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LOW RANK MATRIX APPROXIMATION USING THE LANCZOS 
BIDIAGONALIZATION PROCESS 

HORST D. SIMON t AND HONGYUAN ZHA 

Abstract. Low rank approximation of large and/or sparse matrices is important in many ap
plications. We show that good low rank matrix approximations can be directly obtained from the 
Lanczos bidiagonalization process without computing singular value decomposition. We also demon
strate that a so-called one-sided reorthogonalization process can be used to maintain adequate level 
of orthogonality among the Lanczos vectors and produce accurate low rank approximations. This 
technique reduces the computational cost of the Lanczos bidiagonalization process. We illustrate the 
efficiency and applicability of our algorithm using numerical examples from several applications areas. 

1. Introduction. In many applications such as compression of single images and multiple

spectral image cubes, regularization methods for ill-posed problems, latent semantic indexing, to 

name a few, it is necessary to find a low rank approximation of a given matrix A E 'Rmxn. Often A 

is a general rectangular matrix and sometimes either m :> n or m < n. The theory of singular value 

decomposition (SVD) provides the following characterization of the best rank-j approximation of A 

in terms of the Frobenius norm II·IIF [6]. 

THEOREM 1.1. Let the singular value decomposition of A E 'Rmxn be A = P"EQT with "£ = 

diag(O'I, ... , O'min(m,n)), 0'1 ;;:: ••• ;;:: O'min(m,n), and P and Q orthogonal. Then for 1 :$ j :$ n, 

min{m,n) 

L 0'~ =min{ IIA- Bll~ I rank(B) :$ j}. 
i=j+l 

And the minimum is achieved with Aj = Pjdiag(O'I, ... ,O'j)Q], where Pj andQj are the matrices 

formed by the first j columns of P and Q, respectively. 

It follows from Theorem 1.1 that once the SVD of A is available, the best rank-j approximation 

of A is readily computed. When A is large and/or sparse, however, the computation of the SVD 

of A can be costly, and if we only interested in some Aj with j < min(m, n), the computation of 

the SVD of A is rather wasteful. Also in many applications it is not necessary to compute Aj to 

very high accuracy since A itself may contain certain errors. It is therefore desirable to develop 

less expensive alternatives for computing good approximations of Aj. In this paper, we explore 

one possible avenue of applying the Lanczos bidiagonalization process for finding approximations of 

Aj. Lanczos bidiagonalization process has been used for computing a few dominant singular triplets 

(singular values and the corresponding left and right singular vectors) of large sparse matrices [3, 2). 

We will show that in many cases of interest good approximations can be directly obtained from the 

Lanczos bidiagonalization process without computing any singular value decomposition. We will also 

explore relations between the levels of orthogonality of the left Lanczos vectors and the right Lanczos 

vectors and propose some more efficient reorthogonalization schemes that can be used to reduce the 

computational cost of the Lanczos bidiagonalization process. The rest of the paper is organized as 

follows. In Section 2 we briefly review the Lanczos bidiagonalization process and its several variations 

in finite precision arithmetic. In Section 3 we discuss both a priori and a posteriori estimation and 

stopping criteria. Section 4 is devoted to orthogonalization issues in the Lanczos bidiagonalization 

process and several reorthogonalization schemes are discussed in detail. In Section 5 we perform 

t NERSC, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720. 
: 307 Pond Laboratory, Department of Computer Science and Engineering, The Pennsylvania State 

University, University Park, PA 16802-6103. 
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numerical experiments on test matrices from a variety of applications areas. Section 6 concludes the 

. paper and points out some directions for future investigation. 

2. The Lanczos bidiagonalization process. Bidiagonalization of a general rectangular ma

trix using orthogonal transformations such as Householder transformations and Givens rotations was 

first proposed in [5]. It was later adapted to solving large sparse least squares problems [13] and 

to finding a few dominant singular triplets of large sparse matrices [3, 2]. For solving least squares 

problems the orthogonality of the left and right Lanczos vectors is ·usually not a concern and therefore 

no reorthogonalization is incorporated in the proposed algorithm LSQR [13]. 1 For computing a few 

dominant singular triplets, one approach is to completely ignore the issue of loss of orthogonality dur

ing the Lanczos bidiagonalization process and later on to identify those spurious singular values thus 

generated from the true ones [3]. We will not pursue this approach since spurious singular values will 

cause considerable complication in forming approximations of Aj discussed in the previous section. We 

opt to use the approach that will maintain certain level of orthogonality among the Lanczos vectors 

[14, 17]. Even within this approach there exist several variations depending on how reorthogonaliza

tion is implemented. For example in SVDPACK, a state-of-the-art software package for computing 

dominant singular triplets of large sparse matrices [18], implementations of Lanczos tridiagonalization 

process applied to either AT A or the 2-cyclic matrix [0 A; A' 0] with partial reorthogonalization are 

provided. Interesting enough, for the coupled two term recurrence that will be detailed in a moment, 

only a block version with total reorthogonalization is implemented. In Section 4 we will discuss two 

other more efficient reorthogonalization schemes using the coupled two term recurrence. 

Now we briefly describe the Lanczos bidiagonalizatiori process presented in [5, 13, 3]. Let b be a 

starting vector, for i = 1, 2, ... , compute 

/31 U1 = b, 0'1 V1 = AT U1' 

(2.1) 

Here nonnegative a; and /3; ue chosen such that lludl = llvdl = 1. Throughout the rest of the paper 

11·11 always denotes either the vector or matrix two-norm. In compact matrix form the above equations 

can be written as 

uk+1(/31el) = b, 

AVk = Uk+1iJk, 

ATuk+1 = vk+1Bl+1, 

where Bk+1 E 'R.(k+1) x(k+ 1) is lower bidiagonal, 

••+J 
and Bk is Bk+1 with the last column removed. 

1 Maintaining certain level of orthogonality among the Lanczos vectors will accelerate the conver
gence at the expense of more computational cost and storage requirement [17, Section 4]. 
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REMARK. There is another version of the Lanczos bidiagonalization recurrence [5, 3], 

For A with more columns than rows, this version is usually better than (2.2) because the chances of 

introducing spurious zero singular values arising from m =F n is reduced [5, 3]. However, it is easy 

to see that the two versions of bidiagonalization recurrences are equivalent in the sense that if we 

interchange the roles of A and AT, u; and v;, and ex; and /3; in (2.2), we obtain the above recurrence. 

