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Abstract 

We introduce two new volume-of-fluid interface reconstruction algorithms and compare the accuracy of 

these algorithms to four other widely used volume-of-fluid interface reconstruction algorithms. We find that 

the new methods are second-order accurate and the other algorithms are first-order accurate. We conjecture 

that a necessary and sufficient condition for a stable volume-of-fluid algorithm to be second-order accurate is 

that it reproduce straight lines (or planes in 3D) exactly. We also introduce a second-order, unsplit, volume

of-fluid advection algorithm that is based on a second-order, finite difference method for scalar conservation 

laws due to Bell, Dawson and Shubin. We test this advection algorithm by modeling several different interface 

shapes propagating in two simple incompressible flows and compare the results with the standard second

order, operator-split advection algorithm. Although both methods are second-order accurate, we find that 

the unsplit algorithm exhibits noticeably better resolution in regions where the interface has discontinuous 

derivatives, such as at corners. 

t Work of both authors at U. C. Davis supported by the National Science Foundation under grants DMS-9104472 and 

DMS-9404410 and by the Mathematical, Information and Computational Sciences Division in the U. S. Department 

of Energy's Office of Energy Research under contract DE-FG03-95ER25271. Work of the second author at LBNL 

was provided by the Applied Mathematical Sciences Program of the DOE Office of Mathematics, Information, and 

Computational Sciences under contract DE-AC03-76SF00098 and by the Defense Nuclear Agency under IACRO 96-

3075. 
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1. Introduction 

There are numerous instances in which it is necessary to reconstruct or track the boundary between 

two materials in a numerical computation. Examples include numerical models of fluid jetting devices [15, 

58, 64], weld pools (7], molten metal (32, 61], semiconductor device etching (1, 18, 19, 20] and thin flame 

models of combustion (8, 16, 54, 44]. An overview of the state of the field in the early 1980's may be found 

in (6]. However a number of new ideas have appeared since then, notably the level set approach of Osher 

and Sethian (1, 41, 55, 57, 68]. During the last· decade there has also been considerable work devoted to 

developing algorithms that approximate the front as a collection of line segments (2D) or polygons (3D) 

(e.g., (17, 62]) and on boundary integral methods (e.g., (40, 56]). 

In this article we study a class of interface tracking algorithms known as volume-of-fluid methods. In 

a volume-of-fluid method the motion of the interface itself is not tracked, but rather the volume of each 

material in each cell is evolved in time and the interface at the new time is reconstructed from the values of · 

the volumes at this new time. For this reason volume-of-fluid methods are sometimes referred to as volume 

tracking methods (e.g., see (53]). 

The basic idea behind a volume-of-fluid method is as follows. 1 Suppose that we wish to track the interface 

between two materials, say a dark fluid and a light fluid, in two dimensions. We begin by covering the 

problem domain with a grid with spacing h = 6.x = 6.y . With each grid cell we associate a number hi 
that represents the amount of dark fluid in the i, jth cell, 

hi h2 = volume of dark fluid in thei,jth cell. (1.1) 

The number hi is called the volume fraction (of dark fluid) in the i, jth cell. It is apparent that 

(1.2) 

that the volume fraction associated with the light fluid is 1 - hi and that a portion of the interface lies in 

the i, jth cell if and only if 0 < hi < 1. The discrete variable fi,i is a discretization of the characteristic 

· function associated with the dark fluid, 

in the sense that 

{ 
1 if there is dark fluid at the point (x, y)-, 

f(x,y) = 0 if there is light fluid at the point (x,y), 

hih2 ~J1 f(x,y)dxdy. 
i,ith cell 

(1.3) . 

(1.4) 

1 Here and in the remainder of this article we restrict the discussion to uniform sq~are grids and two space dimensions. 

Neither of these restrictions are necessary. We employ them merely for simplicity and clarity of exposition. 
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. Since the fluid type does not change along particle paths in an incompressible, non-!eacting flow, the 

characteristic function f is passively advected with the flow. Hence, f satisfies the advection equation, 

ft + ufx + vfy = 0, (1.5) 

where u = ( u, v) denotes the fluid velocity. IT the flow is incompressible, then u satisfies 

Uz + Vy = 0. (1.6) 

Multiplying (1.6) by f and adding it to (1.5) we obtain a conservation law for the characteristic function f, 

It + (uf)x + (vf)y = 0. (1.7) 

Equation (1. 7) reflects the fact that in an incompressible flow conservation of mass is equivalent to conser

vation of volume, and hence conservation of f. 

In a compressible flow the velocity field u do~s not satisfy (1.6) and hence f is not conserved. However 

the mass of each material is conserved and therefore it is important that a numerical method for modeling 

this phenomena also conserve the mass of each fluid. It is relatively easy to design a volume-of-fluid interface 

tracking algorithm that does this (e.g., see [11, 37, 52]). Volume-of-fluid algorithms are the basis for most 

of the large application codes that are used at the national laboratories to model multi-phase, compressible 

phenomena on Eulerian grids (e.g., [2, 25, 26, 34]). These codes are also used extensively by geophysicists 

to model meteor impacts and related problems (e.g., see Melosh [35]). 

Recently, there have been several important improvements to the basic volume-of-fluid methodology for 

modeling compressible flows. Colella, Glaz and Ferguson [11] have developed a model of interface motion in 

compressible flow in which (1. 7) is modified by the addition of a term that accounts for the effect of isentropic 

volume changes due to changes in the pressure; i.e., changes in the specific volume V of the form (oVfoP)s. 

Their method allows one to model disparities in the compressibility of two materials (e.g., air and water) on 

a sub-grid scale. Puckett and Saltzman [52] have developed an algorithm for tracking gas interfaces in three 

space dimensions that is based on these ideas while Miller and Puckett [37] have developed a similar model 

for tracking the interface between two solids at very high pressures and temperatures (e.g., magmas) in the 

hydrostatic limit (i.e., without strength). 

In this article we restrict ourselves to consideration of incompressible flow problems. One might expect the 

incompressible advection problem to be less difficult than the corresponding problem in compressible flow. 

However our experience has been that this is generally not true. The difficulty in modeling incompressible 

flow arises because f is also constrained by the maximum principle (1.2) but numerical errors in estimating 

the fluxes in (1.7) lead to overshoot and undershoot in the values of f. In practice we have found that for the 
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simple advectio~ problems considered here these errors are on the order of machine zero (e.g., see Tables 4.9 

and 5.6 below). For more difficult problems they tend to be on the order of one hundredth of a percent (e.g., 

see the computations in [48]). 

Since in an incqmpressible flow f satisfies (1.7), the time update of the discrete variable Ai can be 

accomplished with a conservative finite difference method. One can therefore draw on the vast body of 

knowledge for high-resolution numerical methods for conservation laws (e.g., [5, 10, 31, 63]) to devise a 

method for updating f numerically. In this article we present a volume-of-fluid advection algorithm that is 

based on ideas developed by Bell, Dawson and Shubin [5] to construct a finite difference method for modeling 

solutions of scalar conservation laws. 

Volume-of-fluid methods have been in use for several decades. In one of the earliest implementatioi?-s of 

these methods DeBar [14] used a volume-of-fluid algorithm in a two-dimension~ Eulerian method to model 

compressible multi-phase flow. Another early algorithm of this type is the SLIC (Simple Line Interface 

Calculation) method of Noh and Woodward [39]. SLIC and ·its variants have been very widely used. For 

example, Colella, Henderson and Puckett used it to model shock wave refraction at a gas interface [12, 

21, 46]. In [8] Chorin developed an improved version of SLIC in order to model flame propagation and 

combustion. Ghoniem, Chorin, and Oppenheim [16] and Sethian [54] used Chorin's version to model turbu

lent combustion, while Whitaker [65] used it to model Hele-Shaw flow. Another well-known volume-of-fluid 

algorithm is the VOF algorithm of Hirt and Nichols [24).2 Several codes based on the VOF algorithm, 

namely SOLA-VOF [24, 38] and its descendants NASA-VOF2D [59], NASA-VOF3D [60], RIPPLE [27, 28] 

and FLOW3D [23] have been, and continue to be, widely used by researchers to model interfaces and free 

surfaces in industrial applications. For example, researchers at Xerox have used a modified version of these 

codes to model the flow in thermal ink jet devices [15, 58] and they have been used extensively by material 

scientists to model weld pools [7] and solidifying droplets [32, 61]. However, the volume-of-fluid algorithms 

in all of the methods just referred to are built around relatively crude interface reconstruction algorithms 

that rely ,on a piecewise constant or "staircase" representation of the interface, such as the one shown in 
. . 

Fig. 1.1c, and advection algorithms that are at best first-order accurate. More modern volume-of-fluid inter-

face reconstruction methods use a linear approximation to the interface in each multifluid cell (e.g., [4, 29, 

42, 47, 52, 53, 66]). This results in a piecewise-linear approximation to the interface as shown in Fig. 1.1d. 

However, as we demonstrate in §3 below, a piecewise-linear approximation to the interface in each cell is 

not sufficient to guarantee a second-order accurate approximation to the interface. We demonstrate (numer

ically) that a sufficient condition for a volume-of-fluid interface reconstruction algorithm to be second-order 

2 Many workers use the acronym "VOF" - which stands for "Volume-of-Fluid" - to refer generically to any volume

of-fluid algorithm. However, we refrain from doing so since others use it to refer specifically to Hirt and Nichols' 

algorithm and the associated-fluid dynamics code SOLA-VOF (24, 38]. 
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accurate on smooth interfaces, is for the algorithm to reproduce linear interfaces exactly. In §3 we show 

that two interface reconstruction algorithms introduced by the authors {the Least Squares Volume-of-Fluid 

Interface Reconstruction Algorithm (LVIRA) (47] and the Efficient Least Squares Volume-of-Fluid Interface 

Reconstruction Algorithm (ELVIRA) (43]) have this property. These second-order accurate piecewise-linear 

interface reconstruction algorithms have been used extensively to model a variety of compressible and in

compressible flows, including Richtmyer-Meshkov instability (33], shock refraction in gases (22, 49, 50] and 

shock refraction and impact jetting in solids (36, 37, 51] and the motion of fluid interfaces in variable density 

incompressible flow (48]. 

0 0 0 
'-" 

0 0.3 0.5 

0.5 0.9 1 

a) true interface b) volume fractions 

c) SLIC approximation d) piecewise linear approximation 

Figure 1.1 Volume-of-Fluid methods represent an interface (a) by storing volume fractions associated with 

the interface as shown in (b). An approximation to the interface is produced using an interface reconstruction 

method such as SLIC, shown in (c), or a more general piecewise linear approximation as in (d). 

