sigma model (the right column of Fig. 1) has been exten­
sively studied32, 33, 8, 34, 9, 10, 35, 36, 11, 12,37,38,23, 13. 

The Euclidean action of the general non-linear sigma model is 

1 I 2 i- . S = - d z(G·· + B-·)ax axJ 
2a' ZJ ZJ 

(16a) 

z = x + iy, (16b) 
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Here Xi, i = 1 ... dim(M) are coordinates with the dimension of length on a general 
manifold M and 0/, with dimension length squared, is the string tension or Regge slope. 
The fields Gij and Bij are the (covariantly constant) metric and antisymmetric tensor 
field on M. 

We also introduce a covariantly constant vielbein eia, a = 1 ... dim(M) on M and 
use it to translate between Einstein and tangent-space indices, e.g. Gij = eiaGabe/, 
where Gab is the covariantly constant metric on tangent space. Covariant derivatives 
are defined as usual in terms of the spin connection, ~ja b is the Riemann tensor and 
Rab = Racb c is the Ricci tensor. It will also be convenient to define the generalized 
connections and covariant derivatives with torsion, 

(17a) 

(17b) 

(17c) 

where W!b is antisymmetric under (a, b) interchange and R~ab is pairwise antisymmetric 
in (i,j) and (a, b). 

Following Banks, Nemeschansky and Sen23 , the canonical or conventional stress 
tensors of the general sigma model have the form 

Gab 
2 . (') = --I1aI1b + f) <1> + Tl + 0 a 

2a' 

(18a) 

(18b) 

(18c) 

where <1> is the dilaton and Tl is a finite one-loop counterterm which depends on the 
renormalization scheme. The condition that TG is one-loop conformal reads12 

~j + ~(H2)ij - 2\7i\7j <1> = O(a') (19a) 

\7kHkij - 2\7k<1>Hkij = O(a') (19b) 

1 
CG =,cG = dim(M) + 3a'(41\7<1>12 - 4\72<1> + R + 12H2) + O(a'2) (19c) 

where (19a) and (19b) are the conventional Einstein equations of the sigma model and 
(19c) is the central charge of the construction. The result for the central charge includes 
two-loop information, but covariant constancy of the field-dependent part of the central 
charge follows by Bianchi identities from the Einstein equations, so all three relations 
in (19) can be obtained with a little thought from the one-loop calculation. It will also 
be useful to note that the conventional Einstein equations (19a),(19b) can be written 
in either of two equivalent forms 

(20) 

by using the generalized quantities (17) with torsion. 

WZW data 
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The WZW action is a special case of the general sigma model (16a) on a group 
manifold G. Identifying the vielbein e on M with the left-invariant vielbein e on G, we 
find that Ja = R ITa are the classical currents of WZW and 

H e 1 f e 
ab = r::; J ab . 

va' 
(21) 

Here iab
e and 'flab are the structure constants and the Killing metric of 9 and k is the 

level of the affine algebra. From this data, ~ne also computes 

elf e 
Wab = - 2vf(jJab (22a) 

(22b) 

~22c) 

Manifolds with vanishing generalized Riemann tensors are called parallelizable35, 37. 

2.3. Strategy 

As seen in Fig. 1, our strategy here is a straightforward generalization of the VME 
to the sigma model, following the relation of the general affine-Virasoro construction 
to the WZW model. In the operator algebra of the general sigma model, we use the 
technique of Banks et al. 23 to study the general Virasoro construction 

(23a) 

(23b) 

c/2 2 < T(w) > < 8T(w) > 
< T(z)T(w) >= ( )4 + ( )2 + ( ) + reg. (23c) z-w z-w z-w 

where the dilatonic contribution is included at 0(0'.'°) and L is a symmetric second-rank 
spacetime tensor field (the inverse inertia tensor) to be determined. 

It is clear that this one-loop construction includes the conventional stress tensor 
TG ofthe general sigma model, as well as the general affine-Virasoro construction when 
the sigma model is chosen to be WZW. 

3. CLASSICAL PREVIEW OF THE CONSTRUCTION 

The classical limit of the general construction (23a) can be studied with the clas­
sical equations of motion of the general sigma model 

!SIT IT- IT ~ +be 0 u a + beW a= (24) 

where IT, IT are defined in (18c) and w± are the generalized connections (17b) with 
torsion. 