In another word, we may simply apply (2.2) to AT. Therefore in what follows we will deal exclusively 

with recurrence (2.2). When the need arises we will simply apply recurrence (2.2) to AT. 

Following the error analysis in [12], it is straightforward to show that in finite precision arithmetic, 

Equations (2.1) and (2.2) become 

(2.3) i = 1, 2, ... 

and in compact matrix form, 

uk+I(f3le1) = b, 

(2.4) AVk = Uk+liJk + Fk, 

ATuk+l = vk+IBl+l + ak+l, 

where IIFkll = O(IIAIIFfM) and IIGk+lll = O(IIAIIFfM) with fM the machine epsilon, and 

F; =[/I, ... ,fi], G; = [g1, ... ,gi]. 

To find a few dominant singular value triplets of A, one computes the SVD of Bk. The singular values 

of Bk are then used as approximations of the singular values of A and the singular vectors of Bk 

are combined with the left and right Lanczos vectors {Uk} and {Vk} to form approximations of the 

singular vectors of A [3, 2]. We will show that if one is only interested in finding a good low rank 

approximation of A a more direct approach is possible without computing the SVD of Bk: For a given 

k, we will use J k = U k B k vt as an approximation of A. In the next section we will consider both a 

priori and a posteriori estimation of Wk = IIA- hliF· 

3. Error estimation and stopping criterion. In this .section we will assess the error of using 

h as an approximation of A. We will also discuss ways to compute Wk recursively in finite precision 

arithmetic. Many a priori error bounds have been derived for the Ritz values/vectors computed by 

the Lanczos tridiagonalization process [14]. It turns out that our problem of estimating Wk a priori 

is rather straightforward. It all boils down to how well a singular vector can be approximated from a 

Krylov subspace. 

To proceed we need a result concerning the approximation of an eigenvector of a symmetric 

matrix from a Krylov subspace [14, Section 12.4]. 

LEMMA 3.1. Let C E 'Rnxn be symmetric and fan arbitrary vector. Define 

ICm :::: span{!, C J, ... , cm-l f}. 
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Let C = Z diag( a;)ZT be the eigendecomposition of C with a1 ~ ... ~ O'n its eigenvalues. Write 

Z = [z1, ... , Zn] and define Zj = span{z1, ... , Zj}. Then 

( 
JC )<sinL(f,Zj)IT!:i(a.,-an)f(a.,-aj) 

tan L Zj, m _ L(f )T. (1 + 2 ) , 
COS , Zj m-j 'Y 

where 'Y = (aj- O'j+!)f(aj+l- an)· 
Now let A= Pdiag(u;)QT be the SVD of A, and write P = [p1,P2, ... ,pm). Furthermore, let 

PJk :: (I -UkU[), the orthogonal projector onto the subspace span{Uk}.L, the orthogonal complement 

of span{Uk}. We have .the following estimation. 

THEOREM 3.2. Let A= Pdiag(u;)QT be the SVD of A, and 'P;:: span{p1, ... ,pi}. Assume the 

Lanczos bidiagonalization process starts with b as in {2.2}. Then for any j with 1 < j < n and k > j, 

(3.5) 
n j ( • ( ) i-1 ( 2 2 )/{ 2 2)) 2 2 L 2 ~ 2 sm L b, 'P; rr.,-1 u.,- O"n ,O"v- 0"; 

Wk :5 0"; + L,.; 0"; (b )T, ( ) , . . . cos L ,p; k-i 1 + 2'"(; 
•=J+1 •=1 

where 'Yi = (ut- ut+1)/(o-t+1- u~). 
Proof. Using the SVD of A one can verify that 

where we have assumed that m ~ n. Now arrange the singular values of A in the following order, 

O"n :5 · · · :5 O"j+1 :5 O"j :5 · · · :5 0"1. 

We can bound 

n j 

w% :5 Lo-t+ 2:o-tiiPJkp;ll2
• 

i=j+1 i=1 

It is readily verified that span{Uk} = span(b, AATb, ... , (AAT)k- 1 b] = JCk. Therefore 

Applying Lemma 3.1 with C = AAT and b = f completes the proof. D 

REMARK. Notice that the square root of the first term on the right o£(3.5), (2:::~=1+ 1 o-t}1/2 is 

the error of the best rank-j approximation of A in Frobenius norm. For k > j usually rank( J k) > j. 
The a priori estimation of the above theorem states that w% will approach IIA - Aj II} when k gets 

large. In many examples we will discuss later in Section 5, .even for a k that is only slightly larger 

than j, w% is very close to IIA- Ajll}. 

REMARK. If we assume that the spectrum of AAT has one cluster (u~,uJ+ 1 ) which is well 

separated from the rest of the spectrum, a better estimate of tan L(pj, ICm) can be obtained using the 

techniques in [21]. 
Now we examine the effect of loss of orthogonality among the columns of Uk and Vk has on the 

accuracy of Jk and give a posterior estimate of IIA- JkiiF· Intuitively, if both Uk and Vk contains 

spurious approximate singular vectors Jk will not be a good approximation. Unlike in the case of 

computing the singular values/vectors of A, keeping certain level of orthogonality of { Uk} and {Vk} 

is essential to obtain a good Jk. In the following we will make the above statements more precise. To 

this end we introduce some notation. Let the SVD of Bk be Bk = Tkeks'[ with Tk and Sk orthogonal 

and ek = diag(81, ... ,Bk)· Let xk = UkTk and yk = vksk. Define 17(Vk) =III- vtVkll, a measure 

of the level of orthogonality among {Vk}. We have for 1 < j < n, 

{3.6) 
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where }j.L is the orthogonal complement of }j. It can be verified that 

It follows from (2.4) that 

Now write f3k+1 ef Sk :: [/31k, ... , f3kk] and take the first j columns of the above equation, we have 

Hence 

Combining the above and Equation (3.6) and noticing that 

we obtain the estimate 

A few words about the above estimate are in order here. For those dominant singular values that have 

converged, the corresponding /3ik will be small [14, Section 13.6]. The quantity II(I- UkUJ)A}j.LII} 

will be close to IIA- AiiiJ = o"J+1 + · · · + u~, and the accuracy of IIA- UkBk VtiiF as compared to 

IIA- AiiiF is limited by the level of orthogonality in vk. 

