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Robust estimation of hydrogeologic model parameters 

Stefan Finsterle and Julie Najita 

Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley 

Abstract. Inverse modeling has become a standard technique for estimating 

hydrogeologic parameters. These parameters are usually inferred by minimizing the sum of 

the squared differences between the observed system state and the one calculated by a 

mathematical model. The robustness of the least-squares criterion, however, has to be 

questioned because of the tendency of outliers in the measurements to strongly influence the 

outcome of the inversion. We have examined alternative approaches to the standard least

squares formulation. The robustness of these estimators has been tested by means of Monte 

Carlo simulations of a synthetic experiment, in which both non-Gaussian random errors and 

systematic modeling errors have been introduced. The approach was then applied to data 

from an actual gas-pressure-pulse-decay experiment. The study demonstrates that robust 

estimators have the potential to reduce estimation bias in the presence of noisy data and minor 

systematic errors, which may be a significant advantage over the standard least squares 

method. 

Introduction 

Inverse modeling has become a standard technique for estimating hydrogeologic 

parameters. The predictions calculated with a mathematical model are matched to a set of 

observations by adjusting parameters that are considered unknown or uncertain. The 

parameters that best reproduce the observed data are believed to be the most likely ones. This 

intuitive approach can be formalized by making certain assumptions about the distribution of 

the measurement errors, yielding a likelihood function that has to be m~imized to obtain the 

best estimate parameter set. For example, if each data point has a measurement error that is 

random and normally distributed around the true system state, it can be shown that 

minimizing the sum of the squared weighted residuals leads to a maximum likelihood 

estimator of the unknown parameters (see, for example, Bickel and Doksum [1991]; Carrera 

and Neuman [1986]). 

Reviews of parameter estimation procedures in groundwater hydrology by Yeh [1986], 

Kool et al. [1987], Carrera [1987], Sun [1994], and McLaughlin and Townley [1996] reveal 



that the weighted least-squares criterion is almost exclusively used as the performance mea

sure to be minimized. The normality assumption of the measurement error is often justified 

by referring to the central limit theorem, which states that the distribution of a large number 

of small random measurement errors converges to a normal distribution. Furthermore, the 

normality assumption allows one to calculate confidence intervals of the estimated parameters 

and perform tests for significance. Finally, a large number of algorithms have been 

developed specifically for the minimization of sums of squares [Gillet al., 1981]. 

It is interesting to recall that Carl Friedrich Gauss introduced least squares during the last 

decade of the eighteenth century without giving a probabilistic justification of the method. In 

1809 he showed that if the errors are normal, then least squares gives maximum likelihood 

estimates. His reasons for assuming normality, however, were tenuous, and he rejected the 

approach again in 1821. Instead, he cites practical reasons for choosing the square as a 

"measure of loss," and freely admits that the choice is quite arbitrary (see Gauss [1821], p. 

8). In the same publication he proves the minimum variance theorem for linear models, 

which does not depend on the distribution of the errors. 

Despite its popularity, an estimate based on least squares has the drawback of being 

significantly affected by violations of the underlying distributional assumptions. In 

particular, the presence of outliers in the data may lead to poor matches of the "good" data, 

which induces a bias of the estimated model parameters. Given the fact that field 

measurements show many more outlier points than one would expect from the tail of the 

normal distribution, their potential impact on inverse modeling results should be carefully 

assessed. This brings us to the issue of robustness. An estimator that is insensitive to small 

departures from the underlying assumptions is considered robust. While the problem of 

robustness is well recognized in statistics [Andrews et al., 1972; Huber, 1981], only a few 

alternative approaches to least squares have been proposed for applications in the earth 

sciences. Claerbout and Muir [1973], Vasco [1991], Rosa and Horne [1991], and Xiang et 

al. [ 1993] used the Lt-norm, i.e., the sum of the absolute residuals, as the criterion for 

minimization, explicitly referring to the issue of robustness. Vasco et al. [1994] used the 

LP -norm for the inversion of seismic travel times with non-Gaussian errors, where they 

determined the optimal value of p from the kurtosis of the data error distribution. 

