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Abstract 

The random-phase approximation is combined with the perturbed hard-sphere­

chain (PHSC) equation of state for copolymer systems to represent the microphase 

separation transition in compressible diblock copolymer melts. The PHSC equation of -

state takes into account the equation-of-state effect that results from differences in 

compressibility between pairs of segments comprising a diblock copolymer: these 

differences favor demixing. Upon increasing the temperature of a microphase-separated 

diblock copolymer melt, theory first predicts an order-to-disordcr transition that 

corresponds to the upper-critical-solution-temperature beha\"ior in the binary blend of 

parent homopolymers. At conditions where the equation-of-state effect is significant. 

theory also predicts a disorder-to-order transition at further elevated tcmper~ture that 

follows closely the lower-critical-solution-temperature behavior in the binary blend 

. \.:ontaining the parent homopolymers. To compare theory with experiment. we obtain the 

binary interaction parameter between copolymer segments from the coexistence curve for 

thc hinary blend of parent homopolymers. Predicted microphase-separation-transition 

tcmperatures of diblock copolymer melts are compared with experiment for styrene-based 

diblock copolymer melts including poly(styrene-h/ocA:-Il-blltyl methacrylate) melts that 

show both order-to-disorder and disorder-to-order transitions. We also discuss the 

pressure dependence of order-to-disorder transition temperatures of styrene-based diblock 

copolymer melts. Theory and experiment show semiqllantilati\"c agreement· 

to whom correspondence should be addressed 



I. Introduction 

Because of fundamental scientific interest and possible applications of block 

copolymers, considerable effort has been made to examine phase equilibria for block 

copolymer melts and those for mixtures containing block copolymers. I -5 A block 

copolymer consists of sequentially connected chemically different homopolymers. The 

homopolymers comprising a block copolymer are called the parent homopolymers of a 

block copolymer. In this work, we consider the phase behavior of a diblock copolymer 

melt consisting of segments A and B. 

The phase behavior of an A-B diblock copolymer melt is expected to follow that 

of the binary blend containing parent homopolymers because both systems are 

characterized by the same binary interaction parameter that reflects interactions between 

dissimilar segments A and B. In the absence of favorable interactions such as hydrogen 

bonding between segments A and B, the interaction between dissimilar segments is 

unfavorable relative to the average of A-A and B-B interactions. Consequently, a 

homogeneous binary mixture of parent homopolymers exhibits uppcr-critical-solution­

temperature (VCST) behavior upon cooling and splits into segmcnt-A rich and segment­

B rich macrophases to increase the number of contacts among similar segments.6,7 

Disordered diblock copolymer melts also undergo phase separation with 

decreasing temperature. Because of the connectivity of hOl11opolymers comprising block 

copolymers, however, phase separation in diblock copolymer melts leads not to ordinary 

large-scale phase separation but instead, to the formation of a yaricty of spatially ordered 

microstructures whose dimensions are comparable to the size of copolymers. 1-5 In 

diblock copolymer melts, the disorder-to-order transition upon cooling is called an upper­

critical-ordering transition (VCOT). 

In addition to VCST behavior, miscible polymer blends often exhibit lower­

critical-solution-temperature (LCST) behavior upon heating. 6-8 In the absence of 

specific interactions such as hydrogen bonding between dissimilar molecules, LCST 
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behavior in binary polymer blends results from the equation-of-state effect, an entropic 

effect unfavorable to mixing. The equation-of-state effect is caused by the disparity in 

compressibility between the mixture's components. For polymer blends, Patterson and 

Robard provide a discussion on the relative importance of the equation-of-state effect and 

specific interactions that lead to LCST behavior. 9 

Although phase separation at elevated temperature is also expected for disordered 

diblock copolymer melts, the first experimental evidence of microphase separation upon 

heating was only recently reported by Russell et al.lO for poly{styrene-block-n-butyl 

methacrylate) 10-12 diblock copolymer melts. This diblock copolymer also exhibits 

UCOT behavior. For diblock copolymer melts, the disorder-to-order transition with 

increasing temperature is called a lower-critical-ordering transition (LCOT). 

To represent LCOT behavior in diblock copolymer melts, it is necessary to 

develop theories applicable to compressible diblock copolymer melts. Immediately after 

Russell et al.'s 10 discovery of both UCOT and LCOT behaviors in poly(styrene-block-n­

butyl methacrylate) diblock copolymer melts, Yeung et al. 13 showed qualitatively that 

hoth UCOT and LCOT behaviors can be predicted by the random-phase approximation 

(RPA)5.14-17 for diblock copolymer melts combined with an equation-or-state theory for 

polymcric tluids. The model by Yeung et al. 13 is based on the RPA for incompressible 

diblock copolymer solutions developed by Fredrickson and Leihler 16 that uses the Flory­

Huggins lattice theory. 18 In lattice theories, compressible pure tluids are modeled as 

incompressible binary systems where vacant lattice sites (i.e .. holes) are occupied by a 

hypothetical component whose fraction is determined by the equation of state for the 

system. 13 

Similarly. prior to the experiment by Russell {'( a/. IO. Dudowicz and Freed 19 also 

cnmbincd the compressible RPA for diblock copolymer mdts with the lattice-cluster 

theory that improves the Flory-Huggins lattice theory. Dudowicz and Freed 19 presented 

a semiquantitative analysis of polystyrene / poly{vinyl methyl ether) homopolymer 
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blends and poly(styrene-block-vinyl methyl ether) diblock copolymer melts. The model 

hy Dudowicz and Freed 19 predicts phase separation upon heating in both homopolymer 

hlends and diblock copolymer melts that contain polystyrene and poly(vinyl methyl 

ether). Experimental data, however, are not yet available for the phase behavior of 

poly(styrene-block-vinyl methyl ether) diblock copolymer melts. 

In this work, we present a molecular-thermodynamic model to represent both 

UCOT and LCOT behaviors in compressible diblock copolymer melts. Our model is 

similar to that of Yeung et al. 13 because we also follow the RPA for diblock copolymer 

solutions presented by Fredrickson and Leibler. 16 Our model, however, is different from 

that by Yeung et al. 13 in calculating the interaction matrix required for the RPA. In 

addition, we present a more rigorous comparison of theory with experiment. 

To calculate the interaction matrix, we use the recent perturbed-hard-sphere-chain 

(PHSC) equation of state20-25 that is applicable to normal fluids, nematic liquid 

crystals25 , and polymers, including copolymers. Contrary to the other models for 

diblock copolymer melts, 13, 15.16.19 however. the PHSC equation of state is an 

equation-of-state theory in continuous space. Therefore. \ve first discuss our procedure to 

combine the RPA with the PHSC equation of state for diblock copolymer melts. 