Now we examine the issue of stopping criteria. The accuracy of using Jk = UkBk vt as a low 

rank approximation of A is measured by Wk which can be used as a stopping criterion in the iterative 

Lanczos bidiagonalization process, i.e., the process will be stopped when Wk $ tol with tol a user 

supplied tolerance. Therefore it will be very helpful to find an inexpensive way to compute Wk for 

k = 1, 2, .... We first show that Wk. is a monotonically decreasing function of k and it can be computed 

recursively. 

PROPOSITION 3.3. Let Wk = IIA- JkiiF· Then w~+ 1 = w~- a~+ 1 - /3~+ 1 . 
Proof From Equation (2.2) we have U[+1 A= Bk+1 vk:r_;.1. Hence 

Now write rite I -UkU[ =(I -Uk+1U[+1)+uk+1ur+l. Notice that (I -Uk+1u[+1)A and Uk+1ur+1A 

are orthogonal in the Frobenius norm, we obtain 

The proof is completed by noticing that II AT Uk+1 11 2 = a%+1 + /3~+ 1 . 0 

Proposition 3.3 shows that w~ = w~+ 1 + a~+l + /3~+ 1 in exact arithemtic. Now we want to 

examine to what extent the above relation still holds when the effects of rounding errors need to be 

taken into consideration. In finite precision computation we have ( cf. Equation 2.4) 
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where Gk represents the effects of rounding errors and IIGkiiF = O(IIAIIFCM) with CM the machine 

epsilon. It follows that 

In finite precision computation, due to the loss of orthogonality the columns of Uk and Vk are not 

necessarily orthogonal to each other. Define 

These two quantities measure the level of orthogonality among the columns of Uk+1 and Vk+l, respec

tively. We will also need the fact that 

(3.7) 

THEoREM 3.4. In finite precision arithmetic the computed Wk satisfies 

w~ = w~+1 + a~+ 1 + (3~+ 1 + O(IIAII}(77u(1 + 11~ )(1 + mcM )))+ 

O(IIAII}(1 + 11u )2cM) + O(IIAII}77v ). 

We have the bound 

Since Uk+1 uf+1 A is rank-one, we have lluk+1 uf+1 All} = lluk+11111AT Uk+111· Now it follows from 

AT Uk+1 = O'k+1Vk+1 + f3H1 Vk- 9k+1 (cf. Equation (2.1)) that 

II AT Uk+111 = (a%+1 + (3~+ 1 )(1 + CM) + ll9k+III2 + 2ak+1flk+1 vf Vk+1 + 

2(ak+1 + flk+1)0(cM) 

= a%+1 + (3~+1 + O(IIAII}77v) + O(IIAIIFcM ). 

Substituting the above estimates into Equation (3.7) completes the proof. 0 

Therefore within the level of orthogonality of U k+1 and Vk+l, the formula w~+ 1 = w% -a%+1- (3~+ 1 
can be used to compute Wk+1· 

REMARK. With some extra effort, we can improve the above result which roughly says that 

w%+1 = w~- a%+1 - (3~+ 1 + 0( 11u) + 0( 11v ). We want to improve the error term from 0( 11u) + 0( 11v) 

to 0(11tr) + 0(11u11v ). To this end, we need to make the following assumptions/ 

2 The assumptions iuT+1u;j = 0(11tr) and lvT+lv;j = 0(11t) need an explanation: in the coupled 
two-term recurrence (2.2) no explicit orthogonalization is performed and therefore it is generally not 
true that the two consecutive Lanczos vectors Ui+1 and u;, Vi+1 and v; are orthogonal to each other 
to working precision. This is in sharp contrast to the case in tridiagonalizing a symmetric matrix 
[14, Equation (13.4.4)]. However, the assumption is usually not a severe restriction especially when 
semi-reorthogonality is maintained (cf. Section 4). 
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1. 1 - uT u; = 0( t: M), 1-vTv; =O(t:M)· 

lvf+lv;l = 0(77t). 2. luf.t1ud = 0(71b), 
It is then easy to see that 

(3.8) 

Now write Wk as 

where 

ef+l (I- U[+l Uk+d = (0( 71U ), · · ·, 0(71u ), 0(71b ), 0( t:M )], 

ef+l(I- Vk~l Vk+l) = [0(71v),. ·. ,0(71v), 0(11t ), O(t:M)]. 

iterml = ltrace((A- uk+lBk+l vk~ll Uk+l(!3k+lvi + O'kHVr+l))l 

= itrace((/3k+lvf + O'kHvf+dAT(I- Uk+lU[+l)Uk+lek+l)i 

= itrace((/3k+lvf +ak+lvf+dATUk+l(I- U[+lUk+l)ek+li 

= ltrace((/3k+l vi+ ak+l vi+dVk+lB[+l (I- U[+l Uk+l)ek+ll· 

Now notice that vfVk+l and v[+ 1 Vk+l have the form 

and furthermore 

v[Vk+l = [0(71v ), · .. , 0( 71V ), 0(77t ), 1 + 0( t:M ), 0( 11t )], 

v[+ 1Vk+l = [0(71v), ... ,0(71v),0(71t,),l +O(t:M)], 

Also notice that B[+1 is an upper bidiagonal matrix. We have 

7 

4. Level of orthogonality and reorthogonalization. It should not come as a surprise that 

the level of orthogonality among the left Lanczos vectors {Uk} and the level of orthogonality among 

the right Lanczos vectors {Vk} are closely related to each other since the columns of Uk and Vk 

are generated by the coupled two term recurrence (2.2). In this section we want to explore this 

relation from several different viewpoints: first we will deal with the whole matrices I- U[ Uk and 

I- V[Vk, then columns of these matrices, and finally each individual elements of these matrices. 

A better understanding of this relation is the key to developing more efficient reorthogonalization 

schemes for the Lanczos bidiagonalization process, and reorthogonalization is essential not only for 

computing low rank matrix approximations but also for computing a few dominant singular value 

triplets. Therefore what we will be discussing with respect to levels of orthogonality is also relevant 

to singular values/vectors computation. 

To proceed, we introduce the following definitions which slightly differ from those used in the 

previous section because we need to relate levels of orthogonality at different iterative steps of the 

Lanczos bidiagonalization process: 
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PROPOSITION 4.1. Assume that Bk generated by the two term recurrence {2.2} is nonsingular. 

