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I . Introduction 

In this article, we will discuss the f9undations of modern vacUum ultraviolet (Vuy) and soft 

x-ray (SXR) monochromator design based on the well-established theories of geometrical 

aberrations in grazing incidence optical systems and grating diffraction efficiency. We will restrict 

our treatment to topics of relevance to the construction of optical systems for third generation 

synchrotron radiation sources. These design considerations will be illustrated here by examples 

from the Advanced Light Source (ALS) and will show clearly how monochromator design is 

evolving, both for undulator and bending magnet sources and for several different applications in 

spectroscopy and microscopy. 

It is clear from the many types of monochromator used today that a variety of solutions are 

possible within the prevailing optical design rules, and it is important to understand the historical 

development of these designs to predict where the future will take us and to see what the driving 

forces are. The evolution of the field is best seen through reviews and the many instrumentation 

conferences held over the years. In particular, the period of instrumentation for first generation 

machines can be seen in the reviews of Haensel and Kunz in 1967 [10] and by Madden in 1974 

[24] in the conference proceedings of the International Symposium for Synchrotron Radiation 

Users edited by Marr and Munro in 1973 [25], and in the proceedings of the 4th International 

Conference on Vacuum Ultraviolet Radiation Physics in 1974 [20] The first international 

conference on synchrotron radiation instrumentation (SRI) in 1977, chaired by WuiIleumier and 

Farge [59], and the first US national conference on synchrotron radiation, chaired by Ederer and 

West in 1979 [7], heralded the era of the second-generation machines. The international 

conferences on SRI in Hamburg (1982) [51], Stanford (1985) [52], Tsukuba (1988) [53], and 

Chester (1991) [54] cover the period from operation of the second-generation machines, while the 

operation of the third-generation machines began roughly with the Stony Brook SRI meeting in 

1994. During this period, all the monochromator designs used today emerged: the Petersen plane-



gratingmonochiomator -(PGM) [38-40] and its derivatives, the spherical-grating monochromator 

(SGM) [5, 6, 14, 31] and the variable-angle SGM [32, 36, 37] In a later section, these designs are 

discussed, particularly in relation to how considerations of focusing drive the efficiency ·of the 

optical system. The reviews by Gudat and Kunz [8], Johnson [19], Howells [15], West and 

Padmore [57], Peatman and Senf [37] and Padmore and Warwick [34] cover the operational 

periods of the first- to the third-generation machines. 

The constraints on optical system designs go well beyond those traditionally imposed by strict 

considerations of resolving power. Although stilI important, the fact that modem spherical grating 

monochromators can routinely achieve a resolving power of 1 ()4 (one at the ALS has achieved 

>6x 1 ()4), means that this aspect of the design is well understood and works as expected within 

limit~ set by optical manufacturing. However, other aspects are much less well-docum~nted. We 

would highlight three main areas: 

Optical matching: the high collimation of undulator radiation and the small source size of bending 

magnets on third-generation machines offer important opportunities in optical design for increasing 

light collection and efficiency. This is especially significant for beam lines where some form of 

microscopy is to be practiced at the endstation. Incorrect matching of the microscope optics to the 

source can lead to an enormous loss of flux. 

Fexibility: the high cost of undulators and their associated high-power beamlines initially led to 

beamline designs in which the experimental needs of rather different communities-for example, 

high-resolution spectroscopists and high-spatial-resolution microscopists-were accommodated in 

a single instrument. This was by necessity a compromise, and it is now clear that beamlines with a 

single function can be designed with better performance and at less cost. 

Applications: new applications of synchrotron radiation are changing the way that we must 

approach beamline design. In some experiments, access to an increased energy range is important. 

For example, in solid-state photoemission it is sometimes desirable to go to a low photon energy 

«30 e V) to perform band mapping studies while being able to go to high photon energies 

(> 1500 e V) to measure core-level shifts. In addition, it is often important to tune rapidly between 

the low- and high-energy regions, still preserving precise energy calibration. Although significant 

advances have been made in this area, several challenges remain. A new area of application is that 

of x-ray microscopy to problems in materials science. A particular thrust of work at the ALS is in 

systems directed toward the needs of the local microelectronics industry. These include 

microfocused x-ray photoelectron spectroscopy (micro-XPS) and x-ray absorption-based 
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photoelectron emission microscopy (X-PEEM). These have very different optical design 

parameters from spectroscopic beamlines. Moreover, the competitive environment of analytical 

instrumentation drives many design decisions based on "return on investment." The need is for 

systems that are dedicated full time to analytical measurements, functioning rather like a standard 

instrument operating with a laboratory radiation source. This means that the costs must be 

comparable to commercial instruments and that capacity can easily be increased by simple 

replication. 

In the examples later, we describe an SGM undulator beamline and two "application-specific" 

bending magnet beamlines for micro-XPS and X-PEEM. We first describe aberration theory of 

grazing incidence mirrors and gratings and apply this in detail to the design of an ALS undulator 

beam line for ultra-high-resolution spectroscopy. We then present a guide for QPtimizing 

diffraction efficiency and discuss the special requirements of the various fonns of x-ray 

microscopy and illustrate the foregoing principles with examples from the ALS. 

II. Grating theory 

The first type of focusing grating to be analyzed theoretically was that formed by the intersection of 

a substrate surface with a set of parallel equi-spaced planes: the so-called "Rowland grating." The 

full optical theory of such gratings was in place before 1967 and was reviewed in the first edition 

of this book. The theory of spherical-grating systems was established first [23,45,46], and was 

described comprehensively in the 1945 paper of Beutler [2]. Treatments of toroidal [9] and 

ellipsoidal [27] gratings came later, as reviewed in 1965 by Welford [55] and in ) 985 by Hunter 

[17]. 

The major developments since 1967 have been in the use of nonuniformly spaced grooves. 

The application of holography to spectroscopic gratings was first reported by Rudolph and 

Schmahl [47,48] and by Labeyrie and Flamand [21]. Its unique opportunities for optical design 

were developed initially by Jobin-Yvon [42] and by Namioka and coworkers [29, 30]. A different 

approach was followed by Harada [11] and others, who developed the capability -to produce 

gratings with variable-line spacing through the use of a computer-controlled ruling engine. The 

application of this class of gratings to spectroscopy bas been developed still more recently, 

principally by Hettrick [13]. 

In this section we will give a treatment of grating theory up to sixth order in the optical 

path, which is applicable to any substrate shape and any groove pattern that can be produced by 

holography or by ruling straight grooves with (possibly) variable spacing. 
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A. Calculation of the path function for a Rowland grating 

Following normal practice, we will analyze the imaging properties of gratings by-means of 

the path function F. The most comprehensive account of this method is given in the paper by Noda 

et al [30]. We begin, without knowing anything about where the rays will go, by making a purely 

geometrical calculation of the path length (AP) + (PB) from any point A(x, y, z) to any point B(x', 

yr, z') via a variable point P(C;, w, I) on the grating surface. We suppose that the zeroth groove (of 

width do) passes through 0 (the grating pole) while the nth groove passes through P. The overall 

notation, which is roughly that of Noda et al. [30], is explained in Fig. 1. Since we are interested 

in a diffracted beam in mth order, we include the term mnA in the path function so that f changes 

by an additional m waves for each groove moved by P when the position of P is allowed to vary 

[1]. The sign conventions we use are similar to those used in the first edition of this book. That is" 

A, do, and a are positive, and a and f3 are of opposite sign if they are on opposite sides of the 

normal. Inside order is considered positive and the directions of the ingoing ray and of increasing n 

are both toward +y. 

