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Abstract 

There exist problems of practical interest (in particular in turbu­
lence) where the solution is so complex that a resolved numerical cal­
culation is impractical, and where the solution is also chaotic, so that 
one is interested only in the large scales averaged over the random de­
tails. We show by examples that if appropriate statistical information 
is available, one can calculate accurately the large-scale behavior of 
the solution even on a crude grid, and that the accuracy of the result 
can be reliably assessed. The application of the ideas to turbulence is 
also briefly discussed. 

1 Introduction 

A necessary condition for the convergence of a numerical scheme is that the 

solution be sufficiently well-resolved, i.e, that all the degrees of freedom that 

contribute significantly to the solution be represented in the computation 

(see e.g [1]). In finite difference schemes, whose vocabulary we adopt for the 

sake of simplicity, the grid must be fine enough to represent all the relevant 
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1 INTRODUCTION 2 

scales (with spectral methods, one must have enough Fourier components, 

etc.). In turbulence and in related problems it is generally impossible, now 

or in any foreseeable future, to resolve the solution well enough, and even if 

one could, one would not necessarily want to; the relevant solutions of the 

equations of motion are chaotic, i.e, depend sensitively on the initial data, 

and no specific solution is likely to ever be observed in practice. What one 
I 

wants is an accurate evaluation of the significant, large scales, accurately 

averaged over the chaotic details. These obvious observations have led in 

hydrodynamics to the various "large-eddy simulations", based on heuristic 

analyses of the physics of turbulence [2]; we suggest better ways of deriving 

and assessing such methods. 

Specifically, we show by example how a probability distribution for the 

solution of a differential equation· can be put to good use. The examples 

are discretized nonlinear Schrodinger equations and a randomly driven heat 

equation. The relevance of our constructions to turbulence is briefly discussed 

in the concluding section. 
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2 The statistics of numerical error 

Suppose one is trying to solve an equation of the form 

au at = R(u), (1) 

where t is the time and R( u) = R( u, au I ax' ... ) is a (generally nonlinear) 

function of u and its spatial derivatives. For definiteness, assume 0 ::; x ::; 

1, with appropriate boundary conditions at 0 and 1. Let equation (1) be 

approximated by finite differences in the form 

i = 1, ... , N (2) 

where i is an index which specifies a mesh point Xi = i IN, RN is a difference 

approximation on the grid arid ui approximates u(xi)· For simplicity, only 

the space variable has been discretized; this will not cause a loss of generality. 

Assume further that a measure on the space of solutions of equation (1) is 

known, and is written symbolically as F[du]; given an appropriate set S of 

functions, the average value of a functional G[u] over the u in the set S is 
( 

(G[u]) =Is G[u]F[du], (3) 

where the integral is in general a function-space integral; specific examples 

will be given below. If the solution of equation (1) is well-resolved, u is by 



2 THE STATISTICS OF NUMERICAL ERROR 4 

definition smooth between grid points and knowing u at the grid points Xi 

makes it possible to calculate the values of u at other points by interpolation; 

if the solution is not well-resolved, the function u can vary substantially 

between mesh points, and the scales invisible to the grid may have a large 

effect on the values of R(u) at the grid points. The probability density F 

makes it possible to fill the gaps between mesh points in an average sense. 

Suppose the values ui are given; in the ill-resolved case there are many 

different functions u that can assume these values. The probability density 

F induces a (conditional) probability density on this restricted space of func-

tions. An average of a function G[u] with respect to this restricted measure, 

i.e., an average over all the functions in the set S that take on the given 

values ub ... , UN at the mesh points, can be written in the symbolic form 

N 

(G[u])u1 ... uN =Is G[u] g 6 [u(xi)- ui] F[du]. (4) 

In the present paper we discuss only problems where the measure F[du] 

is invariant in time, when it suffices to discuss how to approximate R( u); the 

resulting autonomous set of ordinary differential equations can be solved by 

standard means. 

A numerical scheme produces at each point Xi a value Rf ( u1, ... , UN). 

'---

If the numerical scheme is underresolved, this value may be a good or bad 
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approximation to R( u) lz=z• for any particular function u that takes on the 

values ui at the points xi; the error can be evaluated only for each spe-

cific function u. The sensible thing to look for is an approximation to 

(R(u)lz=z.)u1 ···uN' i.e., a11. approximation of the average of R(u) over all func-

tions u that take on the given values at the given mesh points. The error, 

i.e., the amount by which one fails to calculate this average, is . 
. ( 

(5) 

This error depends only on the discrete data Ui. The root mean square 

numerical error is defined as: 

(6) 

I.e.,. the average of the norm of the error vector over all solutions of the 

problem. 