Then 

and with O"min(-) denoting the smallest singular value of a matrix, 

Proof. We can write (2.4) as 

where IIFkiiF and IIGkiiF are of the order of machine epsilon. Therefore we have the following relations, 

This leads to 

(4.9) 
=(I- U[Uk)Bk- f3k+lu'[ Uk+ler- u'[ Fk + crvt, 

=[I- U[Uk, -U'{ Uk+dBk- u'[ Fk + crvt 0 

Since Bk iS nonsingular and II[I- U[Uk, -U'{ Uk+dll :5 71(Uk+l ), we have 

On the other hand, it follows from Equation (4.9) that 

O"min(Bk)ii[I- u'[uk, -U'{ Uk+l]ll :5 II[I- u'[uk, -U'{ Uk+l]Bkll 

:5IIBkiiiii- VtVkll +O(IIAI!Ft:M)· 

It is easy to see that III- U[+ 1Uk+lil :5 2ii[I- U[Uk,-U'{uk+!]ll, and Bk nonsingular implies 

O"min(Bk) > 0. Combining the above two inequalities completes the proof. 0 

The above result says that as long as Bk and Bk are not very ill-conditioned, the level of orthog

onality among the columns of Uk+l and the level of orthogonality among the columns of Vk should 

be roughly comparable to each other. We will illustrate this using some numerical examples in a mo

ment. Now we look at the relation of levels of orthogonality from the viewpoint of individual vectors 

of I- U[+ 1 Uk+l and I- vtvk. 

PROPOSITION 4.2. Assume that Bk-l is nonsingular. Then 

Proof. Take the last column of both sides of the first equation in (4.9), we have 

where iterml = O(IIAI!Ft:M ). Notice that Bk is lower bidiagonal, we have 

- vk:..l vk = B;;21 (cH( -Ul-1 uk)- f3k+lu'[_l uk+d + O(IIAI!Ft:M), 
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which leads to the bound we want to prove. 0 

EXAMPLE 1. In this example we apply the recurrence (2.2) to several test matrices. No re

orthogonalization is carried out. The initial vector b is always chosen to be a vector of all ones. We 

first use a test matrix from SVDPACK to illustrate the relation between the levels of orthogonality 

among columns of Uk+ 1 and Vk. The matrix is a term-document matrix from an information retrieval 

application by Apple Computer Inc. [18). It is sparse and of dimension 3206 x 44. Its singular values 

are plotted in Figure 9 in Section 5. We first apply the Lanczos bidiagonalization process to AT. For 

k = 2, 3, ... , 11, we tabulate the four quantities 71(Uk), 71(Vk), cond2(Bk), cond2(Bk) as follows. 

I k I 
2 2.3052e-14 4.0422e-14 1.5941e+OO 1.5349e+OO 

3 1.0141e-13 1.4936e-13 1.8614e+OO t.7463e+oo 

4 3.3635e-13 4.8692e-13 2.1773e+OO 2.0022e+OO 

5 9.6149e-13 1.5292e-12 2.6264e+OO 2.4151e+OO 

6 4.2373e-12 8.0257e-12 2.9814e+OO 2.6638e+OO 

7 1. 7977e-11 3.5758e-11 3.6939e+OO 2.9626e+OO 

8 8.1124e-11 1.3235e-10 4.2295e+OO 3.7537e+OO 

9 3.5596e-10 -5.9628e-10 4.3911e+OO 4.2686e+OO 

10 2.0151e-09 3.4583e-09 4.4231e+OO 4.3872e+OO 

11 9.6713e-09 1.5937e-08 4.4329e+OO 4.4189e+OO 

.For this example after about 20 iterations of the Lanczos bidiagonalization process, the orthogonality 

among {Uk} and {Vk} are completely lost. We notice that both Bk and fh are well-conditioned, and 

therefore 71(Uk+l) and 71(Vk) are comparable to each other. Next we apply the Lanczos bidiagonal

ization process to A itself and again b is a vector of all ones. This time since an extra zero arising 

from m =;f n is being approximated by a singular value of Bk, the matrix Bk becomes more and more 

ill-conditioned as k increases. However, ih does not become ill-conditioned and therefore 71(Uk+l) 

and 71(Vk) are still comparable to each other. 

I k I 
2 5.3798e-14 2.0851e-15 5.9274e+OO 1.6027e+OO 

3 5.4055e-14 1.9953e-14 2.3701e+01 1.7965e+OO 

4 6.1741e-14 6.4649e-14 5.9076e+01 2.0469e+OO 

5 1.0555e-13 2.0562e-13 1. 5571e+02 2.3917e+OO 

6 3.5843e-13 9.7851e-13 3.3009e+02 2.7807e+OO 

7 1.7802e-12 3.7335e-12 5.2861e+02 3.6361e+OO 

8 7.3623e-12 1.8075e-11 7.5720e+02 4.2095e+OO 

9 3 .1936e-11 8.6667e-11 1.2715e+03 4.4092e+OO 

10 1.4617e-10 5.3847e-10 3.2588e+03 4.4438e+OO 

11 9.4875e-10 2.6974e-09 7.3327e+03 4.4517e+OO 

12 3.9498e-09 1.0662e-08 2.0959e+04 4.4539e+OO 

13 1.9679e-08 6.9862e-08 5.1566e+04 4.4549e+OO 

14 1.4828e-07 4.2244e-07 9.0752e+04 4.4558e+OO 

15 8.3146e-07 2.3219e-06 1.5435e+OS 4.4565e+OO 

16 4.1817e-06 1.9093e-05 4.3127e+OS 4.4567e+OO 

Now· we look at another two test matrices which are taken from P.C. Hansen's Regularization 

toolbox [16). The first matrix is phillips(100), a square matrix of dimension 100. Its singular values 
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are plotted in Figure 5 in Section 5. In what follows we tabulate the same set of four quantities 

71(Uk), 71(Vk ), cond2(Bk), cond2(Bk) for k = 2, ... , 9. 