We consider first the case of a Rowland grating since it will be simple to extend the 

treatment of this case to cover the other interesting ones. For a Rowland grating, F is given by 

mA 
F = (AP) + (PB) + mnA = (AP) + (PB) +-w 

do 

where 

(1) 

(2) 

and (PB) equals a similar expression with x', y', and z'. We now substitute for x, y, and ~ (see 

Fig. 1) in Eq. (2) according to 

x = rcosa, y = rsina, (3) 
ij 

where r and a are constants and the summation replacing C; expresses the shape of the grating 

surface. We then expand (AP) as a Maclaurin series in w, t, and z, 
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(4) 

and use algebraic software (Mathematica TM) [58J to compute the coefficients Cijk, which are 

functions of ~ r, and the aij's. Applying the same method to (PB) as well, Eg. (1) now becomes 

F - ~' ~ ( ) i[j k " C ({3 ') i[j,k rnA. - ,LCijk a,r w z + LJ ijk ,r w Z +-w, 
""" ""k do ljk. lj 

which can be written 

F = LFijkWi[j 
ijk 

where Fijk = lCijk(a,r) + z,kCijk ({3,r') 

except 1)00 = ClOO(a,r) + C100 ({3,r') + rnA. . 
do 

(5) 

(6) 

The coefficient Fijk is related to the strength of the i,j aberration of the wavefront diffracted by the 

grating. The coefficients Cijk are given up to sixth order in Table I where the following notation is 

used: 

cos2 a 1 
T = T(r,a) = r - 2a20 cosa S = S(r, a) = -;. - 2a02 cosa 

(7) 

T' = T(r',{3) S' = S(r',{3) 

To use the Cijk'S, one mus~ also have the ails and these are given to sixth order for ellipses and 

toroids [43J in Tables II and III, respectively. The ails for spheres, circular cylinders, paraboloids 

and hyperboloids can also be obtained from Tables II and III by suitable choices of the parameters 

r, r' and e. 
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Table I: Coefficients Cijk of the expansion of F [Eq. (4) et seq.]a 

1 
COli =-

r 

5 1 
CO2? = ------3 

- 4r2 2r 

CIOO = -sina 

sina 
CIII =---2-

r 

C al2 cosa 35sina 
131 = - r2 + 2r3 

T sin 2 a 
C202 =---+--3-

4r2 2r 

1 
C03 ) = - 2r3 

5 
C020 =-

2 

5 
C031 =--2 

2r 

sina 
CI02 =-2-

2r 

5sina 
C120 =---"-aI2 cosa 

2r 

c = al2 cosa _ 35sina _ 3sina 
122 2r2 4r3 2r4 

I ( . ) sin a (2 2) CI40 = -a14 cos a + - 2a02al2 + a125 cos a -l204 Sin 2a + -2- 4a02 - 35 
2r 8r 

Tsina 
C300 = -a30 cos a + ---

2r 

I ( . ) 5sin
2 a C220 = -a22 cos a + - 4a20a02 - T5 - 2aJ2 Sin 2a + 2 

4r 2r 

1 1 ( . ) 3 ( . 2 ) 3si!i
2

a C222 = --2 a22 COS a + -3 35T - 4a02a20 + 6al2 sm 2a + -4- T - 25 Sin a - --,,-. -
2r 8r 4r r 

C240 = -a24 cosa+ ;r (a?2 sin 2 
a+ 2a~a20 +a225co~a + a04Tcosa -a)4 sin 2a + 2aa2a22) 

. 2 

+ 16
1
r2 (-4a52 T - 8a02a205 + 12a)25 sin 2a + 3T52 + 16a02al2 sin a - 8a04 sin 2a) + sl:r3a (2a52 - 352

) 
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Table I (continued) 

C _ a30 cos a 
302 - 2r2 

3Tsina sin 3 a 
-----:;~+--

4r3 2r4 

C320 = -a32 cos a + L (2a20a12 + 2a30a02 + a30S cos a + al2 T cos a - a22 sin 2a) 

1 (4 . 3ST . 4 . 2 ) Ssin
3 

a +-2- a20a02 sma- sma- al2 cosasm a + 3 
4r 2r . 

1 (2 2 .,) Tsin
2 

a C400 =-a4Qcosa+- 4a20 -T -4a30sm2a + 2 
8r 2r 

1 (2 2 ') a40 cos a C402 =---3 4a20 +3T +12a30sm2a + 2 
16r 2r 

a40 cos a 1 (2 2 .) 3Tsin
2 

a 
C411 =- 2 +-3 4a20-3T -12a30sm2a + 4 

r 8r r 

sin4 a 
-;:s 

C420 = -a42 cos a + ~ (2a20a22 + 2al2a30 sin 2 a + 2a02 a40 - a32 sin 2a + a40S cos a + a22 T cos a) 
2r 

+ ~ (-4aioS - 8a02a20T + 3ST
2 + 12 sin 2a( a30S + al2 T) + 8 sin a( 2a02a30 - 2a22 sin 2a + 2aI2a20)) 

16r 
. 4 

1 (2 . 2 3ST' 2 2· . 3 ) S sin a +-3 a02a20 sm a- sm a- al2 cosasln a + 4 
2r 2r 

1 ( . ) Sina( 2 .) 3T
2

sina Tsin
3

a Csoo = -a50 cos a + - 2a20a30 + a30T cos a - a4Q Sin 2a + -2- a20 - a30 Sin 2a - ? + 3 
2r 2r 8r- 2r 

C600 = -a6C cos a + L (ajo sin 2 a + 2a20a40 + a40 T cos a - aso sin 2a) 

+ 16
1
r2 (-4aio T + T3 + 16a20a30 sin a + 12a30 T sin 2a - 16a4o cos a sin 2 a) 

1 (2 2 ., "'T" 2 4 . 3 ) Tsin
4 

a + -, a20 sm - a -.J - sm a - a30 cos a sm a + 4 
4r 2r 

aThe coefficients for which i ~ 6,j ~ 4, k ~ 2, i + j + k ~ 6, j + k = even are included in this table. 