Since the average error (5) depends only on the discrete data, and since 

the choice of nu,merical scheme Rf ( u 1, ... , uN) is at our disposal, it is in 

principle possible to choose the scheme so that the average error is zero 

regardless. of the degree of underresolution. The challenge is to determine 

how the constrained expectation value in (5) depends on the constraints, and 

then to· encode this dependence into a scheme. We shall show by examples 
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how this can be done. 

3 A randomly driven diffusion equation 

. Consider a one-dimensional bar located at 0 ~ a:: ~ 1, heated at its center 

by a fluctuating heat source and cooled at its ends by heat baths. The 

temperature u(a::, t) of the bar is described by: 

8u 8
2
u ( 1) -· = -+J(t)6 a::--

8t 8a::2 2 
(7) 

where J(t) is a random function of time, 6(a::) is a delta function and a::= ~ 

is the location of the source. The boundary conditions are 

u(O, t) = u(1, t) = 0. (8) 

Assume that J(t) is white noise, i.e. J(t) is a Gaussian random function of 

time that has expectation values 

(J(t)) = J 
(9) 

for some numbers J and J 2 • 

The solution u(a::, t) of (7) depends on J(t) and on the initial condition 

for u(a::, 0). However, after long times it depends only on J(t): 

u(a::,t) = fooo dt'G(a::,t-:-t')J(t'), (t ~ 0) (10) 
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where G(x, t) is the solution of 

8t 8x2 (11) 

with initial condition G(x, 0) = S(x - V· The heat kernel G is readily 

computed and so are, after suitably long times, average values of u and 

of functionals of u. This is enough information to calculate the average 

errors ( 5), and to construct a scheme to minimize E. 

We denote the values of u at the mesh points ifN by ui = u{i/N), i = 

1, ... , N. We limit the infinite domain of integration in (10) to 0:::; t':::; 1 and 

discretize the resulting integral so that the statistics of the ui are determined 

by 

(12) 

where Gi; = G(ijN,jfT) and J1, ... ,JT are independent random Gaussian 

variables with 

(J;) = J 
(13) 

-2 -
(Jil J;2) = J + T J2Sili2· 

We would like a formula for the operator RN ( u1 , ••• , UN), which would satisfy, 

as closely as possible, 

(14) 
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We proceed by sampling discrete data u1 , • •• , UN, computing the constrained 

average in (14) for each set, and fitting RN. 

We sample u 1, .•• , uN by generating a random noise vector J whose com-

ponents are J1, ... , JT and applying (12). To get the constrained average 

corresponding to this sample (the right-hand side of (14)), we first find a ba-

sis of K vectors J 1 , ... , JK in the null space of the matrix with components 

T 

LGi;JJ=O, k=1, ... ,K. 
j=l 

(15) 

(we used the commercially-available Matlab program, which obtains a ratio-

nal basis in the null space by singular value decomposition using the LIN-

PACK routine ZSVDC). The set of all noise vectors that satisfy equation (12) 

is spanned by the K vectors Jk shifted by J. To compute the constrained 

averages in (14), it is sufficient to sample this space by a Metropolis algo-

rithm, evaluate the relevant functional (in this case 82u/ 8x2 at x = xi) for 

each sample, and average the results. 

Specifically, the statistics of the noise are characterized by a probability 

density function, 

[ 
1 T 2] P[J] = exp -

2 
L (J;- J) . 

2TJ i=l 

(16) 
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Let J be a noise vector consistent with the constraint equations (12) for some 

given Ut, ••• , uN. We can obtain a new trial noise vector J', also consistent 

with the constraints, by forming an arbitra~y linear combination of null vee-

tors and adding them to J; this new noise vector is accepted or rejected by 

the usual Metropolis recipe based on the probability density P[J]. Thus one 

can calculate a sequence of noise vectors consistent with the constraints and 

with the statistics (13). 