2 1. 0838e-15 1.1567e-15 1.8355e+OO 1.4510e+OO 

3 2.3688e-15 3.3906e-15 3.2510e+OO 2.4812e+OO 

4 8.4092e-15 3.7248e-14 7.7514e+OO 6.7785e+OO 

5 4.6956e-13 2.5136e-11 6.1892e+01 6.1104e+01 

6 9.6335e-09 1.3857e-06 1.4612e+02 6.1700e+01 

7 8.3108e-05 7.7110e-03 2.8009e+02 1.2250e+02 

8 8.8663e-01 9.9535e-01 2.8010e+02 2.0295e+02 

9 9.9621e-01 9.9998e-01 2.8143e+02 2.0303e+02 

For this test matrix the loss of orthogonality progresses faster because some of the /3k and a" are 

small. We notice that the relation 71(Uk+d ~ cond(Bk+d11(Vk) holds. 

The last matrix in this example is wing(100), a square matrix of dimension 100. Its singular 

values are plotted in Figure 6 in Section 5. We tabulate 71(Uk),71(Vk),cond2(Bk),cond2(Bk) in the 

following. 

k 

2 7.8559e-16 5.3386e-15 2.2673e+01 1.3273e+01 

3 8.7147e-14 3.8423e-11 7.6085e+02 4.0375e+02 

4 1.8297e-08 3.9253e-04 4.0433e+04 2.5253e+03 

5 9.9306e-01 1.0000e+OO 4.0433e+04 1.8992e+04 

6 1.0000e+OO 1.0000e+OO 2.8263e+06 1.8992e+04 

We notice again that the relation 71(Uk+d ~ cond(Bk+d11(Vk) holds. In summary, if no reorthogonal

ization is performed in the Lanczos bidiagonalization process, then either 11(Uk+l) ~ cond(Bk+d11(Vk) 

or 71(V") ~ cond(Bk)71(Uk+l) tends to hold. 

Now we look at each of the individual elements of the matrices I- U[+ 1 U"+ 1 a.nd I- vtv" a.nd 

derive recurrence relations that can be used to monitor the loss of orthogonality among the Lanczos 

vectors {U~<+d a.nd {Vk}· The result can be considered as extension of similar result for monitoring 

the loss of orthogonality in the Lanczos tridiagonalization process for symmetric matrices [17]. 
PROPOSITION 4.3. Define Wik = uT Uk = uf u;, O;k = v'{ Vk = vf v;. Then those quantities satisfy 

the following coupled recurrences. 

w;; = 6;; = 1 

( 4.10) 

cr;+loi+l,k = .8k+1Wi+l,k+1 + akWi+l,k- ,B;+lOik + (v'[g;+l- u'{+1/k), 

where k = 1, ... , i and 6;o = 0. 

Proof. It follows from Equation (2.3) that 

(4.11) 

(4.12) 

In Equation ( 4.11) set i to k and k to i + 1 we obtain 

( 4.13) 
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and in Equation ( 4.12) set i + 1 to k and k to i we obtain 

( 4.14) 

Subtracting {4.14) from {4.11) and {4.13) from {4.12) and simplifying yields the results. 0 

REMARK. Although the derivation of the above recurrence is straightforward, it has not been 

discussed in the literature before. One of the reasons might be that there has been no implementation 

of the Lanczos bidiagonalization process using the coupled two-term recurrence (2.2) with partial 

reorthogonalization to maintain semi-orthogonality (See the remarks at the beginning of Section 2). 

As mentioned before we need to keep certain level of orthogonality among the Lanczos vectors 

{Uk} and {Vk} in order to obtain a good approximation Jk. Certain level of orthogonalization will also 

ensure that no spurious singular values will appear. As is in the Lanczos tridiagonalization process, 

maintaining orthogonality of both {Uk} and {Vk} to full machine precision is not necessary. What is 

needed is the so-called semiorthogonality among the left and right Lanczos vectors [14, 17], i.e., carrying 

out reorthogonalization so that Tl(Uk) = O(v'!M) and Tl(Vk) = O(y'{M) are maintained throughout 

the bidiagonalization process. Developing an implementation of the Lanczos bidiagonalization process 

using the coupled two-term recurrence {2.2) and incorporating partial reorthogonalization based on 

( 4.10) is very similar to the symmetric tridiagonalization case. Therefore in the following we only give 

the outline of the approach and the list of the pseudo-code. The recurrence {4.10) is used to monitor 

the level of orthogonality of the left and right Lanczos vectors. Since the /; and 9k represent local 

rounding errors and are therefore not known, they are replaced by terms that simulate the rounding 

error process. Following [14, 17], we replace {4.10) by the following, 

w;; = 6;; = 1 
( 4.15) 

where k = 1, ... , i and 6;o = 0. The following pseudo-code summarizes the.algorithm. 

Algorithm. Semi-Orth 

Using recurrence (2.2) to compute Ui+t,Vi+t,ai+t,.Bi+t and do 

Update the w-6 recurrence ( 4.15) 

Set Wmax = maxl$j$i Wi+t,j, 6ma.x = maxl$j$i 6;+t,j 

if Wma.x ~ -/fM then 

orthogonalize u; against u,_l 

orthogonalize Ui+t against U; 

reset the w-6 recurrence {4.15) with 

Wi+l,j = €!, j = 1, ... , i 

else if 6ma.x ~ -/fM then 

orthogonalize v; against Vi-t 

orthogonalize Vi+t against v; 
reset the w-6 recurrence {4.15) with 

6i+1,j = fr,j = 1, ... , i 
end if 

Before we discuss another efficient reorthogonalization scheme we first provide some motivations. 

In some applications such as compression of multiple-spectral and hyper-spectral image cubes [4, 8], 
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principal component analysis for face recognition and image databases [20, 11, 19, 15], each column 

of the matrix A represents ~ single image acquired at a specific wavelength (channel)· or a facial 

image of a particular individual: the columns of the 2-D image array is stacked into a single long 

vector.3 For a 512 x 512 2-D image the row dimension of the resulting matrix A is 262144,4 while 

the column dimension is the number of available wavelengths (channels) or the number of face images 

used in the image databases. In early remote sensing satellite facilities such as Landsat Thematic 

Mapper, the number of channels is 7 while now channels are numbered in the several hundreds 

upto 1024. The number of face images used in an image database ranges from several hundred to 

several thousand [20]. Therefore in those applications the matrix A is very skinny, i.e., m ;}> n. To 

facilitate the discussion, we will say that those Lanczos vectors with smaller dimension belong to 

the short space while those with larger dimension belong to the long space. Recall that during the 