There seems to be a widely held belief in the CFD community that one cannot obtain high-order accuracy 

with a volume-of-fluid algorithm (e.g., seep. 26 of (62]). Perhaps this is due to the widespread use of SLIC 

and VOF, which are at best first-order accurate and can easily fragment a smooth front (e.g., see Figs. 4.2 

and 4.3 below and Figs. 6 and 8 of (30]). One of the goals of this article is to demonstrate that one can 

construct high-order accurate volume-of-fluid interface tracking algorithms that are as effective, and for some 

problems more effective, than competing methods. There are four principal reasons for the effectiveness of 
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volume-of-fluid algorithms: 

1) Volume-of-fluid algorithms naturally conserve the mass of each fluid. For incompressible £:low 

this is because the advection algorithm is a conservative discretization of the conservation law (1. 7) 

for f, which is equivalent to the mass conservation equation. In a compressible £:low the mass of 

each f:l.uid component must still be conserved even though the charac::teristic function f is not. In 

a volume-of-fluid method this can be easily arranged by appending a separate conservation law for 

the mass of each fluid to the original system of conservations laws (e.g., see [11, 37, 52]). 

2) In both compressible and incompressible flows it is desirable, if not essential, that the location 

of the interface as determined by the interface tracking algorithm coincide with the location of 

the jump in density (and possibly other quantities) as determined by the underlying discretization 

of the fluid flow equations. Since the flux of a conserved quantity can be written in terms of 

the fluid volume that crosses a cell edge, it is a simple matter to enforce these constraints in a 

volume-of-fluid method. 

3) Volume-of-fluid methods automatically handle changes in the global topology of the front, such 

as fronts that break up into droplets or fronts that collide with themselves and merge. This 

eliminates the algorithmic complexity that can occur when the front is modeled by a collection of 

line segments or polygons. Furthermore, the logical structure of the algorithm is not significantly 

more complicated in three dimensions than in two. This is in contrast to polygonal representations 

of the front in which the logical complexity increases substantially in going from two to three 

dimensions. (A discussion of the complexity issue can be found in [18].) 

4) The work required to update the front location is entirely local; typically one needs the velocity 

and volum~ fractions in a 3 x 3 block (or 5 x 5 x 5 block in 3D) of cells to update the volume fraction 

in the center cell. Since the interface is a codimension 1 set, the computational work required to 

update the location of the interface is typically O(Nd-l) for a problem on a grid with Nd cells in 

d ;::: 2 space dimensions. Thus, the work required to update the front location is small compared 

to the work required to update the underlying velocity field. The local nature of volume-of-fluid 

algorithms also makes them amenable to efficient parallelization strategies. 

In conclusion, volume-of-fluid methods can be naturally formulated in conservative finite difference form, 

thereby ensuring that the mass of each material is conserved and that the location of the interface will 

coincide with jumps in density and other fluid properties, they handle changes in the topology of the front 

without an increase in algorithmic complexity or computational cost and the work required to update the 

front is small compared to the work required to update the underlying velocity field. 
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The remainder of this paper is organized as follows. In §2 we describe six volume-of-fluid interface 

reconstruction algorithms, including the two new second-order accurate algorithms. In §3 we study the 

spatial accuracy of these methods by using them to reconstruct various statiG>nary interfaces. In §4 we 

discuss operator split advection algorithms and study the time accuracy of second-order accurate, operator 

split advection by using it, in combination with each of the six interface reconstruction algorithms, to 

approximate various interface shapes undergoing translation and rotation. In §5 we describe a second-order 

accurate, unsplit advection algorithm we have developed and examine the accuracy of this algorithm by 

applying it to the problems studied in §4. We state our conclusions in §6. 

2. Volume-of-Fluid Interface Reconstruction Algorithms 

In this section we consider the following problem. Let n be a region in the plane JR? and let z(s) = 
(x(s),y(s)) for 0 ~ s ~ 1 be a piecewise smooth interface. In all of the examples we study z, is C0 and 

piecewise C2 • In addition, in all but one of these examples z is a closed curve z(O) = z(1), the exception 

being when z is a line; in which case z(O), z(1) E 80. We think of z as separating 0 into two regions of 

fluids which we refer to as "light" and "dark" fluid. Now cover n with a square grid Oh where h denotes the 

grid spacing. For each 0 ~ i ~ M and 0 ~ j ~ N let Ai represent the fraction of the i,jth cell's volume 

that is occupied by the dark fluid. The problem is to reconstruct the interface z, given only the grid nh and 

the volume fractions Ai, i = 0, ... , M and j = 0, ... , N. We refer to an algorithm for solving this problem 

as a volume-of-fluid interface reconstruction algorithm. 

Each of the algorithms,described in this section produces a linear approximation to the interface in each 

multifl.uid cell; i.e., each cell which satisfies 0 < Ai < 1. (We use the terms multi-fluid and multi-material 

interchangeably). In general, these piecewise linear approximations are not continuous. All of the algorithms 

except for SLIC use the volume fractions in a 3 x 3 block of cells to determine the approximate interface in 

the center cell of the block. SLIC uses only the volume fractions in a 3 x 1 block of cells to determine the 

approximate interface in the center cell of the block. 

All of the algorithms described below except for SLIC also return a slope, or equivalently, a vector D. 

normal to the interface. In this article we adopt the convention that n always points away from the dark 

fluid. The normal vector ni,j in the i, jth cell together with the volume fraction Ai uniquely determines the 

approximate linear interface in that cell. Thus, since the volume fraction fi,j is given, all of the algorithms 

described below (but SLIC) are simply rules for determining a unit normal vector from the values of the 

volume fractions in some neighborhood of the i, jth cell. 

In what follows we often will replace the problem of finding the unit normal n to the approximate interface 

with that of finding its slope m, since for many of the interface reconstruction algorithms we study this results 
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in very simple formulas form. However, this approach is problematic when the best linear approximation is a 

vertical, or nearly vertical, line. This can be remedied by rotating the 3 x 3 block of cells by 90° and applying 

the interface reconstruction algorithm in the new coordinate frame. In our discussion of the various interface 

reconstruction algorithms below we will sometimes omit details related to this coordinate transformation. 

Because of the difficulty in representing a vertical line in slope intercept form, we have found that in 

practice it is usually preferable to represent the approximate interface in each multi-material cell as a unit 

vector n = (nz, ny) normal to the approximate interface together with it's distance d from the origin. In 

this case the line satisfies the following equation 

nxx + nyy = d. 

We have found that this is a better computational representation than the slope intercept form 

y=mx+b. 

2.2 Simple Line Interface Calculation (SLIC) This algorithm is due to Noh and Woodward (39]. Their 

version of SLIC is a strictly one-dimensional method in which one uses the information in a 3 x 1 block of 

cells to reconstruct the interface in the middle cell. This necessitates the use of an operator split advection 

algorithm (described in §4) when one is solving problems in two and three space dimensions. Chorin (8] (see 

also (65]) has proposed a variant of the original SLIC algorithm that uses the volume fraction information 

in a 3 x 3 block of cells to reconstruct the interface in the center cell. However in general this modified 

algorithm still does not yield an approximation to the interface that is independent of the sweep direction 

and hence one is. still constrained to use an operator split advection algorithm. Here we study the original 

version of SLIC as described in (39]. 

In the SLIC method the reconstructed interface is composed of one or (in two cases) two lines aligned 

with the grid. The interface geometry and location is based on the values of the volume fractions in the 

a row of three cells centered on the cell containing the interface. Fig. 2.1 shows the interface geometry in 

four of the nine possible cases. The other five cases are obtained by switching light and dark fluid, or by 

switching left and right. Note that the approximate interface is not necessarily perpendicular to the sweep 

direction. Since SLIC always returns horizontal or vertical lines, it obviously does not exactly reproduce all 

linear interfaces and hence it is at best first-order accurate. 

2.3 The Center of Mass Algorithm This method is due to Saltzman (52]. In the Center of Mass 
/ 

algorithm, one considers the dark fluid to have a mass density of 1, and the light fluid to have no mass. To 

determine the approximate interface in the center of a 3 x 3 block of cells one first determines the center of 

mass (x, y) of the 3 x 3 block and then finds a unit vector that points from this point to the center of the 

center cell. This vector is taken as the unit normal n to the approximate interface. 
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Figure 2.1 Four of the nine possible cases in SLIC. The other five cases are obtained oy switching light and 

dark, or by switching left and right. 

To see if this method reproduces all lines exactly we consider the exact version of the method. In other 

words, to find (x, y) we integrate exactly rather than by using a numerical approximation to the integrals as 

one does in practice. Let h be the cell width of the 3 x 3 block, and choose a coordinate system in which the 

center of the center cell is at the origin. H the Center of Mass algorithm reproduces all lines exactly, then 

in particular for arbitrary mit must reproduce the line y = mx exactly. Let (x, y) be the coordinate of the 

center of mass of this 3 x 3 grid. We can find (x, y) by 

x= 

ii= 

f 1.5h Jmx d d 
-1.5h -1.5h X y X 

f 1.5h Jmx d d 
-1.5h -1.5h y X 

f 1.5h Jmx 
-1.5h -1.5h Y dy dx 

f 1.5h Jmx d d 
-1.5h -1.5h y X 

J~~~~h mx2 + 1.5hx dx = ~~~---------- = 
t~~~h mx + 1.5hdx 

2.25mh3 

4.5h2 

mh 
= 2' 

f 1.5h 2 2 - 2 25h2 d 
-l.Sh m X • X = -=~-~~--- = 

9h2 

2.25m2h3 - 6.75h3 

9h2 

The slope of the line given by this method is found by 

x mh 4 2m 
-fj = 2 3h- m 2h = 3-m2· 

= 

Thus the center of mass algorithm does not exactly reconstruct the line y = mx, and hence it is at best 

first-order accurate. 

2.4 The Central Difference Algorithm In this algorithm, one finds the slope m of the approximate 

interface taking half the difference of the right and left hand column sums of the volume fractions. In other 

words, if !k,l represents the volume fraction in the (k, l)th cell, then the slope m of the approximate interface 

in the ( i, j)th cell is given by 
1 1 

m = 2 L !i+1,i+k - fi-1,j+k . 
k=-1 

If we let 
1 

Yi = h L /i.i+k• 
k=-1 

then Yi can be thought of as being an approximation to they coordinate of the interface at Xi = (i +~)h. 
In the central difference algorithm we determine the slope of the approximate interface by taking a centered 

difference of the discrete variable Yi· 

11 



Second-Order Accurate Volume-of-Fluid Algorithms 

(a) h 2h 3h (b) h 2h 3h 

Figure 2.2 (a) Center differences will exactly reconstruct a line that cuts opposite sides of a 3 x 3 block of 

cells. (b) It will not exactly reconstruct a line that cuts adjacent sides of a 3 x 3 block of cells. 