Our main objective is to represent first, parent pure homopolymer melts; second, 

mixtures of parent homopolymers: and third, diblock copolymer melts using the same set 

of pure-component and binary parameters. We also investigate the effect of pressure on 

the phase hehavior of diblock copolymer melts and that of mixtures containing parent 

hOl11opolYlllers. 

To present quantitative comparison of theory with experiment, we first regress the 

PHSC equation-of-state parameters for parent hOlllopolymers from pressure-volume­

temperature data for homopolymer mc1ts.24 The PHSC equation of state requires three 

parameters to represent thermodynamic properties of a homopolymer melt: segment 

diameter. number of segments per molecule, and the depth of the square-well potential 
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that represents the attractive interaction on a segment basis. Next, using the PHSC 

equation of state for binary homopolymer blends,24 one binary interaction parameter 

between copolymer segments is obtained from the coexistence curve for the binary blend 

containing parent homopolymers at ambient pressure. Finally. we predict the pressure­

dependence of microphase-separation-transition temperatures of styrene-based diblock 

copolymer melts. 

The present work considers only the stability of homogeneous compressible 

diblock copolymer melts in the weak segregation limit. Equilibrium structures of 

microphases are not discussed. 

II. Random-Phase Approximation (RPA) 

The RPA for diblock copolymer melts originally developed by Leibler15 provides 

a systematic procedure to calculate the Helmholtz energy density of ordered diblock 

copolymer melts. In this approach, the Helmholtz energy density of an ordered system is 

expanded around that of a disordered system in terms of the Fourier components of order 

parameters using the scattering functions. The scattering function matrix for real diblock 

copolymers consists of the scattering function matrix for ideal non interacting Gaussian 

diblock chains and the interaction matrix that represents interactions among segments. 15 

In the RPA for diblock copolymer systems, the Flory-Huggins lattice theory 18 is 

often used to compute the interaction matrix. In this work. however. we combine the 

RPA with the PHSC equation of state20-25 that is an off-lattice equation-of-state theory. 

In the PHSC equation of state, a polymer molecule is represented by a chain of tangent 

spheres that interact with spheres in another chain through repulsive and attractive 

interactions. 

1. Helmholtz Energy and Stability Limit. In continuous space of volume V, we 

consider a diblock copolymer melt containing N molecules of type 
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(1) 

where A and B are the segments comprising a diblock copolymer with diameters (IA and 

(IB' respectively; X is the number fraction of segment A: and r is the total number of 

segments per molecule. The number of segment A and that of segment B per molecule 

are rA=rX and rB=r{l-X), respectively. For a diblock copolymer. the numbers of a-fJ 

(a. f3=A, B) sequences per molecule are given by 

(2) 

Figure 1 shows a schematic of a diblock copolymer melt in continuous space. 

The average packing fraction of segment A is 7JA and that of segment B is 7JB; they are 

given by 

(3) 

\vhere p=N IV is the number density. The average total packing fraction 7J is given by 

(4) 

We follow closely the theory for incompressible diblock copolymer solutions 

developed by Fredrickson and LeibIer l6 that uses the Flory-Huggins lattice theory. The 

model by Fredrickson and Leibler 16 reduces to Lcihler's original model for 

incompressible diblock copolymer melts 15 by setting the numbcr of lattice sites occupied 

by solvent molecules equal to zero. For a compressible melt. the lattice sites occupied by 

solvcnt molecules are replaced by vacancies. The fraction of sites that is vacant is 

determined by the system's equation of state. 13 
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In the lattice theory of Fredrickson and Leibler, 16 the average volume fraction of 

segment A and that of segment B are denoted as lPA and lPB' respectively. In the present 

theory, packing fractions 1]A and 1]B correspond to volume fractions lPA and lPs in 

Reference 16. Therefore, the independent fluctuating fields in our model are <51]A (x) and . 
<5TJs(x) that correspond to <5lPA(x) and <5lPB(x), respectively, in Reference 16. Parameters 

<5TJA (x) and <51]s(x) represent the fluctuation in the packing fraction of segment A and that 

of segment B, respectively, at point x. 

We also define order parameters "'I and "'2 by 

where the angular brackets denote the thermodynamic average and 

wherefis the volume fraction of segment A per chain given hy 

.-
.r = __ '-'-·A!-O"...:...;A'---_ 

~ \ 

rAO";\ + rBO"iJ 

(5) 

(6) 

(7) 

Order parameter "'I describes the composition tluctuation of segment A for a 

fixed total packing fraction. Order parameter lfI2 represents the deviation of the total 

packing fraction from its average value. 

In this work, we consider only the stability of homogeneous diblock copolymer 

mdts in the weak segregation limit where the order parameters arc small. In that event, it 

is sufficient to retain only the second-order term in the expansion of the Helmholtz 
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energy density in the order parameters. l3 , 16 The Helmholtz energy density is given 

by 13, 16 

A -( A). I ""J dq m Vk T - Vk T '. + 2V L.,; --3 ~j (q)IjIj(q)Ip}-()) 
B B (.i1s i.j (2Jr) 

(8) 

where A is the Helmholtz energy; kB is the Boltzmann constant; T is the absolute 
(2) 

temperature; q is the scattering vector of magnitude q; r ij (q) is the second-order vertex 

function; and IP,{ q) is the Fourier transform of lfI,{x). The first term in the right-hand side 

of Eq. (8) is the Helmholtz energy density of a disordered system. 

The matrix for the second-order vertex function is a function of M given by Eq. 

(6) and the scattering-function matrix defined by 16 

(9) 

where S is the scattering-function matrix for the noninteracting Gaussian diblock chains 

and W is the interaction matrix defined later. These matrices are 2. x 2 matrices and the 

indices ij (i. j= I. 2) of their clements denote segment type with i= I and 2 referring to 

segments A and B. respectively. 

The elements of matrix S are functions of the modified Oebyc function as given 

hy Leibkr. 15. 16 Although the PHSC equation of state uses different segment diameters 

for chemically different segments. in calculating the scattering functions for 

noninteracting Gaussian diblock chains. we usc the expressions for the diblock chain 

consisting of a uniform segment size. The elements of matrix S are given by 15, 16 

(10) 
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(11) 

5 12 (q) = 521 (q) = t TV [g 1 ( 1, x) - g I (j: x ) - g I (I - f, x )J (12) 

where v is the average segment volume given by 

(13) 

In Eqs. (10) to (12), gl(f, x) is ~hemodified Oebye function given by 15, 16 

g I (f, X ) = 2, [ fx + exp( - fx ) - 1] (14) 
x-

wherefis the volume fraction of segment A per chain given by Eq. (7) and 

(15) 

where 1/ is the number of the statistical segments of (Kuhn) length I. The pair of 

parameters 1/ and I models the chain statistics of a real diblock copolymer by that of an 

ideal Gaussian chain. Segments A and B are assumed to have the same statistical 

segment length. In principle, as discussed by Tanaka et 01.,26 a unique pair of segment 

diameter and statistical segment length can be <l.ssigned to each segment to compute the 

scattering functions for noninteracting Gaussian diblock chains. For parent polymers 

studied in this work. segment diameters regressed by the PHSC equation of state are close 

to each other. Therefore. we usc the scattering functions for the diblock chain consisting 

of a uniform segment size. We assume that 1/ and 1 are given, respectively, by r (number 

of segments per molecule) and the average hard-sphere diameter. 