In this paper we discuss the impact of errors on the solution of inverse problems in 

multi phase flow modeling, and explore the performance of robust estimators in comparison 

to the standard least-squares method. We are interested in estimating hydrogeologic parame

ters of two-phase flow systems. The governing equations describing non-isothermal flow of 

gases and liquids in porous media are highly nonlinear in the parameters, which makes the 
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corresponding optimization problem nonlinear as well. Standard algorithms developed for 

nonlinear least-squares optimization (see Gillet al. [1981]) seem capable of minimizing the 

modified objective functions. We therefore focus on the issues of estimation bias, outlier 

identification, and a posteriori error analysis rather than the minimization algorithm. 

We first give a summary description of the forward problem and the numerical model 

used to simulate multiphase flow experiments. We then review the basic concepts of robust 

parameter estimation. Finally, we discuss inversions of synthetically generated data with 

various error distributions using the proposed robust estimators. 

The Forward Problem 
One of the most important elements in parameter estimation by data inversion is the 

forward operator, i.e., the mathematical model that relates the parameters to the observables. 

This model can be a simple regression equation, a closed-form analytical solution, or a 

sophisticated numerical simulator. The purpose of the forward model is to explain the 

systematic part of the observed system state, i.e., it must be able to accurately describe the 

physical behavior of the system under the conditions prevailing during data collection. This 

requirement makes the development of the forward model the most crucial step in parameter 

estimation. Any systematic error in the calculated system state immediately leads to a bias in 

the estimated parameters that may be much larger than any uncertainty from random errors in 

the data. 

We use the TOUGH2 code [Pruess, 1991] as the forward model to simulate multiphase 

fluid flow in porous media. We consider flow of two components 1C (water and air) in two 

phases f3 (liquid and gas). The mass balance equations for an arbitrary subdomain Vn 

bounded by the surface r n can be written in the following integral form: 

fr f MdV= fF·ndr+ f qdV 
vn rn vn 

(1) 

The accumulation term M represents mass of component 1C ( K:=w: water; K:=a: air) per unit 

volume: 

(2) 

Here t/J is porosity, s13 and Pp are the saturation and density of phase f3, respectively, and 

x; is the mass fraction of component 1C in phase f3. The mass flux term consists of 

contributions from the liquid (/3=1) and gaseous (/3=g) phase: 
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(3) 

where the following multi phase version of Darcy's law governs the phase fluxes: 

(4) 

Here, k denotes the absolute permeability, kr/3 is relative permeability, f.lp is dynamic 

viscosity, Pp is the pressure of phase {3, and g is the acceleration of gravity vector. In 

Eq. 1, n is the inward unit normal vector, and q represents sinks and sources. 

The continuum equations (1) are discretized in space based on an integral finite difference 

formulation. Time is discretized fully implicitly as a first-order finite difference. 

Discretization results in a set of nonlinear coupled algebraic equations solved simultaneously 

by means of Newton-Raphson iterations. A conjugate gradient method is used to solve the 

linear equations arising at each iteration. For more details see Pruess [1991]. 

Robust Estimators 
When performing inversions based on noisy data, we have to be concerned about the 

distributional robustness of the estimator. An estimator is considered robust if it is relatively 

insensitive to small deviations of the underlying distribution. Data can be represented by a 

statistical model of the form 

(5) 

Here, 4 * is the observed value at a calibration point i, and 4 'is the corresponding modeling 

result, which is a function of the unknown parameter vector p. The residual is the sum of 

the error in the model m and the data d. Both modeling error and data error have a 

systematic component b and a random component E. For the discussion that follows, we 

prefer to distinguish between systematic and random errors regardless of their source because 

it is usually not relevant or possible to identify whether a deviation between the model 

prediction and the data is attributable to an error in the data or the model. The systematic 

error in the residuals is denoted by br = bd - bm, and the random part is termed Er = Ed - Em. 

