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1. Introduction 

In the past few years, large classes of interacting superconformal field theories with 

between 4 and 16 supercharges have been discovered in three, four, five and six space-time 

dimensions. Most of these theories are not described by weakly-coupled Lagrangians, and 

there is not even a known Lagrangian which flows to them in many cases. Therefore, we 

require a different approach to analyze them. This is an interesting abstract problem in 

itself, and it is rendered more urgent by the many applications these theories have in M 

theory. In the matrix formulation of M theory [1] these theories are relevant for compacti

fications on four dimensional spaces [2-4]. These theories also arise in the study of certain 

black holes in string theory [5], and it has been suggested that an improved understanding 

of some of these theories may lead to progress in solving large N noilsupersymmetric QCD 

[6]. The fixed points with 8 or fewer supercharges are important in the problem of unifying 

M-theory vacua, since they are crucial in connecting vacua with different spectra of chiral 

fields [7-10]. 

Fixed point theories with (2, 0) supersymmetry in six dimensions [11,12] were recently 

studied in a matrix model formulation in [13]. The purpose of this paper is to move 

on to theories with (1, 0) supersymmetry in six dimensions. We will formulate a matrix 

description of these theories and follow the chirality-changing phase transitions of [7,8] in 

this language. We begin in section 2 with the definition of the theory. In section 3 we 

analyze deformations away from the fixed point, where we can see the low-energy spectrum 

in the spacetime theory, and observe the chirality-changing phase transition. We discuss 

various interesting issues, which we are not able to fully resolve, concerning the matrix 

description of these deformations. Section 4 contains the 1 + 1 dimensional generalization 

of the quantum mechanical theory, which corresponds to a six dimensional "little string" 

theory in spacetime. 

As this paper was being completed, similar results were independently obtained in 

[14]. 

2. The Quantum Mechanical Definition of the Fixed Point Theory 

We will study here the simplest example of a fixed point with (1, 0) supersymmetry, 

which is the low energy theory of a small instanton in the Esx Es heterotic string. In M 

theory this is described by a fivebrane at the end of the world ninebrane [7,8]. This theory 

has a Coulomb branch of the form lR/Z2 (times a decoupled lR4 factor), on which the low 

energy spectrum consists of a tensor multiplet and a hypermultiplet. The scalars in these 
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multiplets label the transverse position of the fivebrane in M theory. The scalar in the ten

sor multiplet parametrizes the distance between the fivebrane and the ninebrane, and when 

its expectation value vanishes the low-energy theory is superconformal. Another branch 

coming out of the superconformal point is the Higgs branch, corresponding to enlarging 

the size of the instanton. On this branch, the low-energy theory has 30 hypermultiplets, 

which are in the ~(56)+ 1 + 1 representation of the E7 symmetry left unbroken by the 

instanton. We would like to propose an infinite momentum frame quantum mechanical 

description of this theory, which reproduces this moduli space and low-energy spectrum. 

In particular, we will consider in this framework the chirality-changing phase transitions 

of [7,8]. There is an obvious generalization of this theory to k coincident fivebranes (or 

small instantons), which will also be discussed. 

The arguments used in [13] for the construction of (2, 0) theories in six dimensions can 

also be used for the construction of theories with (1, 0) supersymmetry. To get a light-cone 

description of this system, we start with M theory on S 1 /ll.z [15] with k fivebranes, and 

compactify a longitudinal direction (of the fivebranes) on a circle of radius R. The theory 

then becomes the type IIA string theory on S 1 /7l.2 (a.k.a. type I'), with 8 D8-branes at 

each orientifold fixed point [16] and k D4-branes. 

In the next subsection we will discuss the full matrix description of this theory. We will 

introduce the degrees of freedom of the matrix description of this system, their interactions, 

and their representations under the various symmetries. In §2.2 we will consider the limit 

Mp --+ oo in spacetime, and determine what remains of the degrees of freedom in the 

matrix description in this limit. This surviving quantum mechanics is our formulation of 

the (1, 0) SCFT. 