The only addition to those is Co 13 , which has some interest, because, when the system is 

specialized to be symmetrical about the x axis, it represents a Seidel aberration, namely distortion. 
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Table II: Ellipse coefficients Qij from which the aij's of Eq. (3) are obtaineda [43] 

j 0 1 2 3 4 5 6· 
i 

0 0 0 I 0 Cj4 0 -e2/8 

1 0 0 A 0 3ACj4 0 * 
2 I 0 (2A2 +C)/2 0 3C(4A2 + C)/8 0 * 
3 A 0 A(2A2 +3C)/2 0 * 0 * 
4 (4A2 +C)/4 0 (8A4 +24A2C+3C2 )/8 0 * 0 * 
5 A( 4A2 + 3C)/4 0 * 0 * 0 * 
6 ( 8A 4 + I 2A 2 C + C2 )/8 0 * 0 * 0 -. * 

aIf r, r' and B are the object distance, image distance, and incidence angle to the normal, 

respectively, and 

A = sinB(!_2.) 
2 ' , r r 

C=A2 +_1 
I ' rr 

then 
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Table III: Toroida aij's of Eq. (3) [43] 

j 0 1 2 3 4 5 6 

i 

0 0 0 Ij(2p) 0 1/(8R3
) 0 1/(16115

) 

1 0 0 0 0 0 0 * 
2 If(2R) 0 1/(4pR2

) 0 (2p + R)/(16p 3 R3
) 0 * 

3 0 0 0 0 * 0 * 
4 1/(8R3

) 0 3/(16pR4
) 0 * 0 * 

5 0 0 * 0 * 0 * 
6 1/(l6R5

) 0 * 0 * 0 * 
aR and p are the major and minor radii of the toroid. 
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Table IV: Coefficients nijk for a grating with variable line spacing [Eq. (12)] 

nlOO = Ifdo 
n200 = -vd2do 

n300 = (vf - v2 }/3do 

n400 = (-vr + 2v1v2 - v3 }/4do 

n500 = (vi - 3vfv2 + vi + 2VlV3 - V4 }/5do 
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B. Calculation of the path function for non-Rowland gratings 

Next we calculate F for a grating with the groove pattern formed by holography using two 

coherent point sources, Cere, y,Zc) and D(rD,o'ZD). If the sources C and D are both real or both 

virtual, their equi-phase surfaces are a family of confocal hyperboloids of revolution abOUt CD . If 

one is real and the other virtual, then the equi-phase surfaces are the corresponding family of 

ellipsoids. This follows from the fact that interference fringes always bisect the angle between the 

. forward directions of the rays forming them. Given that the recording process, at wavelength 11.0, 
delivers n fringes between 0 and P, we can write 

nAo = (CP)±(PD»)-(CO)±(OD») (8) 

where the upper sign is for the ellipsoid case and the lower one for the hyperboloid. We can 

calculate (CP) and (PD) in the same way as (AP) and express them in the same way. Therefore, 

inserting n from Eq. (8) into Eq. (1) and dropping the second bracket of Eq. (8), which is just a 

constant, we obtain 

(9) 

Finally, we calculate F for a ruled grating with straight, parallel grooves that may have a 

variable spacing [26]. 

(10) 

In this case the calculation proceeds as for a Rowland grating up to Eq. (5), but now that nand d 

are functions of w (althot.:.gh not of I and z), the term n(w)mA must be expanded as a power series 

and will contribute, in principle, to all the Fijk'S for whichj=k=O. Therefore, recognizing that the 

local groove frequency is 1/ d( w) = cmj Ow and that n(O)=O, we have 

(11) 

Evaluating the derivatives, we find 

II 



(12) 

where llijk = 0 (j,k * 0) and the njOO are given up to sixth order in Table IV. 

c. Location of the Gaussian image point 

So far we have been making a purely geometrical calculation of the path F for two arbitrary points 

A and B. We now proceed to apply Fermat's principle to determine the actual direction of the 

outgoing beam. First consider the incoming principal ray AO. If this ray is to follow the path 

AOBo to the Gaussian image point Bo = (ro,{30'zQ), then Fermat's principle requires 

OFI =0 
ow w=O,I=O ' 

OFI =0 
oZ w=O,I=O . 

(13) 

This effectively sets the coefficients of the linear terms (Fioo and FOIl) equal to zero, which implies 

rnA. . (3 
-=sma+sm 0, 
do' 

(14) 

giving the grating equation and the law of magnification in the sagittal direction and thence the 

direction of the outgoing principal ray. To find the tangential focal distance ro, we set the focusing 

term F200 equal to zero. 

T(r,a) + T(ro,{3o) = 0 (Rowland) (15) 

'rnA{ 1 } T(r,a) + T(r6,{30) + ~ T(rc, r) ± T(rD'o) = 0 (holographic) (16) 

( ) ( ' (3) VIrnA T r,a +T '0' 0 ---=0 
do 

(variable line spacing) (17) 

Equations (14)-(17) determine the Gaussian image point Bo = (ro,{3o,Zo), and in combination with 

the sagittal focusing condition (F020=O), describe the focusing properties of grating systems under 

the paraxial approximation. 
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D. Calculation of ray aberrations 

In an aberrated system, the outgoing ray will arrive at the Gaussian image plane at a point 

BR displaced from Bo by the ray aberrations L1y' and Liz' (Fig. 1) which we would like to calculate 

[28]. To do so, consider a Gaussian reference sphere with center Bo and radius 9\ « rO-), chosen 

so that the rays OBo and PBR and the line PBo intersect the sphere at real points 0', Q, and Q', 

respectively (Fig. 2). Let the tangent plane to the sphere at 0' be the exit pupil plane with pupil 

coordinates (Y, Z) parallel and. perpendicular to the principal plane, respectively. The ray 

aberrations may then be found from Eq. (10) of paragraph 5.1 of the book by Born and Wolf [3]. 

L1 '=9\dfP 
Y dY' 

(I 8) 

In this equation, <P is the "wave aberration function" [3], which is defined as the ray path length 

between the actual wave front and the Gaussian reference sphere when they instantaneously 

coincide at 0'. We may calculate fP as follows: 

fP=APQ-APQ 

= APQ'-APQ 

= APBo - 9\ - APQ 

(19) 

where Q is the point where the ray PBR intersects the wave front. Now APQ is a constant (by the 

definition of a wave front), .9\ is a constant, and we have approximated the ray length PQ with the 

known length PQ' measured along the line PBo(Eq. 7.8 of Welford 1974 [56]). We also know 

that when the position of peg, w, I) is allowed to vary, the increments in the coordinates (Y, Z) of 

Q' are given by dY = dwcos f3o(9\jro) and dZ = dl(9\jrO). Therefore, the derivatives of <P with 

respect to the coordinates of Q' in Eq. (18) can be replaced by derivatives of F with respect to the 

coordinates of P as follows: 

A ' ro of 
Ll)' = 

cosf3o aw' 
Liz' = ro of 

01 
(20) 

where F is to be evaluated at A = (r,a,z), B = (ro,f3o,Zo). From this development, one can see that 

the function F is related to the characteristic function (V) of Hamilton [3, 4, 56] but is not identical 

to it because specification of V requires a knowledge of the ray path whereas specification of F 

does not. 
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The importance of Eq. 20 is that, by means of the expansion of F, it allows the ray 

aberrations to be calculated separately for each aberration type. This is very useful for optical 

design and for understanding the results of exact ray tracing. Thus we have the equations 

I _ ro d { i j} 
.dYijk - R:l Fijk wi, 

cosI-'O oW 

A~I I d {F il j } "-'<.0 Ok = Tio - ° Ok W 
I} dl I} • 

(21 ) 

Since the coefficients Fijk are independent of wand I, the only way that an aberration can vanish 

when P is not at the origin is for its Fijk to vanish. This is the justification for our use of F200=O to 

determine the focal distance in Eqs. (16)-(18). Moreover, provided the aberrations are not too 

large, they are additive; 

(22) 

ijk ijk 

implying that aberrations may either add or cancel (see section III). 