Now we construct a scheme that uses this information: we approximate 

the second derivative of u in the form 

N 

Rf(ut, ... ,uN) = LCi;u;, 
i=l 

(17) 

with undetermined coefficients Cii· For any discrete function u1 ; ••• , uN, we 

may perform Monte Carlo calculations to obtain (82uj8x2(xi))u1 ···uN fori= 

1, ... , N. We accumulate such averages for a large number L of discrete 

functions u(l), ... , u(L), and require 

l = 1, ... ,L (18) 

which constitutes an overdetermined linear system for the Cii· We may get a 

best approximate solution for the Cii by least-squares fitting. With the Cii in 

hand, the formula (17) becomes an optimized scheme in the sense that the 
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oO: 
0 ~ M M M 1 

400f 
J! 20:~------------- ~--------------200~-------~------~~----~· --~------~------~ 

0 0.2 0.4 0.6 0.8 

i:~:r · ~--
~-200~-------~--------------------~------~------~------~ 
........ 0 0.2 0.4 0.6 0.8 

X 

Figure 1: The sampling procedure used to compute average numerical error. 
la: a discretization and continuous functions consistent with it. 1 b: the 
second derivatives of these continuous functions. lc: the line is the mean of 
these derivatives, and the circles are naive estimates of the second derivative 
made by (19) acting on the original discrete data. 

mean error (6) has been minimized over all linear schemes. 

The optimized scheme may be compared with a naive way of calculating 

the second derivative of u using finite differences: 

RN( ) _ Ui+l- 2Ui + Ui-1 
i Ut, •.. 'UN - h2 (19) 

where h = 1/N. Figure la shows a family of temperature functions that 

share a single, poorly-resolved discretization (N = 5). In 1b and 1c, the 

second derivatives and the mean second derivative are shown. Also in lc, the 
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J 
1 2 3 4 5 

1 0 0 0 0 0 
Naive: 2 25· -50 25 0 0 

Z· 3 0 25 -50 25 0 
4 0 0 25 -50 25 
5 0 0 0 0 0 

J 
1 2 3 4 5 

1 0 -61.8 32.4 0 0 
Improved: 2 0 31.5 -29.5 0 0 

z 3 0 0 0 -29.5 31.5 
4 0 0 0 32.4 -61.8 
5 0 0 0 0 0 

Table 1: Table of coefficients Ci; for the improved scheme (17) and corre­
sponding coefficients for the naive scheme (19). 

result of the naive scheme (19) acting on the discrete data is shown and this 

result clearly differs from the true average second derivative. 

Table 1 shows the matrix of scheme coefficients Cii calculated as described 

above, with N = 5, T = 100, J = 1 and J 2 = 1. These results were 

obtained using L = 103 samples and with 103 constrained samples used for 

each constrained average. This table also shows the matrix of coefficients 

corresponding to the naive scheme (19), for comparison. 

Figure (2) shows histograms of errors for the naive scheme (19) and for 

the improved scheme (17) in this case. Values of ei have been combined for all 
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Figure 2: Histograms of errors for the naive scheme and for the optimized 
scheme. 

i. The RMS errorE (the widths of these distributions) is reduced by a factor 

of appproximately 18 using the improved scheme instead of the naive otie. 

Most of the error in the effective scheme is a consequence of imperfections in 

the numerical Monte Carlo calculation. A small contribution may be due to 

imperfections in the linear fitting, i.e. the constrained average in (14) may 

not actually be a linear function of.the constraints. (The latter error could 

be remedied by using an appropriate nonlinear scheme ins.tead of (17).) 

The new scheme should be particularly effective near the point x = ~, 

where the effect of the noise is strongly felt (one should of course avoid 
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putting a grid point exactly on the singular point). 

We would like to emphasize that once we have the improved matrix of 

coefficients Ci; in hand, no more Monte Carlo calculations are needed to 

achieve the improved accuracy in subsequent applications. Our scheme is (17) 

with the coefficients in Table 1, and sampling is not performed once the 

scheme has been determined. 

4 A discretized nonlinear Schrodinger equa­
tion 

Consider the Hamiltonian partial differential equations 

(20) 

with Hamiltonian density 

H[q, p[ = ~ J [ ( :! ) ' + ( ::) ' + ~ ( q' + p•) l (21) 

where the functions q( x) and p( x) are canonical variables. 

One can guess that equations (20) have an invariant measure given for-

mally by 

z-1 exp( -f3H) (22) 
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where f3 is an inverse temperature and Z is a normalization constant. We 

choose arbitrarily f3 = 1 and choose the data from the corresponding distri-

bution. 