2.1. Heterotic Fivebranes in Matrix Theory 

The above type I' system is equivalent to the Es x Es heterotic theory oh a circle, 

with a Wilson lineAE breaking the gauge symmetry to S0(16) x S0(16) (and k fivebranes 

wrapped around the circle). Let the radius of this circle in the Es xEs theory be denoted 

'E· This vacuum is related by T-duality [17] to the S0(32) heterotic string on a circle of 

radius rs = 1/4rE, with a Wilson line As breaking the gauge group to S0(16) x S0(16). 

The winding number ns of the S0(32) theory maps to the DO-brane number N in the type 

I' description. The S0(17, 1) T-duality transformation maps this to a linear combination 

of momentum, winding, and E8 x E8 lattice quantum numbers in the E8 x E8 theory: 

(2.1) 
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where mE, nE and PE are the momentum, winding, andEs xEs lattice quantum numbers 

in the Es x Es theory. 

For the infinite momentum frame description we are interested in states with large 

momentum mE around the circle in the E8 x E8 theory. From (2.1) we see that this 

corresponds to large DO-brane number N = ns, though the two quantum numbers are not 

exactly the same. 

Let us now describe the quantum mechanics of the· DO-branes in this theory, near 

one of the orientifolds. This quantum mechanics without the D4-branes was studied in 

[18-20]. It is an 80(N) gauge theory with 8 supersymmetries, containing 16 fermions in 

the fundamental representation which arise from the 0-8 strings. Adding the D4-branes 

(longitudinal fivebranes [21]) is done simply by adding the 0-4 strings. These are k "hyper

multiplets" in the fundamental representation, and there is an 8p(k)(= USp(2k)) global 

symmetry corresponding to these. For N = 1 this theory was described in [22] (see also 

[23]). Altogether we are left with four linearly realized supersymmetries, which is the 

correct number for a lightcone description of a spacetime theory with 8 supersymmetries. 

The global symmetry of the quantum mechanics is 

80(4)11 X 80(4).!: _X 80(16) X 8p(k), (2.2) 

where 80(4).L corresponds to the rotation symmetry transverse to the 4-branes (but inside 

the 8-branes), 80(4)11 corresponds to the rotations inside the 4-branes, 80(16) is the 

gauge symmetry on the 8-branes and 8p(k) is the gauge symmetry of the 4-branes. The 

4 supersymmetry generators transform in the {(2, 1) (2, 1) 1 1} representation of this 

- group, so that two of its 8U(2) factors are in fact R-symmetries. The representations oC 
the fields under the 80(N) gauge symmetry and the global symmetries are given in the 

following table : 

80(N) 80(4)11 80(4).1 80(16) 8p(k) 
0- 0 states: Ao,X9 · N(N -1)/2 (1, 1) (1, 1) 1 1 

CY.L N(N -1)/2 (2, 1) (2,1) 1 1 
f3L N(N -1)/2 (1, 2) (1,2) 1 1 
XII N(N + 1)/2 (2, 2) (1, 1) 1 1 
PR N(N + 1)/2 (1, 2) (2,1) 1 1 

(2.3) 
x.L N(N + 1)/2 (1, 1) (2, 2) 1 1 
UR N(N + 1)/2 (2, 1) (1,2) 1 1 

0-4 states: v. N (2,1) (1, 1) 1 2k 
'1/JR N (1, 1) (2, 1) 1 2k 
'1/JL N (1,1) (1,2) 1 2k 

0-8 states: XL N (1, 1) (1,1) 16 1. 
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Here x 11 gives the positions of the zero branes along the fourbranes, X .l gives the positions 

perpendicular to the fourbranes, and X 9 gives the positions in the S 1/ll2 direction. In 

addition we have scalars v in the fundamental representation. The fermions (which are all 

real) are denoted with subscripts R or L, according to their chirality in the corresponding 

1 + 1 dimensional theory of 1-branes, fivebranes and ninebranes, which is related to the ' 

quantum mechanics we describe by aT duality in the X9 direction. That theory has (0,,4) 

supersymmetry, and we will discuss it further in section 4. Supersymmetry pairs the right 

movirig fermions with the bosons appearing directly above them in the table, and O.L with 

the gauge field. 