Lanczos bidiagonalization process, the left and right Lanczos vectors need to be saved so that later 

on they can be used in the reorthogonalization process. If the dimensions of the matrix A are large, 

then those Lanczos vectors may have to be stored out of core in secondary storage and later on be 

brought into main memory when reorthogonalization is carried out. The most popular secondary 

storage is hard disk, and disk access is always slow. With an eye towards parallel implementation 

of the Lanczos bidiagonalization process on distributed memory machines, sophisticated parallel I/0 

techniques are needed to handle the storage of the Lanczos vectors. This issue is especially relevant 

in the applications we just mentioned, since the row dimension of A is very large. Great efficiency 

can be gained if we exclusively perform reorthogonalization in the short space since those vectors 

have much smaller dimension and can therefore be stored in the main memory during the entire 

Lanczos bidiagonalization process. Disk access is now limited to saving the currently generated long 

Lanczos vector to secondary storage, and there is no need to retrieve those previous long Lanczos 

vectors to perform the reorthogonalization process. That we can get by with this kind of one-sided 

reorthogonalization is partially justified by the fact that the levels of orthogonality among the left 

and right Lanczos vectors are· closely related to each other (d. Proposition 4.1), 

Therefore enforcing certain levef of orthogonality on {Vk} will affect the level of orthogonality of 

{Uk+d· However, the level of orthogonality of {Uk+d is not unconditionally controlled by the level 

of orthogonality of {Vk}. One also needs to take into account the effect of I!Bkll/umin(Bk) and 

IIBk'1 IIIIB"II' i.e~, if B" and/or B" is too ill-conditioned, 71(Vk) may not be comparable to 71(Uk+l). 
Now we proceed to describe the algorithm with one-sided reorthogonalization. We will come 

back to the issue of orthogonality later on. For A E 'R-mxn with m ;}> n. At each step of the Lanczos 

bidiagonalization process, we orthogonalize Vi+I against all the previous Lanczos vectors and leave 

Ui+I unchanged. In the following we list the pseudo code of the one-sided reorthogonalization. 

Algorithm. One-sided 

For i = 0, 1, ... , 

Using recurrence (2.2) to compute Ui+I, Vi+I, O'i+J, /3;+ 1 and do 

orthogonalize Vi+I against v; 

EXAMPLE 2. We look at levels of orthogonality of {Uk} and {Vk} computed by ALGORITHM 

ONE-SIDED. For the following test matrices we always perform reorthogonalization in the short space. 

3 In latent semantic indexing approach to information retrieval, the term-document matrices can 
also either be very skinny or very fat, i.e., with many more terms than documents or vice versa. 

4 High resolution remote sensing facility can produce 2-D images of dimension 3000 x 3000. 
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The first matrix is the 3206 x 44 matrix from SVDPACK which is also used in Example 1. We first 

apply ALGORITHM ONE-SIDED to AT. In fig~re 1 on the left we plot 71(Uk) and 71(Vk) fork= 2, ... , 44, 

and on the left we plot the two sequences {o:k} and {f3k}· Notice that f3k drops sharply towards the 

end of the Lanczos run, but this does not affect the level of orthogonality of either {Uk} or {Vk}. 

The condition numbers for both Bk and Bk are of order 0(1). The orthogonality in the long space 

is very well controlled by enforcing the orthogonality in the short space. We also apply. ALGORITHM 

ONE-SIDED to A itself and reorthogonalize in the short space. Now we have 71(Uk) ~ 10-14 and 

71(Vk) ~ 10-15
• We notice that one singular value of Bk tracks a spurious zero singular value resulting 

in increasingly larger cond(Bk) but cond(BK) stays 0(1). Again the level of orthogonality ofthe long 

space is well controlled by that of the short space. 

Next we consider the matrix phillips(lOO), a square matrix of dimension 100 used in Example 1. 

We apply ALGORITHM ONE-SIDED to A and perform reorthogonalization on {Vk}· In Figure 2 on the 

left we plot 71(Uk) and 71(Vk) fork= 2, ... , 100, and on the left we plot the two sequences {cond(Bk)} 

and {cond(Bk)}. The vectors {vi} are explicitly orthogonalized and hence 71(Vk) stay at the level of fM. 

Now both Bk and Bk become more and more ill-conditioned as k increases, enforcing orthogonality 

of {Vk} will not completely control the orthogonality of {Uk}, one has to take into account the 

growth of the condition numbers of Bk and Bk. Compare with the results obtained using Lanczos 

bidiagonalization without any reorthogonalization ( cf. Example 1), one-sided reorthogonalization does 
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delay the process of orthogonality loss in {Uk}, but it does not completely eliminate it. Does this 

mean one-sided reorthogonalization can not be used for matrices like phillips(100) for which the 

level of orthogonality of the long space can not be controlled by the level of orthogonality of the short 

space? The answer is it still can and we will explain why in a moment. 

REMARK. If we reorthogonalize in the long space, the control on the orthogonality in the short 

space is not as effective. There are also many interesting issues as to whether accurate singular values 

and vectors (both left and right) of A can still be easily computed even if either Uk or Vk (not both) 

completely lose orthogonality. These issues will be dealt with in a separate paper. 

Now we explain why we still can obtain good low rank approximation Jk even if the level of 

orthogonality in the long space is completely lost. Assume that in the recurrence (2.2) we perform 

reorthogonalization for each vector Ui+l aS follows, first we compute 

then we orthogonalize /3i+l Ui+l against all the previous vectors u1 , ... , u; to obtain 

where ]; accounts for the local rounding error and f3i+t is chosen such that !lui+ I II = 1. Combining 

the above two equations we obtain 

• - i • T with f; = f; + f; + Li=l {3;+1 ( u;+1 Uj )ui. In compact matrix form we have 

In general there is no guarantee that IIF~<II = O(IIAIIFfM) as would be the case if no reorthogonalization 

is performed. However, notice that the other half of the recurrence still has the form 

with IIG~<+tll = O(IIAIIFfM ). It follows from the above equation that 

Notice that Uk+l is orthonormal within working precision since u;+ 1 is explicitly orthogonalized against 

U; fori= 1, ... , k. 5 Therefore Jk+t = Uk+lBk+t Vk~t will be a good approximation of Ak+t as long 

as Uk+t is a good approximation of the first k+ 1left singular vectors of A (d. Section 3). The above 

statement is true regardless of the level of orthogonality of Vk+l· We will have more to say about this 

in the next section. 