In order to examine how well this method approximates an arbitrary line, we must consider the following 

two cases: (a) the line cuts opposite sides of the 3 x 3 grid, as in Fig. 2.2a or (b) it cuts adjacent sides, 

as in Figure 2.2b. First consider the case shown in Fig. 2.2a. Suppose that the interface . be given by 

y(x) = mx +b. Let A1 be the sum of the volume fractions i~ the left hand column and A3 the sum of the 

volume fractions in the right hand column in Fig. 2.2a. We can determine A1 by noting that it is the area 

of the trapezoid with sides of length b and mh + b and width h while A3 is the area of the trapezoid with 

sides of length 2mh + b and 3mh + b and width h, 

1 m b 
A1 = 2h2 (mh+b+b)h = 2 + h' 

1 5 b 
A3 = 2h2 (3mh+b+2mh+b)h = 2m+ h," 

Note that these formulas are exact no matter how the line y(x) intersects a given cell, provided only that 

the line cuts opposite sides of the 3 x 3 grid. The central difference approximation to m = y' ( x) is given by 

. 1 ' 
_ 1 ~ A3 -A1 
m = 2 ~ li+1,j+k -li-1,J+k = 2 = m. 

k= -1 

Since the exact and approximate interfaces have the same slopes and the same volume fraction in the center 

cell, they are the same line. Thus, when the true interface is a line that intersects opposite sides of the 3 x 3 

block, the approximate interface in the center cell will be precisely this line. 

Now consider the case shown in Figure 2.2b, where cis the distance from the point where the line y(x) 

intersects the top of the .. 3 x 3 block to the right-hand side of this block. Again, let A1 be the sum of the 

volume fractions in the left hand column, and let A3 be the sum of the volume fractions in the right hand 

column. The quantity A1 is still the area of the trapezoid with sides of length b and mh + b, and width h. 

However, now A3, is the area of the shape formed by subtracting the right triangle with the sides of length 
/ 

c and 3mh + b - 3h from the trapezoid with sides of length 2mh + b and 3mh + b, and width h. Thus, in 
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the second case we have 

1 m b 
A1 = 2h2 (mh + b + b)h = 2 + h, 

A3 = ~2 [~(3mh + b + 2mh + b)h- ~(3mh + b- 3h)ch] = 5 b 3 be 3 
-m + - - -em - - + -c 
2 h 2 2h 2 ° 

Again these formulas are exact no matter how the line intersects a given cell, provided only that the line 

y(x) intersects adjacent sides of the 3 x 3 block. The central difference approximation to the slope m is thus, 

Thus, when the linear interface intersects adjacent sides of the 3 x 3 block, the approximate interface in 

the center cell will not be the original interface. Thus the central difference algorithm is not second-order 

accurate. 

In practice one does not know that the true interface is a valid function of x (e.g., it could be a vertical 

line). We can address this problem by also determining an approximation mY tom by differencing the top 

and bottom rows and choosing the best value of m. One way to choose the between the two values is to 

choose the smaller value 

This strategy will always return an exact approximation to a line that cuts opposite sides of the 3 x 3 block, 

even a vertical line. Another (better) strategy is discussed in §2.6 below. 

We note that in their SOLA-VOF method Hirt and Nichols [24] used a centered difference of the volume 

fractions to determine a location on the interface for the purposes of specifying pressure boundary conditions. 

However they used an algorithm which is quite similar to SLIC to reconstruct the interface for the purposes 

of updating the volume fractions in time. Based on the computati~nal tests described below, we believe that 

their volume fraction advection algorithm would have been more accurate· if they had also used the central 

difference algorithm in the interface reconstruction phase of the volume fraction update. 

2.5 Parker and Youngs' Method In this method, due to Parker and Youngs [42], one calculates an 

approximation to V' f, which is taken to point in the direction normal to the approximate interface. One 

calculates V' f with the following difference scheme 

8! 
ax 
8! 
8y 

= 

= 

!E-fw 
2 

IN -Is 
2 
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jN 

fw jE 

fs 

Figure 2.3 The stencil that Parker and Youngs use to determine \7 f. 

The variables !E, /w, /N, Is are centered in the cells as shown in Fig. 2.3 and are given by 

1 . 
IE = 2 +a Ui+1,i-1 + afi+1,i + /i+1,i+l), 

1 . 
fw = 2 +a Ui-1,i-1 + a/i-1,i + h-1,i+l), 

1 
/N = 2 +a Ui-1,i+1 + afi.i+I + /i+1,i+l), 

1 
Is = 2 +a Ui-1,j-1 + afi.i-1 + /i+1,i-1), 

where a is a free parameter. Parker and Youngs report that a= 2 seems to give the best results. 

In order to' determine how well Parker and Youngs' method approximates straight lines, we consider the 

line y = tx + h shown in Fig. 2.4a. The volume fractions due to this line are shown in Fig. 2.4b. The values 

of IE, /w, IN, Is are 

and hence 

1 
Is = --

2 
(1 +a+ 1) = 1, 

a+ 

of (IE- !w) a 
ox - 2 = 

3(a + 2)' 
of UN- Is) 1 

= = -2. oy 2 

The slope of the approximate interface is therefore 

- -offox 
m = offoy = 

2a 
3(a + 2) · 

The correct slope of the line ism= 1/3: Thus if we wish to choose a so that 

2a 1 
3(a + 2) = 3" 
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0 0 0 

116 1/2 5/6 

1 1 1 

(a) h 2h 3h {b) 

0 1112 2/3 

113 11112 1 

h 

1 1 1 

0 
(c) h 2h 3h {d) 

Figure 2.4 (a) Parker and Youngs' method will reconstruct this line exactly only if a= 2. {b) The volume 

fractions associated with the line shown in (a). (c) Parker and Youngs' method does not reconstruct this 

line exactly for a = 2. Thus it does not reproduce all linear interfaces exactly, and so we conclude it is a 

first-order method. (d) The volume fractions associated with the line shown in (c). 

we must have a= 2. In other words, only the value of a= 2 will yield the correct linear interface y = ~x+h. 

We now show that a = 2 does not reconstruct all lines exactly. Consider the line y = ~x + h shown- in 

Fig. 2.4c. The volume fractions due to this line are shown in Fig. 2.4d. When a= 2 the values of IE, fw, 

IN, Is are 

and hence 
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The slope of the approximate interface is therefore 

m = -of fox 148 12 
= = of/oy 419 19 

(2.1) 

Since the correct slope ism= 2/3, we conclude that Parker and Youngs' algorithm will not reconstruct all 

linear interfaces exactly. 

Note that the quantity in (2.1) is independent of the grid width h. This implies that the approximation 

to the slope does not improve as h-+ 0; i.e., in general this algorithm makes an 0(1) error in the slope of 

the interface. We therefore conclude that it is at best a first-order accurate algorithm. This is consistent 

with the numerical results presented in §§3-5. 

2.6 The Least Squares Volume-of-Fluid Interface Reconstruction Algorithm (LVIRA) This al

gorithm is due to Puckett [47] and has been used extensively to model gas interfaces in compressible (e.g., 

see [36, 37, 49, 50]) and incompressible (e.g., see [3, 48]) flows. Consider the 3 x 3 block of cells centered 

on the i,jth cell. Let f(x) be a curve that passes through the i,jth cell and let !k,l fork= i- 1, ... ,i + 1, 

l = j- 1, ... ,j + 1 represent the volume fractions due to the function/, in the 3 x 3 block. Now let j be a 

linear approximation to f with slope iii and volume fractions Jk,l and assume that j has the same volume 

fraction in the i,jth cell as /; i.e., hi = Ji,i· Define EL to be the discrete L2 error between the volume 

fractions in the 3 x 3 block of cells centered on the i, jth cell, 

1 1 

Eli(m) = ( :L Cii+k,j+l(m) - li+k,j+l) 2
) 

2
. (2.2) 

k,l=-1 

In the LVIRA algorithm one minimizes El,i as a function of iii by rotating the the line j under the constraint 

that this line exactly reproduces the volume fraction in the center cell, h,i = hi. 3 

Note that basic design criterion in the LVIRA algorithm is to minimize some measure of the error between 

the volume fractions given by the true and approximate interfaces. One could instead choose to minimize 

the discrete L 00 error 

E?O.(m) .,, (2.3) 

or the discrete L1 error 
1 

ELCm) = :L ili+k,j+l(m) - li+k,i+tl (2.4) 
k,l=-1 

in the 3 x 3 block of cells centered on the i, jth cell, subject to the constraint that h,i = hi. 

3 In order for (2.2) to represent our algorithm correctly one must allow m to have the value m = oo. For this reason 

it is perhaps better to express the error Ei,j in (2.2) as a function of the unit normal n to the approximate interface. 

However, we find that the formulas for the approximate slope m are much simpler to write down and understand. We 
hope that the use of m in (2.2) this will not cause the reader confusion. 
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We claim that if the original interface f(x) is a line, then the LVIRA algorithm- with any of the norms 

defined in (2.2)-(2.4) - will exactly reconstruct this line in the i, jth cell. To see this suppose that f(x) is 

a line and assume that that the minimization procedure will always find the correct global minimum when 

given volume fraction data fk.t due to a linear interface in a 3 x 3 block of cells. (Our test problems below 

demonstrate that this is a reasonable assumption.) Each of the norms E~i in (2.2)-(2.4) has a minimum 

value of 0 that is attained when !k,t = Jk,l for each cell in the 3 x 3 block. This will only occur when 

}(x) = f(x). Thus the LVIRA algorithm reconstructs linear interfaces exactly. 

3.0 ..-----,----~-----.--------, 

2.0 

1.0 

Figure 2.S The error El,;(m) between a circle that passes through the cell center, with a tangent line of 

slope of 0.5 at that point, and the approximate interface j with slope m. 

In the work presented below we determine the slope m by using the central difference algorithm to obtain 

an initial guess and then using Brent's algorithm (e.g., see [45]) to minimize El,;· (Brent's algorithm is an 

iterative method that fits a parabola over the interval, and uses the minimum of the parabola as the next 

guess for the minimum of the given function. Hit cannot fit a parabola, it does a golden section search. The 

method stops when both the interval and consecutive guesses are within a given tolerance.) To help ensure 

that Brent's method will converge to the global minimum, we slowly expanded the interval about the initial 

guess until the error at the endpoints of the interval was greater than the one given by the initial guess. 