E. The astigmatic curvature of focal lines 

As an illustration of some of the principles described above, we calculate the largest resolution

determining aberration of the grazing"':incidence toroid. Such a surface has steep sagittal curvature, 

which typically leads to a strong curvature ..1y' = k,1z/2 of the tangential focal line. Such line 

curvature, termed "astigmatic curvature" by Beutler [2], is an important consideration in the design 

of toroidal conden~ing mirrors and in determining the resolution of toroidal grating 

monochromators (TGM's). To understand it we note first that from Eq. (21) the astigmatism is 

given by 

L1z020 = r' ~ {F'eJ20z2} = r'l (S + S'), (23) 

so we need those terms that give a ..1y' proportional to .dz,2 after we have taken the derivative with 

respect to wand substituted for I from Eq. (23). There are three such terms [55] 

I r' a (1 2 ) ..1Y/c = --- -wi Fi20 + wlFill + wFI02 
cosa dw 2 (24) 
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all of which are non zero even though z=0. Making the substitutions for 1 and the F's and noting 

that, for the case at hand, Q12=O and Liz' = z', we get 

A ' -.:. 6,z,2 [Ssina S'sinf3 2(S+S')sinf3 (S S,)2. f3] 
0Ylc - 2 + - + + SIn . 

2r' cos f3( S + S') r r' r' 
(25) 

This equation can be applied to mirrors (o:;=-f3), and it shows [16] that the line curvature vanishes 

if the imaging is stigmatic with unity magnification or if the tangential and sagittal magnifications 

are related by Ms = 2M, (1 + M, ) . For a grating system, Eq. (25) allows an estimate of the blurring 

of the spectral resolution resulting from curvature of the focal line. If the toroid is close to 

stigmatic, i.e., z and z' :::: 0, the Fi 11 and Fi 02 terms in Eq. (24) vanish and L1Ylc is determined 

mostly by the F 120 aberration, which is large and dominates the spread function. If we now 

evaluate L1Ylc [14] as the sagittal curvature of the toroid is gradually reduced so as to progress from 

a stigmatic toroid toward a sphere, we see that the resolution broadening due to line curvature 

diminishes due to increasing cancellation among the three terms. By the time the toroid becomes a 

sphere, the line curvature contribution to the resolution becomes negligible for long-radius soft-x

ray systems and much reduced for shorter-radius VUV systems. This process is illustrated for a 

soft x-ray TGM/SGM in Fig. 3. As shown in the figure, these conclusions are confirmed by ray 

tracing, and they provide an explanation for the superiority of the resolution of monochromators 

with long-radius spherical gratings [50] compared to their toroidal predecessors. 

III. Application of aberration theory to the design of an undulator-based SGM 

A. General design principles 

To illustrate the design concepts described in the previous section, we have chosen to 

examine in detail the design adopted for an existing undulator beamline at the ALS. This beamline, 

9.0.1, has a 4.5-m-long, IO-cm-period undulator source; a Kirkpatrick-Baez condenser system, 

focused on the entrance slit in the vertical plane and the sample in the horizontal plane; and a 

spherical-grating monochromator. This monochromator system [5, 6, 14, 31] was first 

demonstrated by Chen and Sette in 1986 and has since become one of the standard types. The 

basic system has a fixed entrance slit, a spherical grating with a fixed rotation axis, and an exit slit. 

The grating-to-exit-slit distance can be varied to achieve focus, but the included angle (28) at the 

grating is fixed. The beamline 9.0.1 instrument uses three interchangeable gratings to cover the 

energy range from 20-300 eV [12]. It is used for atomic and molecular spectroscopy and was 
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designed so that high resolution could be achieved while still maintaining good throughput. The 

system has the following basic parameters: 

entrance arm length, r 

exit arm length, r' 

included angle, 2e 

grating groove density, lido 

diffraction order, m 

grating radius, R 

vertical demagnification, source-to-slit 

horizontal demagnification, source-to-sample 

1.45 m 

4.02-4.78 m 

165° 

380,925,2100 fmm 

+1 

21 m 

8.04:1 

1:1 

We will now examine how these parameters were derived, using the value of the minimum 

wavelength (A.min) as a stating point. The first choice to be made is that of the overall size of the 

monochromator. This should be as large as space allows for maximum phase-space acceptance of 

the instrument. In the case at hand, the length from entrance to exit slit, was set at 6 m. 

The included angle of the monochromator is detennined by requiring adequate reflectivity at 

angle e (not a) at the highest intended photon energy. In the present case, using a nickel coating 

for the lowest-wavelength grating, reasonable reflectivity (- 45% at 300 e V) is obtained at an 

included angle of 165°. 

Given the slit-to-slit length (ABo) of the instrument (see Fig. l)and the complement eG of 

e, one can make a good estimate of the grating radius R, which plays the role of an overall ~cale 

factor for the system. From a diagram of the Rowland circle and the principal ray AOBo, we find 

ABo == 2eGR. To make further progress we use the grating equation [Eq. (14)] and by taking 

derivatives we can obtain the following useful quantities: the reciprocal linear dispersion 

dA f d(L1y') , the entrance- and exit-slit-width-limited resolution and the horizon wavelength ~ (at 

which either a or f3 equals 90°): 

dA _ docosf3 
d{L1y') mr' 

L1AI = sdo cos a 
en! mr 

L1AI . = s'do cos f3 
exit mr' (26) 

where sand s' are the entrance and exit slit widths. 
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To analyze the focusing conditions, we first consider the Rowland solution, in which the 

two terms of Eq. (15) are set separately equal to zero, leading to r = Rcosa, r' = Rcosf3. We 

will not generally be using this solution in the case of an SGM because r' will be constantly 

changing to achieve focus. However, it can be shown that the value of r' needed for focus has a 

stationary point that occurs approximately at the Rowland wavelength (AR), and therefore the 

amount of slit travel can be minimized by setting AR at the center of the wavelength range. 

Adopting this condition then allows us to choose values for rand r'. However, it turns out that, 

even with the help of the stationary point, we can still only build the r' motion to cover about a 

factor of 2.5 in wavelength. This fact completes our definition of the wavelength range and the 

entire monochromator geometry for the lowest-wavelength grating except for the groove density to 

which we now tum. 

The choice of groove density depends on the resolution requirement, and there are two 

main possibilities: 

(i) the best possible resolution capability at the minimum practical slit widths, 

(ii) the maximum flux at some particular value of the resolution. 