In most cases, Ibm!>> lbdl• whereas !Em!<< !El 

Given these definitions, the classical assumption can be described as follows: (i) Er are 

independent, (ii) Er are normally distributed with mean zero and variance a;, and (iii) there 

are no systematic errors, i.e., br = 0. 
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We will discuss two types of violations of the standard assumption. The first considers 

random errors that do not follow a Gaussian distribution. This might occur if the error 

distribution is contaminated by a few large outlier~. Since the number of data points used in 

an inversion is finite, even a small number of deviate points cause the least-squares fit to be 

distorted, leading to parameter estimates with low precision. A similar effect occurs if the 

error distribution is heavy-tailed, for example, if a Gaussian distribution is contaminated by a 

large number of relatively small outliers. 

The second type of violation occurs in the presence of systematic errors which usually 

yield an asymmetric distribution of the residuals. If certain portions of the data exhibit a 

systematic error, the corresponding residuals are likely to become deviate points. However, 

if the entire data set or model is flawed, such errors cannot be mitigated by using robust 

estimators. Local systematic errors are usually associated with observations at early or late 

times during a transient experiment where inconsistent initial or boundary conditions result in 

systematic deviations between the data and the model prediction. Furthermore, a data set 

from a specific sensor, which is either defective or placed in a unit that is poorly represented 

in the model, may corrupt the inversion. Note that these types of systematic errors may not 

appear as obvious outliers and are therefore difficult to identify. 

Before we introduce the robust estimators, we would like to emphasize that the main 

effort in estimating parameters by inverse modeling should be placed on avoiding systematic 

errors and minimizing random errors. The robust estimators presented here do not exempt 

the experimentalist and modeler from a comprehensive test design, careful execution of the 

experiment, accurate model development, and conscientious analyses of the inverse modeling 

results. However, systematic errors in the conceptual model and non-Gaussian random 

errors in the data are inherent in inverse modeling, and the problems associated with 

systematic errors seem to be accentuated rather than alleviated by the use of the standard 

least-squares estimator. 

An overview of robust statistical procedures with mathematically rigorous definitions of 

their underlying concepts can be found in Huber [1981, 1996]. In this paper, we follow a 

more intuitive approach and introduce the robust estimators by discussing their common 

property of reducing the weight of deviant points. The performance of the robust estimators 

is illustrated and compared to the method of least squares using synthetically generated data. 

Finally, we will discuss an application of the method to previously analyzed data from a 

laboratory experiment. 

Fitting a model to data for parameter estimation can be formulated as a minimization 

problem of the form 
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m 

minimize S = L CO(Y;; P) (6) 
i=I 

Here, co is an arbitrary loss function, "':hich is a function of the weighted residuals 

Zj * -z·(p) Y·= I 
I G; 

(7) 

where G; is the me'asurement error assumed to be independent, and m is the total number of 

calibration points. At the minimum of S, the derivatives of the objective function (6) with 

respect to the parameters pi vanish 

j=1, ... ,n (8) 

where the function 'I' is defined as the derivative of the loss function, 'I' = ()co I (}y. 

It is important to realize that the loss function co is arbitrary. Its· choice can be based on 

probabilistic considerations, with co being the negative logarithm of the joint probability 

density function. When adopting this viewpoint, the parameters p = p of a model y(p) that 

minimize (1) are the maximum-likelihood estimates for p. For example, if the errors are 

normally distributed, the loss function can be directly derived from the joint Gaussian 

distribution to be co(y) = (1 I 2)/ and 'fl(y) = y, which yields the standard weighted least

squares method (see, for example, Carrera and Neuman [1986]). Note that the 'I' function 

serves as a weighting function in (8). It can be seen that least squares assigns greater 

weights to increasingly deviant points, reflecting the assumption that outliers are very 

unlikely according to the normal distribution. Consequently, if we suppose that the weighted 

residuals follow a distribution with a longer tail, that is with a somewhat larger probability of 

encountering points removed fro~ the central region, we should choose a 'I' function that 

yields decreasing relative weights for deviant points. It is expected that reducing the weight 

of outliers makes the estimator more robust. 