In matrix notation. the second-order vertex function is given by 
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nq) = (M-1 rS-1 
(q)M-1 (16) 

where matrices M andS are given by Eqs. (6) and (9), respectively. A disordered block 

copolymer melt becomes unstable against vanishingly small fluctuation in order 

parameters when the smallest eigenvalue of the matrix r becomes negative 13; the 

condition for stability of a disordered system is given in terms of the function F(q) 

defined by 13 

(2) (2) (2) (2) 
F(q) == TIl T22 - TI2 r21 > 0 (for any q) . (17) 

The essential step in combining the RPA with the PHSC equation of state is the 

calculation of the interaction matrix \V in Eq. (9). In theories based on the Flory-Huggins 

lattice theory, the elements of the interaction matrix are usually obtained by solving the 

RPA equations as shown by Fredrickson and Leibler l6 for diblock copolymer solutions. 

In terms of the Fourier transform. the RPA equations calculate the composition changes 

induced by the external potentials using the scattering functions for noninteracting 

Gaussian chains. 

In this work, we use an alternate procedure to obtain the interaction matrix. This 

procedure follows a thermodynamic relation between the scattering-function matrix and 

the Helmholtz energy density for multicomponent systems. The derivation of interaction 

matrix llsed here. however. is not discllssed by Fredrickson and Leibler 16 and by Yeung 

£'/ al. 13 for diblock copolymer solutions and melts. Therefore. we first propose a 

systematic procedure for computing the interaction matrix by reviewing the RPA 

combined with the Flory-Huggins theory for homopolymer blends and that for diblock 

copolymer melts. 
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2. Definition of the Interaction Matrix 

Our approach is based on the thermodynamic relation between the Helmholtz 
--I 

energy density for homopolymer blends and 8 (0). the inverse of the scattering-function 
--I 

matrix in the limit q~O. In homopolymer blends. the elements of matrix 8 (0) are 

equal to the second derivatives of the Helmholtz energy density with respect to the 

segment volume fractions. 27 

Consider first the RPA for compressible binary homopolymer blends combined 

with the Flory-Huggins theory.27 The RPA for compressible homopolymer blends was 

recently discussed by Bidkar and Sanchez27 using the lattice-fluid equation of state (i.e., 

a compressible flory-Huggins theory). Bidkar and Sanchez27• however, did not apply 

their theory to compressible diblock copolymer melts. In the RPA for homopolymer 

blends, the scattering function matrix is also expressed by Eq. (9) with S(q) representing 

the scattering-function matrix for non interacting Gaussian homopolymer chains. 

In the Flory-Huggins theory for binary homopolymer blends. the Helmholtz 

energy consists of two contributions::!7 the ideal Helmholtz energy that represents the 

translational entropy of polymers and the non ideal Helmholtz energy that describes 

interactions among segments. The second derivatives of the ilkal Helmholtz energy with 

respect to the segment volume fractions are identical to the elements of matrix 8-1 
(0), the 

inverse of the scattering-function matrix for noninteracting Gaussian homopolymer 

chains in the limit q~O. Therefore. by assuming that the clements of the interaction 

matrix Ware independent of q. these elements are identified as the second composition 

oerivatives of the nonideal Helmholtz energy density. 

We now consider the Flory-Huggins theory for incompressible diblock copolymer 

solutions oevcloped by Fredrickson and Leibler 16 and that for compressible diblock 

copolymer melts by Yeung eta!.13 In these systcms. the Helmholtz energy density is 

also separated into the ideal and non ideal Helmholtz cnergies that. respectively, represent 

the translational entropy of diblock copolymers and interactions among segments. The 
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nonideal Helmholtz energy density is next expressed in terms of lPA and lPs' the volume 

fraction of segment A and that of segment B, respectively. 

Although not shown here, the interaction matrix derived by Fredrickson and 

Leibler 16 and that by Yeung et al. 13 are identical to the matrices whose elements are the 

second derivatives of the relevant non ideal Helmholtz energy density with respect to lPA 

and lPs. These derivatives are taken by considering lPA and lPB to be independent 

variables. Based on this general relationship between the interaction matrix and the 

nonideal Helmholtz energy density in the Flory-Huggins theory, the RPA for A-B diblock 

copolymer melts may also be combined with the PHSC equation of state by the following 

procedure. 

Consistent with earlier studies. in the PHSC equation of state the Helmholtz 

energy density is also' separated into two contributions: the ideal Helmholtz energy that is 

identical to the contribution from the translational entropy of polymers in the Flory-

Huggins theory and the non ideal Helmholtz energy that represents interactions among 

segments. The non ideal Helmholtz energy is then expressed in terms of 17A and 17s by 

considering these variahles as imkpendent composition variahles. The interaction matrix 

is the matrix whose elements are the second composition derivatives of the non ideal 

l-klmholtz energy density. 

3. Interaction Matrix for the PHSC Equation of State 

Details of the PHSC equation of state are given in References 10 to 14. In the 

PHSC equation of state . .1A, the Helmholtz energy with respect to that in the standard 

state. is given by 

(18) 



The standard state is the ideal gas at system temperature and unit pressure. The leading 

term in the right-hand side of Eq. (18) is the configurational Helmholtz energy of an ideal 

gas. The terms denoted by subscripts ref and pert are the reference and perturbation 

terms, respectively; these terms represent repulsive and attractive interactions, 

respectively. The equation of state is obtained from the Helmholtz energy by 

(aM) 
p=p2 a~ T.N (19) 

where p is the pressure. 

There are two versions of the PHSC equation of state reported in the literature: the 

original mode121 -23 that uses a van der Waals-type perturbation term and the more recent 

model that uses the perturbation theory for the square-well fluid of variable well 

width. 24,25 In this work, we use the latter version of the PHSC theory because that 

model provides significant improvement in correlating thermodynamic properties of pure 

tluids and mixtures22,23. 