The moduli of the spacetime theory are parameters in the quantum mechanics. These 

moduli are the scalars in the theory of the 4-branes and the 8-branes, which are in the 

following representations : 

SO(N) S0(4)u 80(4).L S0(16) Sp(k) 

4- 4 states: xC4) 
.l 1 (1, 1) (2, 2) 1 2k(2k- 1)/2 

xC4) 
9 1 (1, 1) (1, 1) 1 2k(2k + 1)/2 (2.4) 

4- 8 states: H 1 (1,1) (2, 1) 16 2k 

8-8 states: xes) 
9 1 (1, 1) (1,1) 120 1. 

Most of the interactions of this system may be easily derived from those of the 0-

brane/4-brane system, which is the dimensional reduction of a 6D (1, 0) theory, and from 

those of the 0-brane/8-brane system [18-20]. Among the terms appearing in the Lagrangian 

are terms of the following (schematic) form 1 : 

XL(X9- X~8))XL + 'I/JL(X9- X~4))'1/JL + 'I/JR(X9- X~4))'1/JR + v2(X9- X~4)) 2 + 

'1/JL(X.L- Xi_4
))'1/JR + v2(X.i- x_}_4)) 2 +([XII, XII]+ v2

)
2 + [X.L, X.L] 2 + VfYR'I/JL + VO.L'I/JR+ 

o.L[XII, PR] + /h[XII, aR] + o.L[X.L, aR] + ,6L[X.L, PR] + [X.L, X11] 2 + (Hv) 2 + H'!fJRXL· 
(2.5) 

The singlet components of the fermions PR are completely decoupled, and their shifts gen

erate four non-linearly realized supersymmetries, completing the 8 spacetime supersymme

tries. Quantization of the zero modes of these fields will multiply the representation of each 

state we get by { (1, 2) (1, 1) }+{ (1, 1) (2, 1)} (which is the content of a half-hypermultiplet 

in spacetime). 

In the quantum mechanics describing the superconformal point in space-time, all the 

parameters (2.4) vanish. Then, the quantum mechanical theory has a Coulomb branch 

1 This formula does not' include the powers of the gauge coupling 9QM, which may be put in 

on dimensional grounds. 
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(in the usual sense of a Born-Oppenheimer approximation) in which X..1. =/= 0 and v = 0. 

In the matrix model interpretation, graviton states live here, as well as E8 gauge bosons 

localized near Xg = 0 [19,20]. In addition, there is a Higgs branch in which X..1. = 0. It is 

parametrized by expectation values of x11 and v, and has (real) dimension 

dim MH = 4Nk + 4 N(~ + 1)- 4 N(~- 1
) = 4N(k + 1). (2.6) 

2.2. Decouplif?g Gravity: Formulation of the (1, 0) SCFT 

As in the case of the (2, 0) theories discussed in [13], the gauge coupling in the quantum 

mechanics is related to the eleven dimensional Planck mass Mp and the compactification 

radius R by g~M rv M;R3 • Thus, taking Mp ~ oo corresponds to the 9QM ~ oo (or IR) 

limit of the quantum mechanics, where we expect the conformal theory in spacetime to 

decouple from gravity, as well as from the Es gauge bosons whose gauge coupling goes to 

zero in this limit. 

As in [13], the presence of the Higgs branch (with no apparent spacetime interpreta

tion) is what signals the presence of the nontrivial conformal theory in spacetime. In the 

limit 9QM ~ oo, some degrees of freedom become infinitely massive on the interior of the 
' . 