Many functions with the desired properties have been proposed in the literature (see 

Andrews et al. [1972]). Some are maximum-likelihood estimators for known error 

distributions, whereas others do not correspond to a standard probability density function. 

We have selected five estimators for this study. They include (i) least squares (LS), (ii) least 

absolute deviates (LAD) or L1-estimator, (iii) the maximum-likelihood estimator for 

measurement errors following a Cauchy ·distribution, (iv) one of the robust estimators 

proposed by Huber, and (v) the Andrews estimator. Their functional forms are summarized 
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in Table 1. The loss function m(yi) of the five estimators is shown in Figure 1 with the 

parameter c = 1 for the Huber and Andrews estimator. 

Note that for the Andrews estimator, observations with weighted residuals larger than c;c 

are considered to be true outliers and are not counted at all in the estimation of the parameters. 

This property may lead to difficulties when using the Andrews estimator in a non-linear 

optimization problem where the initial guess Po is far away from the best estimate, in which 

case the initial residuals are too large. As a consequence, the gradient of the objective 

function becomes unstable, making it difficult for the minimization algorithm to converge. It 

is therefore suggested to first perform a standard least-squares fit before switching to the 

Andrews estimator. 

The robust estimators have been implemented into the ITOUGH2 code [Finsterle, 1997]. 

ITOUGH2 solves the inverse problem for TOUGH2 models. With ITOUGH2, any 

TOUGH2 input parameter can be estimated based on any type of observation for which a 

corresponding TOUGH2 output variable is calculated. Different algorithms are available to 

minimize the objective function. 

Table 1. Estimator, Loss Function, and 1{1 Function 

Estimator 

Distribution 

Least squares 

Gaussian 

L 1-estimator 

Double exponential 

Cauchy 

Cauchy 

Huber 

@ 

Andrews 

@ 

loss function m 

1 2 
m=zY 

m=lyl 

m-{ //2 t lyl~c 
- clyl- c2/2 or lyl> c 

m _ {1- cos(y I c) fo lyl~ c1C 
- 2 r lyl> c;c 

@ No standard probability distribution available 
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1jf function 

ljl=y 

Ill = { 11 for y > 0 .., - y<O 

Ill- y .., - 1 2 
1+ 2y 

1jf = {Yc for G,~ ~c 
c y>c 

111 _ {sin(y I c) t lyl~ c1C 
.., - 0 or lyl> c1C 



Figure 1. Loss function m of five estimators as a function of the weighted residual 

Performance Comparison 
In this section, the performance of the robust estimators in comparison with the standard 

least squares method is demonstrated using synthetically generated data sets. The reason for 

performing synthetic inversions is that the conceptual model, as well as the error structure, 

are known and can be varied to test different hypotheses. An application to real data will be 

discussed in the next section. 

We consider a simulated laboratory experiment in which water is injected at a constant 

pressure into a one-dimensional, horizontal column filled with uniform, partially saturated 

sand. The synthetic data include flow rate measurements at the inlet and pressures observed 

at the center of the column. The duration of the experiment is 10 minutes, with a sampling 

interval of 30 seconds. In order to simulate measurement errors, the calculated flow rates 

and pressures are perturbed by a random value drawn from a prescribed probability 

distribution. 

It is important to realize that no systematic errors have been introduced so far. In this 

synthetic experiment, the conceptual model, the governing equations, the functional form of 

the relative permeability and capillary pressure curves, etc. are known and free of errors. 

The only unknowns are two parameters selected for estimation, namely the porosity ¢> and 
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the initial gas saturation in the sample, Sgi· The true values used for generating the data are 

f/J = 0.35 and Sgi = 0.30. 

il\~~ 
Time 

Figure 2. Schematic of synthetic laboratory experiment. 