One then finds that the classical stress tensor is holomorphic 

Lab 

T = --IT ITb I a , a 
(25) 
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iff the inverse inertia tensor is covariantly constant 

(26) 

where V± are the generalized covariant derivatives (17a) with torsion. Further discus­
sion of this covariant-constancy condition is found in Sections 5.2 and especially 5.5, 
which places the relation in a more geometric context. 

To study the classical Virasoro conditions, we introduce Poisson brackets in Minkowski 
space, and study the classical chiral stress tensor 

T = _I_Lab J+ J+ 
++ 87ra' a b 

(27) 

where J: is the Minkowski-space version of ITa. This stress tensor satisfies the equal­
time Virasoro algebra iff 

(28) 

which is the analogue on general manifolds of the high-level or classical limit (14) of 
the VME on group manifolds. 

4. THE UNIFIED EINSTEIN-VIRASORO MASTER EQUATION 

We summarize here the results obtained by enforcing the Virasoro condition (23c) 
at one loop. Details of the relevant background field expansions, Feynman diagrams 
and dimensional regularization can be found in Ref. 14. 

Including the one-loop dilatonic and counterterm contributions, the holomorphic 
stress tensor T is 

T = _Lab(ITaITb + ~IT IT H cH ed) + 8(IT <pa) + O(a') a' 2 c d ae b a (29a) 

a, b = 1, ... , dim(M) (29b) 

where Lab = Lba is the inverse inertia tensor and ITa is defined in (18c). The second term 
in T is a finite one-loop counterterm which characterizes our renormalization scheme. 
The quantity <pa in (29a) is called the dilaton vector, and we will see below that the 
dilaton vector includes the conventional dilaton as a special case. 

The necessary and sufficient condition that T satisfies the Virasoro algebra is the 
unified Einstein-Virasoro master equation 

d~+ ~+ , 
L c Racdb + 'Va <Pb = 0 (a ) 

<Pa = 2Lab<Pb + O(a') 

vi Lab = O(a') 

Lab =2LacGcdLdb 

- a' (LCd LeI Hc/ Hd/ + Lcd Hc/ Hd;Lb)e) 

- a'(Lc(aGb)dV[c<Pd]) + O(a'2) 

c = 2GabLab + 6a'(2<Pa<pa - Va<pa) + O(a'2) 

where the first line of(30d) is the classical master equation in (28). 
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In what follows, we refer to (30a) as the generalized Einstein equation of the 
sigma model, and equation (30b) is called the eigenvalue relation of the dilaton vector. 
Equation (30d) is called the generalized Virasoro master equation (VME) of the sigma 
model. The central charge (30e) is consistent14 by Bianchi identities with the rest of 
the unified system. The 0(0/) corrections to the covariant-constancy condition (30c) 
can be computed in principle from the solutions of the generalized VME. 

Some simple observations 

1. Algebraic form of the generalizedVME. In parallel with the VME, the generalized 
VME (30d) is an algebraic equation for L. This follows because any derivative of L can 
be removed by using the covariant-constancy condition (30c). 

2. Semiclassical solutions of the generalized VME. The solutions of (30c) and (30d) 
have the form 

(31a) 

(31b) 

where P is a covariantly constant projector, in parallel with the form (13) of the high­
level solutions of the VME. The solutions of (31b) are further discussed in Section 5.5. 

3. Correspondence with the VME. The non-dilatonic terms of the generalized VME 
(3Qd) have exactly the form of the unimproved VME (see eq. (9a)), after the covariant 
substitution 

(32) 

for the general sigma model. This correspondence is the inverse of the WZW datum in 
(21), 

H e 1 f c (33) 
ab = vc;Jab 

which means that, for the special case of WZW, the non-dilatonic terms of the gen­
eralized VME will reduce correctly to those of the unimproved VME. We return to 
complete the WZW reduction in Section 5.2. 

4. Dilaton solution for the dilaton vector. According to the classical limit (28) of the 
generalized VME, one solution of the eigenvalue relation (30b) for the dilaton vectors 
IS 

(34) 

In what follows, this solution is called the dilaton solution, and we shall see in the 
following section that the scalar field <I> is in fact the conventional dilaton of the sigma 
model. 