Higgs branch. In other words, the Coulomb and Higgs branches of the quantum mechanics 

decouple. Integrating out the 0-4 states leads to an infinite tube on the Coulomb branch, 

so the origin is infinitely far away on that branch (where the gravitons and the E 8 gauge 

bosons live). The degrees of freedom from (2.3) that are lifted in the interior of the Higgs 

branch ( v =/= 0, XII =/= 0) are : 

Ao, Xg, O:L, 2N(N- 1) of the fields v and XII (and their superpartners '1/JR, PR), 

X..L, uR, 2N(N+ 1) of the fields /h and '1/J£. 

We are left with : 

4N(k + 1) of the fields v and X11(and their superpartners '1/JR, PR), 

XL, 4N(k- 1) of the fields /h and '1/J£. 

(2.7) 

(2.8) 

It is the 9QM ~ oo theory of these degrees of freedom that constitutes the matrix formula

tion of the spacetime SCFT. Note that, unlike in (13], evenfor k = 1 there is a non-trivial 

Higgs branch here. This corresponds to the non-trivial SCFT in spacetime which exists 

even in this case. 

The classical Higgs branch of the quantum mechanics is the moduli space of Sp( k) 

instantons [24]. There is no non-renormalization theorem for the moduli space in this case. 
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In the quantum mechanics there could be loop corrections (say, involving the XLS) to the 

metric of this space. However, there is some fixed point governing the Higgs branch in the 

infrared (9QM --+ oo) limit. We conjecture that, for N --+ oo, it correctly describes the 

(1, 0) superconformal theories in the infinite momentum frame. In fact, it follows from the 

results of [25] that the corresponding 1 + 1 dimensional (0, 4) sigma model, with target 

space MH and with the additional left-moving fermion multiplets, is finite. This is not 

to say that the infrared physics will necessarily be transparent in terms of the degrees 

of freedom (2.8). The IR theory may have complicated interactions, arising for instance, 

from the gauge constraint (the Ao equation of motion) in the original gauge theory we 

start from [20]. 

Note that since N here is not the same as the spacetime momentum mE, the finite N 

theory does not directly give us a discrete light-cone description of the ( 1, 0) superconformal 

theories, as suggested in [26]. Presumably, as in [27], the finite N theory is a discrete light

cone quantization of these theories compactified on a light-like circle with a Wilson loop 

breaking the E8 symmetry to 50(16). In the quantum mechanics only an 50(16) subgroup 

of the Es global symmetry of the (1, 0) superconformal theory in spacetime is visible. As 

in [19], the full E8 representations get filled out as the type I' coupling goes to infinity and 

states of energy 1/ AI' come down. 

3. Low Energy States A way from the Fixed Point 

As discussed in the introduction, the six dimensional (1, 0) theories play a very inter

esting role in giving chirality-changing phase transitions. Within Lagrangian field theory 

there is no way to lift chiral matter, so it is interesting to consider how this occurs in 

our formulation. Let us perturb the spacetime theory away from the conformal point, 

going into its Higgs or Coulomb branches. Along these branches the low energy theory in 

spacetime is free, and we should be able to find the correct low energy spectrum in our 

quantum mechanical description. We will see how the quantum numbers for these states 

arise in this section. 

It is not clear to us that the deformed theory can be described using only the degrees 

of freedom (2.8) that were involved in formulating the critical theory. In principle, there 

are two ways to analyze the theory away from the conformal point. We could either 

perform the perturbation in the full gauge theory and then take the 9QM --+ oo liinit 

(while keeping the perturbation parameters finite), or work directly in the theory which 

describes the Higgs branch of the quantum mechanics in the 9QM --+ oo limit, and analyze 

the perturbations in that model. As we will discuss in some detail below, we have difficulty 

finding the correct spacetime spectrum using the second approach. 
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We interpret this difficulty as resulting from the fact that this approach does not 

include information about states localized at the singularities at the boundaries of the 

Higgs branch. These quantum-mechanical variables, though decoupled from the interior of 

the Higgs branch at the conformal point, may still be important after we deform the theory 

away from the conformal point. Because of the tube metric, the singularities of the Higgs 

branch still decouple from the graviton/gauge boson states which live on the Coulomb 

branch. After turning on the deformations (2.4), the quantum mechanical Higgs branch is 

(generically) lifted, and the wave functions of all states are concentrated near the origin 

of the Higgs branch. Thus, it is not a surprise that the degrees of freedom related to the 

singularities in the Higgs branch are required to describe the states after the deformation. 