It is the purpose of this study to examine the performance of various estimators in the 

presence of errors e = z * -z that are not normally distributed. A distribution with 

pronounced tails is the Cauchy distribution 

(9) 

Since the forward model is a strongly non-linear function of the parameters, and since we 

consider a non-Gaussian error distribution, no analytical solution can be provided for the 

expected distribution of the estimates. Monte Carlo simulations are performed instead. We 

generated 200 realizations for each data point, zk * = z + ek, k = 1, ... ,200, where the scaling 

factors for the flow and pressure measurements are aq = 5 mllmin and aP = 200 Pa, 

respectively. Figure 3 shows the true, simulated flow rate and pressure response, and one of 

the 200 hypothetical data sets that will be used for estimation by inverse modeling. Note that 

no obvious outliers are present that could easily be removed by screening the data. 
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Figure 3. True system response Oines) and one set of perturbed data (symbols) used for 

parameter estimation. 

Initial guesses different from the true values were assigned to the two unknown 

parameters l/J and Sgi, and the Levenberg-Marquardt algorithm was used to minimize the 

objective function, yielding an estimated parameter set for the given data set. The procedure 

was repeated 200 times for each realization of a synthetic data set, and the solutions were 

plotted in the two-dimensional parameter space. 

Performing Monte Carlo simulations in this fashion is a means to map out the full 

probability distribution of the parameter estimates in n dimensions. Figure 4 shows the 

family of solutions for the least squares fit. The sample mean is identical with the true 

parameter values, confirming that the least squares estimator is unbiased. The sample 

covariance matrix is visualized as an ellipse. Its size is a measure of estimation uncertainty. 

Because the estimates are not normally distributed, the ellipse does not correspond to a joint 

confidence region on a given confidence level that can be easily calculated from the sensitivity 

matrix. The same restriction applies to the robust estimators discussed below. 

Figure 5 shows the set of solutions for the Ancfrews robust estimator. The solutions are 

more tightly clustered about the true parameter set, which is correctly identified. Recall that 

in almost all applications, only one realization of the data is available for parameter 

estimation. Under the presumption that deviate points are more frequently encountered than 
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predicted by the normal distribution, using the robust estimator increases the chance of 

obtaining estimates that are close to the true parameter set. The results also obtained with the 

other robust estimators are summarized in Table 2, showing that all estimators are unbiased, 

and that smaller uncertainties are obtained with estimators that more strongly reject deviate 

points. 

Table 2. Sample Statistics of Inverse Modeling Results for Five Estimators 

Mean ifJ 

Mean Sgi 

Std. dev. ifJ 

Least Squares L1-Estimator 

0.349 

0.301 

0.026 

0.352 

0.301 

0.023 

Std. dev. Sgi 0.013 0.011 

# Parameter C=l.O for Huber estimator 

& Parameter C=0.5 for Andrews estimator 

Huber Cauchy 

Estimator# 

0.352 

0.301 

0.021 

0.010 

Estimator 

0.352 

0.301 

0.'020 

0.010 

Andrews 

Estimator& 

0.350 

0.301 

0.018 

0.008 

The reduction in variability of the robust estimators as compared to least squares is 

relatively minor in this first case where no obvious outliers or systematic errors are present. 

Recall that the purpose was to demonstrate that the robust estimators are unbiased, and that 

they are less affected by deviate points than the standard method. The reduction in estimation 

uncertainty (compare Figures 4 and 5) can be deemed satisfying, considering that the 

distribution of the. synthetic data is symmetric and close to normal. 
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Figure 4. 

0.35 

0.34 

0.33 

= c 
0 0.32 

• .-4 

~ c 
1-t 0.31 

~ 
Cf) 

0.30 

~ 0.29 
•.-4 ..... 
•.-4 

0.28 = 1-4 

0.27 

0.26 

0.25 
0.28 

c c 

c 

0.30 0.32 

Measurement Error: Cauchy 
Estimator: Least Squares 

c 

0.34 0.36 

Porosity 
0.38 0.40 

c 

c 
c 
c 

0.42 

Solutions from 200 least-squares fits to hypothetical data sets with 

measurement errors following a Cauchy distribution. 