In Fig. 2.6 we present an example of Brent's method improving on the initial guess given by the central 

difference algorithm and finding the minimum of the function El,;(m) shown in Fig. 2.5. 

The term "Least Squares" that has come to be associated with this algorithm may be somewhat mislead

ing. It was chosen because the method was originally designed to minimize the discrete L 2 error defined 

in (2.2). Since this is the same measure of error that is minimized in a "least squares" data fit it seemed 
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0.008 

0.006 

-
C\ll.S 0.004 
w 

0.002 

/ 

0.000 
0.40 0.45 0.50 

m 
0.55 0.60 

8-------E) central differencing 
~ Brent's method 

Figure 2.6 We use the centered difference algorithm to obtain a starting point for Brent's method, which 

we then use to find the minimum of the curve shown in Figure 2.5. 

natural to refer to the algorithm as-the "Least Squares" Volume-of-Fluid Interface Interface Reconstruction 

Algorithm. However, one should note that given a fixed volume fraction h.i in the center cell, the function 

F(n) that takes a unit vector n normal to the approximate linear interface j in the center cell and returns 

the volume fractions ji+k,j+l for k, l = -1, ... , 1 in the 3 x 3 block of cells surrounding this cell, subject to the 

constraint that Ji,j = h.i, is nonlinear. Thus, unlike the least squares data fitting algorithm, the problem 

of minimizing (2.2) can not be formulated as the solution of a system of linear equations. 

2.7 Efficient Least Squares Volume-of-Fluid Interface Reconstruction Algorithm (ELVIRA) 

This algorithm is due to Pilliod [43]. In-the ELVIRA method, one obtains the slope iii of the app~oximate 

linear interface j by choosing between six candidate values of iii. The first three of these six candidate 

values are the backward, central and forward differences of the column sums of the volume fractions. In 

other words, we consider the following three values 

1 / 

iii~ = L:: Ai+l -li-1,j+l, 
l= -1 

1 

iii~ = L:: !i+1,j+l - ti-1,j+l , 

l=-1 
1 

iiij = L:: li+1,j+l - h.J+z. 
l=-1 

(2.5) 

The other three candidate values are the backward, central, and forward differences of the column sums of 

18 



Second~ Order Accurate Volume-of-Fluid Algorithms 

the volume fractions in the y direction; i.e., the differences of the row sums, 

1 

m~ = L: li+k,j - !i+k,j-1 , 
k=-1 

1 

m~ = L: !i+k,j+l - !i+k,j-1 , 
k=-1 

1 

m~ = L: !i+k,j+l - !i+k,j . 
k=-1 

(2.6) 

(Note that the slopes mY are with respect to the coordinate system which is rotated goo from the original 

coordinate system. The lines }(mY) associated with these slopes and the resulting errors Ef,i(mY) must be 

interpreted appropriately.) To determine which is the best slope m to use for a given collection of volume 

fractions !k,l in the 3 x 3 block we minimize one of the norms in (2.2)-(2.4) over the slopes in (2.5) and (2.6), 

We claim that this method reconstructs all linear interfaces exactly. In §2.4 we saw that if the true 

interface is a line that intersects opposite sides of the 3 x 3 block, then a centered difference of the column 

sums exactly reproduces this line. In this case, (2. 7) will return either m = m~ or m = m~, since one of 

these values must result in Ef,i(m) = 0. 

Now suppose that the linear interface does not intersects opposite sides of the 3 x 3 block. Therefore, it 

must intersect adjacent sides of the 3 x 3 block. Consider the case shown in Fig. 2.2b, where the interface is 

given by y = mx + b with m :::; 1. Let A1 be the sum of the volume fractions in the left hand column and 

A2 be the SUJ? of the volume fractions in the middle column. The quantities A1 and A2 are given by 

and their difference is, 

m b 
A1 = 2 + h'_ 

1 3 b 
A 2 -

2
h2 (2mh+b+mh+b)h = 2m+ h' 

m';; = A2-A1 = m .. 

Thus a backward difference of the column sums exactly reconstructs a linear interface that intersects the left 

hand side of the 3 x 3 block and has slope m :::; 1. By considering the mirror image of Fig. 2.2b, one can see 

that a forward difference of the column sums will exactly reconstruct a linear interface that intersects the 

right hand side of the 3 x 3 block and has slope m ;::: -1. If the magnitude of the slope m of the true linear 

interface is greater than one, then the argument above, applied to the 3 x 3 block in a coordinate frame that 

has been rotated goo, shows that either a backward or forward difference of the row sums will produce the 

correct slope. Thus, at least one of the errors Ef,i (m$) inside the square brackets in (2. 7) will be 0, thereby 
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guaranteeing that the ELVIRA algorithm will reconstruct all linear interfaces that pass through the center 

cell of the 3 x 3 block exactly. 

Hone only considers linear interfaces, the centered difference may seem redundant, since all three difference 

methods produce the correct slope when the linear interface intersects opposite sides of the 3 x 3 block. For 

nonlinear interfaces, however, it appears that a centered difference sometimes produces a more accurate 

approximation to the interface than the other two methods. For example, consider a circle that is placed 

in the 3 x 3 block such that the top of the circle intersects the center of the center cell. Then a backward 

difference results in a positive slope, a forward difference results in a negative slope, while a centered difference 

results in a zero slope. The latter is the best approximation to the slope of the tangent to the circle at the 

center of the center cell. 

3. Stationary Interface Reconstruction 

We now examine the accuracy of the reconstruction methods that were introduced in §2. All of the 

test problems in this section are stationary; no advection is performed and hence there is no error due to 

discretization in time. 

3.1 Error Measurement The exact interface z separates the plane into two regions, which we refer to as 

the "dark" fluid and the "light" fluid. Let f(x, y) be the characteristic function associated with the dark 

fluid as define_d in {1.3). The approximate interface also separates the plane into regions of dark and lig~t 

fluid. Let f(x, y) be the characteristic function associated with this partition of the plane. Then a natural 

measure of the error between the approximate and exact interfaces is 

E 1 =I j jlf(x,y)-j(x,y)jdxdy, (3.1) 

where Lis the length of the exact interface z. We evaluated (3.1) by finding the points where the true and 

approximate interfaces intersect each other and the cell edges, and then ev8.luating the integrals between 

these points analytically. We used the exact analytic equation instead of a numerical approximation to the 

integral in order to avoid truncation error and to minimize execution time. 

In what follows we will sometimes average (3.1) over many (100 or 1000) computations with different initial 

data. This is done to avoid anomalously small values of E 1 that might arise from a fortuitous alignment of 

the interface with the grid. (For example, SLIC will reproduce a line exactly if the line is parallel to one of 

the axes.) 

3.2 Test Problems We begin by examining the accuracy with which each interface reconstruction algorithm 

approximates a line. The errors reported here were averaged over 1000 lines with randomly generated slopes 

and intercepts. It is apparent from the data presented in Table 3.1 that the errors produced by the SLIC, 
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Center Parker & Central 
h SLIC of Mass Youngs Differencing LVIRA ELVIRA 

1/2 1.281 0.1459 0.0134 0.00522 4.17E-12 3.23E-17 
1/4 0.6483 0.0755 0.0111 0.00281 2.03E-12 2.05E-17 
1/8 0.3335 0.0369 0.00655 0.00159 1.10E-12 1.89E-17 

1/16 0.1632 0.0189 0.00364 0.000716 5.24E-13 9.83E-17 
1/32 0.0822 0.00915 0.00184 0.000411 2.80E-13 2.55E-16 
1/64 0.0414 0.00479 0.000985 0.000181 1.36E-13 7.29E-17 

Table 3.1 The E 1 error in approximating a line averaged over 1000 randomly generated lines. 

Center of Mass, Parker & Youngs' and centered difference algorithms decrease at roughly a first-order rate. 

However, it should be noted that the amplitudes of these errors differ by more than two orders of magnitude, 

with SLIC consistently having the largest error and the centered difference algorithm consistently having 

the smallest error for a given grid width h. The LVIRA and ELVIRA algorithms essentially reproduce the 

lines exactly. When we use a tolerance of 10-10 in Brent's method the error due to the LVIRA algorithm is 

0(10-12). When we changed the tolerance to 10-14, the error reduced to 0(10-16), which is machine zero. 

The ELVIRA method is accurate to machine zero when we use it to reconstruct linear interfaces. 

Center Parker & Central 
h SLIC of Mass Youngs Differencing LVIRA ELVIRA 

1/2 0.00576 0.00667 0.00843 0.00782 0.0106 0.00919 
1/4 0.00279 0.00321 0.00213 0.00199 0.00263 0.00203 
1/8 0.00137 0.00184 0.000658 0.00051 \ 0.00066 0.000522 

1/16 0.00068 0.00099 0.000262 0.00014 0.00017 0.000138 
1/32 0.00034 0.00051 0.000118 0.000039 0.000043 0.000036 
1/64 0.00017 0.00025 0.000056 0.000011 0.000011 0.000009 

Table 3.2 The E 1 error in approximating a unit circle averaged over 1000 randomly generated unit circles. 

Next we examine the accuracy with which each .interface reconstruction algorithm approximates a circle. 

The data presented in Table 3.2 is the error E 1 defined in (3.1) averaged over 1000 unit circles with randomly 

generated centers. It is apparent from this data that the errors due to the SLIC and Center of Mass algorithms 

decrease at almost precisely a first-order rate, while the error due to Parker & Youngs' algorithm exhibits 

a somewhat better overall decrease, but still appears to be decreasing at a first-order rate when h is small. 

The overall decrease in the error due to the ELVIRA algorithm is almost precisely second-order in h, while 

the decrease due to the LVIRA algorithm slightly less than second-order in h; the error due to the ELVIRA 

algorithm decreases by a factor of 1021 when the grid is reduced by a factor of 32, while the error due to 

the LVIRA algorithm decreases by a factor of 963 over the same range. A precisely O(h2 ) decrease would 

reduce the error by a factor of 1024. The error due to the centered difference algorithm decreases by a factor 

of 711, which is better than the first-order accurate decrease we expect to see. 
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It is surprising that a centered difference exhibits nearly second-order accuracy when we use it to recon-
( 

struct a circle, yet it is clearly not second-order accurate when we use it to reconstruct a line. We believe 

that this is because the data in Table 3.1 is an average measure of the error and that, for a given circle, the 

centered difference algorithm returns a second-order accurate approximation to a tangent to the circle in a 

large proportion of the cells that contain a portion of the circle. Our reasoning is as follows. As we noted in 

§2.4 a centered difference of the column sums of the volume fractions will reconstruct a line exactly if the 

line passes through the opposite sides of the 3 x 3 grid. It seems likely that if the interface is circular, then in 

a large number of cases there will be at least one second-order accurate linear approximation to the interface 

(e.g., a tangent) that passes through opposite sides of the 3 x 3 block and that the centered difference will 

return a second order approximation to this line. On the other hand it is easy to find linear interfaces that 

never pass through opposite sides of the 3 x 3 block. 