In the PHSC equation of state, parameter b represents the excluded volume on a 

segment has is. For diblock copolymers consisting of two types of segments A and B, 

parameter b is given by 

(20) 

_ _ I (1/3 1/3}3 
":\B - hBA - 8" h A + hs . (21) 

In terms of parameter b, the reference Helmholtz cncrgy is given by 
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(22) 

where the first term in the right-hand side of Eq. (22) represents the Helmholtz energy of 

hard-sphere mixtures prior to bonding to form a hard-sphere chain and the second term 

represents chain connectivity with r aJ3 (a. f3 =A. B) given by Eq. (2). In Eq. (22). 

functions Z and Q are given by 

2 

1 3 ~aJ3 1 ~aJ3 Z =-/ +--/ +--/ aJ3 11 I 2 2 2 2 3 3 
11 TJ 

(a. f3 =A. B) 

., 
3 ~aJ3 I ~~J3 

Qa n=-ln{l- TJ)+ ---+---
}J 2 1 - TJ 4 (1 _ 11)2 

where 

II =-In{I-11) 

,,-I 

1,,=-1 1+_1- 11 (11)2). 
1/- 11 _ 1 ,,-I 

(I - 11) 

(23) 

(24) 

(25) 

(26) 

(27) 

The perturbation term is based on the second-order perturbation theory for the 

squan:-\vcll tluid of variable well width presented in Reference 24. The square-well 

potential is defined by 
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I~R)= ( ~e (28) 

where u(R) is the pair potential; R is the intersegmental center-to-center distance between 

nonbonded segments; a is the hard-sphere diameter: £ is the depth of the well; and A. is 

the reduced well width. Although Reference 24 considers only homogeneous molecules 

consisting of one kind of segment (e.g., homopolymers), we also apply the perturbation 

terms given in Reference 24 to copolymers consisting of two kinds of segments by 

replacing parameters for homogeneous molecules by those for copolymers averaged over 

the copolymer composition. 

The perturbation term is given by 

(29) 

where A I and A:! are the first- and second-order perturbation terms. respectively, for the 

I-Idmholtz energy given by24 

(30) 

(31) 

where 

(32) 
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(33) 

where K'AB is an adjustable binary parameter. Equation (33) is used only to introduce an 

adjustable binary parameter. As shown later, the theoretical phase diagrams of polymer 

blends and those of diblock copolymcr melts are vcry sensitive to K'AB' The geometric 

mean of GA and GB cannot be used to predict GAB" The interaction parameter between 

segments A and B must be obtained by correlating thermodynamic properties of systems 

containing both segments A and B. 

In Eqs. (30) and (31), P is a function of 1] and A resulting from integration of the 

radial distribution function for hard spheres over the width of the well. In this work, the 

reduced well width A. is 1.455 for all fluids; A= 1.455 is the optimum value for methane 

with r= I. 24 Function P is obtained by fitting24 the analytic equation for P in the range 

of kil.$;2 given by Chang and Sandler28 to a polynomial function of 1]: 

(34) 

For ).= 1.-l55. Table I gives numerical coefficients ck. As shown in Reference 24, the 

optimum reduced well width (here A= 1.455) can be assigned to each segment combined 

\\·ith appropriate mixing rules for the perturbation term. 

As discussed in Reference 24. the quality of fits is sensitive to A when the 

equation-of-state parameters of a normal fluid are obtained from the saturated vapor 

pressure and liquid density of the saturated liquid. The PHSC equation of state, however, 

provides excellent correlations of homopolymer pYT data for several values of A. 

including A= 1.455. It is not possibk to obtain the optimum reduced well width based 

solely on the quality of fits of homopolymer pYT data. Therefore, we use the PHSC 
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equation of state with A= 1.455 that correlates very well both the thermodynamic 

properties of saturated liquids and pVT data of homopolymer melts. 

To calculate the interaction matrix for the RPA, the Helmholtz energy density is 

required. From Eq. (18), the Helmholtz energy density is given by 

(35) 

where r is the number of segments per molecule; v is the average segment volume given 

by Eq. (13); and 1] is the packing fraction given by Eq. (4). The leading term in the right-

hand side of Eq. (35) resembles the translational entropy of polymers in the Flory­

Huggins theory.I 3, 16,18 Therefore, the sum of the reference and perturbation terms in 

Eq. (35) are identified as the nonideal Helmholtz energy density for the PHSC theory. 

This nonideal Helmholtz energy is used to obtain the interaction matrix for the RP A. 

The next step is to express the non ideal Helmholtz energy density in terms of 1]A 

and 11B' the packing fractions of segments A and B. Using Eqs. (22). (30). and (31), the 

non ideal Helmholtz energy density is given by 

( AI) ( A., ) + -- + ----
VkB T pert VkB T pcn 

(36) 

\vhcre the subscript ref+per denotes the non ideal Helmholtz energy density consisting of 

the reference and perturbation terms for the PHSC theory and 
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(37) 

"] 4 ( ) 
2 EB - (1 - 1]) d'l' 

+ 1]SbA(k T) ( 2) '1'+ 1] a . 
B 1 +41]+41] 1] 

(38) 

In terms of 1]A and 1]s' ~af3 in functions Q and Z are given by 

Finally, the elements of the interaction matrix are given by 

w .. = ra2(~Lf+pcnl 
IJ ()1]~1] J j V. T. 'It 

(i,j= 1. :2) (40) 

where subscripts 1 and :2 denote segments A and B, respectively. Subscript 1]k denotes 

that the derivative with respect to 1]; is taken while the other 1]k;;:; is held constant. 

III. Results and Discussion 

We first note common shortcomings of molecular thermodynamic models, 

induding the PHSC equation of state. that become apparent when models are applied to 

fit experimental data for real systems. Although theories for polymeric fluids use 

molecular parameters that are independent of temperature and polymer molecular weight, 

the theoretical phase diagrams of mixtures do not always show quantitative agreement 

\vith experiment over the entire range of polymer molecular weight and temperature. In 
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addition, it is a challenging ta~k to correlate both UeST and LeST behaviors of polymer 

solutions and blends using only one adjustable binary parameter. To correlate 

quantitatively the phase diagrams of mixtures, it is often necessary to introduce a 

temperature dependence in the binary adjustabie parameter or to use several binary 

parameters. 

In equation-of-state theories for polymcr blcnds, the theoretical phase diagrams 

are also sensitive to pure-component parameters. To achieve quantitative correlations of 

the phase diagrams of mixtures by equation-of-state theories, the pure-component 

parameters of one polymer may be slightly adjusted from those that give the optimum 

correlations of pure-component data. 