The latter requirement applies especially to monochromators dedicated to a single application and is 

similar to the needs of microscopy beamlines which are discussed in a later section. For the best 

resolution, the groove density should be maximized, which means that it will be limited by the 

horizon effect according to 

(27) 

The maximum flux (i.e., the maximum grating efficiency) requires the minimum groove density as 

discussed later. The phase-space acceptance of an SGM is given by NLU..!ent [14] where N is the 

number of illuminated grooves. Thus, given a grating of the largest practical size, reducing the 

groove density at fixed resolution amounts to a reduction of the phase-space acceptance. This will 

still be advantageous (for flux) until the incoming beam emittance is matched. Thus, the groove 

density should be chosen to achieve a phase-space match or, if that is impossible, the choice 

should revert to Eq. (29). 

Having thus obtained a candidate design for the lowest wavelength grating we can obtain a 

design for the next one by scaling up the groove width by a factor 2.5 so that mA/do will be 

unchanged. All the design parameters will then be the same as for the lowest-wavelength grating as 

will also the resolving power. According to the 2.5x multiplication rule, our present example 

would then have three wavelength ranges 40- 1 00, 100-250 and 250-625 A 
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· 
B. Calculation of the effect of grating aberrations on energy resolution. 

We have shown in a previous section how individual terms of the optical path flH1ction can 

be associated with aberrations that scale with powers of the ray coordinates on the grating, w and l. 

In addition, Eq. (21) shows how these terms can be related directly to the ray aberrations at an 

image plane. Combining this with the dispersion given by Eq. (28), we can calculate the effect in 

terms of a deviation (AE) from the nominal photon energy registered by the principal ray. The most 

important wavelength aberrations in SGMs are F 200 (defocus), F300 (aperture defect or coma) and 

F400 (spherical aberration). As previously shown, the astigmatic curvature [Eq. (25)], although 

dominant in toroidal grating monochromators, is usually small in SGMs. 

Taking a grating of length 150 m and width 44 mm, Fig. 4 shows the contributions from 

all the above aberrations for W = wmax ' l = lmax and their sum at photon energies from 40-120 

eV, with afixed exit arm length r' of 4.4 m. The same thing is shown in Fig. 5 except that r' has 

been set for focus. This also brings about consequential changes in aberrations other than defocus, 

including a shift of the coma zero. Note that, in both these plots, the spherical aberration and line 

curvature terms are scaled by lOx and l000x, respectively. The defocus curve goes through two 

zeroes, as expected, and the coma curve goes through one. The spherical aberration is small and 

always positive, and the line curvature, as expected, is negligibly small (see section II). The 

individual aberrations are shown in their signed form, meaning that the signs are those of the 

aberration coefficients, W max and lmax being positive. In this way we can see how the individual 

components may be summed. Defocus and spherical aberration scale as odd powers of w, so they 

change sign when W goes negative. Coma, on the other hand, scales as w2 and therefore always 

has the sign of the coefficient. Representing defocus, coma, and spherical aberration by d, c, and s 

respectively, we obtain the full-width-at-zero-height value of Ll£ by looking for the maximum 

algebraic difference among (d + C + s), (0), and (-d + C - s). An interesting effect of this algebraic 

differencing can be seen in the region greater than 83 e V, where defocus is negative but becoming 

smaller and coma is positive and becoming larger. At 115 eV, the coma equals the sum of defocus 

and spherical aberration. For photon energies less than this, the extreme rays are given by 

(d +c + s) and (-d + c - s) , and for those greater, they are given by (d +c + s) and (0). The 

result is the jump in the rate of change of aberration at 115 e V as one half of the defocus is 

eliminated. This effect is typical of t~e analysis based only on the principal ray and the two 

marginal rays. A more complete analysis would include all the rays, and we examine this in more 

detail in the next section. 
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C. Calculation of spectral Iineshapes 

The calculation of aberrations in terms of the principal and marginal rays gives an apt)roximate 

understanding of the magnitude of the error and is useful in performing fast optimizations. 

However, for a detailed understanding of the resolution of a system, we must calculate the spectral 

lineshape. This can be done by applying the method previously outlined to a distribution of points 

across the grating surface. Fig. 6 shows the photon energy errors resulting from individual 

aberration terms as a function of the w coordinate (Fig. 1) for a fixed exit arm length of 4.133 m at 

a photon energy of 100 eV. This shows that, for the negative side of the grating, defocus and coma 

subtract, and on the positive side they add. Combined with a small spherical aberration term, the 

net effect (dashed curve) is to produce a small negative aberration on the negative side and a large 

positive one on the positive side. 

The information plotted in Fig. 6 allows us to predict spectral lineshapes. If we draw a 

horizontal line at a particular L1E value in Fig. 6, it could cross the summed curve at up to three 

locations. Each of these will correspond to a position, w, on the grating, illuminated with a local 

photon flux per unit width, lew) (say). The flux per unit energy range di/ d(..1£) in the image 

plane therefore depends on lew) at the w values of the crossing points and also on the gradient 

aw / J( ..1£) in Fig. 6. For example, in the case of pure coma, the calculation proceeds as follows. 

, 
.1y300 = ro~ 3w2F3oo (by Eq. 21). 

cos 0 

dA dO cos~o (by Eq. 28). 
d(.1y'J mrO 

3hcd F. 0 
so that /M3001 = 0230 w 2 . 

mA 

di di dw lew) mI.} 1 
= 

dw d(!lE300J 2 3hcdoF300 ~/M300/' 

(28) 

For a uniformly illuminated grating (l(w)=constant), the intensity in the image plane due to coma 

will thus be proportional to 1/ -J L1E , and the intensity will be infinite on axis and have long tails. 

Also from Fig. 6, it is clear that we should expect steps in intensity, corresponding to the ends of 

the summed curve, for example at around -3 me V, where the right-hand part of the summed curve 

reaches the edge of the grating. 
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These effects can be seen in Fig. 7, where the same case of 100 e V is used, but the lineshapes have 

been assessed for exit-arm lengths of 4.113-4.193 m in steps of 0.02 m. Curve (e) (4.193 my 

corresponds to the in-focus condition, and we can see its expected single-sided distribution (due to 

the fact that the dominant aberration, which is coma, scales with an even power of w-), and the 

asymptotic rise in the gradient dwl J(L1E) asL1E approaches its minimum value. We can also see 

steps in intensity at +65 and +79 rneV. From Fig. 6, we can see that the maximum coma (with a 

slightly different exit-arm length) is 71 meV, and the maximum spherical aberration is ±7 meV. 

The negative-wend of the grating therefore will have a maximum error of 64 meV, and the 

positive-wend, 78 meV. We can therefore associate the two steps with the total aberration for the 

extreme rays on the grating. If we look at curve (b) in Fig. 7, which is the r' = 4.133 m curve 

(previously described in Fig. 6), we see that the features can be easily correlated. The :\symptotic 

limit is at -17 me V, corresponding to the minimum in the sum curve of Fig. 6, and there are sharp 

breaks at -3 meV and +144 meV corresponding to the endpoints of the sum curve .at the edges of 

the grating. 

The case of Fig. 7 would correspond to an overfilled grating, a situation that is common on 

bending magnet beamlines. To simulate an undulator source, we have to take into account the 

narrow angular divergence of the source and diffraction from the entrance slits. In the case shown 

in Fig. 5, we have taken a 4.5-m undulator, radiating at 100 eV, a demagnification 8:1 onto an 

entrance slit of width 10 f.1m. ,We have approximated the two angular distributions due to the 
\. 

undulator and the slit by their gaussian equivalents. 