5. PROPERTIES OF THE UNIFIED SYSTEM 

5.1. The Conventional Stress Tensors of the Sigma Model 

In this section, we check that the conventional stress tensors of the sigma model 
are correctly included in the unified system. 
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In the full system, the conventional stress tensor Tc ofthe sigma model corresponds 
to the particular solution of the generalized VME whose classical limit is 

cab 
Lab = Lej = - + 0(0/) 

2 
(35) 

where Gab is the inverse of the metric in the sigma model action. The covariant­
constancy condition (30c) is trivially solved to this order because "\1;Cab = O. 

To obtain the form of Tc through one loop, we must also take .the dilaton solution 
(34) for the dilaton vector, so that the dilaton contributes to the system as 

(36) 

The relations (35) and (36) then tell us that the generalized Einstein equation (30a) 
simplifies to the conventional Einstein equation 

(37) 

Moreover, eq. (36) tells us that the dilaton terms do not contribute to the generalized 
VME in this case, and we may easily obtain 

, 
"\1; Lej = - ~ "\1;(H2)ab + 0(a'2) 

cab 
Tc(<I»·= --Ilallb + a2<I> + O(a') 

2a' 

(38a) 

(38b) 

(38c) 

by solving the generalized VME through the indicated order. In this case, the stress 
tensor counterterm in (29a) cancels against the O(a') correction to Lc , and (38c) are 
consistent with (18). In what follows, the stress tensor Tc(<I» is called the conventional 
stress tensor of the sigma model. 

To complete the check, we evaluate the central charge c = Cc (<I» in this case, 

cab a' 
cc(<I» = 2Cab ( 2 - 4 (H2t b) + 6a'(21\7<I>1 2 - \72<I» + 0(a'2) (39a) 

= dim(M) + 3a'(41\7<I>12 - 2\72<I> - ~H2) + 0(a'2) (39b) 

= dim(M) + 3a'(4 1 \7 <I> 12 - 4\72<I> + R + 112H2) + 0(a'2) (39c) 

which agrees with the conventional central charge in (19c). To obtain the usual form in 
(39c), we used the conventional Einstein equations (19a) in the form R = 2\72<I> - iH2. 

We also note the form of the system for L = Lc with general dilaton vector <I>~, 

cab 
TC(<I>a) = - 2a,IlaIlb + a(Ila<I>~) + O(a') 

CC(<I>a) = dim(M) + 3a'(4<I>~<I>a - 4\7 a <I> a + R + ~H2) + 0(a'2) . 12 

R~b - 2"\1~<I>f = O(a') 

where <I>~ is unrestricted because its eigenvalue equation is trivial. 

10 
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5.2. WZW and the Improved VME 

In this section we check that, for the special case of WZW, the unified system 
reduces to the improved VME (9a), where the improvement vector D is constructed 
from the general dilaton vector. 

Using the WZW datum above we find that the generalized VME (30d) has the 
form 

Lab = (usual L2 and L2 p terms) + H fcd(a Lb}cipd + 0((:/2) (41) 

when the sigma model is taken as WZW. The terms in parentheses are the usual terms 
(see eq. (9a)) of the unimproved VME. Next, we solve the generalized Einstein equation 
(30a) to find (using il± = 0) that the dilaton vector is a constant 

( 42) 

It follows that the dilaton vector can be identified with the improvement vector of the 
VME in (9a) 

Da _Hipa = constant. (43) 

Moreover, the solution of the covariant-constancy condition (30c) is 

Lab = constant ( 44) 

because w+ = O. This completes the recovery of the improved VME in (9a). 
The central charge reduces in this case to 

( 45) 

in agreement with the central charge (9c) of the improved VME. We finally note that 
the eigenvalue relation (30b) of the dilaton vector can be rewritten with (43) as 

( 46) 

which is recognized as the leading term of the exact eigenvalue relation (9b) of the 
improved VME. This completes the one-loop check of the unified Einstein-Virasoro 
master equation against the improved VME. 