1. Computation Procedure. To apply the PHSe equation of state to real diblock 

copolymer melts, theory requires three equation-of-state parameters for each of the parent 

homopolymers. The PHSe equation of state can then describe thermodynamic properties 

of a homopolymer melt: segment diameter G. well depth E. and riM where r is the number 

of segments per molecule and M is the molecular weight of polymer. To compute r for a 

given polymer. we use the weight-average molecular weight of polymer M\\,oo 

For homopolymers, the equation-of-state parameters arc regressed from pure­

component pressure-volume-temperature (pVT) data29-32 in the liquid state. Table 2 

gives the PHSe equation-of-state parameters with it=: 1.455 for common polymers studied 

in this \vork. For each homopolymer. these parameters were regressed from the pVT data 

over the entire liquid range reported in the literature. Experimental pVT data are usually 

collected to about 2000 bar. Except for poly(a-methylstyrene), the equation-of-state 

parameters givcn in Table 2 are those that give the optimum correlations of pVT data. 

In the present theory, we usc the optimum set of cquation-of-statc parameters 

regressed from experimental p VT data because there is no physical basis for representing 

the repeat unit of homopolymer by a single sphere. It is possible to establish correlations 
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between the chemical structure of homopolymer and the equation-of-state parameters that 

give the optimum correlations of homopolymer pVT data)3 

For poly(a-methylstyrene), we use another set of equation-of-state parameters 

because theory with these parameters correlates better the dependence of coexistence 

curves on the molecular weight of polymer in the blend polystyrene/poly(a­

methylstyrene). The equation-of-state parameters for poly(a-methylstyrene) were 

obtained by first presetting (j to a reasonable value and then regressing for e and riM. For 

all homopolymers including poly(a-methylstyrene), the PHSC equation of state provides 

excellent correlations of pure-component p VT data. 

The PHSC equation of state also requires adjustable binary parameter "'AS (in Eq. 

(33» that reflects the strength of attractive interaction between a pair of unlike segments 

A and B. In this work, parameter "'AS is obtained from the coexistence curve for the 

binary blend containing parent homopolymers. Details of the PHSC equation of state for 

homopolymer blends are given in Reference 24. 

With 1(AS obtained in this manner, the function F (q) defined by Eq. (17) is used to 

predict the stability limit for a disordered diblock copolymcr melt. The stability limit is 

defined as the extreme temperature when the temperature that satisfies F(q) = 0 is plotted 

against If. This extreme temperature is the order-to-disorder transition temperature of a 

Jiblock copolymer melt. Equation (17) expresses F (q) in terms of the second-order 

\"l~rtex functions defined by Eq. (16). In this work, the packing fraction of a disordered 

system is lIscd as the packing fraction in the second-order vertex functions. The packing 

fraction of a disordered system is calculated through Eq. (19) using Eqs. (22) and (29) as 

the refcrcnce and perturbation terms. respectively. for the Helmholtz energy. Unless 

othc["\visc specified. all calculations are made at zcro pressure. an excellent 

approximation for diblock copolymer mclts and homopolymer blends near atmospheric 

pressure. 
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2. Poly(styrene-block-a-methylstyrene). We first apply the model to poly(styrene­

block-a-methylstyrene) (PS-PMS) diblock copolymcr melts. Because the chemical 

structure of polystyrene (PS) is similar to that of poly(a-mcthylstyrene) (PMS), the 

homopolymer blend PSIPMS is one of few nearly compatible polymcr blends that exhibit 

UCST behavior in the temperature range accessible by standard experiments. The 

miscible blend of PS with PMS, however, does not exhibit LCST behavior at elevated 

temperature, probably because the disparity in compressibility between PS and PMS is 

not strong enough to induce phase separation at elevated temperature. All experimental 

data used here are those obtained with nearly monodisperse polymers having 

polydispersity indices of less than 1.09. 

Binary parameter K"AB between styrene and a-methylstyrene segments is obtained 

from coexistence curves for the homopolymer blend PS/PMS reported by Lin and Roe.34 

Figure 2a compares the theoretical coexistence curves with experiment for the system 

PS(Mw=49000) / PMS(Mw=56 100) and system PS(Mw=58400) / PMS(Mw=62100). The 

PHSC equation of state for binary homopolymer blends is given in Reference 24. Theory 

and experiment show good agreement using KAB=-O.000207. Consistent with 

experiment, theory predicts only UCST bchavior in the system shown in Figure la. 

Using binary parameter K"AB=-0.000207. we arc ready to predict the order-to­

disorder transition temperature TOOT for PS-PMS diblock copolymer melts that show 

UCOT behavior. Although precise measurements of TODT arc not reported for PS-PMS 

diblock copolymers, there are several PS-PMS diblock copolymers having different 

molecular weights and copolymer compositions that arc known to be either in the 

disordered or in the ordered state at a given temperature34. 

Figure 2b shows the locus of temperatures that satisfies F(q)=O for 

PS(Mw= 120000)-PMS(Mw= 135000) and PS(Mw= 130000)-PMS(Mw=50000) diblock 

copolymer melts studied by Kim and Han.3 5.36 The abscissa of Figure 2b is x and 

depends on the wave number q as defined by Eq. (15). The maximum temperature on the 
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curve is the order-to-disorder transition temperature; above that temperature, a disordered 

system is stable. In Figure 2b, the maximum temperature occurs at x=3.8 and 4.1 for the 

solid and broken curves, respectively. Using differential scanning calorimetry and 

rheological measurements, Kim and Han report that the order-to-disorder transition 

temperatures for the copolymers shown in Figure 2b should lie below the glass transition 

temperature for PMS, about 170 ·e)5,36 

Similar to other equation-of-state theories, our theoretical phase diagrams of 

polymer blends are also sensitive to binary. parameter K'AB' For the system 

PS(Mw=58400) / PMS(Mw=62100) shown in Figure 2a, the theoretical UeST with K'AB=-

0.000107 is about 140 ·e higher than that with K'AB=-0.000207. Similarly, for the 

diblock copolymer PS(Mw=120000)-PMS(Mw=135000) shown in Figure 2b, the 

theoretical UeOT with K'AB=-O,OOO 107 is about 120 ·e higher than that with K'AB=-

0.000207. 