0.35 

0.34 

0.33 

= 0 0.32 
•.-4 

~ 0.31 1-t 

~ 0.30 
Cf) - 0.29 ~ 
•.-4 ..... 
•.-4 

0.28 = 1-4 

0.27 

0.26 

0.25 
0.28 

c 

0.30 0.32 

Measurement Error: Cauchy 
Estimator: Andrews 

c 

0.34 0.36 

Porosity 
0.38 0.40 0.42 

Figure 5. Solutions from 200 fits to hypothetical data sets with measurement errors 

following a Cauchy distribution using the Andrews robust estimator. 
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Next we examine the performance of the robust estimators in the case where a systematic 

error is present. Systematic errors in either the data or the model almost always lead to an 

error in the estimated parameters. It is likely that part of the modeling errors can be 

compensated for by moving the parameters away from their true values. For example, it is 

possible to counteract phase dispersion effects by reducing the parameter controlling capillary 

strength of the soil [Pruess, 1996]. Predictions of saturation distributions may be more 

reliable when using a biased parameter value obtained from inverse modeling rather than the 

true value, provided that the latter is known at all. While the parameters estimated by data 

inversion can be considered optimal for the given model, and are thus the preferred ones for 

predictions based on a similar conceptualization, these model-related parameters may not be 

adequate when used in an application with a different model structure. It is imperative that 

any systematic errors be eliminated as completely as possible. However, a systematic 

component will almost always remain in the final residuals after an inversion due to an 

incomplete representation of all aspects of a hydrological system .in a numerical model. For 

these cases we test the performance of the robust estimators in comparison with least 

squares. 

In order to introduce a systematic error into our synthetic data, we rotated the column by 

90 degrees in the simulation, and allowed the water to redistribute under gravity for five 

minutes. The column is brought back into horizontal position, before synthetic data were 

generated as described above (see discussion of Figure 2). While the average saturation in 

the column is unchanged by the manipulation of the sample, there are now slightly higher gas 

saturations near the inlet, and slightly lower saturations near the outlet of the column. The 

synthetic data are then inverted with a model that assumes uniform initial gas saturation. This 

type of error (non-uniform initial saturation) is likely to occur even under well-controlled . 

laboratory conditions. Note that the error could be attributed to the data (the sample was not 

handled properly prior to testing), or it could be seen as a modeling error - that is, the 

simplifying assumption of uniform initial conditions is not adequate, and should be replaced 

by a refined model with varying saturations along the column. Because it is the residuals that 

are minimized during the inversion, the distinction between measurement error and modeling 

error is irrelevant, and it is a matter of convenience whether more effort should be placed on 

achieving well-controlled experimental conditions, or whether a more sophisticated model 

should be developed to capture potential flaws in the experiment. 
_), 

Gaussian noise was added to the synthetic data to simulate random measurement errors, 

and 200 inversions were performed with each of the five estimators. The results are 
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visualized in Figure 6. The true parameter set is indicated at f/>=0.35 and Sgi = 0.30. Note 

that Sgi is here interpreted as the true average saturation at the beginning of the experiment. 

Using the method of least squares results in a porosity estimate of l/J = 0.411 and an 

initial gas saturation of Sgi = 0.283. The porosity estimate is significantly biased due to the 

systematic error. The higher gas saturation near the inlet of the column is partly compensated 

for by an increase in porosity. The impact of higher gas saturation near the inlet is restricted 

to early-time pressure and flow rate data, and could also be accounted for by an increase in 

the estimate of Sgi· However, the data are much more sensitive to initial gas saturation, 

which affects both relative permeability and storativity of the sample. Overall, the two 

parameters are negatively correlated, as can be seen from the orientation of the cloud of 