5. Numerical experiments. In this section we will use test matrices from several applications 

fields to demonstrate the accuracy of the low rank approximation computed by ALGORITHM ONE

SIDED. Before we present the results, we want to say a few words about the efficiency of the algorithm. 

One contribution of this paper is the introduction of the idea of using h = UkBk V[ as a low rank 

approximation of a given matrix A without computing any SVD. Compared with the approach where 

SVD of Bk is computed and its left and right singular vectors are combined with the left and right 

5 Sometimes a second orthogonalization is needed to achieve orthonormality within working preci
sion [14, Section 6.9). 
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Lanczos vectors, the savings in flop counts is approximately 24k3 + 4mk2 + 4ne, where we have 

assume that A E 'Rmxn and the SVD of Bk is computed. How much of the above savings accounts 

for the total CPU time depends on the number of Lanczos steps k, the matrix A (e.g., its sparsity or 

structure and its singular value distribution) and the underlying computer architectures used (both 

for sequential and parallel computers). Notice that the part of computation for the SVD of Bk 

and the combination of the singular vectors and Lanczos vectors have to be done after the Lanczos 

bidiagonalization process. In [2] the computation of the SVD of Bk along on a Cray-2S accounts for 

12% to 34% of the total CPU time for a 5831 x 1033 matrix with k = 100 depending on whether 

AT A or the 2-cyclic matrix [0 A; A' 0] is used. However, we should also mention that the potential 

savings in computational time should be weighed against the possible deterioration in the quality of 

the low rank approximation. Fortunately, for most of the applications this is not a problem. Another 

contribution of the paper is the use of one-sided reorthogonalization technique. The major gain in 

efficiency from this technique is the reduction in disk access time when the Lanczos vectors have to 

be stored out of core and later on be brought back in for reorthogonalization. This part of the saving 

depends heavily on the underlying computer architectures used and is not easy to quantify. 

We have tested five classes of matrices and coin pared the low rank approximations computed by 

ALGORITHM ONE-SIDED with those computed by the SVD. 

• 2-D images. 

• ill-conditioned test matrices from Regularization Tools [16]. 

• Large sparse test matrices from SVDPACK [18]. 

• Several general rectangular matrix from Matrix Market [9]. 

• 3-D image cubes from remote sensing application. 

All the computation is done using MATLAB Version 5 on a Sun sever 2000. For each test matrix 

we first plot the singular values of the matrix and then the two sequences {II A- UkBk VtiiF} and 

H.L:7~~~~,n) a}) 112
}. We run ALGORITHM ONE-SIDED for min(m,n) iterations just to test the algo

rithm since in practice the algorithm will be stopped when a user supplied tolerance is satisfi~d or the 

maximum number of iterations has reached, and usually the number of iterative steps will be much 

less than min(m,n). If the range of the quantities to be plotted is too large, we will plot them in 

log-scale. 

EXAMPLE 1. A detailed description of using singular value decomposition for single 2-D image 

compression/coding is given in [1]. We have tested ALGORITHM ONE-SIDED on many 2-D image arrays 

which are digitized images of everyday-life photos. The results are very similar and therefore we only 

present one test result. This image is a digitized photo in jpeg format of a night scene of the 184-Inch 
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Cyclotron building at Lawrence Berkeley National Laboratory. We only use the red color component 

of the original image array which is of dimension 837 x 640 x 3. The resulting matrix A. is of dimension 

837 x 640. The class of A is 8-bit integer and is converted to double precision real numbers before 

ALGORITHM ONE-SIDED is ·applied. The sharp dip in the curves plotted on the right of Figure 3 is 

due to the fact we used IIA- Amin(m,n)IIF and IIA- lmin(m,n)+tiiF for the last element of the two 

sequences plotted. In exact arithmetic they should be zero. We also noticed that the singular values 

of most single 2-D images have several order of magnitude spread between Umin and O"ma.", but usually 

there is no sharp gap in the singular value spectrum. 

EXAMPLE 2. Truncated SVD is a very useful tool for solving ill-posed problems. The first step 

involved is to find a low rank approximation Ak of the original matrix A computed from the SVD 

of A [7]. This step can be repla~ed by using h = UkBk VkT instead, and this will be especially 

efficient when the matrix A is large and sparse. The MATLAB regularization tools developed by P.C. 

Hansen contain eleven m-files for generating test matrices which are very ill-conditioned for testing 

regularization algorithms [16]. We have tested all the eleven classes of matrices with dimension 

100 x 100.6 The singular value spectrum of the test matrices of some of the classes are rather similar 

6 In [16] the dimension of the test matrices is an input argument and therefore can be set at will. 
All the test matrices we used are of dimension 100 x 100 except parallax(100) which is 100 x 23 
since. only 23 observations are available. 
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a.nd therefore we did not repeat their results here. The five classes selected are 

• foxgood 

• phillips 

• wing 

• parallax 

• ilaplace 

Except for phillips ( 100), all the other four matrices have singular values that are much smaller than 

eps = 2. 2204e-16. In the tests we have done the Jk matrices computed by ALGORITHM ONE-SIDED 

will not give arise to Wk = IIA- JkliF that is below eps. Now we analyze the computed results for 

phillips(100) a bit further. We also computed 

(5.16) 

and find out that for phillips(100), 

max(ratiok) = 9.8416e- 01 min(ratiok) = 3.3009e- 02. 

Most of ratiok are above 0.1 and only 5 are under 0.1 which occur at k = 7, 8, 9, 10, 11. Figure 2 plots 

the level of orthogonality for phillips ( 100). We notice that even though level of orthogonality for 

{Vk} is about eps, towards to the end of the Lanczos run the orthogonality of {Uk} is completely lost. 

However, IIA- JkliF is not dominated by the level of orthogonality of {Uk}. We have, for example, 

IIA- J1oo IIF = 4.4589e- 06 and IIA - J1o1l1F = 1.1065e- 14. This confirms our analysis at the end 

of Section 4. Another thing we noticed is that when Wk = IIA - Jk IIF falls around the level of eps, 

the monotonicity of {wk} no longer holds, see Figure 4 a.nd Figure 6. 