The present model slightly overestimates TOOT for PS-PMS diblock copolymer 

melts. Kim and Han35 mention that when the RPA is combined with incompressible 

Flory-Huggins theory,. the prediction also overestimates TODT for PS-PMS diblock 

copolymer melts when the binary parameter is obtained from the phase diagrams shown 

in Figure 2a. As discussed by Fredrickson and Helfand37, a possible explanation for this 

behavior is the fluctuation effect that is not considered in the present model. For a given 

binary parameter between copolymer segments, the theory by Fredrickson and Helfand37 

(that includes the fluctuation effect) predicts TOOT associated with UCOT at a temperature 

lower than the TOOT predicted by the theory that neglects the fluctuation effect. The 

fluctuation effect is negligible only in the limit of infinite molecular weight of diblock 

copolymers) 7 Because the RPA calculation is a total prediction. agreement of 

theoretical prediction with experiment is encouraging. 
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3 .. Poly(styrene-block-butadiene). The order-to-disorder transition temperature 

associated with UeOT is also reported for a poly(styrene-block-butadiene) (PS-PBD) 

diblock copolymer melt by Zin and Roe.38,39 For PS-PBD dihlock copolymer melts, the 

binary parameter K"AB between styrene and butadiene segments is obtained from the 

cloud-point curves for the homopolymer blend PS/PBD reported by Roe and Zin.40 

Figure 3a compares the theoretical coexistence curves with experiment for the system 

PS(Mw=3500)IPBD(Mw=2660) and system PS(Mw=2400)/PBD(Mw=2660). Although 

theory quantitatively represents the dependence of UeST on the molecular weight of PS, 

the theoretical coexistence curves are narrow compared to experiment. 

Using K"AB=0.00917 obtained from Figure 3a, Figure 3b shows the locus of 

temperatures that satisfies F(q)=O for the PS(Mw=7600)-PBD(Mw=20400) diblock 

copolymer melt studied by Roe and Zin.38,39 In Figure 3b. the maximum temperature 

occurs at x=4.2. The theoretical TOOT is 215 °e that is about 70 °e higher than the 

measured TODT • For the PS-PBD diblock copolymer shown in Figure 3b, Han et al.41 

also report that the RPA combined with the incompressible Flory-Huggins theory predicts 

TODT at 221°C. Similarly, for the same diblock copolymer. the analysis based on the 

Hong-Noolandi theory by Baek et <1\.42 predicts TODT at about 215°C. 

In addition to the fluctuation effect,37 for PS-PBD dihlock copolymer melts, the 

discrepancy between theoretical prediction and measured TOOT may be caused by the 

uncertainty in binary parameter K"AB because K"AB bet\veen styrene and butadiene 

segments is obtained from the mixtures of oiigomers shown in Figure 3a. Furthermore, 

this discrepancy may also be due to the difference between the microstructure of PBD 

homopolymer used in Reference 40 and that of PBD hlock in the PS-PBD diblock 

copolymer studied in Reference 38 and 39. All polymers considered in Figures 3a and 3b 

are essentially monodisperse having polydispersity indices less than 1.13. 

For systems such as PS-PMS and PS-PBD diblock copolymer melts that show 

only UCOT hehavior. predicted order-to-disorder transition temperatures by the present 
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model may be close to those predicted by the RP A combined with the incompressible 

Flory-Huggins theory.1 5, 18,35 

4. Poly(styrene-block-n-butyl methacrylate). Next. we consider the poly(styrene­

block-n-butyl methacrylate) diblock copolymer melt that has recently been found to 

exhibit both an UeOT and a LCOT by Russell et a/. I 0-12 All experimental data in this 

section use deuterated polystyrene (PSD); the diblock copolymcr consisting of PSD and 

polY(Il-butyl methacrylate) (PBMA) is denoted as PSD-PBMA. Phase equilibrium 

calculations, however, are performed using the equation-of-state parameters for normal 

polystyrene. For theoretical calculations, the poly(styrene-block-Il-butyl methacrylate) 

diblock copolymer is denoted as PS-PBMA. 

Shortly after the discovery of both UCOT and LCOT behaviors in PSD-PBMA 

diblock copolymer melts, Hammouda et al. II used small-angle neutron scattering to 

show that the parent homopolymer blend PSD/PBMA exhibits both an UCST and a 

LCST in a temperature-composition diagram. These experiments on the system 

containing PSD and PBMA indicate that the phase behavior of a diblock copolymer melt 

that exhibits both an UCOT and a LCOT also follows closely the phase behavior of the 

hinary hlend containing parent homopolymers. 

Using the PHSC equation of state, our main objective here is to establish a 

quantitative relation bctween the phasc behavior of PS-PBMA diblock copolymer melts 

and that of hinary homopolymer blends containing PS and PBMA. To perform 

quantitative analysis. it is necessary to use a unique set of binary and equation-of-state 

parameters for diblock copolymcr melts as well as for parent homopolymer blends. 

Consistent with experiment. the PHSC equation of state predicts both an UCST 

and a LeST in a temperature-composition diagram for homopolymer blends containing 

PS and PBMA. Theory also predicts UeOT behavior as well as LCOT behavior in PS­

PBMA dihlock copolymer melts. Parts a and b of Figure 4 show, respectively, the 
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theoretical coexistence curves for the blend PSIPBMA and the locus of temperatures that 

satisfies F(q)=O for PS-PBMA diblock copolymer melts with K'AB=0.00782. In Figure 

4b. the maximum temperature occurs at x=3.8 for both diblock copolymers. The numbers 

in these figures are the molecular weights of homopolymers and the molecular weights of 

blocks comprising diblock copolymers in g/mol. Binary parameter K'AB was adjusted 

such that theory roughly agrees with experiment for both homopolymer blends9 and 

diblock copolymer melts 10,12 for the molecular weights shown in Figure 4. 

For the homopolymer blend PS/PBMA shown in Figure 4a, precise comparison of 

theory with experiment by Hammouda et al. l1 is difficult because the exact locations of 

cloud-point temperatures are not reported. In addition, the polymers used by Hammouda 

et al. II are polydisperse with polydispersity indices of about 2.0. Nevertheless, 

theoretical UCSTs and LCSTs are at least in semiquantitative agreement with experiment 

for the molecular weights shown in Figure 4a. l1 

The PSD-PBMA diblock copolymers studied by Russell et al. 1 0,12 are nearly 

monodisperse with polydispersity indices of less than 1.04. For the system 47000-block-

52000 in Figure 4b, theoretical UCOT and LCOT are about 20°C lower than those 

determined by rheological measurements. 12 The rheological measurements 12 on the 

sample 34500-hlock-33500 also indicate that this copolymer is in the disordered state 

from 100 to 275°C. Therefore, theory with K'AB=0.00782 may slightly underestimate 

LCOT and UCOT for PS-PBMA diblock copolymer melts. 

Figure 5 shows the theoretical TODT for PS-PBMA diblock copolymer melts as 

functions of polymer molecular weight and copolymer composition. The shape of curves 

in this figure resemble the coexistence curves for blends of parent homopolymers shown 

in Figure 441. However, the ordered region in Figure 5 is narrow compared to the two­

phase region in Figure 4a. 

Overall agreement of theory with experiment is encouraging for the system 

containing PS and PBMA. Using the same set of binary and equation-of-state 
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parameters, the PHSC equation of state shows semiquantitative agreement with 

experiment for the phase behavior of diblock copolymer melts as well as that for parent 

homopolymer blends. We conclude that within the prediction by the PHSC equation of 

state combined with the RPA, the LCOT and UCOT behavior for PS-PBMA diblock 

copolymer melts follows closely the LCST and UCST behavior for PS/PBMA 

homopolymer blends. 