Center Parker & Central 
.6.x SLIC of Mass Youngs Differencing LVIRA ELVIRA 
1/4 0.4169236 0.025972 0.026481 0.059409 0.026503 0.026422 
1/8 0.3103914 0.005628 0.005768 0.020671 0.005817 0.005811 

1/16 0.2355265 0.002638 0.002306 0.009201 0.001417 0.001414 
1/32 0.1626742 0.001290 0.001127 0.004287 0.000351 0.000351 
1/64 0.1131834 0.000637 0.000555 0.002030 0.000086 0.000086 

Table 3.3 The E 00 error in approximating a unit circle. 

We tested this conjecture by examining the error in the E 00 or max norm. For our purposes here we use 

E 00 = max{E?O.} . . t,J 
t,J 

(3.2) 

where the maximum is only taken over those cells (i,j) that contain a portion of the interface and 

Eij = max lf(x,y)- j(x,y)l· 
' (x,y)Ecell(i,j) 

(3.3) 

Note that the definition in (3.2)-(3.3) is reasonable only when the true and approximate interfaces occupy 

precisely the same cells. This precludes us from using it in later sections when we study the accuracy of 

volume-of-fluid advection algorithms. 

In the work presented below we evaluated the error Ef:j in a given cell by determining the maximum 

distance between the two curves f and j analytically and comparing these values with those at the cell 

edges. 

In Table 3.3 we present the error E 00 when we used each method to reconstruct one randomly generated 

circle. It is apparent that in this norm SLIC is 0( Vh), LVIRA and ELVIRA are second-order accurate 
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Center Parker & Central 
h SLIC of Mass Youngs' Differencing LVIRA ELVIRA 

1/2 0.0955 0.0664 0.0632 0.0653 0.0681 0.0676 
1/4 0.0353 0.0188 0.0172 0.0176 0.0178 0.0172 
1/8 0.0161 0.00562 0.00445 0.00436 0.00437 0.00422 
1/16 0.00790 0.00193 0.00123 0.00110 0.00110 0.00106 
1/32 0.00389 0.000746 0.000371 0.000286 0.000278 0.000269 
1/64 0.00189 0.000311 0.000118 0.000073 0.000068 0.000066 

Table 3.4 The average E 1 error in approximating 1000 randomly generated crosses. 

and centered difference and the other algorithms are first-order accurate. This data supports our conjecture 

concerning the near second-order accurate behavior of the central difference algorithm in the averaged E 1 

norm when it is used to reconstruct a circular interface. 

Next we study the accuracy of these methods when we use them to reconstruct a continuous interface 

that has several discontinuities in its first derivative. In the first test problem the exact interface is a cross 

formed by removing four unit squares from the corners of a square three units on a side. In Table· 3.4 we 

present the results of using the various interface reconstruction methods to reconstruct this shape. The 

data presented in Table 3.4 is the error E 1 averaged over 1000 crosses with randomly generated centers and 

orientations. It is apparent from Table 3.4 that the SLIC algorithm exhibits essentially first-order accuracy, 

the Center of Mass algorithm exhibits somewhat better than first order accuracy, and the centered difference, 

LVIRA and ELVIRA algorithms exhibit near second-order accuracy; they all reduce the error by a factor of 

approximately 1000 when the the grid is decreased by a factor of 32. (An precisely second-order decrease 

would reduce the error by a factor of 1024.) Parker & Youngs' algorithm reduces the error by a factor of 

500 over the same range. 

Finally we study the problem of reconstructing the shape shown in Fig. 3.1. This shape is produced by 

cutting a rectangle 1/3 units in width from a unit circle, starting 1/3 of a unit length from the top of the 

circle. This shape was introduced by Zalesak [67] to study the accuracy of flux-corrected transport (FCT) 

on a simple advection problem. It has subsequently been used by many other authors to study the accuracy 

of various advection algorithms (e.g., see [5, 31]). 
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5 cells 

15 cells 

5 cells 

Figure 3.1 The notched circle, first introduced by Zalesak to study the accuracy of advection algorithms, 

which we use in several of our test problems. 

Center Parker & Central 
h SLIC -of Mass Youngs' Differencing LVIRA ELVIRA 

1/4 0.0370 0.0172 0.0145 0.0178 0.0146 0.0219 
1/8 0.0120 0.00301 0.00258 0.00256 0.00247 0.00257. 
1/16 0.00525 0.00091 0.000690 0.000654 0.000630 0.000656, 
1/32 0.00271 0.000303 0.000190 0.000165 0.000159 0.000165 
1/64 0.00118 0.000110 0.000054 0.000041 0.000039 0.000040 

Table 3.5 The E 1 error averaged over 1000 notched circles with randomly generated centers and orientations. 

In Table 3.5 we show the average E 1 error that we obtained after approximating 1000 of these shapes 

with randomly generated centers and orientations. We see that the SLIC algorithm exhibits roughly first

order accuracy, the Center of Mass algorithm exhibits slightly better than first-order accuracy, and the 

other algorithms exhibit, on average, second-order or better accuracy for this problem. Starting with the 

left-hand column in Table 3.5 (i.e., SLIC) and moving right, the total decrease in the error associated with 

each method ash is decreased from h = 1/4 to h = 1/64 is 31, 156, 268, 434, 374 and 547 respectively. The 
-

superior performance of the ELVIRA algorithm relative to the other .algorithms - even for convergence rates 

that are nominally the same - was consistently demonstrated in all ~f the test problems we studied. 

4. Volume-of-Fluid Advection Algorithms 

In order to approximate solutions of the advection equation (1. 7) we need an algorithm for evolving the 

volume fractions in time. Let u~ 1 . (resp. v~ ·_l.) denote the value of u (resp. v) at the center of the left 
·-2,J •,J 2 
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(resp. bottom) edge of the i,jth cell and suppose that these velocities satisfy a discrete form of (1.6), 

(u~+~ . - u~_ 1 .) (v~ -+~ - v~ ·-~) 
t 2 ,J t 2 ,J + t,J 2 t,J 2 ~ 0 . 

~X ~y 
( 4.1) 

Given an approximation to the interface in each cell for which 0 < tri < 1 we wish to determine the volume 

fractions fi~Jl at the new time tn+l = (n + 1) ~t. We refer to ~gorithms for doing this as volume-oj-:ftuid 

advection algorithms. 

In this article we study two types of advection algorithms. Both are based on the standard conservative 

finite difference update of (1.7), 

f n+l _ fn ~t [Fn pn J ~t [Gn en ] 
i,j - i,j + ~X i-~,j - i+~,j + ~y i,j-~ - i,j+~ ' (4.2) 

where F'!' ~ . = (Ju)~ ~ . denotes the flux of f across the left-hand edge of the i, jth cell and G~. 1 = 
7.- 2 ,, ,_ 2 ,J " t,J- 2 ( 

(fv)~ ·_l. denotes the flux across the bottom edge of the i,jth cell, etc. 
'&,J 2 

4.1 Operator Split Advection The simplest advection algorithm for approximating solutions of (1.7) is 

the fractional step or operator split method, 

fi~i = fi~i + ~: [~':.~.i- Fi~~.i], 
fi~r = fi~j + ~: [c;,i-!- a;,j+~]. 

(4.3) 

(4.4) 

where the superscript * represents an intermediate value for the volume fractions and fluxes. There is a 

simple geometric interpretation of the fluxes in (4.3)-(4.4). Suppose that u~+ 1 . is positive. Divide the 
t 2 ,J 

(i,j)th cell into two disjoint rectangles, with areas u~+ 1 . ~t ~y on the right and ( ~x - u~+l. . ~t) ~y 
t 2'' . " 2 ,J 

on the left as shown in Fig. 4.1a. 

(a) (b) 

Figure 4.1 (a) ln operator split advection, the fluid to the right of the dotted line crosses the right cell 

edge. (b) In .a volume-of-fluid method, we use the reconstructed interface to determine the amount of fluid 

that crosses each edge. 

All of the fluid to the right of the dotted line in Fig. 4.1a will cross the right-hand edge during this time 

step. In particular, the flux of dark fluid across this edge is equal to the amount of dark fluid contained 
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in this rectangle. In a volume-of-fluid method, this can be determined by the location of the reconstructed 

interface as shown in Fig. 4.lb. Thus, if Vi+!.i denotes the volume of dark fluid in the center cell to the 

right of the dotted line in Fig. 4.1b, then the (approximate) volume fraction flux across the right hand cell 

edge is given by 

F:'+.!. . = u':+.!. . Vi+1. 3· j(u':+.!. . At Ay) = Vi+1. 3· j( At Ay). 
' 2 ,J 1. 2 ,J . 2 ' 2. 2 ,] 2 , 

(4.5) 

After using (4.5) in (4.3) to determine the intermediate volume fractions fi~i' one then uses these values 

to reconstruct the interface in all cells that satisfy 0 < fi~i < 1. The vertical fluxes G;,i+l/2 are then 

determined by a geometric construction analogous to the one described for the horizontal fluxes, and the 

volume fractions at the new time level fi~j1 are found by inserting these vertical fluxes into (4.4). This 

procedure can be made second-order accurate simply by alternating the sweep direction at each time step. 

The CFL Constraint It is apparent from geometric considerations that one must choose the CFL number 

u so that the amount of fluid which leaves a cell in one time step is no more than the amount of fluid that 

was originally in the cell. In other words, one must choose u so that 

V:+1. · - V:_.!. · < fi 3· Ax Ay t 2 ,J t 2 ,J - , (4.6) 

for all i, j. One way to ensure that (4.6) is always satisfied is to choose u E (0, 1] so that 

lur:+l. ·I At :$ Ax /2 
t 2 ,J 

and lvr: ·+1.l At :$ Ay /2 t,J 2 
for all i, j. (4.7) 

An alternative, is to choose u E (0, I] so that 

(ur:+t . - u': 1 .) At < Ax 
t 2t3 t-2,J -

and (vr: ·+1. - vr: ·_.!.).At :$ Ay . 
t.,J 2 t,J 2 

(4.8) 

This latter condition is less restrictive than ( 4. 7) and will usually result in a larger time step 

4.3 Test Problems We begin by studying the accuracy with which second-order operator splitting combined 

with each of the interface reconstruction methods approximates a line that is translating in a constant velocity 

field. We obtained the errors reported in Table 4.1 by translating 100 randomly generated lines with unit 

velocity in a· randomly generated direction for one unit of time and averaging the error E 1 between the 

approximate and exact solutions. It is apparent from the data in Table 4.1 that the SLIC, Center of Mass, 

centered difference, and Parker & Youngs' algorithms are all first-order accurate. As with a stationary line, 

the LVIRA and ELVIRA methods essentially reproduce the interface exactly. The error given by the LVIRA 

method is due to the tolerance we used in Brent's algorithm. The ELVIRA method is accurate to machine 

zero. 