EXAMPLE 3. Three test matrices are included in SVDPACK [18]. All of them are in Harwell

Boeing format. We used a utility routine that converts a Harwell-Boeing format to MATLAB's .mat 

format. A brief description of the three matrices is given in the following. 

• apple1.mat, a 3206 x 44 term-document matrix from an information retrieval application 

by Apple Computer Inc. 

• apple2.mat, a 1472 x 294 term-document matrix from a.n information retrieval application 

by Apple Computer Inc. 

• amoco.mat, a 1436 X 330 Jacobian matrix from a seismic tomography application by Amoco 

Research Inc. 
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For the three test matrices in this example, ALGORITHM ONE-SIDED is applied with reorthogo

nci.li.zation in the short space. For both applel.mat and apple2.mat, one-sided reorthogonalization 

controls the level of orthogonality very well, and the level of orthogonality for both { U k} and {Vk} is 

around 10-14
• For amoco. mat, the level of orthogonality for the long space deteriorates from 10-14 to 

10-12 at the end of 330 steps. In the following table we list both the maximum and minimum of the 

ratio {ratiok} defined in Equation (5.16) for the three matrices. It is also interesting to notice that 

even though there is difference between IIA- AkiiF and IIA- JkiiF for a fixed k, it is always possible 

to move forward a few steps s to get a Jk+• such that IIA- Jk+• IIF:::::: IIA- AkiiF· For this three test 

matrices we can chose s to be rather small, say s $ 3, especially in the initial several iterations of the 

Lanczos run. 

applel.mat apple2 .mat amoco.mat 

I max(ratiok) 9.9741e-01 9.9820e-01 9.8656e-01 

min(ratiok) 3.9749e-01 2.5214e-01 9.1414e-02 

EXAMPLE 4. Matrix Market contains several general rectangular matrices. Of special interests to 

us is the set LSQ which comes from linear least squares problems in surveying [9). This set contains four 

matrices all of them are in Harwell-Boeing format. We first convert them into MATLAB's .mat format. 

The matrix illc1033 .mat is of dimension 1033 x 320, it is an interesting matrix because it has several 
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clusters of singular values which are very close to each other. For example, the first cluster contains the . 

first 13 singular values ranging from 2. 550026352702592e+02 to 2. 550020307989260e+02 and another 

cluster contains 0'113 to 0'205 ranging from 1. 000021776237986e+OO to 9. 999997517165140e-01. This 

clustering actually exposes one weakness of using Jk = UkBk VkT as approximations of A. It is well

known that single-vector Lanczos algorithm can compute multiple eigenvalues of a symmetric matrix, 

but the multiple eigenvalues do not necessarily converge consecutively one after the other. To be 

precise, say >..max(H) is a multiple eigenvalue of a symmetric matrix H. Then usually a copy of 

>..max(H) will converge first, followed by several other smaller eigenvalues of H, then another copy of 

>.max( H) will converge, followed by still several other smaller eigenvalues, and so on. The consequence 

of this convergence pattern to our task of computing low rank approximation of a rectangular matrix 

A is that in the first few steps with k < l, l the multiplicity of O'max(A), Jk = UkBk V{ will contain 

fewer thank copies of O'max· Therefore Jk will not be a good approximation of A as compared with Ak 

if O'maz(A) is much larger than the next singular value. This is why in the right plot of Figure 12, the 

curve for the Lanczos approximation lags behind that of the SVD approximation in the initial several 

iterations. We also noticed that for illc1033.mat the level of orthogonality changes from 10-14 to 

10-10 while for well1033 .mat it changes from 10-14 to 10-13
• 

EXAMPLE 5. This test matrix is obtained by converting a 220-band image cube taken from the 

homepage of MULTISPEC, a software package for analyzing multispectral and hyperspectral image 

data developed at Purdue University [10]. The data values are proportional to radiance units. The 



LOW RANK MATRIX APPROXIMATION 21 

,o• ,03 

SVO approxlrnatlon 
Lanczoa approximation 

,03 

,o• 

,o• 
.; 

ll ,o• 

I ,o• 

,oo 
,oo 

,o-• ,o-' 
0 50 ,00 ,50 :200 :250 0 50 ,00 ,50 :2!50 

alngular value number Lanczo• Iteration number 

FIG. 14. Plots for 92AV3C.mat 

number 1000 was added to the data so that there were no negative data values. (Negative data 

values could occur in the water absorption bands where the signal was very low and noisy.) The data 

was recorded as 12-bit data and was collected near West Lafayette, Illinois with the AVIRIS system 

which is operated by NASA JPL and AMES. 7 Each of the 2-D image is of dimension 145 x 145 and 

therefore the resulting matrix A is of dimension 21025 x 220. We applied ALGORITHM ONE-SIDED to 

AT with the starting b a vector of all ones. The left of Figure 14 plots the singular values of A, and 

we can see there are only very few dominant singular values and all the others are relative small. The 

reason for this is that the 2-D images in the image cube are for the sanie scene acquired at different 

wavelengths and therefore there is very high correlation among them. In fact the largest singular 

value of A accounts for about 88% of IIAIIF, the first three largest singular values account for about 

98% and the first five largest singular values account for more than 99%. As a comparison, for the 

2-D image matrix of dimension 837 x 640 in Example 1, it takes the first 23 largest singular values to 

account for 88% of IIAIIF, the first 261 largest singular values to account for 98%, and the first 347 

largest singular values to account for 99%. We also notice that Jk gives very good approximation of 

Ak, and max( ratio~)= 9.3841e- 01 and min( ratio~)= 2.2091e- 01 in the first 50 iterations. 

6. Concluding remarks. Low rank matrix approximation of large and/or sparse matrices 

plays an important role in many applications. We showed that good low rank matrix approximations 

can be obtained directly from the Lanczos bidiagonalization process without c.omputing and singular 

value decomposition. We discussed several theoretical and practical issues such as a priori and a pos

teriori error estimation, recursive computation of stopping criterion, and relations between levels of 

orthogonality of the left and right Lanczos vectors. We also discussed two efficient reorthogonalization 

schemes: semi-reorthogonalization and one-sided reorthogonalization. A collection of test matrices 

from several applications areas were used to illustrate the accuracy and efficiency of Lanczos bidiago

nalization process with one-sided reorthogonalization. We are currently working on implementations 

of the algorithms proposed on distributed memory machines such as Cray T3E. 
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