For PS-PBMA diblock copolymer melts that exhibit both UCOT and LCOT 

behaviors, the RPA combined with the compressible lattice-cluster theory 19 and that 

combined with the lattice-fluid equation of state27 (i.e., a compressible Flory-Huggins 

theory) may also predict the results similar to those obtained with the PHSC equation of 

state. Although the PHSC equation of state correlates p VT data of homopolymer melts 

slightly better than the lattice-fluid equation of state and the compressible lattice-cluster 

theory,24,33 the latter theories are also capable of predicting both UCST and LCST 

behaviors in homopolymer blends. However, to provide a fair comparison of the PHSC 

equation of state with the above-mentioned compressible lattice theories, it would be 

necessary to perform consistent fitting procedures to obtain both the pure-component and 

binary parameters. 

5. Effect of Pressure. Finally, we consider the effect of pressure on the phase 

behavior of diblock copolymer melts and that of the binary blends containing parent 

homopolymers studied in this work. 

For diblock copolymer melts that exhibit UCOT behavior, the pressure 

dependence of TODT was recently measured for styrene-isoprene (S[).44 (ethylene­

propylene )-ethylethy lene (PEP-PEE),45 and (ethy lene-propy lene )-dimethy lsiloxane 

(PEP-POMS )46 diblock copolymers. The measured TODT shows complicated 

dependence on the pressure. While TODT for SI diblock copolymers rises with increasing 

pressure at a rate of about +20 ·C/kbar over the range 0 to 0.6 kbar,44 TOOT for PEP-PEE 
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diblock copolymers decreases with increasing pressure at a rate of about -20 ·Clkbar for 

pressures up to 1 kbar.45 On the other hand, ToOT for PEP-PDMS diblock copolymers 

first decreases and then rises with increasing pressure over the range 0 to 1.5 kbar.46 

A theoretical study by Dudowicz and Freed 19.4 7 investigated the effect of 

pressure on the phase behavior of diblock copolymer melts and that of binary blends 

containing parent homopolymers. Using the compressible lattice-cluster theory, 

Dudowicz and Freed 19 presented a semiquantitative analysis of systems containing PS 

and poly(vinyl methyl ether) (PVME). Both experiment and theory show that the 

homopolymer blend of PS and PVME exhibits LCST behavior. Although the phase 

behavior of PS-PVME diblock copolymer melts has not yet measured, the theory by 

Dudowicz and Freed 19 predicts that a disordered PS-PVME diblock copolymer melt 

exhibits disorder-to-order transition upon heating. Recently, Dudowicz and Freed47 also 

presented a more rigorous analysis of the homopolymer blend of PS and PVME by the 

compressible lattice-cluster theory. 

We now discuss the predicted pressure dependence of TODT by the PHSC equation 

of state. In the plot of temperature that satisfies F(q)=O. shown in Figures 2b, 3b, and 4b, 

* the extreme temperature (i.e .. TODT) occurs at x that is nearly independent of pressure. 

(.\ < is rdated to the wave number q * by Eq. (15).) Therefore. for each system, TOOT is 

computed as a function of pressure from the condition F (q *):0 using q * at zero pressure. 

We assume that binary parameter K'AB is independent of pressure. 

For systems containing PS and PMS discussed in Figure 2. part a of Figure 6 

shows the predicted pressure dependence of critical solution temperature (Tc) for a 

PS/PMS blend and that of TOOT for a PS-PMS diblock copolymer melt. These systems 

show UeOT behavior in the diblock copolymer melt and UeST behavior in the binary 

hlend of parent homopolymers. As the pressure rises, the predicted Tc and TOOT first 

decrease and then become almost independent of pressure. 

27 



For systems containing PS and PBD discussed in Figure 3, part b of Figure 6 

shows the pressure dependence of predicted Tc for a PSIPBD blend and that of TOOT for a 

PS-PBD diblock copolymer melt. These systems also show UCST and UCOT behavior. 

For the PS-PBD diblock copolymer shown in Figure 6b. the predicted TOOT rises with 

increasing pressure. Recent experiment by Hadjuk et (11.44 shows that for styrene­

isoprene diblock copolymers that exhibit UCOT behavior, the measured TOOT also rises 

with increasing pressure at a rate of about +20 °C/kbar over the range 0 to 0.6 kbar. 

Because the structure of isoprene is similar to that of butadiene, for styrene-diene diblock 

copolymers, there may be a general trend that TOOT associated with UCOT behavior rises 

with increasing pressure. 

For systems containing PS and PBMA shown in Figure 4, Figure 7a shows the 

predicted pressure dependence of Tc for a PSIPBMA blend (exhibiting both VCST and 

LCST behavior) and that of TOOT for a PS-PBMA diblock copolymer melt (exhibiting 

both VCOT and LCOT behavior). Figure 7b shows the predicted TODT as functions of 

pressure and copolymer composition for a PS-PBMA diblock copolymer with 

Mw=99000. In these systems. miscibility is enhanced by raising the pressure. There is a 

similar dependence on the pressure between the predicted TODT for a PS-PBMA diblock 

copolymer melt and the predicted Tc for a blend of parent homopolymers PS and PBMA. 

For systems containing PS and PBMA, the predicted LCST and TODT associated 

\vith LCOT behavior are very sensitive to the pressure. Our theory predicts that for a 

PS/PBMA blend. LCST rises with increasing pressure at a rate about +200 'C/kbar that is 

one order of magnitude larger than the measured rates for mixtures of ethylene-vinyl 

acetate copolymer with a chlorinated polyethylene48 and for the blend of PSD and 

PYME49 that also exhibit LeST behavior. Similarly. the analysis by Rudolf and Cantow 

shows that the lattice-tluid theory and the equation-of-state theory by Patterson also 

predicts a very large pressure dependence of LCST in polymer blends. 50,5 I 
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Conclusions 

The PHSC equation of state20-24 is combined with the RPA5,14-17 for diblock 

copolymer melts to represent UCOT behavior as well as LCOT behavior in compressible 

diblock copolymer melts. The present model follows closely the RPA for incompressible 

diblock copolymer solutions by Fredrickson and Leibler l7 based on the Flory-Huggins 

lattice theory. 18 

However, contrary to other models for diblock copolymer melts and 

solutions, 12, 15,16 we use an equation-of-state theory in continuous space. To 

demonstrate that off-lattice equation-of-state theories can also be combined with the 

RPA, a systematic procedure is first presented to combine the RPA with the PHSC 

equation of state for diblock copolymer melts. This procedure identifies the elements of 

the interaction matrix in the RPA as the second derivatives of the nonideal Helmholtz 

energy density with respect to the packing fractions of segments comprising a diblock 

copolymer. 