5.3. Alternate Forms of the Central Charge 

Using the generalized Einstein equation and the generalized VME, the central 
charge (30e) can be written in a variety of forms, 

c = 2Laa + 6o/(2ipaipa - Vdipa) + O(oP) (47a) 

= 4LabLba + 2a' [LbeL/ HbdaHefa + 3(2ipaipa - Vdipa)] + 0(a'2) (47b) 

= rank(P) + 2a' [LabL/(4L/ - 36/)HacdHbef + 3(2ipaipa - Vdipa)] + 0(a'2) (47c) 

= rank(P) +2a' [3Lab ildb + Lab L/(4L/ - 36/)Hacd Hbef + 6(ipaipa - Vdipa)] +0(a'2) 
(47d) 

= 4Lab Lba + 2a' [3Lab ildb + Lab L/ H acd Hbed + 6(ipaipa - Vdipa)] + 0(a'2). (47e) 

The first form in (47 a) is the' affine-Virasoro form' of the central charge. The form 
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in (47d), with the first occurence of the generalized Ricci tensor, is called the 'conven­
tional form' of the central charge because it reduces easily to the central charge of the 
conventional stress tensor 

when P = G and <P~ = V' a<P. The conventional form is also the form in which we 
found 14 it most convenient to prove the constancy of c 

(49) 

using the Bianchi identities and the rest of the unified system. The final form of c in 
(47e) is the form which we believe comes out directly from the two-loop computation. 

5.4. Solution Classes and a Simplification 

Class I and Class II solutions 

The solutions of the unified system (30) can be divided into two classes: 

Class I. T conformal but Tc( <pa) not conformal 

Class II. T and Tc(<pa) both conformal. 

The distinction here is based on whether or not (in addition to the generalized Einstein 
equation) the dilaton-vector Einstein equation in (40a) is also satisfied. In the case 
when the dilaton solution <P a (<p) in (34) is taken for the dilaton vector, the question 
is whether or not the background sigma model is itself conformal in the conventional 
sense. 

In Class I, we are constructing a conformal stress tensor T in the operator algebra 
of a sigma model whose conventional stress tensor Tc(<Pa) with general dilaton vector 
is not conformal. This is a situation not encountered in the general affine-Virasoro 
construction because the conventional stress-tensor Tg of the WZW model is the affine­
Sugawara construction, which is conformal. It is expected that Class I solutions are 
generic in the unified system, since there are so many non-conformal sigma models, but 
there are so far no non-trivial~ examples (see however Ref. 40, which proposes a large 
set of candidates). _ 

In Class II, we are constructing a conformal stress tensor T in the operator algebra 
of a sigma model whose conventional stress tensor Tc(<pa) with general dilaton vector 
is conformal. This class includes the case where the conventional stress tensors T G ( <P ) 
are conformal so that the sigma model is conformal in the conventional sense. The 
general affine-Virasoro construction provides a large set of non-trivial examples in Class 
II when the sigma model is the WZW action. Other examples are known from the 

- general affine-Virasoro construction which are based on coset constructions, instead of 
WZW. In particular, Halpern et alY construct exact Virasoro operators in the Hilbert 
space of a certain class of 9 / h coset constructions, and we are presently studying these 
conformal field theories as Class II solutions in the sigma model description of the coset 
constructions (see also the Conclusions). 

~Trivialexamples in Class I are easily constructed as tensor products of conformal and non-conformal 
theories. 
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It is also useful to subdivide Class II solutions into Class IIa and IIb. In Class IIb, 
we require the natural identification 

(50) 

which solves (30b), and Class IIa is the set of solutions in Class II without this iden­
tification. Note in particular that Class IIb contains all solutions in Class II with the 
dilaton solution <I>a(<I» in (34). 

Simplification for Class IIb with the dilaton solution 

A simplification in Class IIb follows for the dilaton solution <I> a (<I». In this case 
the unified system reads 

Vk Hkij - 2Vk <I>Hkij = O(a') 

vt Lab = O(a'), Vi Lab = O(a') 

Lab =2LacGcdLdb 

- a'(LcdLef HceaHd/ + LCdHc/ H~;Lb)e) 

- a'(Lc(aGb)dV[c<I>d]) + O(a'2) 

C = 2GabLab + 6a'(2<I>a<I>a - Va<I>a) + O(a'2) 

<I>a = <I>a(<I» = 2LabVb<I>. 