It would be interesting to understand better the role of the singularities at the boundaries . 

of the Higgs branch, both in this theory and in the (2, 0) theories described in [13]. 

3.1. The Coulomb Branch 

First, let us discuss the Coulomb branch of the spacetime theory (this is not to be 

confused with the Coulomb branch of the quantum mechanics). On this branch the five

branes are (generically) all separated from each other and from the ninebrane. There is 

a tensor multiplet and a hypermultiplet (forming a tensor multiplet of (2, 0) supersym

metry) living on each fivebrane. For simplicity, let us focus on the case k = 1 (the other 

cases generically give k ·copies of this). Moving into the Coulomb branch away from the 

critical point is done by turning on X~4), and we expect to find the fivebrane states lo

calized in the moduli space near X9 = X~4) (specifically, when half of the eigenvalues 

of X9 are equal to one of the eigenvalues of X~4)). In this region the 0-8 strings are 

all massive and the SO(N) gauge theory is broken by the VEV of X9 to U(N/2) (here 

we take N to be even). In the IR, the theory,reduces exactly to the quantum mechan

ics of DO-branes and D4-branes (with 8 supersymmetries) discussed in [13], which is a 

sU:persymmetric quantum mechanics on the moduli space of U(k) instantons. In both 

cases the spacetime spectrum should include a tensor multiplet and a hypermultiplet for 

k = 1 2 . Thus, we should find 16 ground states of this theory, which should be in the 

{(1, 3) (1, 1)} + {(1, 1) (1, 1)} + {(1, 1) (2, 2)} + {(1, 2) (1, 2)} + {(1, 2) (2, 1)} represen

tation of the 80(4) 11 x S0(4)..L global symmetry. This representation arises by quantizing 

the fermion zero modes of the U(N /2)-singlet components of the fermions f3L and PR 

appearing in table (2.3). 

2 In the (2, 0) case it was not clear if a k = 1 theory which was decoupled from the Coulomb· 

branch existed or not [28), but here we are reaching this theory by a perturbation from a theory 

that was already decoupled from gravity, so there is no problem. 
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Note that in formulating the critical theory for k = 1, we discarded f3L because it 

became infinitely massive on the interior of the Higgs branch (2.7). But, as just noted, 

quantizing its zero modes gives the correct degeneracy and quantum numbers to describe 

the tensor multiplet on the spacetime Coulomb branch. This is the first difficulty we find 

in attempting to describe the deformations away from the critical theory using only the 

degrees of freedom involved in formulating the fixed point itself. 

In general, there is a correspondence between ground states of the supersymmetric 

quantum mechanics on a space X and cohomology classes of X. Thus, we expect the modes 

of the tensor multiplet, which should exist for any integer value of momentum around the 

circle in the E8 x E8 theory (i.e. for all even values of N in the original SO(N) theory), to 

correspond to cohomology classes of the moduli space of our theory. In the case k = 1 and 

for non-zero Xg, this space is simpl~ the moduli space M.N(U(1)) of N = N/2 instantons 

in a U (1) gauge group. Since these instantons are necessarily all of zero size, this space is 

just 

M.w(U(1)) = 1R4
N /S.w. (3.1) 

For N = 1, we have simply a 0-brane/4-brane system, and the required state isjust 

the bound state of (29]. Indeed, this state becomes completely localized on the 4-brane in 

the MP-+ oo limit. 