Theory is compared with experiment for several styrene-based diblock copolymer 

melts using the binary parameters obtained from the coexistence curve for the binary 

blend of relevant parent homopolymers. Using the binary parameter obtained in this 

manner, the order-to-disorder transition temperature of a diblock copolymer melt is 

predicted. For PS-PMS and PS-PBD diblock copolymer melts that show only VCOT 

behavior. the predicted order-to-disorder transition temperatures by the present model are 

close to those predicted by the RPA combined with the incompressible Flory-Huggins 

theory. IS, 18,35 

The advantage of the present model lies in its applicability to systems that exhibit 

LCOT behavior at elevated temperature due to the equation-of-state effect. Our model is 

also capable of predicting the effect of pressure on the order-to-disorder transition 

temperatures of diblock copolymer melts: 
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To demonstrate the present model's capabilities for representing LCOT behavior, 

our theory is applied to the PS-PBMA diblock copolymer melt that was recently found to 

show both LCOT and UCOT behavior. 1 0-12 The phase behavior of PS-PBMA diblock 

copolymer melts follows closely that of PSIPBMA homopolymer blends that exhibit both 

UCST and LCST behaviors in temperature-composition diagrams. Using the same set of 

binary and equation-of-state parameters, the PHSC equation of state, combined with the 

RPA, shows semiquantitative agreement with experiment for PS-PBMA diblock 

copolymer melts as well as for PS/PBMA homopolymer blends. 

Our model predicts that for a PS-PMS diblock copolymer melt, the theoretical 

TOOT decreases with increasing pressure. Conversely, theory predicts that for a PS-PBD 

diblock copolymer melt, TOOT rises with increasing pressure. For a PS-PBMA diblock 

copolymer melt, the theoretical TOOT associated with LCOT behavior and that associated 

with UCOT behavior rises and decreases, respectively, with increasing pressure. The 

predicted TOOT associated with LCOT behavior shows a strong dependence on the 

pressure that does not agree with limited experimental data concerning the pressure 

dependence of LCST behavior in polymer blends. 

For a given pair of homopolymers, it may be possible to predict the type of phase 

behavior (c.g .. UCST or LCST behavior) by the present theory with K"AB=O. However, 

quantitative predictions of phase separation temperatures require additional information 

to determine binary parameter K"AS because phase separation temperatures in polymer 

blends and diblock copolymer melts are highly sensitive to KAB" 
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Table 1. Coefficientsck for Function 'l'with A.=1.4S5 

C1 0.6934288007E+OO 

c2 0.1 031329977E+0 1 

c3 0.3231430915E+00 

c4 - 0.7601028313E+00 

Cs - 0.1898718617E+Ol 

c6 - 0.1 1 29836508E+0 1 

c7 - 0.5829453430E+00 

cg - 0.4161049123E+Ol 

c9 - 0.8040279885E+0 1 

CJO 0.2470320458E+02 

Table 2. Equation-of-State Parameters for Homopolymers with A.=1.445 

% rms a 

deviation 
0 

Pol~mer riM (mol/~) a(A) Elku (K) Plig ref b 

poly(cis-l,4-butadiene) 0.03382 3.631 329.2 0.07 29 (63)C 

polystyrene 0.02123 4.059 409.9 0.09 30 (69) 

poly(a-methylstyrene) 0.02188 3.965 414.5 0.15 31 (86) 

~ol~(Il-buth~1 methacrylate) 0.02942 3.595 311.5 0.24 32 (168) 

a root-mean-square relative deviations. b Reference. C Numbers in parentheses indicate 

numbers of data points used in the correlations. 
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Figure Captions 

Figure 1. Schematic of a diblock copolymer melt consisting of segments A and B 

represented by filled and open spheres, respectively, in continuous space. 

Figure 2. (a) Comparison of theoretical coexistence curves with experiment for the 

system polystyrene/poly(a-methylstyrene)34 (PS/PMS,KAS=-O.OOO207). (b) 

Predicted locus of temperatures that satisfies F (q)=O for poly(styrene-block-a­

methyl styrene) (PS-PMS) diblock copolymer melts35 as a function of x 

defined by Eq. (15). The maximum on the curve shown in part b is the 

predicted order-to-disorder transition temperature T ODT associated with 

VCOT. The diblock copolymers shown here have TOOT below the glass­

transition temperature of PMS, about 170°C. 

Figure 3. (a) Comparison of theoretical coexistence curves with experiment for the 

system polystyrene/polybutadiene40 (PS/PBD. 1\~.\B=0.00917). (b) Predicted 

locus of temperatures that satisfies F (q)=O for a poly(styrene-block-butadiene) 

(PS-PBD) diblock copolymer melt35 as a function of x defined by Eq. (15). 

The maximum on the curve shown in part b is the predicted order-to-disorder 

transition temperature associated with VCOT, about 70°C higher than the 

measurement by Zin and Roe.38,39 

Figure 4. Theoretical phase diagrams for systems containing polystyrene (PS) and 

poIY(Il-butyl methacrylate) (PBMA) with KAB=O.00782. (a) Coexistence 

curves for the homopolymer blend PS/PBMA. (b) Predicted locus of 

temperatures that satisfies F(q)=O for PS-PBMA diblock copolymer melts. 

The maximum and minimum on the curve shown in part b are the predicted 
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UCOT and LCOT, respectively. For the 47000-block-52000 diblock 

copolymer in part b, theoretical UCOT and LCOT are about 20 ·C lower than 

those determined by rheological measurements.1 2 The numbers in these 

figures denote the molecular weights of parent homopolymers and those of 

blocks comprising diblock copolymers in g/mo!. 

Figure 5. Theoretical TOOT for PS-PBMA diblock copolymer melts as functions of 

polymer molecular weight and copolymer composition. 

Figure 6. Predicted pressure dependence of critical solution temperature (Tc) for a 

parent homopolymer blend and that of the order-to-disorder transition 

temperature (TOOT) for a diblock copolymer melt: (a) Systems containing PS 

and PMS shown in Figure 2, (b) Systems containing PS and PBD shown in 

Figure 3. These systems exhibit UCST and UCOT behavior. K'AB is 

independent of pressure. 

Figure 7. (a) Predicted pressure dependence of critical solution temperature (Tc) for a 

PS/PBMA blend and that of the order-to-disordcr transition temperature 

(TODT) for a PS-PBMA diblock copolymer melt shown in Figure 4. (b) 

Theoretical TODT as functions of pressure and copolymer composition for a 

PS-PBMA diblock copolymer with Mw=99000. Ii."AB is independent of 

pressure. 
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