We note that one can use this as a design criterion for constructing a formally second-order accurate 

interface tracking algorithm. Namely that it must propagate a straight line with any slope, in a uniform 

velocity field in any direction, exactly. 
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Center Parker & Central 
h SLIC of Mass Youngs Difference LVIRA ELVIRA 

1/2 0.9626 0.1511 0.00674 0.00336 4.0E-12 6.7E-17 
1/4 0.5142 0.0786 0.00988 0.00219 1.3E-12 6.8E-17 
1/8 0.2658 0.0362 0.00639 0.00146 1.1E-12 1.1E-16 
1/16 0.1212 0.0183 0.00334 0.000401 4.0E-13 9.0E-17 
1/32 0.0660 0.00947 0.00185 0.000308 2.1E-13 4.2E-17 
1/64 0.0300 0.00444 0.000835 0.000110 8.2E-14 7.9E-17 

Table 4.1 The average E 1 error after translating 100 randomly generated lines one unit in time. 

Next we present three tests with circles. In the first test we translate a unit circle in the x-direction with 

unit velocity for one unit of time using various CFL numbers a. In Table 4.2 we present the errors when 

we use a= 1 while in Table 4.3 we present the errors when we use a= 1/32. It is apparent from the data 

presented in these two tables that, in general, decreasing the CFL number did not reduce the error. In fact, 

the amplitude of the error is generally larger when a= 1/32 than when 
1

r7 = 1, although in both cases the 

error decreases at the same rate. The increase in the amplitude of the error seen in Table 4.3 is almost 

certainly due to the accumulation of local truncation error over 32 times as many time steps. Unless noted 

otherwise, we set a= 0.5 in all of the remaining test problems. 

Center Parker & Central 
h SLIC of Mass Youngs' Difference LVIRA ELVIRA 

1/2 0.0606 0.00889 0.0110 0.0133 0.00641 0.0133 
1/4 0.0334 0.00930 0.00267 0.00289 0.00364 0.00361 
1/8 0.0175 0.00471 0.00151 0.000614 0.000995 0.000610 
1/16 0.00909 0.00261 0.000874 0.000154 0.000283 0.000160 
1/32 0.00466 0.00141 0.000458 0.000042 0.000066 0.000040 
1/64 0.00238 0.000747 0.000231 0.000014 0.000016 0.000010 

Table 4.2 The E 1 error aftertranslating a unit circle one unit in time with CFL number a= 1. 

Center Parker & Central 
h SLIC of Mass Youngs' Difference LVIRA ELVIRA 

1/2 0.0624 0.0181 0.0190 0.0130 0.0162 0.0130 
1/4 0.0334 0.0121 0.00479 0.00435 0.00487 0.00465 
1/8 0.0175 0.00602 0.00241 0.00139 0.00145 0.00138 
1/16 0.00910 0.00304 0.00128 0.000426 0.000498 0.000437 
1/32 0.00467 0.00156 0.000656 0.000130 0.000154 0.000125 
1/64 0.00238 0.000803 0.000323 0.000042 0.000048 0.000038 

Table 4.3 The E 1 error after translating a unit circle one unit in time with a = 1/32. 

Next we translate 100 unit circles with randomly generated centers in a randomly generated direction with 
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unit velocity for one unit of time. In Table 4.4 we present the E 1 error averaged over 100 randomly chosen 

circles. It is apparent that the Center of Mass, SLIC, and Parker & Youngs' methods are first-order accurate, 

and the LVIRA and ELVIRA methods are second-order accurate. Central difference is second-order accurate 

until the grid spacing is .6.x = 1/16, and then it is first-order accurate. 

Center Parker & Central 
h SLIC of Mass Youngs Difference LVIRA ELVIRA 

1/2 0.1135 0.0130 0.0143 0.0204 0.0231 0.0206 
1/4 0.0605 0.0132 . 0.00342 0.00462 0.00566 0.00476 
1/8 0.0312 0.00898 0.00192 0.000955 0.00149 0.00100 
1/16 0.0178 0.00481 0.00111 0.000245 0.000405 0.000246 
1/32 0.0105 0.00242 0.000581 0.000104 0.000108 0.000066 
1/64 0.00633 0.00116 0.000276 0.000058 0.000027 0.000020 

Table 4.4 The average E 1 error after translating 100 random unit circles in random directions. 

In our final test with circles we place a unit circle with its center at cell center and rotate it with unit 

angular velocity for·one rotation. Here we used a CFL number of a= tr/6. It is apparent from the data 

presented in Table 4.5 that SLIC, the Center of Mass and Parker & Youngs' algorithms exhibit first-order 

accuracy while the other three algorithms exhibit second-order accuracy. Starting with the left-hand column 

and moving right, the overall decrease in the error for each algorithm when the grid was reduced from 

h = 1/2 to h = 1/64 was 20, 47, 185, 827, 893 and 1146 respectively. A precisely second-order accurate 

decrease in the error would be by a factor of 1024. 

Center Parker & Central 
h SLIC of Mass Youngs' Difference LVIRA ELVIRA 

1/2 0.0947 0.0148 0.0145 0.0149 0.0134 0.0149 
1/4 0.0535 0.00603 0.00298 0.00311 0.00480 0.00311 
1/8 0.0303 0.00293 0.00102 0.000778 0.000859 0.000769 
1/16 0.0191 0.00112 0.000403 0.000294 0.000252 0.000230 
1/32 0.00878 0.000621 0.000197 0.000055 0.000059 0.000057 
1/64 0.00464 0.000310 0.000078 0.000018 0.000015 0.000013 

Table 4.5 The E 1 error after rotating a circle once with the operator split advection algorithm. 

In the next collection of test problems we study the accuracy of the operator split advection algorithm 

when we use it to model the motion of a cross rotating and translating in a uniform incompressible velocity 

field. We average the error over 100 crosses with randomly generated centers and randomly generated 

orientations. In the first test problem we translate each cross in a randomly generated direction with unit 

velocity for one unit time. It is apparent from the data presented in Table 4.6 that the Center of Mass, SLIC, 

and Parker & Youngs' methods are first-order accurate and the other methods are second-order accurate. 
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sue Center of Mass 

(, 

P~rker & Youngs Central Difference 

LVIRA ELVIRA 

Figure 4.2 A cross that has been rotated one revolution using the operator split advection algorithm and 

the various interface reconstruction methods. Notice that only the SLIC algorithm produces flotsam. 

Next we take a cross, centered on a cell center, with its sides initially parallel to the grid, and rotate it 

with unit angular velocity for one rotation. It is apparent from the data in Table 4. 7 that all of the methods 

are first-order accurate. The reduction in the accuaracy of the LVIRA and ELVIRA methods to first-order 
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Center Parker & Central 
h SLIC of Mass Youngs Difference LVIRA ELVIRA 

1/2 0.1268 0.1083 0.1014 0.1060 0.1060 0.1071 
1/4 0.0546 0.0308 0.0291 0.0295 0.0294 0.0290 
1/8 0.0283 0.0108 0.00943 0.00947 0.00947 0.00936 
1/16 0.0146 0.00411 0.00308 0.00299 0.00293 0.00295 
1/32 0.00813 0.00167 0.00100 0.000931 0.000910 0.000916 
1/64 0.00492 0.000775 0.000343 0.000303 0.000306 0.000292 

Table 4.6 The average E 1 error after translating 100 random crosses in random directions. 

is presumably due to the discontinuities in the first derivative of the interface at the corners. This conjecture 

is consistent with all of the data presented in this article. 

Center Parker & Central 
h SLIC of Mass Youngs Difference LVIRA ELVIRA 

1/2 0.1882 0.1832 0.1827 0.1830 0.1825 0.1843 
1/4 0.0726 0.0771 0.0738 0.0737 0.0728 0.0733 
1/8 0.0477 0.0386 0.0329 0.0332 0.0341 0.0331 
1/16 0.0331 0.0183 0.0161 0.0162 0.0161 0.0162 
1/32 0.0245 0.0104 0.00850 0.00849 0.00851 0.00848 
1/64 0.0147 0.00639 0.00531 0.00530 0.00531 0.00530 

Table 4. 7 The E 1 error after rotating a cross counterclockwise one revolution. 

In_ Figure 4.2 we compare the shape of a cross after it has been rotated using each of the various interface 

reconstruction methods and compare it with the, exact solution in Fig. 3.1. In this example the grid width was 

h = 1/64. Notice that the approximate and true solutions differ the most at the corners, where the derivative 

of the function which describes the interface is discontinuous. This is consistent with our conjecture above 

concerning why the second-order accurate algorithms LVIRA and ELVIRA are only first order accurate on 

these problems. Also note the degree to which the SLIC computation has broken up the interface; i.e. it is 

no longer even remotely akin to a continuous function. This behavior is commonly seen in computations with 

volume-of-fluid methods that are based on the SLIC (39] and so-called "VOF" [24] interface reconstruction 

algorithms. In fact, this artifact is so common that users of these methods have a name for it: "flotsam", 

and have devised various ad-hoc methods for reducing its occurance (e.g., seep. 138 of [30]). It is apparent 

from Figures 4.2 and 4.3 that the flotsam problem is completely eliminated when SLIC is replaced by any 

one of the piecewise linear interface reconstruction algorithms. We also note that Chorin [9] has developed 

improvements to SLIC that reduce the amount of fluid trailing behind the true interface. 

Finally we tested the second-order accurate operator split advection method with the various interface 

reconstruction methods on Zalezak's test problem. Here we revolved the shape shown in Fig. 3.1 about a 
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Figure 4.3 The result of using the operator split advection algorithm and the various interface reconstruc

tion methods on Zalesa.k's test problem. Again notice that only the SLIC algorithm produces flotsam. 

point 5/3 units below its center for one revolution. It is apparent from the data in Table 4.8 that all of the 

methods exhibit an O(h) decrease in the error. 