For higher values of N, it is not apriori clear which cohomology should be used, 

since the states are all associated with the ( orbifold) singularities of the moduli space. 

It is natural to conjecture that the quantum mechanical ground states are given by the 

orbifold cohomology of this space (30] (this is more justified in the 1 + 1 dimensional theory 

described in section 4, but our theory is just a dimensional reduction of that theory). This 

gives a state for every partition of N (31], in agreement with our expectation of finding 

a single state for any integer value of momentum of the tensor multiplet. Quantizing the 

zero modes of f3L and PR then gives this state the Lorentz quantum numbers of a tensor 

multiplet and a ·hypermultiplet in the (1, 0) spacetime theory. These states are examples 

of states living at the singularities of the Higgs branch, as discussed above. 

3.2. The Higgs Branch 

The other branch of the spacetime theory is the Higgs branch, in which the fivebranes 

in spacetime turn into large E 8 instantons. We are only interested in the regime in which 

a quantum field theory description, decoupled from gravity, remains valid. Let us de

note by H the canonically normalized (dimension 2) scalar field in spacetime whose VEV 

parameterizes the Higgs branch. The field theory regime is 

(3.2) 
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On dimensional grounds, H is related to the scale size p of the instanton/fivebrane by 

- 3 
H = MpP· (3.3) 

Thus, the field theory regime is 

(3.4) 

where the fivebrane is still thin in Planck units. In the regime p > lp, the fivebrane becomes 

thick, gravity fails to decouple, and the matrix description necessarily involves the degrees 

of freedom (2.7) as well as (2.8). In the field theory regime (3.4), as discussed above, one 

might hope to describe the theory using only the degrees of freedom (2.8). However, as 

with the spacetime Coulomb branch, we will encounter difficulties in realizing this. 

We will analyze here only the case where the instantons are all embedded in a single 

SU(2). In this case, the Es gauge symmetry in spacetime is broken to E 7 , and its S0(16) 

subgroup (which appears explicitly in the quantum mechanics) is broken to S0(12) x 

SU(2). In the quantum mechanics, we go into this branch by turning on the parameters 

corresponding to the 4-8 strings Hand to the 4-4 strings Xi4). Note that turning on only 

the 4-8 strings when the instantons are all in the same SU(2) still leaves all but one of 

the fivebranes/instantons at zero-size, so we still have a non-trivial conformal theory for 

k > 1. In the quantum mechanics we see that not all of the Higgs branch is lifted in that 

case. In contrast, from (2.5) we can easily see that turning on both H and Xl4 ) gives a 

mass to all the fields v and '1/JR, and to 4k of the fields '1/JL and XL· The first 12 components 

of XL (in the fundamental representation of the unbroken S0(12) and of SO(N)) remain 

massless, as do 4 combinations of XL and '1/JL (again, in the fundamental of SO(N)). 

Naively, when we turn on H the fields v and '1/JR become massive, and there is no 

longer an infinite tube in the Coulomb branch of the gauge theory, so gravity does not 

seem to decouple from our theory. However, as discussed above, we should be careful in 

how we normalize H. In spacetime, we want H to remain finite as Mp goes to infinity. 

This corresponds to having a finite H in the theory describing the Higgs branch in the 

gQ M --+ oo limit. In this limit, even for finite H there is still an infinite tube in the Coulomb 

branch, and gravity still decouples from the Higgs branch of the 6D SCFT. 