/ 

w2 

I(w) = Are - 2L"2 (29) 

where L is the length of the undulator and we have neglected the effect of the vertical electron beam 

divergence. In this case, Fig. 8 shows the resulting intensity distribution for r' =4. 133-4. 193-m 

exit-arm lengths in 0.02-m steps, this time for the more highly-localized undulator radiation. We 

can see some remarkable differences between the two cases of uniform illumination and radiation 

from an undulator. The most striking is that the steps evident in Fig. 7 have disappeared and that, 

when significantly out of focus (4.133 m), the asymptote disappears. The reason for both is that 

the undulator beam is illuminating a region near the center of the grating, and so the termination of 

the di/ d{L1E)-versus-L1E curve happens smoothly because the intensity falls to zero smoothly. In 

addition, near the center the dominant aberration is defocus, which is seen as a slow intensity 

variation. The absence of the asymptotic cusp is due to the fact that there is no intensity at the 
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minimum of the l1E curve at w=-37 mm (curve (d), Fig. 6). 

The inclusion of slit diffraction is critical if an accurate estimate of the spectral line shape is 

to be made. The same effect guarantees (via the van Cittert-Zernike theorem) to coherently 

illuminate the appropriate number of grooves No on the grating to produce the calculated Slit-width

limited resolution and the diffraction-limited resolution mNo, which are now seen to be the same. 

We show the effect of slit width on line shape in Fig. 9 for slit sizes of 2 J.Lm, 6 J.Lm, 10 J.Lm, 

25 J.1m and fully open for a photon energy of 64 eV and for the in-focus condition. We have 

chosen this energy because extensive studies of the double-ionization series of helium have been 

conducted in this region, and in particular, recent work by Kaindl and collaborators [50], using the 

SGM on ALS beam-line 9.0.1 that we have been studying, has demonstrated a resolution of 65000 

at this energy. The helium spectrum in question is given in Fig. 10, which shows the ext;aordinary 

resolving power achieved. The 2p3d peak at 64.117 e V is particularly interesting as it has a natural 

linewidth of a few J.LeV, so that what we see is the reallineshape function. 

It can be seen from Fig. 9 that the calculated aberration-limited line width broadens as the 

slits are closed. This occurs because the divergence of the light increases as the slit is closed, filling 

more of the grating and increasing all of the aberrations. In order to make a fair comparison of line 

shapes, we clearly cannot take the peak height into account, as the distribution on axis would go to 

infinity and is only prevented here by the finite sampling. However, the integral is finite, and so 

we take the 50% integral point from the asymptotic cusp as a measure of the width, and the data are 

normalized to that value. We therefore arrive at aberration-limited widths of 2.1, 1.1, 0.67, 0.23, 

and 0.13 meV for the 2-J.lm, 6-J.lm, 1O-J.lm, 25-J.lm, and open slit cases. (the demagnified 

undulator source geometry is used for the latter). The corresponding slit-width-limited resolutions 

are 0.3, 0.9, 1.5, and 3.8 me V for the 2-J.Lm, 6-J.lm, 1O-J.lm, and 25-J.Lm slit openings. Combining 

the slit and aberration limits indicates an optimum around 6 J.Lm slit width which is in reasonable 

agreement with the measured resolution of 1 me V. Moreover, it is clear from the shape of the 

experimental curve that the broadening is due to residual ccma. Note also that the sign of the coma 

aberration is the same in the experimenta.l and theoretical curves at 64 e V but reversed from the 

curve at 100 e V. This is because the sign of the coma changes at the coma zero, which is at 71 e V 

(Fig 5). In the theoretical curves, also note that for the smallest slit size, sufficient intensity is 

diffracted to the edge of the grating that the sharp truncations of the coma and spherical aberration 

again become apparent. 

Geometrical aberration theory can therefore be used at several different levels. On the one hand, it 

can be rapidly used to assess gross performance by prediction of the extreme ray aberrations. On 
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the other hand, it can be used to predict line shapes in a more precise way. In this sense, grating 

aberration theory is a powerful tool for understanding design possibilities and arriving at candidate 

designs. Once a design is established, it is useful to run a ray trace from a point source with only a 

few rays positioned on a regular grid. (The SHADOW code [22] maintained by the Center for X

ray Lithography at the University of Wisconsin is the one most suited for synchrotron-radiation 

applications.) One should be able to explain quantitatively why every ray goes where it does on 

the basis of the aberration calculations from Eq. (21) and observations such as the relative 

positions of the rays from wrnax and wrnax /2, etc. Once a candidate design that meets requirements 

has been established, it then becomes useful to run SHADOW again, this time with a realistic 

source and a larger number of rays to verify the correctness of the design and to study other 

aspects of it. 

IV. Focusing in variable-included-angle monochromators 

In the previous section, we showed how grating aberration theory could be applied to a fixed

deviation-angle SGM to extract information on focusing, aberrations, and line shapes. The same 

approach can also be applied to other monochromators, where there is a single focusing element, 

including the case where a movable plane mirror is used to vary the included angle at the grating. 

Two such cases are the variable-included-angle SGM [18, 22, 32, 36] and the SX700 [38, 39, 

41]. In these monochromators, the included angle becomes a user-controlled variable and not only 

determines focusing, but also modifies the efficiency behavior of the system. 

We have seen how it is possible in a fixed-deviation-angle SGM to keep the defocus term 

zero by moving the exit slits. Sometimes, particularly in microscopy where the microscope optics 

are fixed, the exit slit has to be in a fixed location. The variable-angle SGM achieves focus at fixed 

rand r', i.e., with fixed slits, by varying the included angle. According to Eq. (15) with 

a20 = 1/ 2R, the condition for focus is 

cos2 a cos2 {3 
--..;- - cos a + ,* - cos {3 = 0 

r r 
(30) 

where r * = r / R, r'* = r' / R. If a is regarded as the independent variable, then this equation can 

be solved for {3 as a function of a. Then, using the sign convention defined in section II, the 

included angle, 28, is obtained as a-{3. For each a/{3 pair, the grating equation yields the 

wavelength, and we can plot included angle against photon energy (Fig. I I). By selecting differing 
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grating radii, we can then select different solutions with different angles while keeping rand r' 

constant. Three different solutions are illustrated in Fig. 11. The action of changing the grating 

radius causes the focusing curve to be moved on both the energy scale and the included-angle 

scale. The figure shows curves for both solutions to the quadratic, which join at the low-energy 

limit, although only the lower solution has practical value. Changing the radius has the-desirable 

effect that the mean included angle can be set to a value appropriate for the energy ranges of each 

separate grating. This is advantageous for collection aperture, order sorting, and, as we wiJI see in 

the next section, for diffraction efficiency. However, Fig. 11 shows that the amount of change in 

the angle within the scan range of anyone grating is always small (about a degree or less). On the 

other hand, if we want to optimize diffraction efficiency, say for a rectangular phase grating in mth 

order, then the path length difference between rays diffracted at the top and bottom of the grooves 

has to be m wavelengths. Therefore the included half-angle e should vary ra.ughly as 

e = cos -1 (mil / 2h), where h is the groove depth, whereas in fact, as Fig. 11 shows, it must be 

kept roughly constant to hold focus. The variable-angle SGM thus allows us to have a fixed exit 

slit and optimum efficiency at one wavelength for each grating, but it still has the problem of the 

standard SGM; it has a limited tuning range per grating and still cannot track the diffraction 

efficiency maximum. 