inverse modeling results (see Figures 4, 5, and 6). Physically, the negative correlation is a 

result of the fact that the pressure at the observation point responds according to the sample's 

diffusivity. Diffusivity decreases with an increase in porosity. It also decreases with an 

increase in initial gas saturation due to both the strong reduction in relative liquid permeability 

and the increase in storativity. In other words, if one parameter is increased, the other has to 

be decreased in order to yield a similar average system behavior. As a result of this 

correlation structure and the relative sensitivity of the two parameters, the systematic error in 

the early-time residuals reduces the estimate of initial gas saturation by a relatively small 

amount. 

The robust estimators result in mean estimates that exhibit a smaller bias compared to the 

least squares solution. Note that one cannot expect to identify the true parameter set because 

a systematic error is indeed present and will thus affect the estimates regardless of the 

estimator being used. It is only a question of how strongly the deviate points at early times 

deflect the estimates from the expected parameter set. Furthermore, the estimated uniform 

initial saturation is conceptually different from the true initial average saturation of 0.30. 

The solutions indicated in Figure 6 seem to be aligned along the direction in the parameter 

space that is least constrained, following the correlation structure discussed above. The 

results of the robust estimators are further away from the least-squares solution and closer to 

the true parameter set according to the amount of weight given to deviate points. 

Consequently, the Huber estimator lies in between the L 1-estimator and least squares, and the 

Cauchy estimator with a decreasing weight with increasing deviation performs even better. 

The Andrews estimator, which cuts off all points with a residual greater than c times the 

prior standard deviation, moves closer to the true parameter set with decreasing c-value. 

However, the smaller c means that fewer data points are actually used in the inversion, hence 

trade-off for this reduction in bias is an increase in estimation uncertainty. 
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It is important to realize that the robust estimators perform favorably only for a certain 

type of systematic error. The systematic error has to be constrained to a relatively small 

subset of the available data. This subset may consist of early-time or late-time data showing 

effects from inappropriate initial and boundary conditions, or of data from a single faulty 

sensor. If the majority of the data is corrupted, however, the robust estimators are not 

expected to perform better than least squares, and may in fact bias the solution towards the 

wrong parameter set by discarding the good data. Nevertheless, we believe that the robust 

estimators have a potentially significant advantage over the standard least-squares method in 

many applications, as will be discussed in the following section. 

0.32 .--........ 1""""'......, ___ --r_ ............ """T"-.-----...,----........, 

0.31 

0.28 

i 
! 
! 
! 
! 
! 
! 
! 
! 

Systematic Error+ Gaussian Noise 

~Andrews =0.50 

-·~--·-·----··-·------------·~ndre::~;~-··-·---· 

! True Parameter Set ~ c 
1 =I~o 
! 
! 
! 
! 
! 
! 
! 
! 
! 
! 

Cauchy 

Porosity 

c 

c 

Least Squares 

Figure 6. Mean estimated parameter sets from 200 inversions of hypothetical data sets 

with systematic errors using five different estimators. The individual solutions from least

squares fits are shown as squares. 
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Application 
The robust estimators are applied to data from a laboratory experiment. Data from three 

gas-pressure-pulse-decay (GPPD) experiments performed on three different pressure levels 

were inverted simultaneously to estimate the absolute permeability log( k ), the Klinkenberg 

slip factor log( b), and the porosity ¢> of a very tight graywacke core plug. The experiment 

and the analysis procedure are described in detail in Finsterle and Persoff[1997]. Here, we 

focus on the performance of the least-squares and robust estimators, taking advantage of the 

earlier findings regarding the uniqueness of the solution, the sensitivity of the data, and the 

potential sources of errors. 