In Figure 4.3 we present the results of using the operator split advection method and the various interface 
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Center Parker & Central 
h SLIC of Mass Youngs Difference LVIRA ELVIRA 

1/4 0.157 0.0860 0.0835 0.0862 0.0817 0.0803 
1/8 0.0476 0.0192 0.0164 0.0168 0.0168 0.0164 
1/16 0.0248 0.00721 0.00620 0.00634 0.00635 0.00624 
1/32 0.0137 0.00408 0.00289 0.00282 0.00291 0.00280 
1/64 0.00688 0.00234 0.00135 0.00130 0.00133 0.00130 

Table 4.8 The average E 1 error after translating 100 random notched circles in random directions. 

reconstruction methods on Zalesak's test problem on a grid with h = 1/15. This grid size was chosen to 

facillitate direct comparison with other published results of the same test problem (e.g., [5, 67]). Note that 

the error is greatest at the corners. This is to be expected, since the interface has discontinuous derivatives 

at the corners. In Table 4.9 we show the difference between the initial and final area of this shape. All of 

the methods conserve the volume (or equivalently the mass) of the shape to machine zero. 

Center Parker & Central 
h SLIC of Mass Youngs Difference LVIRA ELVIRA 

1/4 0.000 0.000 4.44E-16 8.88E-16 8.88E-16 4.44E-16 
1/8 1.33E-15 2.66E-15 3.11E-15 3.55E-15 2.66E-15 3.55E-15 
1/16 -3.11E-15 -2.66E-15 -1.33E-15 -2.66E-15 -1.33E-15 -4.44E-16 
1/32 -3.11E-15 -4.88E-15 -4.00E-15 -4.00E-15 -2.66E-15 -4.00E-15 
1/64 7.11E-15 4.44E-15 3.11E-15 8.88E-16 l.llE-14 4.00E-15 

Table 4.9 The difference between final and initial total area. 

5. Unsplit Advection 

For many problems one will obtain satisfactory results with the second-order accurate, fractional step 

method described in §4. However for some problems, such as unstable displacements in porous media, 

fractional step methods can distort the interface (e.g., see the discussion in [5]). A characteristic feature 

of this problem is the so-called "push-pull" or "staircase" phenomenon. For problems such as these it 

is preferable to use an unsplit advection algorithm. In this section we present an unsplit, volume-of-fluid 

advection algorithm that is based on the approach used by Bell, Dawson, and Shubin [5] to develop a second

order accurate, unsplit, finite difference method for approximating solutions of scalar hyperbolic conservation 

laws. We then present the results of applying this advection algorithm to the test problems studied in §4. 

Since SLIC is an inherently one-dimensional method, we will not use it in this section. 

5.1 A First-Order Unsplit Advection Algorithm In order to present the basic idea behind the unsplit 

algorithm we begin by describing a first-order accurate version. We wish to use a conservative finite difference 
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Figure S.lln this space-time diagram, the fluid inside the solid fluxes through the right cell edge. 

method of the form ( 4.2) to approximate solutions .of the conservation law (I. 7). To illustrate our approach 

we assume that u > 0 and v > 0, and describe how one determines the flux pn+ 1 . • The other cases are 
z 2,J 

analogous. The flux through the right-hand edge of the ( i, j)th cell in the time interval ( tn, tn+I) is 

(5.1) 

where we have assumed that in our numerical discretization ui+!,i is constant on the space time interval 

(Yi,i-!,Yi,H!) x (tn,tn+1). This integral is the amount of dark fluid in the space-time rectangle BCEF 

shown in Fig. 5.1. 

D E 

B 

H 

Figure 5.2 Domain of dependence for characteristics passing through the right edge of the cell (i,j). 

We can find this amount by tracing back along the characteristics that originate from the rectangle 

BCEF. This gives us the solid region ABCEFGH shown in Fig. 5.1. The domain of dependence of these 

characteristics at time tn is the shaded region in Fig. 5.2. 
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Note that this region is the rectangle ABDE, plus the triangle ABH, minus the triangle DEG, 

Ftr- 1. . ::::: j { . I dx dy + j { I dx dy - j { I dx dy 
2 '

3 jABDE jABH jDEG 
(5.2) 

In order to approximate the right hand side of (5.2) we use one of the volume-of-fluid interface reconstruction 

algorithms described in §2 to determine an approximation to the interface in cell (i,j) and cell (i,j -1). We 

then compute the area of the intersection of the dark fluid with the rectangle ABDE and the triangles DEG 

and ABH. This yields an approximation to each of the terms on the right hand side of (5.2) and hence an 

approximation to F'!'-+1. .. The fluxes through the other three edges of the cell are found in an analogous 
'Z 2 ,J 

manner. This method for calculating the flux, which Colella [10] calls Corner Transport Upwind (CTU) is 

first-order accurate. See [10] for a discussion of the accuracy of this method and [5] and [31] for the results 

of tests when this method is implemented as a finite difference algorithm. 

5.2 A Second-Order Unsplit Advection Algorithm We now describe a second-order, unsplit, volume

of-fluid advection algorithm. We approximate the flux F'!'-+1. . in (5.1) by integrating (1.7) over the prism 
t 2 ,J 

ABCDEF and integrating by parts. Writing (1.7) in the form 

ft + Uxf + ufx + (v/)y = 0, (5.3) 

and setting u = ui+t,i and Ux = (ux)i,j we find that, 

!! r Ut+(ux)i,j/ + Ui+1.,j/x+(vf)y)dxdydt = 0. 
jABCDEF 2 

(5.4) 

Integrating the above expression by parts, and noting that ui+1. 
3
. is constant, we find that the flux F'!'-+ 1 . 

2 t . 'Z 2,J 

is given by 

= .; f ! dx dy + j { v! dx dt 
jABDE }ABC 

-J r vfdxdt + !! r (ux)i,j/dxdydt. 
jDEF jABCDEF 

(5.5) 

The integral over ABDE is the volume of dark fluid in this rectangle. As above we use an interface 

reconstruction algorithm' to determine an approximation to the interface in the ( i, j)th cell and use this 

approximation to compute the area of the intersection of the dark fluid with rectangle ABDE to compute 

this quantity. 

Now let R1 be the ratio of the volume of dark fluid in ABDE to the area of ABDE, and let Vi be the 

volume of the prism ABCDEF. We approximate the volume integral in (5.5) by 

!! { (ux)i,i/dxdydt:::::Rl Vi(uxki· 
jABCDEF , 

In order to evaluate the integral over DEF we integrate (1.7) in the form 

!! r (It+ (ux)i,j I+ Ui+1. jfx + (vf)y)dxdydt = 0. 
jABCDEF 2

' 

(5.6) 
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The domain of dependence of DEF is the triangle DEG. The tetrahedron DEFG is related to the 

triangle DEF through 

I r , dxdt = 1 r , dxdy + J 1 r ((ux)i,j + (vy)i,j), dx dy dt. (5.7) 
}DEF jDEG jDEFG 

The integral over D EG is the volume of dark fluid in the triangle D EG We approximate this quantity by 

using an interface reconstruction algorithm to determine an approximation to the interface in the (i,j)th 

cell and then computing the area of the intersection of the dark fluid with triangle DEG. 

Let R2 be the ratio of the volume of dark fluid in DEG to the area of DEG, and let V2 be the volume of 

the tetrahedron DEFG. Then the volume integral in (5.7) is approximately 

We evaluate integral over ABC in a similar manner. Thus we are able to evaluate each term of (5.5), and 

hence determine the flux of dark fluid through the right edge of the cell. 

Note that if vi,i+t < 0, then the point G will lie ~n the (i,j + 1)th cell. Thus the tetrahedron DEFG · 

will lie in the (i,j + 1)th cell instead of the (i,j)th cell. In this case we add the tetrahedron DEFG to the 

prism ABCDEF, instead of subtracting it as we did above. Hence we add the integral over DEF instead 

of subtracting it. In order to avoid the distorted region that arises when ui+t.i and ui+t,Hl are of opposite 

sign we determine the x-coordinate of the vertex G by 

( Ax ·A Ax A · ) x =min iAx + -
2
-,zux + -

2
-- utui+!,i+l . 

In this way we are assured that G lies in the (i,j + 1)th cell. 

Center Parker & Central 
h of Mass Youngs Difference LVIRA ELVIRA 

1/2 0.0105 0.0396 0.0184 0.0207 0.0188 
1/4 0.0102 0.0197 0.00381 0.00444 0.00388 
1/8 0.00675 0.0105 0.000744 0.00106 0.000765 
1/16 0.00356 0.00561 0.000182 0.000282 0.000183 
1/32 0.00180 0.00307 0.000067 0.000075 0.000050 

Table 5.1 The average E 1 error after translating 100 random unit circles in random directions. 

5.3 Test Problems In this section we use the unsplit advection algorithm to compute most of the test 

problems presented in §4. We begin with the translation of a smooth interface, the unit circle. We take 100 

unit circles with randomly generated centers, translate each circle with unit velocity in a randomly generated 

direction and average the error E 1 in approximating each circle. 
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It is apparent from the data shown in Table 5.1 that the errors associated with the Center of Mass and 

Parker & Youngs' algorithms decrease at a rate that is not quite O(h); the overall decrease is by a factor 
~ 

of 8 and 12 respectively. On the other hand the errors associated with the Centered Difference, LVIRA 

and ELVIRA algorithms decrease at a rate that is somewhat better than O(h2 ); the overall decrease in 

the error being 274, 276 and 376 respectively. In other words, the first two algorithms appear to be first

order accurate, while the other three appear to be second-order accurate. As in §4.3 we conjecture that 

the apparent second-order accurate behavior of the Centered Difference algorithm is again due to the fact 

that on average it will produce a second-order approximation to a tangent to the circle in each cell. It is 

important to note that this will not be the case is the interface is more nearly linear, in which case the 

Centered Difference algorithm is on average first-order accurate as shown in Tables 3.1 and 3.3. 

In the next test problem we rotate a unit circle, centered on a cell center, with unit angular velocity for 

ten rotations. It is apparent from the data in Table 5.2 that the rate of decrease of the errors associated 

with each algorithm is comparable with the rate of decrease seen in the previous test problem. In this 

problem however, the Center of Mass and Parker and Youngs' algorithms exhibit a somewhat better than 

O(h) decrease in the error. However, the same conclusions continue to apply. 

Center Parker & Central 
h of Mass Youngs Difference LVIRA ELVIRA 

1/2 0.0160 0.0139 0.0141 0.0142 0.0141 
1/4 0.00531 0.00301 0.00330 0.00387 0.00330 
1/8 0.00307 0.000965 0.00172 0.000982 0.00172 
1/16 0.00136 0.000291 0.000709 0.000244 0.000716 
1/32 0.000632 0.000142 0.000151 0.000059 0.000149 
1/64 0.000302 0.000068 0.000017 0.000015 0.000016 

Table 5.2 The E 1 error after rotating a circle 10 times with the unsplit advection algorithm. 