These disadvantages are overcome to a considerable degree in the SX700 system originaily 

proposed by Petersen in 1980 [38, 39, 41]. It was the first instrument to use included-angle 

control by means of a plane mirror and this was combined with a plane grating and fixed focusing 

mirror. The latter was originally an ellipsoid of revolution, but in later instruments that was 

superseded by a more-easily-manufactured spherical mirror [32, 44]. The astigmatism of the 

spherical mirror at grazing incidence was overcome using a separate mirror outside the 

monochromator focusing in the non-dispersive direction, and the coma of the sphere was reduced 

sufficiently by selecting an appropriate magnification. 

The focusing condition of the monochromator is given by Eq. (30) with R equal to infinity. 

, _ cos2 f3 _ C2 
r - -r 2 --r 

cos a 
(31) 

We can see that a virtual image is formed at a distance re2 behind the grating. The function of the 

plane premirror in this design is again to select an included angle that will maintain focus. Other 

operational modes of the monochromator are possible with different included angles, at the 

expense of no longer being in focus, for example to reduce harmonics or to exactly track the 
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efficiency maximum. In a later version of the system, moveable exit slits were used so that, for an 

entrance-slitless version of the monochromator, a larger value of a could be used to improve the 

source-size-limited resolution at the expense of flux. If a is eliminated between Eq. (31) and the 

grating equation, we obtain 

mA (I-c-'t +( ~)' 
1-( ::- sin f3 r ~ CO~~ f3 or sin f3 ~ -d-O--'---1-_-C--=2--'-----'-- (32) 

Three solutions are shown in Fig. 12. One can see that, unlike the SGM and variable-angle SGM, 

a wide range of both wavelength and included angle is spanned for a single grating. In addition, 

the curve strongly decreases as the photon energy decreases, as required for maximizing diffraction 

efficiency. 

v . Diffraction efficiency 

One starting point for a monochromator design is to know the maximum diffraction efficiency that 

can be obtained at a particular photon energy under optimum conditions. In principle this would 

need many time-consuming calculations, but a range of these have been done by Padmore et al. 

[34] for gold- and nickel-coated rectangular phase gratings from 300 to 1200 fmm and from 100 to 

2000 eV. These provide values of the maximum possible efficiency and the deviation angle, 

groove depth, and groove width necessary to get it for each line density and energy. The calculated 

results were shown to agree with both experiment and reciprocity. Maximum efficiency can vary 

significantly, depending on line density. For example, a 300 fmm grating at 1500 eV has a 

diffraction efficiency maximum of 33% for a deviation angle of 178°. For a 1200 fmm grating, the· 

maximum efficiency is 8% for a deviation angle of 176°. The tendency is always fo~ the diffraction 

efficiency and the optimum deviation angle to decrease at high line density. For the present purpose 

the diffraction process is best described in terms of the deviation angle because this is the most 

directly related to the important physical quantity, which is the momentum transfer. 

To illustrate the characterization of grating efficiency for particular geometries, we have 

chosen the SX700 case. Fig. 13 shows the "nomogram" for a 1200 fmm gold-coated grating. The 

upper panel gives the maximum diffraction efficiency; the middle panel, the required deviation 

angle; and the lower panel, the required groove depth and width. The figure shows two cases, one 
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(dotted) in which the deviation angle, groove width, and groove depth are variable parameters, and 

one in which the deviation angle is constrained to the SX700 fixed-focus condition for the same 

groove parameters. It can be seen that the two curves are virtually identical. Ifcan·also be seen that 

the diffraction efficiency is above 10% from 100 to 1400 eV, dropping only to 6% at 2 keY. Of 

course, having continuously variable groove parameters is not realizable in practice, and Fig. 14 

shows what happens when they are fixed. The groove depth and width have been optimized at 500 

e V, and it can be seen that only at energies less than 300 e V is there significant variance between 

the fully optimized case and the case with fixed groove parameters. 

The SX700 geometry therefore offers the enormous advantage of staying always close to 

the blaze-maximum condition. In addition, if we allow ourselves the possibility to have more than 

one groove depth and width, then we can have optimized performance in the region below 300 eV. 

This can be done in practice by having either more than one grating or more than one ruling on a 

single grating. 

We have presented the case above where a monochromator has to tune over a very wide 

energy region. There are many cases where this is unnecessary, and we are increasingly designing 

for highly specific experiments where simpler monochromator systems can be used. However, the 

starting point is still to understand the relationship between deviation angle and efficiency, using 

the tabulations described above. 

VI. An optimized beam line for microscopy by X-PEEM and micro-XPS 

To illustrate some of the issues of monochromator design, and to show some of the special 

considerations necessary when designing systems for microscopes, we will describe beam line 

7.3.1 at the ALS. The layout of the beam line is given in Fig. 15 [34, 35]. The system was 

originally designed for Photoelectron Emission Microscopy (X-PEEM), applied to the study of 

magnetic materials. The materials of interest, the upper 3d transition metals (2p-3d edges) and up 

to the middle of the rare earths (3d-4f edges) have a relatively narrow band of energies from 

around 650 eV to 1300 eV. The PEEM itself requires an illuminated field of view of about 30 Jlm 

with maximum flux density. As the PEEM selects its own field of view, it can also act as an 

effective exit slit. Thus, considering the vertical source size of around 30 Jlm FWHM, we chose to 

build a single-grating fixed-angle SGM in entrance- and exit-slitless mode at 1: 1 m.onochromatic 

magnification. As the core-level widths of the edges we wished to study were rather large, we also 

designed the system to have a deliberately moderate resolution. By making the instrument 

25 



sufficiently long, a very low line density grating (200 /mm) could be used. This combined with the 

relatively small energy range and the resulting small change of focal length with energy meant that 

we could operate with fixed exit slits, or in this case, with a fixed sample. The use of such a low 

line density also has the added advantage that the diffraction efficiency is very high, typically 30% 

at 1 keY. 

In the horizontal direction, the object was to collect as much light as possible and condense 

it to the field size of 30 Jlm. We have a horizontal source size of around 300 Jlm FWHM, so an 

illumination width of 30 Jlm requires a demagnification of 10. The maximum angular spread that 

can be passed by the horizontal condenser mirror is about half the critical angle at the maximum 

photon energy. At 1.3 keY, this means a maximum of 25 mrads convergence·, or 2.5 mrads 

collection from the source. The resulting elliptical-cylinder condenser mirror is particularly 

challenging. It is 1 m in length and requires an rms slope error tolerance of 3 Jlrads to preserve the 

source brightness as well as a superfine finish. A rigid mirror of this specification is beyond the 

state of the art, and we have adopted a method based on bending of a flat plate with specially 

calculated width variation. This beamline is predicted to give a flux of 3xl012 ph/sec in a 0.5 eV 

bandpass at 1 keVin a 30-Jlm-diameter spot size. 