For simplicity, we will analyze here only the case k = 1, where the combinations that 

remain massless are exactly the 4 fields '1/JL 3 . The hypermultiplet H which obtains a VEV 

on the Higgs branch is (using (2.4)) charged under SU(2)R xS0(16) x Sp(1), where SU(2)R 

3 Since to get a free low-energy theory in spacetime for k > 1 we are forced to turn on 4-4 

strings, the general case decomposes in the IR into k copies of this case (living at different values 

of X1., corresponding to the eigenvalues of X}_4 >). 
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is the first SU(2) factor in S0(4).L (which is identified with the SU(2)R symmetry of the 

spacetime theory). Giving it a VEV breaks this symmetry to SU(2)R' x S0(12) x SU(2), 

where SU(~)R' is a subgroup of S0(16) and SU(2)R, and the last SU(2) is a subgroup of 

S0(16) and Sp(1) (but note that away from the small instanton point this is a perturbative 

gauge symmetry from the heterotic point of view). The fermions in the fundamental 

representation of SO(N) which remain massless are the XL, in the (1, 12, 1) representation, 

and '1/JL, in the (1, 1, 2) representation (and in the 2 of the other SU(2) factor in S0(4).L). 

Since the v fields are all massive, the Higgs branch of the theory after the perturbation 

is given simply by the space of Xus, which is 1R4
N /SN. What states do we expect to 

find in this case? The massless states of the spacetime theory on the Higgs branch are 

30 hypermultiplets. One of these hypermultiplets, which corresponds to the transverse_ 

position of the instanton j fivebrane (and is free everywhere in the moduli space) is in the 

{ (1, 1) (2, 2)} + { (1, 2) (1, 2)} representation of the SO( 4)u x S0(4).L global symmetry 

(where SO( 4).L now includes the new SU(2)R' group instead of the old SU(2)R)- The other 

hypermultiplets are all in the 2( { (1, 1) (2, 1)} + { (1, 2) (1, 1)}) representation, and in the 

!56+ 1 representation of the unbroken E7 gauge group in spacetime. This representation 

decomposes into a !(32, 1) + !(12, 2) + (1, 1) of the S0(12) x SU(2) that we see in the 

quantum mechanics. According to (2.1), the momentum modes of the first representation 

should appear for odd values of N, while all the others should appear for even values of 

N. Of course, this does not mean that the momentum quantum number in the Es xEs 

string theory depends on the representation: from (2.1) one sees that for N = ns odd, PE 

must be a spinorial representation of 80(16) x S0(16) but mE can be odd or even. 

As in the 0-8 system [18-20], we expect the structure of the ground states for odd 

. (even) values of N to be the same as for N = 1 (N = 2), with the only change being in the 

structure of the wave functions for the 0-8 bound states .. T duality and S duality relate 

our system to a heterotic S0(32) string theory with some non-trivial instanton bundle, 

and there we can show that t'he appropriate states exist (the calculation is essentially as 

in [32], and the presence of torsion does not change the results in this case [33]). 
Let us analyze first the case N = 1. In this case, the moduli space is just 1R4

, so we 

have only the ground state. The 12 remaining fermions XL are completely free in this case 

(since the gauge symmetry is just 0(1) - ll2 ), so they have zero modes. On the other 

hand, as explained in [22], the '1/JLs are sections of the SU(2) instanton bundle that lives in 

the X .1. directions. In this background they do not contribute any additional degeneracy. 

Quantization of the XL zero modes gives states in the 32+32' representation of the S0(12) 

group. As in [19,20], imposing a ll2 = 0(1) gauge constraint removes half of these states 

and leaves us just with a 32. Adding the PR zero modes turns each of these states into 
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a half-hypermultiplet in spacetime, so we get exactly the expected spectrum of states for 

this value of N. 

In fact, for N = 1 we can find the right states also if we work only with the degrees of 

freedom (2.8) involved in the critical theory. Then v and its superpartners, as well as four 

of the fields XL, are lifted by H, and quantizing the zero modes of the remaining fermions 

XL and p R provides us with the required ~ 32 hypermultiplets (after taking into account 

the lL..2 constraint). 