In Fig. 5.3, we present five unit circles that have been rotated ten times with the various interface 

reconstruction methods on a grid with h = 1/32 and compare the results with the true solution. At this 

level of graphical resolution all of the approximate solutions are indistinguishable from the true solution. 

In fact, even when magnified by a factor of 64, the approximate interfaces still appear to be continuous -

although not smooth - in spite of the fact that they are actually composed of a collection of discontinuous 

line segments. 

In our next test we repeat the linear advection test with crosses described in §4.3. As before, 'we averaged 

the error obtained after advecting 100 crosses with randomly generated centers with unit velocity for one unit 

in time in a randomly generated direction. As one can see from Table 5.3, all of the interface reconstruction 

algorithms produce comparable errors, which decay at a rate that is some~hat better than first-order, but is 
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Figure 5.3 A unit circle that has been rotated for ten revolutions with the unsplit advection algorithm and 

various reconstruction methods. 

certainly not second-order. This is presumably due to the lack of smoothness in the interface shape. Starting 

with the left-hand column and ending with the right, the overall decrease in the error is by a factor Cif 70, 

108, 120, 123 and 124 respectively. The tendency of the Center of Mass algorithm (or SLIC in §3 & 4) 

to produce the smallest overall decrease in the error and for the ELVIRA algorithm to produce the largest 
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Center Parker & Central 
h of Mass Youngs Difference LVIRA ELVIRA 

1/2 0.0995 0.0954 0.0980 0.0992 0.0991 
1/4 0.0283 0.0268 0.0271 0.0273 0.0268 
1/8 0.00968 0.00852 0.00859 0.00852 0.00846 
1/16 0.00358 0.00273 0.00264 0.00267 0.00260 
1/32 0.00141 0.000877 0.000810 0.000804 0.000796 

Table 5.3 The average E 1 error after translating 100 random crosses in random directions. 

overall decrease in the error' even when all algorithms are performing at a nominally first-order accurate 

rate, is consistently displayed in all of the test problems we studied. 

Center Parker & Central 
h of Mass Youngs Difference LVIRA ELVIRA 

1/2 0.1731 0.1691 0.1696 0.1676 0.1647 
1/4 0.0679 0.0632 0.0631 0.0630 0.0604 
1/8 0.0258 0.0245 0.0250 0.0255 0.0249 
1/16 0.0100 0.0100 0.0105 0.0107 0.0104 
1/32 0.00388 0.00381 0.00399 0.00389 0.00397 
1/64 0.00182 0.00143 0.00146 0.00146 0.00145 

Table 5.4 The E 1 error after rotating a cross once with the unsplit advection algorithm. 

Our conjecture that all of the interface reconstruction algorithms are first-order accurate on non-smooth 

interfaces is confirmed by our next test. In this case we take one cross centered on a grid point and rotate 

it once with unit angular velocity. It is clear from the data in Table 5.4 that all of the algorithms produce 

comparable errors and that these errors are decreasing at a rate which is only marginally better than first

order. 

In Fig. 5.4, we present the approximate interfaces from the previous test problem with grid width h = 1/64 

and compare the results with the true solution. If one compares images produced with the same interface 

reconstruction in Fig. 4.2 and Fig. 5.4, it is apparent that there is a discernable improvement in the resolution 

of the corners of the cross in Fig. 5.4. We conjecture that this improved resolution is due to an increase in 

the accuracy with which the unsplit method resolves a portion of the overall error such as the phase error 

associated with finite difference solutions of the advection equation (1.5) (e.g., see chapter 1 of [13]). In 

particular, based on the results presented here, we conjecture that for both advection methods, the order 

of this portion of the error is as high or higher than that of the underlying advection algorithm, and that 

the phase error associated with the unsplit advection algorithm is one or more degrees higher than that 

associated with the operator split advection algorithm. Thus, although both the fractional step and unsplit 

methods are second-order accurate, the unsplit method produces better overall results. 
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True Center of Mass 

Parker & Youngs Central Difference 

LVIRA ELVIRA 

Figure 5.4 A cross that has been rotated one revolution with the usplit advection algorithm and various 

reconstruction methods. By comparing the results shown here with those shown in Fig. 4.2, one can see that 

the unsplit advection algorithm produces noticeably better resolution of the corners. 

Finally we test the unsplit advection method on Zalezak's test problem. As one can see from the data 

in Table 5.5 all of the interface reconstruction methods produce comparable errors - with the errors due to 

the Center of Mass algorithm being slightly larger than the others - and that these errors decrease at a rate 
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True Center of Mass 

Parker & Youngs Central Difference 

LVIRA ELVIRA 

Figure 5.5 Here we present the results of using the unsplit advection algorithm and the various reconstruc

tion methods to compute Zalesak's test problem. Note that the computations shown here and in Fig. 4.3 

were conducted on the very coarse grid shown in Fig. 3.1. Consequently one cannot detect the increased 

resolution at the corners expected from the unsplit advection algorithm. Higher resolution computations of 

this problem do exhibit better resolution with unsplit algorithm. 
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that is marginally better than O(h). In Table 5.6 we present the difference between the volume of the initial 

shape and the final shape. It is apparent that all of the methods conserve the volume (and hence the mass) 

of the shape to machine zero. 

Center Parker & Central 
h of Mass Youngs Difference LVIRA ELVIRA 

1/4 0.0882 0.0853 0.0909 0.0804 0.0777 
1/8 0.0177 0.0159 0.0156 0.0163 0.0159 
1/16 0.00698 0.00575 0.00592 0.00577 0.00567 
1/32 0.00374 0.00263 0.00265 0.00273 0.00262 
1/64 0.00219 0.00125 0.00120 0.00125 0.00121 

Table 5.5 The average E 1 error for Zalesak's test problem. 

Center Parker & Central 
h of Mass Youngs Difference LVIRA ELVIRA 

1/4 0.000 2.22E-15 -4.44E-16 -8.88E-16 4.44E-16 
1/8 2.66E-15 5.33E-15 6.22E-15 3.55E-15 3.11E-15 
1/16 8.88E-16 2.22E-15 -1.78E-15 -1.78E-15 -6.66E-15 
1/32 -1.91E-14 1.64E-14 -1.02E-14 -2.22E-15 -1.07E-14 
1/64 7.15E-14 4.88E-14 3.33E-14 3.29E-14 1.02E-14 

Table 5.6 The difference between the final and initial total area. 

In Fig 5.5 we present the results of computing Zalesak's test problem on a grid with h = 1/15. Again, we 

chose this relatively coarse grid in order to facilitate a direct comparison with other published results of the 

same problem such as in [5) and [67). The coarseness of the grid prevents one from detecting the increased 

resolution at the corners we expect with the unsplit advection algorithm. Higher resolution computations 

of this problem do exhibit better resolution at the corners of Zalesak's shape with unsplit algorithm. We 

conclude that, although both the fractional step and unsplit methods are second-order accurate, the u~split 

method does indeed produce better overall results. 

6. Concluding Remarks 

We have pz:esented a comprehensive framework for the design and implementation of modern volume

of-fluid interface tracking algorithms and conducted an extensive computational study of the accuracy of 

several commonly used versions of these algorithms. Our presentation is based on separating the interface 

reconstruction phase from the advection or time update phase of the overall tracking algorithm and studying 

the accuracy of the interface reconstruction algorithm independently of the advection algorithm. In our study 

of volume-of-fluid interface reconstruction algorithms, we have identified several key properties - or design 
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criteria - that we believe will ensure that the method is second-order accurate on smooth interfaces; i.e., 

interfaces that have two or more continuous derivatives. In particular, we have found that if a volume-of

fluid interface reconstruction algorithm is designed in such a way that it always reproduces lines (or planes 

in 3D) exactly, then it will be second-order accurate on smooth interfaces in both the £ 1 and the £ 00 

norms when used to reconstruct stationary interfaces. We have introduced two new volume-of-fluid interface 

reconstruction algorithms that have this property and demonstrated that they consistently exhibit second

order accuracy when we use them to reconstruct smooth stationary interfaces, whereas the other algorithms 

we tested overall exhibit first-order accuracy. 

In our study of volume-of-fluid advection algorithms we have demonstrated that one can obtain second

order accuracy (in space and time) by combining one of our second-order accurate interface reconstruction 

algorithms with a standard fractional step or operator split solution of the time evolution equation and 

alternating the sweep directions at each time step (i.e., Strang splitting). We have also introduced a new 

unsplit volume-of-fluid advection algorithm that is second-order accurate in space and time when combined 

with one of the second-order accurate interface reconstruction algorithms. Furthermore we have shown that 

the unsplit algorithm exhibits noticeably better resolution of regions near discontinuities in the derivatives 

of the interface (e.g., corners). Since this improved resolution does not manifest as an increase in the order 

of accuracy of the advection algorithm, we conjecture that it is a higher order effect due to an increase in 

the accuracy with which the algorithm resolves a portion of the error, such as the phase error (e.g., see the 

discussion on phase errors in [13]). 

Another conclusion that can be drawn from our study is that piecewise linear interface reconstruction 

algorithms that reconstruct lines exactly will revert to first-order accuracy when the interface fails to be 

sufficiently smooth (e.g., remains continuous but has discontinuities in the first-derivative). We conjecture 

that the constraint that a volume-of-fluid interface reconstruction method must always reproduce the correct 

fluid volume in each cell is sufficient to guarantee first-order accuracy in the £ 1 norm for time dependent 

advection problems- at least when the advection algorithm is formally second-order accurate as is the case 

in our studies. This conclusion appears to be true even for reconstruction algorithms that do not exhibit 

second-order accuracy on smooth interfaces, such as SLIC. However it is apparent from the results presented 

in Table 3.3 that something more than this constraint is needed in order to guarantee first-order accuracy 

in the £ 00 norm. 

In summary, we have presented two new volume-of-fluid interface reconstruction algorithms and demon

strated that they are more accurate than the most commonly used volume-of-fluid interface reconstruction 

algorithms. These new interface reconstruction algorithms are currently being used in a number of appli

cation codes for modeling the motion of material interfaces in compressible gas dynamics [22, 49, 50, 33], 

high-pressure solids in the hydrostatic limit [36, 37, 51] and variable density incompressible fluid flow [3, 
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48]. We have also introduced a new, unsplit volume-of-fluid advection algorithm, demonstrated that it is 

second-order accurate in space and time and shown that it exhibits superior resolution of kinks or corners 

in the interface as compared to the fractional step advection algorithm, which is currently the most widely 

used advection algorithm. 
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