The application-specific nature of the beamline, together with the need to have the 

maximum flux density in the field of the PEEM, has led us to a unique design that is both highly 

efficient and much simpler than that of a traditional beamline. Due to the special needs of x-ray 

microscopy and of the materials issues that are being addressed with the new generation of 

microscopes, there are likely to be more systems of this type-highly specific to one task, highly 

optimized, but simplified by removing the demand for universal capabilities. The exact matching of 

the system to a particular function also tends to imply exclusive use of the beamline by a single 

user group, and such an arrangement can normally be considered only on a bending magnet. 

A further example of this approach is given by a branch of the same beamline. This branch 

splits off 0.2 mrads of horizontal aperture from the X-PEEM beamline using a horizontally 

deflecting mirror. This produces a 2: 1 demagnified image of the horizontal source at the 

monochromatic focal plane of the monochromator. At this location, we have a pair of bilaterally 

adjustable slits that define the source for the microscope that follows. The nominal setting is 20 !lm 

vertical by 40 Jlm horizontaL The horizontal image of the ALS is 150 Jlm wide at this location, so 

the slits are significantly overfilled. We can now apply the same phase-space arguments as for X

PEEM, but in this case we wish to demagnify to a I-J..lm spot size, and we use a slightly smaller 

grazing angle of 1.60 on the probe-forming optics. These are a Kirkpatrick-Baez pair, again 
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elliptical and produced by the bending of width-profiled flats by the application of unequal couples 

[33]. The vertical demagnification is 20: 1, and using our half-critical-angle rule, we deri ve a 

convergence angle of 12 mrads. This means that we have an acceptance from the source of 0.6 

mrads in the vertical direction. This value is approximately equal to the divergence of the light from 

the source at 1 keY. We can therefore say that, in the vertical direction, light from an AI:S bending 

magnet can be focused by a mirror operating at 1 ke V to an image size of 1 11m without geometric 

loss. In the horizontal direction, the convergence onto the sample is the same, 12 mrads, but the 

demagnification is 40: 1. The acceptance from the source is therefore 0.15 mrads, with a loss of a 

factor of 4 in throughput at the horizontally defining slits. Even so, the predicted (and measured) 

flux in the focused spot is 3xlOlO ph/sec in the so-far-achieved spot size of 2x2 l.1m2, with a 0.5 

eV bandpass. This is sufficient for x-ray photoelectron spectroscopy (XPS) using modern high

aperture analyzers with multichannel detection. In the present case, the system was developed for 

the microelectronics industry, specifically to perform scanning micro-XPS on large-area (50-mm

diameter) samples. It was important to design a system that was economical and had sufficient flux 

at its design resolution to enable a high throughput of samples. 

It can be seen from the above examples that the design of monochromators to be used in 

conjunction with microscopes is significantly different from that for high-resolution spectroscopy. 

Wherever possible, these optical systems should be separated, as they clearly have very different 

design constraints and lead to very different optimized solutions. 
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Figure Captions 

1. Geometry and notation for grating theory. The axes and the rays are represented by 

continuous lines and other distances by broken lines. 

2. Geometry for calculation of the wavefront aberration function and the definition of the 

points Q, Q' and Q. PBR represents the ray and Bo the Gaussian image point. 

3. Relation of the energy resolution of a soft x-ray toroidal grating monochromator to the 

minor radius of the grating and thus to the curvature of the focal line. Parameters: included 

angle=174°, do-1=1100/mm, A.=20A., R=55m, arm lengths: set to satisfy the Rowland 

condition. 

4. Aberration components and their sum are shown for the 9.0.1 SGM with a fixed exit arm 

length r' of 4.4 m, and a ruled length and width of 150 and 44 mm. Defocus is shown by 

the small dashes, coma by the medium dashes, spherical aberration xlO by the large dashes 

and line curvature xl 000 by the extra-large. The sum is shown by the solid line. 

5. Aberration components and their sum are shown with the exit arm set to eliminate defocus 

and a ruled length and width of 150 and 44 mm. Coma is-shown by the small dashes, 

spherical aberration by the medium dashes and the entrance- and exit-slit-limited resolution 

for 10 Jlm slits by the large and extra-large dashes respectively. The sum is shown by the 

solid line. 

6. Aberration components are shown as a function of position in the w direction on the 

grating, with 1=0, for an exit arm length r' of 4.133 m and a photon energy of 100 eV. 

Defocus, coma, spherical aberration and the sum are indicated by a, b, c and d respectively. 

7. The spectral distribution is shown for a photon energy of 100 e V, with a uniformly 

illuminated grating with a length of 150 mm and a width of 44 mm. Distributions are 

shown for exit arm lengths r' of 4.113 (a), 4.133 (b), 4.153 (c), 4.173 (d) and 4.193 (e). 

The latter case is in focus. 

8. The spectral distribution is shown for a photon energy of 100 eV, with a grating of length 

150 mm and width 44 mm illuminated by an undulator source. The undulator is 4.5 m in 

length, 8: I demagnification from the source to slit is used and diffraction is included for 10 
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Jlm slits. Distributions are shown for exit ann lengths r' equal to 4.193 (a), 4.173 (b), 

4.153 (c) and 4.113 .(d). The case (a) is in focus. 

9. The spectral distribution is shown for 64 e V, undulator illumination, and for entrance slit 

sizes of 2, 6, 10, 25 Jlm and fully open. 2 Jlm corresponds to the widest distribtltion. The 

horizontal line gives the 50% integral point for each curve, yielding widths of 2. I, 1.1, 

0.67, 0.23 and 0.13 me V for the above slit sizes. 

10. The double ionization series of helium is shown near the ionization limit of the + series. 

The 2p3d feature has a natural linewidth of a few Jle V, and so the feature here should 

directly map the line shape function of the monochromator. 

11. Three different solutions for a variable angle SGM with a 1200 Imm grating in positive first order: 

the values of r * and r'* are 0.1 and 0.2 (a), 0.05 and 0.1 (b), and 0.033 and 0.066 (c). 

12. Three solutions of Eq. (33) for a 1200 Imm grating in +1 order with C values of 4.4 (a), 2.1 (b) 

and 1.45 (c). 

13. Optimum efficiency of a 1200 Imm gold-coated grating and the deviation angle, groove depth and 

groove width needed to get it. For the dashed curve (best case), the deviation angle and groove 

depth and width are all varied in the search for an optimum while for the continuous curve the 

groove depth and width are the same but the deviation angle is chosen to focus an SX700 with 

C=2.166. 

14. Similar to Fig. 13 except that the groove width and depth are fixed at the values needed for an 

optimum at 500 eV. The short-dash curve is for the best deviation angle while the continuous curve 

is for the angle that would focus an SX700 with C=2.094. The "best-case" curve of Fig. 13 is 

shown (long dash) for comparison. 

15. Optical systems of ALS beam line 7.3.1 as discussed in the text 
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