(51a) 

(51b) 

(51c) 

(51d) 

(51e) 

(51f) 

This simplified system is close in spirit to the VME of the general affine-Virasoro con­
struction: The solution of the conventional Einstein equation in (51a), (51b) provides 
a conformal background, in which we need only look for solutions of the generalized 
VME in the form 

(52) 

where P is a covariantly constant projector. Moreover, as in the VME, it has been 
shown14 that all solutions of the simplified system (51) exhibit K-conjugation covari­
ance, so that 

T Ta-T, C=Ca- C (53) 

is also a conformal stress tensor when T is conformal. 

5.5. Integrability Conditions 

The inverse inertia tensor Lab is a second-rank symmetric spacetime tensor, and 
we know that its associated projector P is covariantly constant 

(54) 

Operating with a second covariant derivative, we find that the integrability conditions 

R~ae Peb + R~be Pea = 0 (55) 

follow as necessary conditions for the existence of solutions to (54). 
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On any manifold, there is always at least one solution to the covariant-constancy 
condition (54) and its integrability conditions (55), namely 

pab = Gab (56a) 

k±ab + k±ba = 0 
cd cd (56b) 

(56c) 

where Gab is the metric of the sigma model action. This solution corresponds to the 
classical limit of the conventional sigma model stress tensor, as discussed in Section 5.1. 
For WZW, the integrability conditions (55) are also trivially satisfied (because il';bcd = 
0) and the general solutions of the covariant-constancy conditions were obtained for 
this case in Section 5.2. 

In general we are interested in the classification of manifolds with at least one 
more solution pab, beyond Gab. In what follows, we outline the sufficient and necessary 
condition for this phenomenon. 

In a suitable basis, any projector P can be written as 

(57) 

Inserting this form in (54) and (55) shows then that k+ and w+ must be 'block diagonal' 
in the same basis, i.e. they can be written as 

(k+)b= (~) 
cda ~d-' 

(58) 

for some matrices A cd , Bcd, Di , E i . Thus, a necessary condition for new solutions to the 
covariant-constancy condition to exist is that k and w should be block diagonal. 

Conversely, given a block diagonal w+, we can construct a new solution to the 
covariant-constancy condition with P given in (57). In fact, with w+ written in terms 
of the smallest possible blocks we can classify all possible solutions to the covariant 
constancy condition. If we denote the smallest diagonal blocks of w+ by D l , . .. , Db 
then the most general covariantly constant projector is 

(59) 

where Pi E {O, I} and lj is the matrix which consists of the identity matrix in the lh 
block and zeroes everywhere else. In the case when one of the blocks in w+ is zero, say 
D j , then pjlj can be replaced by an arbitrary projector Pj in the lh subspace. 

New solutions obtained following this procedure are discussed in the Conclusions. 
Mathematically, the problem of 'finding block-diagonal curvatures is the problem 

of finding manifolds with reducible holonomy. In the absense of torsion, it is known 
that block-diagonal curvatures exist only on product manifolds, but in the presence 
of torsion the question of manifolds with a block-diagonal curvature is an unsolved 
problem, except for the group manifolds discussed above (where il+ = 0), and the new 
examples given in the Conclusions. 
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6. CONCLUSIONS 

We have studied the general Virasoro construction 

(60) 

at one loop in the operator algebra of the general non-linear sigma model, where L is 
a spin-two spacetime tensor field called the inverse inertia tensor. The construction 
is summarized by a unified Einstein-Virasoro master equation which describes the co­
variant coupling of L to the spacetime fields G, Band 4>a, where G and B are the 
metric and antisymmetric tensor of the sigma model and 4> a is the dilaton vector, 
which generalizes the derivative Va 4> of the dilaton 4>. As special cases, the unified sys­
tem contains the Virasoro master equation of the general affine-Virasoro construction 
and the conventional Einstein equations of the canonical sigma model stress tensors. 
More generally, the unified system describes a space of conformal field theories which 
is presumably much larger than the sum of these two special cases. 

In addition to questions posed in the text, we list here a number of other important 
directions. 
1. New solutions. It is important to find new solutions of the unified system, beyond the 
canonical stress tensors of the sigma model and the general affine-Virasoro construction. 