The differentiated terms in the expression of H characterize the Wiener 

process [3], and thus the sample functions drawn from this probability mea-

sure are almost nowhere differentiable [4]. We do not wish to discuss here 

how such solutions are to be approximated by finite differences. We start 

instead with a set of finite difference equations that are formally consistent 

with the equations (20): 

dqi Pi+1 - 2pi + Pi-1 3 

dt h2 +Pi 

dpi qi+l - 2qi + qi-1 3 

dt h2 - qi 

(23) 

where as before h = 1/N is the mesh spacing. These are Hamilton's equations 

of motion for the discretized Hamiltonian 

We assume that for some small enough h (large enough N) the approxi-

mation (23) is adequate, and do not concern ourselves with how it was arrived 

at. The system of ordinary differential equations (23) with small his our sys-

tern (1). This device allows us to avoid a discussion of the approximation of 

weak solutions. 
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We suppose that we only have computational power to compute the evo-

lution of half of the 2N degrees of freedom, and we coarsen the grid: replace 

h by h' = 2h, N by N' = N/2, and set 

(25) 

What we want is a scheme to compute the evolution of q1
, p'; i.e., we want 

to find Qf ( q', p1
), Pf ( q', p') which satisfy, as closely as possible, 

Qf (q',p') = (~~i) 
q',p' 

p.N( I 1) = (dp~) 
' q ,p dt . 

q',p' 

(26) 

The naive scheme to use on the coarsened variables is the simple reappli-

cation of the fine-scale formulas (23) on the coarser scale, i.e. 

where h' = 1/N' = 2h. There is, however, a better way. 

From the equations (23) one can easily see that 

(dqi) 2 1 ( 1)3 1 ~( ) dt = h2Pi + Pi - h2 P2i+1 + P2i-1 q'p' , 
q'p' 

{27) 

(28) 

where the subscripts on the brackets have the meaning obvious from the 

definition ( 4). 
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We may exploit our knowledge of the distribution (22) to infer the statis-

tics of the intermediate points ( q2i+b P2i+l) from the known values q: = q2i, 

p~ = p2i. In the absence of the quartic terms in (24), the probability distribu-

tion of intermediate points would be given by the Levy interpolation formula 

for the Wiener process [4]: 

(29) 

where W is a Gaussian variable of mean zero and variance v'h, independent 

of either Pi or Pi+2· Thus we could explicitly write (28) as 

(
d ') '. 2 '+ ' . ...Ji = _ 2 Pi+t - Pi Pi-1 + ( ~)3. 
dt (h')2 p, 

q'p' . 

(30) 

Assume temporarily that the statistics of the intermediate points are domi-

nated by the effect of the differentiated terms in the Hamiltonian. Then the 

mean error, as defined by equation (6), vanishes if 

' 2 '+ ' Q~( ' ') = _ 2 Pi+t - Pi Pi-1 + ( ~)3 
• q ,p (h')2 q, 

' 2 '+ ' p!Y( ' ') = 2 qi+l- qi qi-1 _ ( ~)3 
. • q ,p (h')2 . p, 

(31) 

instead of the naive scheme (27). 

The approximation no longer looks consistent with equation (20), as could 
.) 

have been predicted from the inapplicability of Taylor's formula on the small 

scales; the coefficient of 2 arose out of the fact that the Levy interpolation·· 
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formula forces one to use linear interpolation in the evaluation of second 

derivatives. The recursive use of this formula shows that the derivative term 

in the Hamiltonian is indeed dominant, as was assumed in the derivation. 

Note further that the new equations correspond to the Hamiltonian 

H •=~~[2(q~+1-q~)2 +2(P~+1-p~)2 +~( ~+ ~)] 
N 2 ~ h' h' 2 qt Pt . 

t=l (32) 

This is the Hamiltonian (24) renormalized by the change of scale from h to 

h' = 2h [5]. 

Note that if the Levy formula were not available, one could instead use 

Metropolis sampling based on the Hamiltonian to derive the statistics on the 

finer grid as in the previous exam pie. 

This scheme can be tested as in the preceding sec'tion. Figure 3 shows 

histograms of errors for the naive scheme (27) and for the "renormalized" 

scheme (31). These histograms were produced using N = 16 and f3 = 1. 

There are 103 samples shown, with 105 constrained samples used for each 

sample (values of ei have been combined for q and p and for all values of i). 

The RMS error E (the widths of these distributions) is reduced by a factor of 

approximately 14 using the renormalized scheme instead of (27). The small 

errors of the renormalized scheme are mostly due to numerical errors of the 

Monte Carlo calculations. Some additional error may be due to the neglect 
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Figure 3: Histograms of errors for the naive scheme and for the renormalized 
scheme. 

of the nonlinear terms in the interpolation formula. 

Note that the same transformation (multiplying derivativesby 2) would 

work with more general potentials, not only the quartic potential in (21). 

5 Conclusions 

We have shown how to produce and evaluate schemes that calculate correctly 

the mean solution in underresolved approximations. This is exactly the job 

that must be carried out in turbulence calculations. The tool we need is a 

probability distribution for the missing scales; in the turbulence case, such a 
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probability distribution has been proposed in [6, 7]. 
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