The previous analyses revealed that the late time data from two of the three experiments 

exhibit a systematic error that can be attributed to gas leakage from the apparatus. The 

residual plot after least-squares fitting is reproduced in Figure 7. The corresponding 

histogram of the residuals (Figure 8) reveals the non-Gaussian error distribution. The long 

tail of the distribution is a result of the trend in the late time data. Since least squares · 

minimizes the variance of the residuals, it also introduces a trend in the residuals of the 

presumably good data from Experiment 1. Using least squares, the resulting parameter set is 

likely to be biased (see Table 3). In particular, the porosity estimate turns out to be too high 

because increasing the pore space is the only way to account for the volume of gas that in fact 

leaked to the laboratory environment. The robust estimators seem to be able to identify the 

late time data from Experiments 2 and 3 as being unreasonably large. Instead of minimizing 

the variance of all residuals, they preferentially match the less affected early time data as well 

as, the good data from Experiment 1. By doing so, the systematically negative late time 

residuals from Experiments 2 and 3 are actually increased, since less weight is assigned to 

these deviate points. Figure 9 shows the residual plot after matching the data with the 

Cauchy estimator. Similar results were obtained with the other robust estimators considered 

in this study. The parameter estimates and the standard deviations of the final residuals are 

summarized in Table 3. Note the significantly lower porosity estimates for the robust 

estimators, and the corresponding increase in the standard deviation of the final residuals, 

indicating that the late time data are less honored. While the true porosity is not known, a 

value near 1 % is believed to be reasonable. A low value is also obtained by an inversion in 

which the leakage rate is estimated along with the hydrogeologic parameters. By doing so, 

the impact from systematic errors is effectively reduced, which is evident from the residual 

plot shown in Figure 10. This approach is described in detail in Finsterle and Persoff 

[1997]. 
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Table 3. Estimated Parameter Sets From Least-Squares and Robust Estimators, and 

Standard Deviation of Final Residuals 

Parameters Std. Dev. of 

Estimator log(k [m2]) log( b [Pa]) 12orosity 1!_ [%] Residuals 

Least Squares@ -20.68 7.31 1.81 4480 

L1-Estimator -20.71 7.36 1.20 5100 

Huber -20.71 7.36 1.19 7370 

Cauchy# -20.75 7.39 1.04 8200 

Andrews -20.70 7.34 1.09 7340 

No systematic error% -20.67 7.31 1.05 1100 
@ Residual plot shown in Figure 7 
# Residual plot shown in Figure 9 
% Sl:stematic errors eliminated bl: Earameterization; residual Elot shown in Fi~e 10 
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Figure 7. Residuals as a function of time after matching with the least-squares estimator 

(after Finsterle and Persoff[1997]). 
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Figure 9. Residuals as a function of time after matching with the Cauchy estimator. 
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Figure 10. Residuals as a function of time after elimination of systematic error (after 

Finsterle and Persoff[l997]). 
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Summary and Conclusions 
This study was motivated by the general observation that errors in either the data or the 

model used for inverse modeling usually exhibit a non-Gaussian distribution. The impact of 

outliers and systematic errors on the estimated parameter set was examined for both the 

standard least-squares method as well as four alternative objective functions, which were 

termed robust estimators. It was found that the robust estimators are less affected by the 

presence of random errors following a heavy tailed distribution, in accordance with results 

from a study of location estimates [Andrews et al., 1972] and as discussed by Press et al. 

[1992]. 

We also looked at the performance of all five estimators in the case where a subset of the 

data is corrupted by systematic error. While the estimates from the least squares fit were 

more strongly biased, caution has to be exercised when using one of the robust estimators. 

The robust estimators only perform better for a specific type of systematic error$, and the 

error has to be contained within a limited portion of the data. Furthermore, systematic errors 

should be eliminated whenever possible since they always affect the outcome of an inversion, 

and thus reduce the reliability of subsequent prediction runs based on the estimated parameter 

set. On the other hand, it is recognized that measuring and modeling the state of a multi

phase flow system is a difficult task which almost always leads to some systematic errors in 

the residuals. While the major effort should be placed on obtaining accurate measurements 

and on careful model development, the use of robust estimators seems to be appropriate in 

many practical applications. 
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