For N = 2, the situation is more complicated (as it was also in the 0-8 case), since the 

interactions between the fields play an important role in constructing the states. To realize, 

these states in our formulation, we turn the operators (including XL and '1/J L) into creation 

and annihilation operators (as in [20]). We expeCt the ground states in the quantum 

mechanics to be the same as those in the corresponding 1 + 1 dimensional sigma model, 

where a level-matching constraint will force us to have two XL or '1/JL oscillators in the 

sector where they are anti-periodic (and no states will arise from other sectors). In the 

quantum mechanics, there will be a gauge constraint (analogous to the level-matching 

constraint of the heterotic string) which will force the total charge of a state under the 

80(2) gauge symmetry to be equal to one [20]. We expect to find ground states of the 

form XL'I/JLJO) (where x and '1/J are now creation operators), multiplied by an appropriate 

wave function which turns this state into an 80(4)11 x 80(4)..L-singlet. These states will be 

in the (12, 2) representation of the 80(12) x SU(2) global symmetry corresponding to the 

remaining spacetime gauge symmetry, and again the PR zero modes will turn them into 

half-hypermultiplets. The 29th and 30th hypermultiplets will arise from states involving 

two '1/JLS (contracted to form a singlet of the SU(2) gauge symmetry), again with an 

appropriate wave function for the rest of the fields. It would be interesting to perform the 

Born-Oppenheimer calculations explicitly, and see that exactly states of this form arise. 

TheIR theory of the degrees of freedom (2.8) is complicated in this case, and we have 

not been able to find these states directly by deforming that theory. Presumably, this is 

again a result of the theory at the singularities of the Higgs branch mixing with the theory 

describing the interior of the Higgs branch as we deform away from the conformal point. 

4. String Theories for string Theories 

The Higgs branch of the quantum mechanics formulated above is expected to de

scribe the (1, 0) superconformal theory in spacetime. In [13], a similar quantum mechanics 

described the (2, 0) superconformal theories in spacetime. The corresponding 1 + 1 di

mensional theory (which gives the quantum mechanics upon dimensional reduction) was 

11 



conjectured (13,28] to correspond to the "little string" theory of the type IIA NS fivebrane 

(34,35], which reduces at low energies to the superconformal theory. Similarly, we expect 

the 1 + 1 dimensional theory with (0, 4) supersymmetry to describe the "little string" 

theory of the heterotic Es x Es fivebrane, defined by the limit gs --1- 0 in that theory (34]. 

The field content and interactions of this theory are the same as those described above, 

with X 9 now becoming part of the 1+1 dimensional gauge field. The only difference is that 

there are now 32 chiral fermi9ns XL, since we can no longer ignore the states of the "other 

wall" (these states are also required for anomaly cancellation). As in the Matrix theory 

descriptions of the heterotic string (36-38], half of these fermions have periodic boundary 

conditions and the other half have anti-periodic boundary conditions. The X 9 positions of 

the DO-branes turn into the Wilson loop around the circle, and half of the XL fermions are 

massless when the value of this Wilson loop corresponds to the DO-branes being at each of 

the two walls. However, this theory should still have a parameter X~4), corresponding to 

the Xg position of the fivebranes4 , and the '1/J fermions (as well as their bosonic partners) 

should only be massless when the Wilson loop is equal to the eigenvalues of X~4). This is 

realized in the 1 + 1 dimensional field theory by having the boundary conditions for the '1/J 

fields around the circle twisted by an arbitrary X~4) matrix (in the adjoint representation 

of Sp(k)), namely 

(4.1) 

The vs have similar boundary conditions. Note that such boundary conditions are not 

possible for the XL fields since a potential would be generated if their boundary condition 

were different (40]. 

We conjecture that the Higgs branch of this theory, in the gyM --1- oo and large N 

limits, gives an infinite momentum frame description of the "little string" theory of the 

heterotic Es x Es fivebrane at zero coupling. At low energies this theory goes over to the 

quantum mechanics of the previous sections, as expected. Note that the spStcetime theory 

in this case includes two strings even for a single fivebrane, coming from the membranes 

stretched between the fivebrane and the two end of the world ninebranes. The sum of the 

tensions of these two strings is the heterotic string tension M'1, but their ratio depends on 

the parameter X~4 ) described above. 
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