Although it is not in the original paper14 , we have recently discovered a large class 
of new solutions of the covariant-constancy condition: It is not hard to see that the 
spin connection in the sigma model description of the 9 / h coset constructions has the 
form 

(

A +) b _ N Af b 
Wi a - i Aa (61) 

where A is an h-index and a, bare g/h-indices, and fAa b are the structure constants of 
g. The structure constants and hence the spin connection can be taken block diagonal, 
where the blocks correspond to irreducible representations of h. As discussed in Sec­
tion 5.5, this allows us to classify all possible covariantly-constant projectors on these 
manifolds. More work remains to be done in this case, including the solution of the 
generalized VME, but there are indications that the resulting conformal field theories 
may be identified as the set of local Lie h-invariant conformal field theories41 on 9 , 
which have in fact been studied in the Virasoro master equation itself. 
2. Duality. The unified system contains the coset constructions in two distinct ways, 
that is, both as Gab = k'l7ab' Lab = L~/h in the general affine-Virasoro construction 
and among the canonical stress tensors of the sigma model with the sigma model 
metric that corresponds to the coset construction. This is an indicator of new duality 
transformations in the system, possibly exchanging Land G, which may go beyond 
the· coset constructions. Indeed, if the conjecture of the previous paragraph holds, this 
duality would extend over all local Lie h-invariant conformal field theory, and perhaps 
beyond. 

In this connection, we remind the reader that the VME has been identified2 as an 
Einstein-Maxwell system with torsion on the group manifold, where the inverse inertia 
tensor is the inverse metric on tangent space. Following this hint, it may be possible 
to cast the unified system on group manifolds as two coupled Einstein systems, with 
exact covariant constancy of both G and L. 
3. Non-renormalization theorems. The unified Einstein-Virasoro master equation is 
at present a one-loop result, while the Virasoro master equation is exact to all orders. 
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This suggests a number of possibly exact relations14 to all orders in the WZW model 
and in the general non-linear sigma model. 
4. Spacetime action and/or C-function. These have not yet been found for the unified 
system, but we remark that they are known for the special cases unified here: The 
spacetime action 12, 42 is known for the conventional Einstein equations of the sigma 
model, and, for this case, the C-function is known13 for constant dilaton. Moreover, an 
exact C-function is known43 for the special case of the unimproved VME. 
5. World-sheet actions. We have studied here only the Virasoro operators constructible 
in the operator algebra of the general sigma model, but we have not yet worked out 
the world-sheet actions of the corresponding new conformal field theories, whose beta 
functions should be the unified Einstein-Virasoro master equation. This is a familiar 
situation in the general affine-Virasoro construction, whose Virasoro operators are con­
structed in the operator algebra of the WZW model, while the world-sheet actions of 
the corresponding new conformal field theories include spin-one28 gauged WZW models 
for the coset constructions and spin-tw026 , 29, 30 gauged WZW models for the generic 
construction. 

As a consequence of this development in the general affine-Virasoro construction, 
more or less standard Hamiltonian methods now exist for the systematic construction of 
the new world-sheet actions from the new stress tensors, and we know for example that 
K-conjugation covariance is the source of the spin-two gauge invariance in the generic 
case. At least at one loop, a large subset of Class IIb solutions of the unified system 
exhibit K-conjugation covariance, so we may reasonably expect that the world-sheet 
actions for generic constructions in this subset are spin-two gauged sigma models. For 
solutions with no K-conjugation covariance, the possibility remains open that these 
constructions are dual descriptions of other conformal sigma models. 
6. Superconformal extensions. The method of Ref. 23 has been extended44- 46 to the 
canonical stress tensors of the supersymmetric sigma model. The path is therefore open 
to study general superconformal constructions in the operator algebra of the general 
sigma model with fermions. Such superconformal extensions should then include and 
generalize the known N = 1 and N = 2 superconformal master equations47 of the 
general affine-Virasoro construction. 

In this connection, we should mention that that the Virasoro master equation is 
the true master equation, because it includes as a small subspace all the solutions of 
the superconformal master equations. It is reasonable to expect therefore that, in the 
same way, the unified system of this paper will include the superconformal extensions. 
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